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We have undertaken a study of the complex Lorenz equations

X = — X +ay.
y={r—z)x—ay,
= — bz Mty + N

where x and ¥ are complex and z is real. The complex parameters r and g are defined by r = ry+iria = 1 ~je and o and
b a2 real. Behaviour remarkably different from the real Lorunz model occurs. Only the origin is a fixed point except for
the special case ¢ + r2=0. We have been able to determine analytically two critical values of ri, namely ric and ric. The
arigin is a stable fixed point for 0 <ry <ri., dut for ry > ri. a Hopf bifurcation to a limit cycle occurs. We have an exact
analytic solution for this limit cycle which is always stable if o < b+ 1. If @ > b + | then this limit is only stable in the
region ri, < n < ric. When r > rle, a transition to a finite amplitude oscillation about the limit cycle occurs, The naturs of
this bifurcation is studied in detail by using a multiple time scai= analysis to derive the Stuart-Landau amplitude equation
from the original equations in a frame rotating with the limit cycle frequency. This latter bifurcation is either a sub- or

super-~critical Hopf-like bifurcation to a doubly periodic motion, the direction of bifurcation dep

vadues. The nature of the bifurcation is complicated by the existence of a zero eigenvalue.

1. Istroduction

In a previous paper [1], the so-called “com-
plex” Lorenz equations were derived as a
generalization of the original equations first
derivec by Lorenz [2]. The complex equaiions
are written in the form

X = - oX + oy, (1.1a)
¥ = = X2 4rx -~ ay, (1.1b)
= —bz+ix*y+xy%. (1.lc)

The Rayleigh number r and the parameter a are

ding on the par
complex numbers defined by
r=r+in, (1.2a)
= | —ie, (1.2b)

and o, b, ry, r; and ¢ are real and positive. The
form of (1.1) shows that x and y are complex
but z is real.

The ‘ntention of this paper is to make a
mathematical study of egs. (1.1) in order to
show that significantly different behaviour
occurs in the bifurcation sequence than in the
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140 A.C. Foxler et al. The complex Loren: equations

real Lorenz equations. The real Lorenz model is
embedded in (1.1) and can be rccovered when
r.=e=0 and x and y are real. The physical
motivation for studying the complex Lorenz
model comes from work by twe of the three
prese~ 1uthors who derived a set of amplitude
equations near criticality for a class of dis-
persively unstable, weakly nonlinear, weakly
damped physical systems [1.4]. This was oased
on work which rons.dered the undninped sys-
tems first {3] ancd then weak damping was added
afterwards.

When only temporal variation was included,
the relevant set of amplitude equations turned
vt to be of the form

d¢’A dA

W+A'a—f: (IA“,SAB. (1.3a)
dB ey agar f
a—‘i:‘?' AB = ar AP+ AJAL. {:.3b)

In the circumstarces discussed in [i]. the
parameters 8, 4, and A, were always real and
positive. If only weak damping is added 10 the
original sysiem then a and A, are also real and
vositive. This is the case for the laser equations
[1.4]. If cxtra weak dispersive effects are also
added then it turns out that @ and A, become
complex. This circumstance occurs in the 2-
layer and Lady models of baroclinic instability
[1.57 when a “weak™ beta-effect is inchuded.
Eqs. (1.3} can be transformed into egs. {1.1) by
the following transformations:

=T, (1.4a)
1= Re(A) - A2, {1.4b)
x=Q2B)QA, (1.40)
2= 2p07'AB, (1.4d)

whete the variables r, o, ¢ and b in (1.1} ace
given by

T = A\/;’Q.
b= 321'11\

r = 1+ 2Re(0){A:2).
= [’.ZIm(u) + A im(A.)]f(ﬂA,)‘
¢ !m(A.)()

The complex Lorenz < .hations also form the
basic model for bistable optical systems of two
level atoms. Hassan. Drummond and Walls {19}
and Ikeda [20] have shown that in a singie mode
high-Q ring cavity. the semi-classical equations
of motion are a set of damped Maxwell-Bloch
type equations. By cbservation we can show
that these can be transformed into eqs. (1.1), but
with an external driving field. In this casc, ry = 0.
vut ¢+ 0. Refs. 19 and 20 extend earlier results
by Bonifacio and Lugiato [21]. As a physical
problem, the driving field is necessary ar
obviousty the inclusion of this adds an extra
degree of complication to the problem. A study
of the system (1.1) on its own is therefore
important as a first step towards understanding
the more general problem, in which a forcing
term is present,

However, the essence of this paper is not a
discussion of the physical derivation of (1.1)
since this was performed in [1] but rather we
seek to undertake a mathcmatical and simple
numerical analysis of these equations in their
own right, A consideration of this more general
system may also cast more light on the real
Lorenz model.

Our approach is analytical, but we should
point cut that the analytical results obtained
here were strongly motivated by the results of
numerical computations. An example of this is
the exact periodic solution displayed in section
2. the form of which was suggested by numeri-
cal compuations which gave a perfect ellipse in
the Ra(x) - Re{y) phase plane with z quickly
reaching a constant equilibrium value. The
analysis of the bifurcation of the limit cycle to
doubly periodic solutions given in section 3 was
also suggested oy numerical resuits which
showed fast and slow oscillations, thereby in-
dicating that a multiple time scale calculation
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was in orde:. It is interesting, in our view, that
so much information can be derived by analy-
tical means for what is essentially a fifth order
problem. A qualitative difference between the
first two bifurcations is that whil: the first is a
supercritical Hopf bifurcation of the origin into
a limit cycle, the nature of the second is blurred
by the existence of a A =0 eigenvalue which
occurs because of rotational symmaetry. For this
reason, the aims of sections 2 and 3 are different.
In section 2, vollowing Lorenz in which we use
ry as the main bifurcation parameter, we cal-
culate the two critical values of r, at which
firstly, the origin bifurcates to the limit cycle
and secondly, at which this limit cycle becomes
unstable. Section 3 is devoted to understanding
the nature of this bifurcation using multiple
scales to obtain the Stuart-Landau equation in
the rotating frame,

T
T = kAt kAAL

(L.5)
Following McLaughlin and Martin [6], the cri-
terion for determining whether the bifurcation is
super- or sub-critical is determined by whether
Re(ky). 15 negative or positive respeqively and
consequently whether the limit cycle undergoes
‘soft” bifurcatior to a doubly periodic solution,
or ‘hard’ bifurcation to some other type of
motion.

2. An exact periodic solution

In studying (1.1) we shall follow Lorenz’
analysis of the nature and stability of solutions.
Equilibrium solutions in which time derivatives
are absent are given by the originx =y =z2=0,
or (from (1.13)) x =y whence z=r~a from
(1.1b). Eq. (1.1c) thus implies that

xf=b(r~a) Q.0

Since z is real, it foliows that such points can

only exist if I'n(r — a) = 0; that is,
e+ri=10, 2.2)

In this case, there is a continuum of steady
states given by

z=r-1,
x| =yl = b(ri- D",

(2.3a)
(2.3b)

This rather pathological possibility already
reveais the special nature of (1.1). In [1] it was
found for the barcclinic two layer model with
weak dissipation and weak beta-effect that

The sprcial condition (2.2) is not satisfied and
so only the origin is a fixed point. In the case
e = ry= 0 we technically do not return to the full
real Lorenz equations as x and y can siill
remain compiex. The «wo fixed points of the
real Lorenz equations (in addition 1o the origin)
are replaced by the continuum of points (2.3)
although there is very little difference in this
intermediate case from the real case.

2.1, Stability of the origin

We examine the stability of the steady state
0.0,0) by linearising (1.1) about this point. To
do so we simply neglect quadratic terms, thus

s

; - o 0 X
yl=ft r -a O y (2.6}
2 0 0 -n z

We note that z = 0 is always a stable manifold
{z = - bz). All solutions to (2.6) are proportional
to exp(At), where the eigenvalues A (assumed
distinct) are given by A = ~ b, and (o +A)a +
A)—ro =0, whence

r=H~(+a)r{{o+al+de(r-a}'l Q7)
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If either vaiue of A in (2.7) has Re(A) >0, then
the origin is said to be linearly unstable. Note
that the two values of A in {2.7) are not
generally complex conjugates: this is because
the characteristic equation for A does nct have
real coefficients. If (as can easily be done) the
eqs. .1) are first written out as a five by five
system for the variables

xg=Re(x); xy=Im{x:; ypr=Re(x )

yr=1Im(y): 2z

then the resulting matri.. eyuation analogous to
(2.6) would have eigenvalues — b, A given by
(2.7) together with A*,

Let us define

ptig={o+aY+de(r-a}* p>0 2.8

(this can be done without loss of generality).
Then (2.7) gives the eigenvalues as

y=i-(o+a)=(p+ip) 29
su that

RedA)= {2 p ~ (o + D). 2.10)
It follows {remember p > 0) that one eigenvalue
aiways has negative real part, and the other is
negative or positive depending as p S o + 1. The
critical stability limit is when
p=u+l, (.11
and this relation determines a corresponding
relation between the parameters which. plotted
as a curve in paicmeter space, divides regions
of stabiiity from those of instability. From (2.8).
we find

pi—q*+2ipg = (o +a)+4o(r-a),

whence a little algebra shows that

3 3 "] :

pP-gi=(r+y+do(n-1-¢, @2.12)
pq=2oletr)—eloc+ 1),
Following Lorenz, we use r, as the bifurcation
parameter, and denote its value at the stability
limit by r.: thus when rn=r, p=o+l, so
(2.12) implies

&~ g’ =4da(n -1,
(2.13)

Note immediately that the frequency © of the
critically stable eigenmode is given, from (2.9,
by

w=1mA = }(e+ q).

Eq. (2.13) implies

_oletr)
a+1

Q.14

w

We may observe that if e + r; % 0, then the ori-
gin becomes oscillatorily unstable, so that the
conditions for a Hopf bifurcation will occur
(provided also d{Re A)/dr, #0 at r,=r.): thus
we may expect a limit cycle to bifurcate from
the origin at r=r, with approximate
frequency w: hence as e + ry — 0, the frequency
tends to zero. and so the continuum of equili-
brium points (2.3) may be interpreted as the
limit of a limit cycle in which the frequency has
decreased to zero. We will generally suppose
w#* 0,
Eliminating q in (2.13) we obtein

(e + r)e—or)

.= 1+ (0:+ l)’

2.15)

as the critical value of r,. It is easy to see from
(2.12) that if r,<r, then p <o +1 (and vice
versa), so that the origin is linearly stable for
i1 < 1., and linearly unstable for r;> ..
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2.2. Limit cycle

From (2.12), it is also easy to check that
d(Re A)/dr, >0 at r = r, so that (provided (1.1)
is writtan as o five by five system, and consider-
iug the previous remarks about cigenvalues in
this case) the Hopf theorem is applicable, and
thus a limit cycle does bifurcate from the origin
at r=ry, provided w#0. Approximate tech-
niques for giving the form of this exist (for
Ir = r <1). However, numerical computation
(fig. 1) shows that evea for r;— ri. = 1, the limit

1.10

090

XA
D10
i

cycle appears to be an ellipse in the (xg, yp)
plane (R denoting rcal part). Also in the (xg, z)
plane it is evident that z quickly reaches 2
constant value,

This suggests that we look for an exact solu-
ticu to the equations in which z is constant, and
x and y are sinuscidal. Since (1) is linear in x
and y if z is constant, it is clear that such a
solution is possible. We put

x=Ael,

y=Be¥,

z= M. (2.16)

-0.90

e

—
0.60 1.00 1.40 1.80

Y3

Fig. 1. (a) Stable elliptical limit cycle in the xe~yr plane with parameter values b=4{3, c=2, n=2, n=1,e=3,
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Fig. 1. (b} Plot of z versus yx for the Hmit cycle in (a) showing : reaching a constant value.

Then (1.1) implies

ifA= ~cA+ 0B,

ifB = (r—- M)A - aB, 2.17
0={AB*+ A*B) - bM,

so that we find

8= (1+4)a; m=apm, @.18)

and f and | Al are given by

@rip(1+ :{-) = r - |APb. 219

Equating real and imaginary parts of (2.19)
shows that

f=w= %f—]'— (2.20)
and
JAF = b(r - o). 221
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(2.20) and (2.21) conform with the dictates of
Hopf’s theorem, but show that the limit cycle
can be determined axactly up to a phase factor
in A. The amplitude increases with (rj— )" so
that the bifurcation is supercritical and hence
stable (at least initinlly) and the frequency of the
oscillation remains constant. The solution can
be written

CAai. oy LA YR R
x=Ae™; y (I+G)Ae s z=]AlYb.
(2.22)

We note that such exact limit cycle solutions
may exist for other ordinary differential sys-
tems, and in this context we draw attention to
the papers of Fujisaka and Yamada [15] and
Escher [16).

2.3. Stability of the limit cycle

Normally, one cannot explicitly study the
stability of a limit cycle, since the basic state is
rarely susceptible to analysis. It is therefore
very fortunate in the present case that the
stability may be explicitly examined. since the
limit cycle is exactly known. It is possible to
calculate the critical value of r; where the limit
cycle becomes vnstable, which we denote by ri.
This calculatior however does not enlighten us
as to the qualitative nature of this bifurcation
and so this qualitative study is left to section 3
and we coenfine ourselves to purely calculating
Fice

Firsily we change variablos to those with
respect to a rotating frame, which reduces the
limit cycle to a fixed point. That is, we put

x=Xe"™ y=Ye™ =2 .23)

where w is given by (2.20). X, Y, Z satisfy

X = ~{g+in)X + oY,
Y =(-2)X -(a+ia)¥,
2 =H{XY*+X*Y)~bZ.

(224

which have the fixed points X =Y =2Z=0
(unstable for r, > ry), and also

x=4: v=(1+2)a; z=japp @29

where |A] is given by (2.21). Thus (2.24) does
indeed have a continuum of equilibrium points
(each corresponds to the limit cycle), as was the
case for (1.1) when © = 0.

We observe that since (2.25) gives an equili-
brium point independent of the phase, we may
choose without any loss of generality that A is
real. Now a steady statz solutior. of (2.24)
exists, in which A is replaced by A exp(ie) =
A+ieA + 0(¢%). Tt follows that the linearised
equations about (2.25) must have a neutrally
stable solution (iX,. 1Yy, 0) (where 9 denotes the
steady state) for all vaiues of r,>r.. In other
words, one eigenvalue of the matrix equation
governing such rerturbations will be zero. This
physically signifies stability, since it is only a
phase shift in the limit cycle, but ensures that
the bifurcation does not satisfy the Hopf cri-
terion in its entirety. The nature of this bifur-
cation and particularly the role of the A =0
eigenvalue is discussed in more detail in section
3. Furthermore, it is apparent that this dis-
cussion should in principle apply to any genuine
limit cycle: examination of the present model
thus gives an opportunity of explicit comparison
of the theory with numerical expeviment.

To analyse perturbations about the equili-
brium point, we take A real (as above) and set

X=A+¢
yx(1+%"~)A+n,

Z=Alb+L

The linearised equations for £ 7 and { are then
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E= ~(o+iw)E+om,

1 =~ AYb)¢ —(a +iw)y - AL

£=3a(1 —%‘—’)&H(l +%")A§*

+1An +1An*- b 2.26)

Because of the precence of £* and n*, these
egnations cannot imicediqtely be written in
matvix form, but must be supplemented by
equations for ¢* and n™:
£ = (o —iw)g* + on*,

A% = (r*— AU~ (a* —iw)n* — AL (2.27)

We define

L=a+iw,
N = 1+iw/o. (2.28)
P=r—Alb.

and recalling (2.19), we observe that
LN =P

2.29)

(2.26) and (2.27) may now be written in the form

& ~oN «a 0 0 0 £
n p -L 0 0 ~-A n
£* = 0 0 —-oN* ¢ 0 &*
n* 0 0 P* —-L* ~AJ\n*
\f/ \lAN* 14 AN 1A -b) \¢

and as before, there exist solutions proportional
1w exp(At). At this point we observe that such
sofutions will be such that ¢* is not the con-
jugate of £; this is analogous to having complex

plex Lorenz eq

exponents A in matrix equations governing real
variables. In such cases the linearity of the
equations enables suitable superpositions to be
chosen so that the variables are real. Similarly,
we would choose a superposition in the present
case such that &* is the conjugate of &

This may be verified by writing (2.30) as a five
by five real matrix equation for xg, ye. etc.
Since the solutions proportional to exp(A:) give
complex conjugate pairs, or real values of A, the
same must be true of (2.30) (as is shown below).
Thus solutions proportionai to exp(At) exist
when A is an eigenvalue of (2.30): that is, when

~@N+M) e 0 o 0
p ~(L+A) 0 0 -A
0 0 —{oN*+2A) o 0
¢ 0 p* ~(L*+X2) -A
LAN® la AN A —ph+d)
=0, .30

This is casily evaluated by multiplying the ele-
ments of the fifth column by its cofactors. We
obtain

0="{b+ AM{oN + AXL +A)~ P}
X [(cN*+ ANL*+ A)~oP*)
+1ANGN*+ A + aN)[(oN + AL +A)

~aP +(oN*+ A)L*+A)—oP*]. (2.32)

Using LN = P from (2.29), we find that A is a
factor (as predicted): thus A =0, or

A+ b)[A + (L + No)i[A +(L*+ N*o)]
+31ANA + oN + oN¥®)
X{A+L+No)+{(A+L*+N*a)]=0, (2.33)

which is a quartic polynomial in A. We evaluate
an explicit stability criterion as follows. Define

a=(L+aN}L*+oN*) = (o + 1) +Quw— ey,
B=4L+oN +L*+oN*j=qg+1, {2.39)
y=0o(N+ N =2g
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Eq. (2.33) is thus

AV BYAT 2B + o)+ AYA + y)A + B) =0.
(2.35)

We have a, B, ¥ >0; thus the constant term is
positive for ali A*>0. Hence A =0 is not a
solution of {2.35) and instability can only occur
if conjugate roots of (2.35) cross the imaginary
axis. For A*>0, A’ - 0, the roots of (2.35) all
have negative real part. Therefore the limit
cycle is stable for ry>ry vntil a critical value
ry= ri, at which (2.35) has roots A = :i{), say.
At this point (if it exists), {2.35) may be written
A+ QA+ pA+q) =0, (2.36)
Multiplying out (2.35) and (2.36), we find, on
identifying coefficients of nowers of A, that we
must have

p=b+28,

Q+q=a+2b8+ A%

P =ab +(B + A,
= ByA*.

2.37)

Eliminating p. q and {}* gives a critical value of
A%, and hence of r,, at which instability sets in.
Since w, b, B and y are all positive, p, g, and Q
are also, and thus (2.36) implies that Q is real,
and the other two roots of (2.36) have negative
real parts. From (2.37), we have

0 = [ab + (8 + )AY(b +2B). 2.38)
whence
[ab + (3 + 'y)A! 239
so that
i abt+(B+y)A?
a+2bg+ A ®+25)
Ab +2
Tlab+(BF YA (2.40)

is the stability criterion for A% This is evidentiy
a quadratic equation for A%,

QA= QA+ QA+ Q5 =0, (2.41)
where some simplification shows that
Q=B+yXy-b-8)

=Q@o+1)e~b-1),
Q:= B(b +2B)2By - 2bB — by) (2.42)

= a(=by+b*+8b +28°+28y),
Qs = —2aBbla+ b2+ 28b].

We have Q;<0. If o> b +1, then Q,>0 and
(2.41) has a unique positive root, which deter-
mines the critical value of A’ This turns .t to
be

o= Q:+[Qi~ 4Q103]”2.

2Q

(2.43)

In this case the critical value of r, where the
limit cycle becomes unstable is given by
rie=ri+plb, (2.44)
where p is given by (2.43), @i, Q; and Q; by
(2.42), &, B and y by (2.34) and w by (2.20). This
is a useable, though messy criterion.

If o<b+1, then Q<0 and Q may attain
positive values for a finite range of A% A
necessary conditior: that this occurs is that Q; >
0. Using the definitions of 8 and vy in (2.34),
together with the factthat a = g2 and b > o ~ 1,
evaluation of Q, in (2.42) shows that necessarily
Q:<0. It follows that the limit cycle is always
stable if o <b+1, which is identical to the
corresponding real case.

To summarise, we have shown that the limit
cycle, in the form of the exact solution {2.22), is
always stable if co<b+ 1. If o >b + 1 shen it is
also stable for values of ry in the range ri. < <
ri. but becomes unstable when r > ri.. Due to
the presence of the zero eigenvalue of the
linearised matrix equation the bifurcation is not
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completely ri Hopf type although without this
eigenvalue 1 Hopf bifurcation would occur The
nature of rhis bifurcation thus requires further
consideration.

3. Bifurcation of the limit cycle in the complex
Lor- vz equations

3.1. General case

Let us first coas der the general case of
bifurcation of a Hmit cycle. Straightforward
linearised perturbation analysis may be carried
out, leading to a linea; mu!rix equation for the
perturbations in which the matrix is periodic of
period T. say (where T is the period of the
underlving limit cycle). Floquet theory (see e.g.,
Coddington and Levinson [7}]) then tells us that
the solutions of this linear equation may be
written as the preduct of a function of period T
and the function exp(ut). Stability then rests on
the magnitude of the Floquet multipliers
exp(uT ;. ané thus on the nature of the Floquet
exponents p. In the case of our analysis of the
complex Lorenz hmit cycle. the exponents u
are essentially the same as the eigenvalues A.

Various possibilities for bifurcation now
occur, and are discussed by Ruelic and Takens
[8}. Joseph [9] and Lanford [10]. Particutarly, if
A crosses the imaginary axis at iQ) (and so also
A* at —i1), then the limit cycle bifurcates to
motiot: on a 2-torus. Generally this motion will
be doubly periodic (corresponding to a “Hopf
bifurcation” in a frame rotating with the limit
cycle, or of the associated Poincaré map): for
particular values of A, subharmonic periodic
solutions may also occur (Joseph [9]).

However, Floquet theory is not generally
uscful for explicit calculations, and in addition
the limit cycle solution is not usuaily known
explicitly. Thus practical applications of such
theorems as evist do not seem prevalent in the
“terature: particularly, we are unaware of a
method for computation of the stability of the

bifurcating torus. In the Hopf case, there are
numerous “different” methods which can be
used, which probably amount to the same idea:
the center manifold theorem, Hopf's theorem,
the Poincaré-Lindstedt method, the Krylov-
Bogoliubov-Mitropolsky method of averaging,
and the Cole~-Kevorkian method of multiple
scales, as originally developed for fluid flows by
Stuart [11]. The last-named method derives an
amplitude equation for marginally stable oscil-
latory perturbations of the form

x = xo+ [€Alf) eMug+ () + -+, 3.0

wherein € is a measure of the amplitude A: f =
€'t is a slow time vaciable, and Q is the marginal
frequency. Uniformly valid expansions of the
form (3.1} require A to satisfy an equation of
the form

44 KA+ KAIAL (3.2)
di

a result obtained by McLaughlin and Martin {6)
in their classification of the bifurcations in the
real Lorenz model. Along with the varnous
different methods mentioned above. our cal-
culation is essentially equivalent to theirs.

If Re k. >0, then the bifurcation is subcritical,
and the limit cycle is unstable; if Re k, <0, the
bifurcation is supercritical and stable. Cal-
culation of k; is straightforward but messy.

The distinction between super- and stb-criti-
cal bifurcations is an imporiant one in the con-
text of turbulence and chaotic trajectories of
differential equations. Ruelle and Takens [8]
propused that the trajectories on higher dimen-
sional tori (corresponding to further bifurcations
of the sysiem under consideration) would not
generally be of periodic or almost periodic type:
rather, they could approach “strange™ attrac-
tors, which for all practical purposes wouid
appear turbulent, or chaotic. It is clear that this
scheme is only viable if the intermediate bifur-
cations are supercritical, so that the trajectories
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on the various tori are stable (in that they ap-
proach the torus). It is for this reason that it is
useful to analyse the direction of bifurcation in
real cases. In fluid fow along pipes, bifurcation
{when it occurs) is of subcritical type, and so
the Ruelie~-Takens ideas are presumably irrele-
vant, In the Bénard problem, the first bifur-
cation, and in the Taylor column, the first two
bifurcations are supercritical and stable, and
turbulence in these cases may be along the lines
ot the abstract theory.

For the above reasons, we wish to examine
the direction of bifurcation of the 2-torus for the
complex Lorenz equations. Our approach will
be constructive; that is, we will use the formal
method of multiple scales to find amplitude
equations satisfied by the perturbations of the
limit cycle. An analysis of these gives con-
ditions of stability and direction of bifurcation
of the 2-torus. Since the bifurcation ‘s sub-
critical in the real case (McLaughlin an ¢ Martin
[6]). we expect this 1o be also true in the pres-
ent case, at least for sufficiently small e and r,.

3.2. Rotationally invariant systems

The procedure we adopt is straightforward. A
similar general method is given by Haken {12},
who follows somewhat the appraach of Eck-
haus [13]. This determines an infinity of am-
plitude functions, of which only a finite set are
relevant: an unstable mode and a set of
“slaved” modes, in Haken's terminology. We
prefer to adopt the method of multiple scales
{e.g.. Nayfeh [14]), since then the approximate
expansions adopted are made explicit from the
outset, and the nature of the equations is then
apparent.

Let us consider the system of real-valued
ordinary differential equations

dx;
'3% = filxi u). (3

We shall suppose that this system is derivea via
a change of variables from another system, in

which a limit cycle exists for « certain range of
u: we shall refer to this as the underlying limit
cycle. For the complex Lorenz equations, we
obtain (3.3} via the change of variables
(x,y,2) = (xe™, ye"', z); generally, we can
change into a rotating frame in this way for any
system with an underlying limit cycle. but we
expect to obtain a non-autcaomous system un-
less the oscillation is exactly sinusoidal. In this
case, it is reasonable to adopt the foliowing
assumptions. Let x, be a fixed point of (3.3)
corresponding to an underlying limit cycle. We
define a rotation matrix R(#) which satisfies
R(a)R(B) = R(a + B), and the underlying limit
cycle is given by R{t)x, (i.e.. (3.3) is obtained
from the original system via the change of vari-
ables ¥ = Rx). Since then we have that

flRxo; u]1=0. R =R{a), (3.4

for all u ang «. (.e.. (3.3) has a continuum of
equilibria), it is reasonable to assume that (3.3)
is invariant under rotation; that is, if y = R(a)x,
then dy/dt = f(y; w). This implies that f satisfies

Rf(x: )= f(Rx; p) (3.5)
for all x and «. This condition is satisfied by the
complex Lorenz equations, for example (see
below). Differentiation of (3.5) with respect to a
yields

Rij(e)fi(x; 1) = fi;(Rx; w)Rj{a)x; (3.6)

putting x = xo immediately shows, using (3.5),
that

fij{Rxo; w)Rjixox = 0. 3.7
In other words the Jacobian matrix Df =
{fi.itRxq: ) has, for every value of 1 (and @), a
right eigenvector ue with cerresponding eigen-

value zero, where u, is given by

U= R'(ﬁ)X(). (3.8)
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Since linear perturbations to x, are proportionai
to exp(At), where A is an eigenvalue of Df. it
follows that x, is (at least) ncutrally stable for all
. ilowever, this is by virtue of the fact that the
undrriving limit cycle may have its phase per-
turbed, but yet be arbitrarily stable; thus we
discount A =0 as represen:ing a -tate of mar-
ginal stability, since if all other Re A are less
than zerc, then the underlying wmit cycle is
structurally stable.

If we differentiate (3.
find
R(Df(x: 1) = (Df(Rx: uNR. {3.8a)
Now suppose that U is a right eigenvector of
Df(x; ny with eigenvalue *: then pre-multiply-
ing U by (3.8a) shows that RU is the cor-
responding eigenvector of Df(Rx: ). The use
of this is that U is independent of « in R(a).
Particularly, (3.8} implies (with an obvious
notation)
Uy = R'(0)x,. (3.8
whence a, = R(a)R'{0)x,. which is consistent
with (3.8), siuce consideration of R(a + )=
R{a)R(B) shows that R'{a)=R{a)R(®)=
R'{ORa).

Let us denote f,;(xp; ) by i1 we will now
assume that (apart from the zero eigenvalue), all
other eigenvalues of f1; are such that Re(A) <¢.
but that at p = p,, a pair of eigenvalues =i,
1>0, cross the imaginary axis in such a way
that d(Re A)dg | u > 0: the corresponding (cri-
tical) eigenveciors of f); are Uy and UK. These
conditions (apart from the zero eigenvalue)
resemble those of the Hopf bifurcation, and are
valid in the complex Loienz case. From ‘he
paragraph above, it follows that f; ;(Rxy; p) has
~orresponding eigenvectors up = RUj, and ud =
RUY with eigenvalues +iQ and —if), respec-
velv,

We now seck an approximate solution when
‘-l <€1; accordingly we define (with some

foresight)
pE=potel, d<ed, 3.9)

where the plus and minus signs refer respec-
tively to super- and sub-critical states (weakly
unstable and weakly stable). We also define the
slow time scale

=€t (3.10)

and will seek solutions to (3.3} in the form
x=xT+exM+ e+ @a.ian

where x = x"{1, r). The procedure as usual is
straightforward, but there are one or two
subleties which distinguish the expansion from
the more conventional Hopf case. Substituting
(3.9). (3.10) and (3.11) irn.to (3.3). we obtain

(9 ‘ﬁ) ) 1, 3
e b O e g2y 3™
(3, TG0 e+ exT+ ex )

=A%+ e+ px el (3.12)

whence we derive

L e »
[&L+Eﬁ&_+e-§_‘_‘_+ e»‘..ali.... .. ]
ot at at 8t
,ax® L axl?
o“—.—+ —-———+ DO
+ [g a7 € ar
= U +Hexf e €xf e e
e+ P Hexl+ 2P It

+Hexi”. . Hext. . Hex!"... Mim..d

2 Bﬁ fexil aﬁ.( ]
* +iex; ... R AN
€ [a” {ex; } ™ +

.

3.13)

where fi; denotes f,, evaluated at x™ and p..
etc. Equating terms of O(1). we have

ax®

Frai filx': w0 (3149
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The relevant t-independent solution of (3.14) is
given, from (3.4), by

@ = R(¢)x, (.15
where ¢ = ¢(r) is a slowly-varying function of
time; essentially, it is the phase shift in the

underlying limit cycle. At O(¢), we have the
linearised equation

ax{?
§

S FxT =00 = flR(Gx0 pel. (3.16)

Neglecting initial transients, this equation has
solutions proportional to i, uq ™ and uf e,
however, notice that if, in (3.15) ¢ =
dot+edy+ - -, then

x@ = R(do)xg + eR'(bo)xodh, +

Since up = R'(do)xy, it is clear that we may absorb
the term propertional to upin xV into ¢. In fact we
can do this at each stage of the solution, provided
we let ¢ depend on ¢ as weil as 7. Then the
solution of (3.16), neglecting transients, may be
written

x® = A(r)ug e + (3), (RRY)

where (*) denotes the complex conjugate.
At O(e%). we have, since 3f$/ou =0 (from
(3.4,

3*; AP *%x"‘“-*-*‘x“’ﬂ"f‘

=-Ri($) Qd% xop + £5 sl AP uou

+ S a AT e ™ ugug, + (¥, (3.18)

since fia = fiy. The term in ¥ gives a parti-

cular solution proportional to e®'; however
(since zero is an eigenvalue of f§;) the constant
terms may be secular, and it is the elimination
of these secular terms which determines the
phase ¢(r). Specifically, if a (complex-valued)

matrix A has an eigenvalue zero, then the equa-
tion Ax = ¢ has a solution if and only if ¢ =0,
where a bar denotes the complex conjugate, for
all v suck that ATv =0. Thus if A is an eigen-
value of Df = (ff;), then the equation

~(Df)x=ce™ 3.19)

has a solution proportional to e¥ if and only if
v7c =0 where {(Df)~A1]"6 = 0: i.e. (Df)Tv*=
A*u*(* denotes complex conjugate) since Df is
real. Now let v, and o, be the leit eigenvectors
of Df. corresponding 10 the eigenvalues zero
and i) respectively, thus

ol (D) =0, ie. voff, =0

(3.20)
U()(Df) = IQUK. ie. Un,‘f.'c‘,' =

i LTI

then (Df)Tv$ =0, (Df)Tof = —iQv§. and thus it
follows that the equation

ax

57~ (Dfx = cot eqe™ (3.21

can only have a solution of the form a, + ag '™

if the constraints

Vo CHr=Vq*Cn= 0 (32?)
are satisficd: otherwise, secular terms t, tel™
will occur. Applying this to (3.18), we require ¢
to satisfy, recalling (3.8),

d¢ _ [Dn,l i lkun,“ﬁkhAlz (3.23)
dr WoiVoi

If (3.23) is satisfied, then a particular soluticn of
(3.18) can be written

x(Z) = 032)|A|2 + [a‘g!)A2e2m! + (*)]. (3'24)
where
ftaH = [%ﬁ}um ~fiataud, (325
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and

2iQa® - £5;a8 = Yiuuntn (3.20}
We have already decided to incorporate con-
stant  solutions proportional te wup into ¢,
sumilarly, there is no loss in g=nerality in ab-
sorbing the soluticns proportiormal to uye™ into
A(7), provided afsn we understand .4 = A(1; €).
Then (3.24) is e complete sslution at O(ed),
and we turn to € %) terms, These are

ax 3 axt Do Doy
o fux = =S K PO

+ %x‘,“x&”xﬁ”ﬁm = x{" %%‘ 3.27)
and we again have to eliminate terms on the
right-hand side which are secular. From (3.17)
and {3.24), it is apparent that there are no con-
stant secular terms, and thus we only need
choose A such that the ™ terms are non-
secular; we in fact obtain the Landau-Stuart
equation (3.2), as previously discussed. The
coefficients are determined as follows. The
coefficient of € in (3.27) is, recalling that u, =
R(¢)U, and that R'(¢) = R(OR(H).

dA of . do
- E; Uy = AS(;;LI Uy — AR.‘;(O)MH,’ (_j;_

+iffnfugal + utal + uga + uba$HARA
+ c{{llnﬂlmllﬁl + U U + N3,’“9&":}:}fF,.sx:MFA»

so it follows from (3.22), using {3.23). that the
Landau equation for A is

dA ) N

a“; = tkIA + k:lAl“A, {328)
where

&1 = vy %%1 Um/“mvm- 3.29)

k; = [vafalunald + uBo$} ~ BoaiRi(0uy,
+ dvaifuptaate 8 + unge il

+ ¥ ttantinf Tl boittas (3.300)
= bafiptau e (3.30p)

Koilo:

ky=dAldp L.:,k_ is the linear growth rate
(Re k, >0 by assumption). Therefore, the bifur-
cation is supercritical if Rek:<0, and sub-
critical if Re Ky >0 since JA® satisfies

]

dlA

-~ = = 2ARe kMAP + 2(Re k)AL

3.3H

=2

Thus the stability of the bifurcating solutions is
determined in exactly the same manner as in a
Hopf bifurcation. It is not obvious (though we
might suspect) that 8, k, and k, are independent
of 7. since uy. uwe. vy and v, are functions of .
Kowever, using ugy = RUy, uy= RU,, and the
equivalent formulae for v, and vy, it is not
difficult to check, using x-differentials of (3.5),
that this is indeed the case. For example. pre-
multiplication of (3.8a) by v, a left eigenvector
of Df(Rx:u). easily shows (if V is the cor-
responding eigenvector of Df(x;u)) that V' =
o"R. It easily follows that we have ol = VIR
vf = VIR We then have vyuy = olug=
VIR"'RUy = V{ U, which is independent of &,
and hence of r. Similar considerations show that
8. ki and k; are all independent of .

3.3, Nature of the solutions

The solution can be written as

x = R{$(n)]x + e[ A(T)u e + (%)) + O(e),

{3.30)
where
dé _ : dA 2
ar BIAL, 4 kA + kiAPA. (3.33)

If the bifurcation is supercritical, then for
Re k, >0, i.e., p > u., the solution for x tends to
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a doubly periodic motion in the rotating plane.
This consists of a fast (t ~ 1) oscillation of am-
plitude order Vi — p. about the equilibrium
point, which itself precesses periodically around
the underlying limit cycle. In the rotating plane,
time-plots of x; versus time will thus consist of a
fast oscillation whick (if ue # 0) is superimposed
by a larger scale slowly oscillating solution. This
is observed in the complex Lorenz equations
(see fig. 2).

In the fixed frame, we have xp = Rx, therefore
(3.32) is, using the property that R(a)R(B)
= R{a + B). and that un = RUq,

xp = R{E+ d0rxe + €{ A g o™ + (#)} + 6D}
(3.34)

In the limit as 7 - = (with Re k» <0, Re k,>0),
we have

!AF__)_(Rek,) k, al

Re kg RIR'
%

|

‘wd
1ol
o
~—

95 36

'(R

5558 -

Hﬂcm\, B Alléﬁ*’*ﬁﬂu 6150 awe S

thus

o Bl
¢~ " hm

A~ exp{(k. -k, -k—‘ﬁ)r]

—exp[ {" ikzg "”k"*} ] (3.36)

Ior

It follows that tie solutions in the fixed frame
can be written in component form as the sum of
products of two functions of distinct periods,
thus

xgi = Ry[t + ${r)]xy
+ e{ AR (1 + S(TNUq; €™ + (0} + O(e?)
=2 p{Ng (1), (337
i

whereg

P = Rytt + ¢(1)),
gi(t) = Xo; + e{AtT Uy € + (N + O(€Y),

|

f , M
i } ’%
‘ 2. a 28, [/\, m]qs I Jz [\

Fig. 2. Plot of yr versus time at b= 08, =2, ri=220, 1= | and ¢ = 3r, at which there is a stable finite amplitude motion.

Note the slow and fast periods in the oscillations.
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and p}” and g; have periods w, and w; respectively,
where

=l E’Sﬁ]
w)—u.[l € T s

wy =0+ e“{'—'i’!'#ﬁwk"k”‘} ce
. Fag

The presence ot two distinct, generally incom-
mensurate frequen.ies characterise these solu-
tions as doubly periodic. A spectrai analysis of
the sclutions should thus reveal a peak at the
fundamental frequency w,, together with smaller
peaks, at lw; * w;l. etc. Such behaviour is found
by Fenstermacher, Swinney and Gollub [17] in
an experimental analysis of Taylor vortex flow.

3.4. Application to complex Loren: equations

In the rotating plane, the complex Lorenz
equations are

X = (o +iw)X +oY.

Y=(-2)X~(a+io)Y. (3.39
Z=YXY*+ X*Y]-bZ,
whers
w = (3.40)
The non-zero equilibria are
X=A v=a(1+9) z-japm,

[¢3
gAg‘ = b(r, ~ ry). (3.41)
=1+ (e +r)e—or) (3.42)

i+ 1) ’

Note that the equations are invariant under the
rotation (X, Y, Z)— (X exp(ia), Y explia), Z).
Putting

X =Ax+ix), Y =AM +ixyw, Z= l—AEtxs,

(3.43)

Xs = blxpxy+ Xaxg - xs5].

we get

X+ ik = — (o +ioXx +ix) + olxy +ixy),
Xytike=[r+in—(r— nJdxsg(x +ix)
— {1 —ie + lw){(xy + ixe.
%= bIHx, + ix2)s — ix)
+ (X — ixxy + ix} = x4,

whence
X =~ OX) + WX+ oX;,
X = Xy + X+ Xy,

Xy= [rl ={r- r(¢)."5].\'| = X=X+ (w - €)x,,
Xg= nxy i - (ry - ndxdgx — (o~ e)x = Xa.

(3.44)

with an equilibrium point

=1 =0 x;=1l x4=-—, xs=1. (3.4%)

3l

By rotation through an angle a of X and Y,
other equilibria are given by

Xy = C08 o,

sin o,

#

X2

@ .
X3 = COs @ — — sin a.
o

(3.46)

[ N
Xy=—cosa+sina,

X5=l.

The transformation X - X explia).
Y - Yexplia), Z-Z corresponds to
Xy 1008 —xasine, Xy x;sina+x:c08a.
X3 = X3C08 @~ Xssina, X, - xysina +X,c08 a,
Xs ~> xs: thus the rotation matrix in this case can
be written down as
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cosa —sina 0 0 ]

siha cosa 0 0 0

R{a) = 0 0 cosa —sine 0
0 ] sine cusea O

0 0 0 9 1

(3.47)

and the methods previously descr:bed can be
used to study the bifurcation of the limit cycle
solution of (3.44): the algebra invoived is
somewhat tedious, and is not pursued here.
However, we can already draw some con-
clusions from (3.47), (3.32) and (3.37).

In the rotating frame. the componenis of x
will bifurcate to a small amplitude oscillation
about a large scale oscillation of much smaller
frequency. This follows from (3.32), and is
essentially observed in fig. 2. In the fixed frame,
we wili see the same picture, but with the dis-
crepancy in frequencies less visible. However,
note that since. from (3.47), we must have
RsXoj = Xps. and similarly for Up, the z-com-
ponent of x is given in either fixed or rotating
frame by
Z = xo= xpo + e{A(r) e 4 ()} + € (3.48)
therefore, the solution for z is singly periodic at
bifurcation. and no slow variation of large am-
plitude should exist: this is seen in fig. 6.

4, Numerical resuits and conclusions

In the previous sections, we have shown that,
except for the singular case € + r»=0, only the
origin is a fixed point. The two further fixed
points of the real Lorenz equations which exist
when r > | are replaced by the limit cycle which
hes frequency ». Much of this paper has been
devoted to the stability of this limit cycle and
the nature of the bifurcation when it becomes
unstable. The analysis of section 3 showed that
the sign of Re(ky) effectively determines
whether this bifarcation is of a subcritical

(Retka) > 0) or supercritical nature (Re(ky) <0)
with a transition 10 doubly periodic motion in
the latter case. As McLaughlin and Martin [6]
have shown for the real Lorenz equations, the
case Re(k:)>0 is a sub-critical Hopf bifur-
cation. In our problem the actua!l determination
of the criterion Re(k;) =0, giving the exact del-
ination between the two types of behaviour, is
extremely messy to calculate. Instead we have
performed a limited number of numerical in-
tegrations to examine the kind of bifurcations
which can occur,

There are five parameters in the equations
(L.1): o, b, r, .. and e. We will concern our-
selves mainly with holding these fixed, except
for r,, which is thus the bifurcation parameter.
Clearly a complete numerical analysis of (1.1) is
out of the question in a paper of the present
nature, and we can only give a brief idea of the
types of bifurcation which occur.

In fig. 3, we show a stability diagram in (r,, ry)
space which shows the dependence of r\. and ri.
on r; at ¢ =2, ¢ =3r, b=0.8. These represent
the analytic results of sections 2 and 3. Thus to
the left of A, the origin is linearly stabie; to the
right, it is unstable and the stable solution is a
limit cycle whose frequency decreases to zero

A
10 4 /,.—;/ B/
A - - ;/ ~"c
P
o
oA
o5 I /I /
g L
//
N
/ /
‘i‘ / ik
5LO 100 200

Tig. 3. Stability dingram in \#y, r2) space showing ri, 7. and
also the approximate region of su@.itical transition.
Parsmeter values arn b =08, 0 =2, ¢ = 3.
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as r; - 0. This limit gycie is linearly stable be-
tween A and C. and lirearly unstabie below C.
Fig. 4 shows the decry of a trajectory in the
rotating (Re x, Re y) phase space at a value of
ry= 254 (here ri, = 25547 . _at r» = ) motion is
crom top to bottom, an-! consists of a fast oscil-
lation of slowlv decaying >mplitude, which
slowly precesses around the undzrlying limit
cycle {set of e~uiibria).

At a value of r =256>-, a small pertur-
bation to the lireit cycle nitially grows as pre-
dicted by the anal’sis. but the final resultant
motion is hardly of small amplitude. though in
other respects it resembles the result of a

A.C. Fowler ¢! al.| The complex Lorenz equations

supercritical bifurcation. Later stages in the
evolution of a small perturbation to the lmit
cycle aie shown in fig. 5. The motion is anti-
clockwise. In fig. Sa, we see that from t = 835 to
t =935, the solution precesses slowly around
the underlying limit cycle, with a precession rate
that slowly increases. Fig. 5b shows the solution
from t = 900 to 1,000: the bottom of Sa is visible
on the inside (though the scale is different); we
see that the precession rate increases dramatic-
ally {more than three complete precessions are
visible) and the solution rapidly attains a steady
form, which is shown in fig. Sc. Corresponding
plots of Re(x), Re(») and : ar¢ shown in fig. 6.

34
v
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oo
&3
~
2
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o
B
4
o
4
o
a
14
4
@
& L
R T T ey T T T T T T T T
“22.40  -20.R2 18,20 1760 1600 1480 1280 -11.20 ~9.60 ~8.00

YR

Fig. 4. Slowly decaying trajectory in (xx, vx) phase space at ry = 254< r,. = 255.67. .. ., r: = 1: other parameters as for fig. 3.
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Fig. 6 shows that between t =50 and ¢ = 100
(different initial values were chosen so that the
final steady solution was approached rapidly, in
t < 50) ten full precessions occur, and there are
about eight to nine fast oscillations per pre-
cession. Close examination of the time plots
suggests that (as fig. 5¢ also indicates) the solu-
tions are periodic (or very nearly so) with a
period of forty-two fast oscillations, or five
precession s,

The large amplitude of this oscillation sug-
gests that the bifurcation at ri=ri=
255.67... sub-critical, and

so Rek,>0

is

16.00 20.30
n L i L

12.30

e

XR

=20.20
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there. In this case, we suggest that at values
r < ri., there may exist an unstable and a
(larger) stable torus, for which the amplitude of
the smaller tends to zero as ry - ri.. Generally,
the nature of the stable large-amplitude solution:
is inaccessible to analysis, but we suggest on the
basis of fig. 5S¢ (and other numerical evidence)
that it also consists of motion on a torus which
one might expect to be doubly periodiz. As r
decreases to a value ri, <ry, the stable and
unstable forms may coalesce and vanish: or,
they may both be unsiable. The dashed line
marked B ia fig. 3 represents (roughly) the

T T T T T T T T
-45.00 -35.00 -25.30 ~-i5.00 -5.00

YR

T T T T T T T 1
5.00 15.90 25.00 35.90 45.00

Fig. 5. Evoluation of a small disturbance to the fimit cycle at ry = 256 > rl; other parameters as for fig. 4; (a) t = 835 to 935.
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~40.30

T T T T T
72.00 -56.00 ~40.30 ~24.00 ~8.00

YR

T T T T T T T 1
8.00 24.00 40.00 56.00 72.00

Fig. S, (by 1 =908 to 1,000,

position of the graph of r}, as a function of ry. It
has been determined on the basis of a limited
number of integrations. As long as B lies above
(. the bifurcation will then be subcritical. If B
intersects C, then at this point Re(k:) =0, and
for greater values we should expect Re(k:) <0,
and a supercritical bifurcation: we have not
determined this coefficient, however. Although
the motion exhibited in fig. 6 is not of small
aniplitude, the nature of the numerical solution
nevertheless suggests a multiple time scales
analysis. One possibility for such an analysis is
that the parameters are ‘close’ to the values at
which kg =0 an analysis near this point (and
for [ry~ri <€ 1) would describe the outer stable

oscillation as weit: on the other band its form
may be due to the largeness of r,.

Fig. 7 exhibits the finite amplitude stable torus
at a subcritical value of ry == 220 < r’. As far as
can be seen, the motion is doubly periodic
{frequency locking does not occur): the occur-
rence of precisely two  incommensurate
frequencies may be (and has been) checked by
spectral analyses, and by computing phase plots
o: :XF versus | Y (which appear as limit cycles
in a doubly periodic motion).

We have found further bifurcations of famil-
iar type, by decreasing r. Of the twe pos-
sibilities, we have found no further instabil 'ty of
the 2-torus to a higher dimensional attractor bt



A.C. Fowler et al.] The complex Lorenz equations

159

b — - .

T T
W -T0 N RV RRANN

Fig. 5. () Final motion, { -,

we have found an approach to ‘chaos’ by
‘period-doubling’ of the torus; specifically, |X?
versus |Y]? (or Z) phase plots exhibit period-
doubling limit cycles as r; is reduced at, for
example, r,=40. This is analogous to the
period-doubling approach to chaos in the real
Lorenz equations as r; is reduced from infinity
{Robbins, 1979). Fig. 8 shows an example of a
stightly supercritical (r, > r{;) chaotic motion (in
the rotating frame) at values r; =60, r; = 0.02,
close to the real Lorenz transition to chaos (at
rn=358 rn=0).

Generally speaking, the effect of the coni-

plexification is to convert oscillatory states isto
‘doubly’ oscillatory ones: limit cycles into teri,
fixed points into limit cycles. Thus increasing
the dimension of the system effectively in-
creases the dimension of the attractors, and
there is no particular reason to suppose the rich
behaviour of the real Lorenz equations is
otherwise modified, except in this manner: fuller
numerical investigation is necessary for the
corroboration of this statemeut. The chaotic
behaviour in the real Lorenz model does not,
however, appear to extend very far into the
parameter space of the complex Lorenz equa-
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tions, at least when e = 3r. The general ten-
dency of complexifying the equations at fixed r,
is thus to replace chaotic behaviour by motion
on a torus or a limit cycle.
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