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Wc k,~ve undcr:aken a study ~,f the co~:~plex Lorenz equations 

.~; = -- crx + try. 

"y =(r-- z)x -ay ,  

= - b z ,  l(x*y + xy*). 

where x and y ace co~aplex and z is real. The complex parameters r and a are defined by r = rl + it,,: a = 1 - ie and o" and 
b are real. Behaviour ~markab ly  different from the real Lo~,~nz model occurs. Only the origin is a fixed point except for 
the ~pecial case e + ~ = 0. We have been able to determine analytically two critical values of rt, namely r~ and rb. The 
or ion  is a stable fixed point for 0 < r~ < r~, but for r) > r~, a Hopf  bifurcation to a limit cycle occurs. We have an exact 
analytic solution for this limit cycle which is always stable if tr < b + I. If o > b + I then this limit is only stable in the 
region r~¢ < r~ < rf~. When r~ > tie, a transiEon to a finite amplitude oscillation about the limit cycle occurs, The nature of 
this bifurcation is studied in detail by using a multiple time scale analysis to derive the Stuart-Landau amplitude equation 

from the original equations in a frame rotating with the limit cycle frequency. This latter bifurcation is either a sub- or 
super-critical Hopf-like bifurcation to a doubly periodic motion, the direction of  bifurcation depending on the parameter 

v:dues. The nature of the bifurcation is complicated by the existence of a zero eigenvalue. 

1. Introduction complex numbers defined by 
In a previous paper [1], the so-called "com- 

plex'" Lorenz equations were derived as a r =  r t+ i r : ,  (i.2a) 

generalization of the original equations first a = I - i e ,  (l.2b) 
derivec: by Lorenz [2]. The complex equations 

are written in the form and tr, b, rl, r,, and e are real and positive. The 

form of (I .I)  shows that x and y are complex 

but z is real. 

The (ntention of this paper is to make a 

mathematical study of eqs. (1.1) in order to 

show that significantly different behaviour 

occurs in the bifurcation sequence than in the 

.4 = --ox + try, ( l , la )  

= - xz + rx - ay, ( l . lb )  

t = - bz + ~x*y + xy*). (1. lc) 

The Rayleigh number  r and the Darameter a are 

0167-2789!82,'~00..0000/$02,75 ~ 1982 North-Holland 



140 A.C. Fosqer et ~al.; The camplex Lorenz equations 

real Lorenz equations. The real Lorenz model is 

embedded in (1.1) and can be r~covered when 

r ,=  e = 0 and x and y are real. The physical 

motivation for studying the complex Lorenz 

model comes from work by two of the three 

prese - authors who derived a set of amplitude 

eqvations near criticality for g cla, s of dis- 

persively unstable, weakly nonl ine~,  weakly 

damped physical systems [1,4]. This was oased 

on work which :ons~dered the undzlaped sys- 

tems first [3] anc then ,:,'eak dampir~ was added 

afterwards. 

When only temporal variation was included, 

the relevant set of amplitude equations turned 

t)ut to be of the form 

d-'A dA 
+ AI ~ = a A  - ~ A B ,  

~--~ + a ,B dO = d2( iAr + A~IA[.," 

(1.3a) 

(i.3b) 

In the circumstavces discussed in [11, the 

parameters /J. 2~: and A~ were always real and 

positive. If only weak damping is added to the 

original system then a and A~ are also real and 

po,,;itive. This is the case for the laser equations 

[I,4], If extra weak dispersive effects are also 

added then it turns out that ~ aT~d A~ become 

complex. This circumstance occurs in the 2- 

layer a,,~d, Eady models of baroclinic instability 

[1,5~ when a "'weak" beta-effect is included. 

Eqs. (I.3) can be transformed into eqs. [1,1) by 

the following transformations: 

t = I~T, (t.4aI 

II = Re(A0 - Ad2,  i 1.4b) 

x = (213)1/"11 IA, (I.4c1 

whcr¢ the variables r, tr, a and b in (I.I) a~e 
given by 

~r = .,X 4211, 

e = - lm(~011. 

The complex Lorenz ¢ f~ations also form the 

basic model for bistable optical systems of two 

level atoms. Hassan. Drummond and Walls [19] 

and lkeda [20] have shown that in a single mode 

high-Q ring cavity, the semi-classical equations 

of motion are a set of damped MaxwelI-Bloch 

type equations, By ebservation we can show 

that these can be transformed into eqs. (1.1), but 

with an external driving field. In this case, r,, = 0. 

but e a  0, Refs. 19 and 20 extend earlier results 

by Bonifacio and Lugiato [2t]. As a physical 

probleq~, the driving field is necessary at. 

obviously the inclcsion of this adds an extra 

degree of or, replication to the problem, A study 

of the system (I .I)  on its own is therefore 

important as a first step towards understanding 

the more general problem, in which a forcing 

term is present, 

However, the essence of this paper is not a 

discussion of the physical derivation of (1,1) 

since this was performed in [1] but rather we 

seek to undertake a mathclnatical and simple 

numerical analysis of these equations in their 

own right. A consideration of this more general 

system may also cast more light on the real 
Lorenz model. 

Our approach is analytical, but we should 

point cut that the analytical results obtained 

here were strongly motivated by the results of 

numerical computations, An example of this is 

the exact periodic solution displayed in section 

2, the form of which was suggested by numeri- 

cal computations which gave a perfect ellipse in 

the R e ( x ) -  Re(y) phase plane with z quickly 

reaching a constant equilibrium value. The 

analysis of the bifurcation of the limit cycle to 

doubly periodic solutions given in section 3 was 

also suggested t~y numerical results which 

showed fast and slow oscillations, thereby in- 

dicating that a multiple time scale calculation 
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was in ord¢;. It is interesting, in our view, that 

so much information can be derived by analy- 

tical means for what is essentially a fifth order 

problem. A qualitative difference between the 

first two bifurcations is that whik: the first is a 

supercritical Hopf bifurcation of the origin into 

a limit c;¢cle, the nature of the second is blurred 

by the existence of a X = 0 eigenvalue which 

occur~ because of rotational symmetry. For this 

reason, the ~dms of sections 2 and 3 are different. 

In section 2, iol |owing Loren;,. in which we use 

rl as the malt, bifurcation parameter,  we cal- 

culate the two critical values of r= at which 

firstly, the origin bifurcates to the limit cycle 

and secondly, at which this limit cycle becomes 

unstable. Section 3 is devoted ,~o understanding 

the nature of this bifurcation using multiple 

scales to obtain the Stuart-Landau equation in 

the rotating frame, 

dA 
= k~A + k:AIA[". (I.5) 

Following McLaughlin and Martin [6], the cri- 

terion for determining whether the bifurcation is 

super- or sub-critical is determined by whether 

Re(k:L i~ negative or positive respet ~ively and 

consequently whether the limit cycle ,undergoes 

'soft '  b~t~rcatio~ to a doubly periodic solution, 

or 'hard '  bifurcation to some other type of 

motion. 

2. An exact pedodle solution 

In studying (i.1) we shall follow Lorenz'  

analysis of the nature and stability of solutions. 

Equilibrium solutions in which ttme derivatives 

are absent are given by the origin x = y = z = 0, 

or (from (1.in)) x - - y  whence z = r - a  from 

(lAb).  Eq. ( I . le)  thus implies that 

lxt" ffi b ( r -  a). (2.1) 

only exist if l ' a ( r -  a) = 0; that is, 

e + r., = 0. (2.2) 

In this case, there is a continuum of steady 

states given by 

z --- r l -  l,  (2.3a) 

txl = lYl = [ b ( r , -  1)] 'j: . (2.3b) 

This rather pathological possibility already 

revea!s the special nature of (1.1). Iv. [1] it was 

found for the bare, clinic two layer model with 

weak dissipation and weak beta-effect that 

e = 3r:, (2.4) 

~r = 2. (2.5) 

The special condition (2.2) is not satisfied and 

so only the origin is a fixed point. In the case 

e = r2 = 0 we technically do not return to the full 

real Lorenz equations as x and y can still 

remain complex. The ~wo fixed points of the 

real Lorenz equations (in addition to the origin) 

are replaced by the continuum of points (2.3) 

although there is very little difference in thi~ 

intermediate case from the real case. 

2.1. Slability o f  the origin 

We examine the stability of the steady state 

(0, 0,0) by lineafising (I.1) about this point. To 

do so we simply neglect quadratic terms, thus 

• • )(:) = - a 0 . (2.61 
0 - o  

We note that z = 0 is always a stable manifold 

(~, = - bz), All solutions to (2.6) are proportional 

to exp(kt), where the eigenvalues k (assumed 

distinct) are given by ,~ = - b ,  and (or+ ,~)(a + 

~,) - rcr -- 0, whence 

Since z is real, it follows that such points can k -- ~,[ - (or + a) ± {(or + a)" + 4~r(r - a~}lr-]. (2.7) 



142 A,C, Fowler ea aL t T'he compltx Lorenz equations 

If  e i ther  value of  A in (2.7) has  R e ( A ) > 0 ,  then 

the origin is said to be l inearly u~stable.  No te  

that. the two values o i  ~, in (27)  are not 

generally complex conjugates :  this is because  

the character is t ic  equat ion for  ,~ does  n~t have 

real coe$c ien ts .  If  (as can easily be done)  the 

eqs. ,.1) are first wri t ten out as a five by five 

system for  the variables 

x r = R e ( x ) ;  xl = I r a ( x , ;  y r = R e ( } ) :  

y )=  Ira(y); z, 

p" - q :  = (or + 1)" + 4~r(n - i) - e", 

pq = 2o,(e + r:) - e(~r + 1). 
(2.12) 

Fol lowing Lorenz .  we use  r~ as the  b i furcat ion 

parameter ,  and deno te  its va lue  at  the stabili ty 

limit by r , . :  thus  when  r l =  r io p = t  r +  I. so 

(2,12) implies 

e : -  q" = 4tr(r~ - I), 

2tr(e + r:) 
e + q =  t r + l  

(2.13) 

then the result ing matrl_ equat ion analogous  to 

(2.6) would have eigenvalues - b ,  A given by 

(2.7) togethel with A*. 

Let  us define 

Note  immedia te ly  that  the f requency  to of  the 

critically stable e igenmode  is given,  f rom (2.9), 

by 

p - ~ i q = { ( c r + a ) " + 4 c r ( r - a ) }  w'" p > 0  (28)  co = ImA = ] ( e *  q). 

(this can be done  without  loss of generality).  

Then  (2+7) gives the eigenvalues as 

= ![ - (or + a)  -+ (p + iq)l.  (2,9) 

so that 

Re~,),) = ![ +- p - ((~ + I)]. (2.10) 

It follows ( remember  p > 0) that  one eigenvalue 

always has  negative real part .  and the  other  is 

negative or positive depending  as p X ~r ~" I, The 

crit ical s tabi l i ty  limit is when 

p = ~r+ I, (2,11) 

and this relat ion determines  a corresponding 

relat ion be tween  the parameters  which,  plotted 

as a curve  in pai::..meter space,  divides regions 

of stability f rom those of instability. From (2.8). 

we find 

p z _ q2 + 2i pq  = (or + a)" + 4cr(r - a) ,  

whence  a little a lgebra shows that  

Eq. (2,13) implies 

cr(e + r:) (2.14) 
( r + l  " 

We may observe  that  if e + r2 # 0. then the ori- 

gin becomes  oscil latori ly uns table ,  so tha t  the  

condi t ions  for  a Hopf  b i furcat ion will occur  

(provided also d(Re X)Idr~ ~ 0 at r~ = r. .):  thus  

we may expect  a limit cycle to bi furcate  f rom 

the origin at  r~ = r~,.. with approximate  

f requency  to; hence  as e + r: -~ 0, the  f reqqency  

tends  to zero. and so the  con t inuum of  equili- 

br ium points  (2.3) may be in terpre ted  as .'be 

limit of a limit cycle in which  the  f requency  has  

decreased  to zero. We  wi!l general ly  suppose  

to~ O. 

Eliminating q in (2.13) we obta in  

r~ = 1 + (e  + r:)(e - ~rr,.) ( ~ +  !)" (2.15) 

as the critical value of r~. It is easy  to see  f rom 

(2,12) that  if r )<r t~ ,  th¢~ , , < o , a - I  (and vice 

versa),  so that  the origin is l inearly s table for  

rt < r t ,  and  l inearly uns tab le  for  rl > rl~. 
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2,2. L i m i t  cycle 

From (2,12), it is also easy to check that 

d(Re X)/dr~ > 0  at r~ = re, so that (provided (1.i) 
is writt:n as a five by tire system, and consider- 
il~g the previous remarks about ~,igenvalues in 

this case) the Hopf theorem is applicable, and 
thus a limit cycle does bifurcate from the origin 
at r = r~c, provided ~o# 0. Approximate tech- 
niques for giving the form of this exist (for 
tr~ - r~l '~ 1). However, numerical computation 

(fig, 1) shows that even for r~ - rtc '~ i, the limit 

cycle appears to be an ellipse in the (xa, yp,) 

plane (R denoting rg, al part). Also in the (xa, z) 
plane R is evident that z quickly reaches 
constant value. 

This suggests that we look for an e x a c t  solu- 
den to the equations in which z is constant, and 

x and y are sinusoidal. Since (I) is linear in x 
and y if z is constant, it is clear that ~uch a 
solution is possible. We put 

x = A e  ~'t, .v = B e ~f, z = M, (2.16) 

o 

7 

/ 

c, ~ ~ ,~ ~ / :~' 

'~ 'I ~ " 

~-1,110 -1,40 -t,(~0 -1~,6Q - ~.~O O.L~ 0,60 1,00 1,~10 1.80 

Fig. I .  (a) Stable el l ipt ical  l imi t  cyc le  in the xP-y~ l , ]an¢ w t h  parameter  values b = 4;3, o = 2, rz = 2. P~ ~- I ,  e = 3, 
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e~ 

i 

8~ 
~1.80 ~I,40 IBO 

('.2 
" \  

-1.00 - 0 6 0  - 0 2 0  0.20 0,60 100 1.40 

YR 

Fig. I. (b} Plot o f  : ve r sus  yr  for the limit cycle in (a) showing z reaching a constant value .  

Then (I.1) implies 

irA = - e r A  + ~ r B ,  

i fB = ( r -  M ) A -  aB,  

0 = ! (AB*  + A ' B )  - bM, 

so that we find 

= (1 +~.)A; M = I A I : I b  , 

a~d I and IAI are given by 

(2.17) 

(2,18) 

Equating real and imaginary parts of (2.|9) 
shows that 

rr(e + r2~ (2.20) 
/=oJ= cr+l  " 

and 

IA[" = b(r t  - r~). (2,21) 
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(2,20) and (2.21) conform with the dictates of 

Hopf's theorem, but show that the limit cycle 

can be determined ~.xactly up to a phase factor 
in A .  T h e  amplitude increases with (rl - r ~ )  ~t~ so 
that the bifurcation is supereritical and hem:e 

stable (at least initially) and the frequency of the 
oscillation remains omstant.  The solution can 
be written 

x = A e ~ ;  y = ( l + ~ ) A e ~ ;  z=[Al"lb. 

(2.22) 

We note that such exact limit cycle solutions 

may exist for other ordinary differential sys- 
tems, and in this context we draw attention to 

the papers of Fujisaka and Yamada [15] and 

Escher [16]. 

2.3. Stability a.f the limit cycle 

Normally, one cannot explicitly study the 
stability of a limit cycle, since the basic state is 

rarely susceptible to analysis. It is therefore 
very fortunate in the present case that the 
stability may be explicitly examined, since the 
limit cycle is exactly known. It is possible to 

calculate the critical value of r~ where the limit 

cycle becomes vnstable, which we denote by rl,. 

This calculation however does not enlighten us 
as to the qualitative nature of this bifurcation 
and so this qualitative study is left to section 3 
and we cenfi~e ourselves to purely calculating 

Firstly we change variables to those with 

resvect to a rotating frame, which reduces the 
limit cycle to a fixed point. That is, ~ve put 

x = X e ~ ;  y = Y e  ~ ,  z = Z .  (2.23) 

where ¢o is given by (2.20). X, Y, Z satisfy 

~" = - (~r ÷ i , o ) X  + o 'Y,  

~? -- ( r -  Z)X - ( a  + leo)Y, 

P- = ~(XY* + X ' Y )  - bZ, 

(2.24) 

which have the fixed points X = Y = Z = 0  

(unstable for r~ > r~), and also 

X = A ;  Y = (1 +i6°'~A • ¢, 1 ' z = IAI ' IO (2.25) 

where ]AI is given by (2.21). Thus (2.24) does 
indeed have a continuum of equilibrium points 
(each corresponds to the limit cycle), as was the 
case for (1A) when co =0. 

We observe that since (2.25) gives an equili- 
brium point independent of the phase, we may 

choose without any loss of generality that A is 
real. Now a steady state solutior, of (2.24) 

exists, in which A is replaced by A exp(ie)= 
A * i~A + ~7(e~). It follows that the linearised 

equations about (2.25) must have a neutrally 
stable solution (iX0, iY,.~, 0) (where 0 denotes the 

steady state) for all values of r~ > r~c. In other 
words, one eigenvalue of the matrix equation 
governing such perturbations will be zero. This 

physically signifies stability, since it is only a 
phase shift in the limit cycle, but ensures that 

the bifurcation does not satisfy the Hopf cri- 
terion in its entirety. The nature of this bifur- 
cation and particularly the r61e of the h = 0 
eigenvalue is discussed in more detail in section 
3. Furthermore, it is apparent that this dis- 

cussion should in principle apply to any genuine 
limit cycle: examination of the present model 
thus gives an opportunity of explicit comparison 
of the theory with numerical experiment. 

To analyse perturbations about the equili- 

brium point, we take A real (as above) and set 

× = A + ~ ,  

Z = A21b + ~. 

The linearised equations for ~, ~ and ~ are then 
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= - (o, + ko)~: + on, 

= t r  - A : / b ) 6  - (a + i~o)n - A~, 

+ ~An  + ~ A r I * -  b~. (2.26) 

Because of the pre~ence of 6" and ~*, these 

equations cannot im~edi ' t e ly  be written in 

matrix form, but must be supplemented by 

equations for .~* and ~ :  

~* = - ( o `  - k o ) 6 *  + ~ r t * ,  

f l* = (r* - A : / b ) ~ *  - (a*  - io~)~* - A L  (2.27) 

We define 

L = a + i to .  

N = 1 + ko/cr, 

P = r -  A:Jb .  

(2.28) 

exponents A in matrix equations governing real 

variables. In such cases the linearity of the 

equations enables suitable superpositions to be 

chosen so that the variables are r~:al. Similarly, 

we would choose a superposition in the present 

case such that 6" is  the conjugate of 6- 

This may be verified by writing (2.30) as a five 

by five real  matrix equation for xs, YR, etc. 

Since the solutions proportional to exp(A:) give 

complex conjugate pairs, or real values of A, the 

same must be true of (2.30) (as is shown below). 

Thus solutions proportional to exp(;,t) exist 

when ~, is an eigenvalue of (2.30): that is, when 

-(Ix+A) 0 0 - 

0 - ( ~ N *  + X)  c¢ 

0 P* -(L* +;t) 

=o. (2.31) 

This is cosily evaluated by multiplying the ele- 

ments of the fifth column by its cofactors. We 

obtain 

and recalling (2.19), we observe that 

L N  = P. (2.29) 

(2.26) and (2.27) may new be written in the form 

( i  00 00 1 
-~i'*1 = 0 - o`N* o  ̀ 0 

o e* -L*-An 'l 

\!AN* fan ! a - b / V  I - - -  

(2.30) 

e~ad as before, there exist solutions proportional 

to exp(At). At this point we observe that such 

so'lutions will be such that 6" is n o t  the con- 

~ug~e of / j ;  thi~ is analogous to having complex 

0 = tb + ~,)[(~rN + A)(L+ X) - o`P] 

x [terN* + At(L* + X) - o`P*] 

+ !A: (O`N* + A + o`N)[(o`N + A)(L + A) 

- trP + (o`N* + At(L* + ,X) - o`P*]. (2.32) 

Using LN = P from (2.29t, we find that ~, is a 

factor (as predicted): thus } t  = O, o r  

;~(~ + b)[^ + (t, + No`)][,~ + (L* + N*crt] 

+ ~A'~(,~ + o`N + ~rN*t 

x [(X + L + No,) + (h + L* * N*o`)] = 0, (2.33) 

which is a quartic polynomial in ~.. We evaluate 

an explicit stability criterion as follows. Define 

a = (L + O`N)(L* + o`N*) = (o`+ l ) :+  (2o0- e):, 

fl  = ~[L + o`N + L *  + o`N*]  = cr + l ,  (2,34) 

3' = o`(N + N*t = 20. 
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Eq, (2,33) is thus 

A(A + b)tk" + 20A + a)  + A~(A + y)(h +/3) = 0. 

(2.35) 

We have a, 0, 3' > 0; thus the constant term is 
positive for all A~'>0, Hence X = 0  is not a 

soiution of (2.35) and instability can only occur 

if conjugate roots of (2.35) cross the imaginary 

axis, For A " > 0 .  A " ~  0, the roots of (2.35) all 

have negative real part. Therefore the limit 
cycle is stable for r~ > rt, until a critical value 

rl = r[,, at which (2.35) has roots ~, = --+:. ill, say. 

At this point (if it exists), (2.35) may be written 

(A" + llS(,X: + p~, + q) = 0, (2.36) 

Multiplying out (2.35) and (2.36), we find, on 

identifying t o e , c l e a t s  of powers of h., that we 

must have 

p = b +213, 

l l:  + q = c~ + 2613 + A ~, 

pll" = a b +  (0 + 3,)A 2, 

qfl2= 13yA "+. 

(2.37) 

is the stability criterion for A 2. This is evidently 
a quadratic equation for A 2, 

Q(A2) ~ Q t A ' +  Q2A:+ Q3 = 0, (2.41) 

where some simplification shows that 

Qt = (0 + 3,)(3, - b - 13) 
= (3fr + l)(cr - b - 1), 

Q,+ = O(b + 2/3)(2133, - 2b13 - by) 

- a( - b3, + b'++ 13b + 2/3:+ 213y), 

Q~ = - 2<x13b[a + b-" + 213b]. 

(2.42) 

We have Q.~<0. If c r > b + l ,  ":hen Q t > 0  and 

(2.41) has a unique positive root. which deter- 

mines the critical value of A". This turns c : t  to 
be 

~ 2 3/2 
_ .2-_Q: [ Q : - 4 Q ,  Q3] (2.43) 

P - -20~  

In this case the critical value of r3 where the 

limit cycle becomes unstable is given by 

ri~ = rt¢ + p/b, (2.44) 

Eliminating p, q and f12 gives a critical value of 

A 2, and hence of rt+ at which instability sets in. 

/Since a, b, 13 and 3' are all positive, p, q, and II 

are also, and thus (2.36) implies that II is real, 

and the other two roots of (2.36) have negative 

real parts. Prom (2,37), w ,  have 

ll:  = [c~b + (0 + y)A:]l(b + 20), (2.38) 

whence 

, + S + , A ' ~ h ~  
q = [ a b +  (0 + 3,)A~] ' (2.39) 

so that 

a + 260 + A: = eb++ (0 + 3,)a 2 
(b + 20) 

03,A~(b + 20) 
(2.40) 

where p is given by (2.43), Qt, Q2 and Q3 by 

(2.42), c~. B and y by (2.34) and oJ by (2.?,0). This 

is a useable, though messy criterion. 

If (r < b  + 1. then Qt < 0  and Q may attain 

positive values for a finite range of A 2, A 

necessary conditiot~ that this occurs is that Q2 > 

0. Using the definitions of /3 and y in (2.34), 

together with the fact that a - t32 and b > cr - 1, 

evaluation of Q2 in (2.42) shows that necessarily 

Q2 < 0. It follows that the limit cycle is always 

stable if cr < b + 1, which is identical to the 

corresponding real case, 

To summarise, we have shown that the limit 

cycle, in the form of the. e, xact solution (2.22), is 

always stable if or < b + 1. If cr > b + 1 ~hen it is 

also stable for values of rt in the range r~ < rt < 

ri~ but becomes unstable when rt > ri~, Due to 

the presence of the zero eigenvalue of the 

tinearised matrix equation the bifurcation is not 
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completely ¢,~ Hopf type although without this 

eigenvalue a Hopf bifurcation would occur The 

nature of thi~ bifurcation thus requires further 

consideration. 

3. ~ifurcation of the limit cycle in ~he complex 

Lo,-- ~z equations 

3.1. General case  

Let us first coas der the ge~:eral case of 

bifurcation of a l~mit cycle. ~traightforwa:d 

linearised perturbat~on analysis may be carried 

out. leading to a linea: m,,~rix equation for the 

perturbations in which the matrix is periodic c,f 

period T. say (where T is the period of the 

underlying limit cycleS. Floquet theory (see e.g,, 

Coddington and Levinson [715 then tells us that 

the solulions of this linear equation may be 

wriHen as the product of a function of period T 

and the function exp(~t). Stability ~hen rests on 

t~e magnitude of the Floquet multipliers 

exp(~7 }. an6 thus on the nature of the Floquct 

exponents .u. In the case of our analysis of the 

complex Lorenz ifiait cycle, the exponents /,t 

are essentially the same as the eigenvalues A. 

Various possibilities for bifurcation now 

occur, and are discussed by Ruelle and Takens 

[8}, Joseph [91 and Lanford [10]. Particu!arly, if 

~. crosses the imaginary axis at ill (and so also 

A* at - i l l ) ,  then the limit cycle bifurcates to 

molk}i; on a 2-torus. Generally this motion will 

be doubly periodic (corresponding to a "Hopf  

bifurcation" in a frame rotating with the limit 

cycle, or of the associated Poincarg map): for 

particular values of A, subharmonic periodic 

solutions may also occur (Joseph [9]). 

However, Floquet theory is not gener~:lly 

useful for explicit calculations, and in addition 

the limit cycle solution is not usually known 

explicitly. Thus practical applications of such 

~fxeorems as e~ist do not seem prevalent in the 

~erature:  particularly, we are unaware of a 

me~hod for computation of the stability of the 

bifurcating lotus. In the Hopf case, there are 

numerous "different" methods which can be 

used, which probably amount to the same idea: 

the center manifold theorem, Hopf 's  theorem, 

the Poincar~-Lindstedt method, the Krylov-  

Bogoliubov-Mitropolsky method of averaging, 

and the Cole-Kevorkian method of multiple 

scales, as originally developed for fluid flows by 

Stuart [ i l ] .  The last-named method derives an 

amplitude equation for marginally stable oscil- 

latory perturbations of the form 

x = xt,+ [~A(i)  e'n'un + ('51 + '  • ' (3.15 

wherein ~ is a measure of the amplitude A: t" = 

~-'t is a slow time ~,.iable, and f~ is the marginal 

frequency. Uniformly, valid expansions of the 

form (3.1) require ,4 to satisfy an equation of 

the form 

dA 
- - :  = k l A  + k:AIA[ r, (3,25 
dt 

a result obtained by McLaughlin and Martin 16] 

in their classification of the bifurcations in the 

real Lorenz model. Along with the various 

different methods mentioned above, our cal. 

culation is essentially equivalent to theirs. 

If Re k2 > 0, then the bifurcation is subcritical, 

and the limit cycle is unstable; if R e k : < 0 ,  the 

bifurcation is supercritica! and stable. Cal- 

culation of k,, is straightforward but messy. 

The distinction between super- and s,',b-criti- 

cal bifurcations is an important one in the con- 

text of turbulence and chaotic trajectories of 

differential equations. Ruelle and Takens [8] 

proposed that the trajectories on higher dimen- 

sional tori (corresponding to further bifurcations 

of the system under consideration) would not 

generally be of periodic or almost periodic type: 

rather, they could approach "s t range" attrac- 

tors, which for all practical purposes would 

appear turbulent, or chaotic. It is clear that this 

scheme is only viable if tho intermediate billet- 

cations are supercritlcal, so that the trajectories 
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on the various tori are stable (in that they ap- 

proach the toms). It is for this reason that it is 

useful to analyse the direction of bifurcation in 

real cases. In fluid l o w  along pipes, bifurcation 

(when it occurs) is of subcritical type, and so 

the Ruelle-Takens ideas are presumably irrele- 

vant. In the B~nard problem, the first bifur- 

cation, and in the Taylor column, the first two 

bifurcations are supercritical and stable, and 

turbulence in these cases may be along the lines 
of the abstract theory. 

For the above reasons, we wish to examine 

the direction of bifurcation of the 2-torus for the 

complex Lorenz equations. Our approach will 

be constructive; that is, we will use the formal 

method of multiple scales to find amplitude 

equations satisfied by the perturbations of the 

limit cycle. An analysis of these gives con- 

ditions of stability and direction of bifurcation 

of the 2-torts. Since the bifurcation :s sub- 

critical in the real ca~e (McLaughlin an i Martin 

[6]), we expect this to be also true in the pres- 

ent case. at least for sufficiently small e and r~. 

3.2. Rotat ional ly  invarianl sys tems 

The procedure we adopt is straightforward, A 

similar general method is given by Haken [12], 

who follows somewhat the apprcJ~ch of Eck- 

haus [13]. This determines an infinity of am- 

plitude functions, of which only a finite set are 

relevant; an unstable mode and a set of 

"slaved" modes, in Haken's terminology. We 

prefer to adopt the method of multiple scales 

(e.g., Nayfeh [14]), since then the approximate 

expansions adopted are made explicit from the 
outset, and the natur,r of the equations is then 

apparent. 

Let us consider the system of real-valued 

ordinary differential equations 

dx---2~ = f~(x; #.). (3,3) 
dt 

We shall suppose that this system is derivea via 

a change of variables from another system, in 

149 

which a limit cycle exists for u certain range of 

tt: we shall refer to this as the underlying limit 

cycle. For the complex Lorenz equations, we 

obtain (a.3) via the change of variables 

(x, y, z) ~, (xe i~t, ye ~'°~, z); generally, we can 

change into a rotating frame in this way for any 

system with an underlying limit cycle, but we 

expect to obtain a non-autonomous system un- 

less the oscillation is exactly sinusoidal In this 

case, it is reasonable to adopt the following 

assumptions. Let xo be a fixed point of (3.3) 

corresponding to an underlying limit cycle. We 

define a rotation matrix R(t)  which satisfies 

R ( a ) R ( [ 3 ) - - R ( a  +/3), and the underlying limit 

cycle is given by R(t)xo (i.e.. (3.3) is obtained 
from the original system via the change of vari- 

ables x ~ Rx).  Since then we have that 

f[Rxo; Ix] = O. R = R(o~), (3.4) 

for all /~ and ,~. (i.e.. (3.3) has a continuum of 

equilibria), it is reasonable to assume that (3.3) 

is invariant under rotation; that is, if y = R(a)x ,  

then dy/dt = f(y; t~). This implies that f satisfies 

Rl (x ;  ~ )  = f ( R x ;  t~) (3.5) 

for all x and a. This condition is satisfied by the 

complex Lorenz equations, for example (see 

below). Differentiation of (3.5) with respect to a 

yields 

R~j(a)fj(x; ~t) = fi.j(Rx;/x)Rik(~)xt ; (3.6) 

putting x = x0 immediately shows, using (3.5), 
that 

f t j (Rxo; ,t~)R;kxok = 0. (3.7) 

In other words the Jacobian matrix D r =  

(f~.~(Rx0; ~¢)) has, for every value of/~ (and a), a 

right eigenvector no with corresponding eigen- 
value zero, where u0 is given by 

uo = R ' (a  )xo. (3.8) 
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Since linear perturbati~ms to x0 are proport ional  

to exp(M), where A is an eigenvalue of  D/, it 

follows that x0 is (at least) neutrally stable for all 

It. I lowever ,  this is by virtue of  the fact that the 

underlying limit cycle may have its phase per- 

turk, ed, but yet be arbitra:ily stable: thu,; we 

discount h = 0 as represen; ing a ~tate of  mar- 

ginal stability, since if all o ther  R e h  are less 

than zero,  then the underlying ~mit cycle is 

structurally stable. 

If we differentiate 0 .5)  ~vith respect  to x. we 

find 

foresight)  

tx = p + ± ~  1, 0 < e ' ~ l ,  (3.9) 

where  the plus and minus signs refer  respec-  

tively to super-  and sub-critical states (weakly 

unstable and weakly stable). We also define the 

s low time scale 

r = Ct ,  (3.10) 

and will seek solutions to (3.3) in the form 

R ( D f ( x ;  t~)) = ( D I ( R x :  t~ ))R. (3.8a) x = x tm+ ex  ~ + e :x  ~2~ + • • • (3,II) 

Now suppose that U is a right e igenvector  of 

Dr(x; ~ ) w i t h  eigenvalue ?,: then pre-multiply- 

ing U by (3.8a) shows that RU is the cor- 

responding eigenvector of  D f ( R x : l t ) .  The use 

of  this Js that U is independent  of  a in R ( a ) .  

Particularly, (3.8) implies (with an obvious 

notation) 

Uo = R'(O)xo, (3.8b) 

wb,ence ~,~,= R(a)R'(0)x0. which is consis tent  

wi'th (3.8), s;~ice considerat ion of R(ct + / 3 ) =  

R ( a ) R ( I ] )  shows that R ' ( a ) =  R ( a ) R ' ( O ) =  

R'(0)R~a). 
Let us denote  L.i(x~; It) by j 0 :  we will now 

assume that (apart from the zero eigenvalue), all 

other eigenvalues of f~i are such that Re(A)<C.  

but that at /x = p~, a pair of eigenvalues ± ill, 

ft  > 0 ,  cross the imaginary axis in such a way 

that d(Re h ) l d ~ [ ~ , ,  >0:  the corresponding (cri- 

tical) eigenvec~.ors of [~,+ are U+~ and U~, These  

conditions (apart from the zero eigenvalue) 

resemble tkose of  the Hopf  bifurcation, and are 

+'atid in the complex Lo+enz case. From "~he 

p~+ragraph above, it follows that f+,j(Rxo; I t)  has 

+orrespondir~g eigenvectors  ua = RUn and u~ = 

RIJ~ with eigenvalues + ift and - i l ~ ,  respec-  
~Tve!y. 

We now seek an approximate  solution when 

'# -~ ~t¢[ ~ I; accordingly we define (with some 

where  x "~= Xt+;(t. r). The procedure  as usual is 

s t raightforward,  but there are one or  two 

subleties which disting~iish the expans ion  from 

the more convent ional  H o p f  case.  Substi tuting 

(3,9), (3.10) and (3. l l) it, to (3.3), we obtain 

(~t  + e" ~r)(xCm + ex"~ + CxC+~ + e-~x°~ + . . . ) 

= f[xm;+ ex  "~ +" • • ; ,at ± ~-'], (3.12) 

whence  we derive 

3X~' + • • • • 
+ at at +e ---~--+ e+--~- 

[. , ,  ox?~+ - , ,  

+t '~w ' :~+" 'J  
If'+ + 'l,+x? ~ + " '" = +'XI "  + ; <~ ~ x ;  . .  }f~.j 

+ ! ~ x l ' +  + e " . #  ~ ' ' ' / { + x ~ " +  ~ ' x i  "+' • • . } f~ i~  

++q+x}" . . .  }{~xl"+. }{~x"' • + . . . } / ? . ~ + . . 1  

tOit "~ " "  3p . . . .  

(3.13) 

where  f+[~ denotes  f~,~ evaluated at x ~m and tz~, 

etc, Equating terms of  O(I) ,  we have 

; I  X (0) 

" - '~  = f~(xm~; ~ ). (3.14) at 
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The  re levant  t - independen t  solution of (3.14) is 

given,  f rom (3.4L by 

x ~°~ = R(6 )x , ,  (3,15) 

where  ~b = d,(r)  is a slowly-varyir ,  g func t ion  of 

t ime;  essential ly,  it is the  phase  shif t  in the  

under ly ing  limit cycle.  At  ~'(e), we have  the  

l inearised equa t ion  

OX~ I) 
• " c I~_ ~t .f~.tx} - 0, f[~ =.f~.~[R(6)Xo; tsc]. (3.16) 

Neglect ing initial t ransients ,  this equa t ion  has  

solut ions propor t iona l  to u0, ua e iat and u~ e-la' ;  

however ,  not ice  tha t  if, in (3.15) 6 = 

.do+ ~d,~ + • • ", then 

x ~°~ = R(,h,)xo + d r ( ~ ) x 0 ~  ~ • • • • 

Since uo = R'(O0)xo, it is c lear  that  we may  absorb  

the term propor t iona l  to no in x °) into  d,. In fact  we 

can  do this  at  each  stage of  the  solution,  provided 

we let 4, depend  on .- as well as ¢. Then  the  

solution of  (3.16), neglect ing t rans ients ,  may be  

wri t ten  

x "~ = A ( ¢ ) u a  C TM + (*), (3.17) 

where  (*) deno tes  the complex  conjugate .  

At ~(e2). we have,  since af~lO~ = 0  (f rom 

(3.4)), 

dxt :~ _ o,~o,,~.I + !x~"xi":i:,~, 

R[j(6) d ~  x0j + R ~ I A t 2 u a # ~ k  

+ [ ~ . ~ A  z e2ia'Uajam + (*)], (3.18) 

since f t~--f~.~.  The  te rm in e :ira gives a parti- 

cular  solut ion propor t ional  to  e ~ r ;  howeve r  

(s ince ze ro  is an  e igenvalue  o f  f~j) the  cons t an t  

t e rms  may  be  secular ,  and  it is the  e l iminat ion 

of  these  secular  t e rms  which  de te rmines  the  

phase  4,(r). Specifically, if a (complex-va lued)  

matr ix A has  an eigenvalue zero,  then  the equa-  

t ion A x  = c has  a solution if and only if Orc = 0, 

where  a bar  deno tes  the complex conjugate ,  for  

all o such that  Arv  = 0. Thus  if A is an eigen- 

value  of  D.f = (.f~j), then the equat ion 

O X  
~t ( D f ) x  = c e ~' (3.19) 

has a solution proport ional  to e '~' if and only if 

vrc  = 0 where  [ ( D f ) -  AI]T~ = 0: i.e. (D f ) r v  * = 

),*v*(* denotes  complex conjugate)  since D f  is 

real. Now let vo and va be the left e igenvectors  

of Df,  corresponding to the e igenvalues  zero 

and i t  respect ively,  thus  

v~(DJ')  0,  i .e. ' = tooL, = O, 

vlr(D$) = l i ly  r ,  i.e. tq~f~, i = iflvai;  
(3.70) 

then (DI )%$  = 0, (Df )%~ = - i s2v~ ,  and thus  it 

fol lows that  the equat ion 

Ox "D"x ~ ' - ~  ~rt = co+ c . e  'n' (3.21) 

can only have a solution of the form a0 + aa C ar 

if the cons t ra in ts  

Vo" co = v a ' c a  = 0 (3.22) 

are satisficd: otherwise,  secular  te rms t, teim 

will occur.  Applying this to (3.18), we require  tk 

to satisfy,  recall ing (3.8), 

d.~ = [OodiCa~Ua#~ ]1AI2 
d r  L WOil)Oi ~" " " 

(3.23) 

If  (3.23) is satisfied, then a par:icul,~r solution of 

(3.18) can be wr i t ten  

Xl 2) = a~2)lAl 2 + [a~-')A% 21n' + (*)], (3.24) 

where  

"t~ c 

[ .o:,oi (3.25) 
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and 

_ , . 12f i , i~ U l t i U i t k ,  (3,2(~) 

We have already decided to incorporate con- 

s+~t  solutions proporlional to u0 into ¢b; 

s~milarly, there is no loss in g~_nerality in ab- 

sorbing the solutions proportioral to ut~d im into 

AO'), provided alsn we unders 'and , t  = A(z;  e), 

Then (3.24) is ,he complete s:~tution at (Y(~-'), 

and we tur~ to ( :e ~) terms. Ttrese are 

oxl ~,~.: f.x~,) = ~xl'o~ + ~(x~,)xl:)+ ..~:)~,),. 

"~', :,~ .~1 ~ i ) ~ -  .~ 0t z . (3,27) 

and we again have to eliminate terms on the 

right-hand side which are secular. From (3.17) 

and (3.24). it is apparent that there are no con- 

stant secuiar terms, and thus we only need 

choose A ~uch that the e ~m terms ,are non- 

secular; we in fact obtain the Landau-Stuart  

equation (3.2), as previously discussed. The 

coefficients are determined as follows, The 

coefficient of em' in (3.27) is, recalling that u~) = 

R(~h)U~ and that R'((b)= R'(O)R(d,), 

% ") 

so it follows from (3.22), using (3.23). that the 

Landau equation for A is 

dA 
= ±k~A + k:IA['VL (3.28) 

+ ~t,a,{uuju(au~) + ua~u~un) 

_ voj~,M~)~U ~ (3.30b) 

k~=dX/d# [.=~ is the linear growth rate 

(Re k~ > 0 by assumption). Therefore, the bifur- 

cation is supercritical if Rek . ,<0 ,  and sub- 

critical if Re k., > 0 since [At: satisfies 

dIA~ = :'= 2(Re k0)AI 2 + 2(Re k,,)IAl'. (3.31) 
d ~ "  ~ 

Thus the stability of the bifvrcating solutions is 

determined in exactly the same manner as in a 

Hopf bifurcation. It is not obvious (though we 

might suspect) that fl, kt and k2 are independent 

of r. since un, uo, v~ and vo are functions of ~-. 

However, using ua = RU~. uo= RUo, and the 

equivalent formulae for vt~ and vo, it is not 

difficult to check, using x-differentials of (3,5), 

that this is indeed the case. For example, pre- 

multiplication of (3.8a) by v. a left eigenvector 

o f  D I ( R x : ~ ) ,  easily shows (if V is the cor- 

responding eigenvector of Dr(x: p))  that v r =  

vrR.  It easily follows that we have v0 r = V r R k  

v f = V ~ R  I. We then have VoiUo~=t, ruo=  

VrR-~RUo = V~o Do, which i~ independent of 4,. 

and hence of r. Similar considerations show that 

fl, k~ and k~, are all independent of  T. 

3.3. Nature  o f  the solut ions 

The solution can be written as 

x = R[$(~-)]x0 + e[A(~)uae 'm + (*)] + t'?(e2), 

(3.3.2) 

where 

where a ,  = k ,A + k,laI A. 0.33)  

f~ c 
,kl v~ ~ uajlut)~vl~. (3,29) If the bifurcation is supercritical, then for 

Re k~ > 0, i.e., ~ > #¢, the solution for x tends to 
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a doubly periodic motion in the rotating plane. 

This consists of a fast it ~ I) oscillation of am- 

plitude order X, /~- ' -~  about the equilibrium 

point, which dself precesses periodically around 

the underlying limit cycle. In the rotating plane, 

time-plots of x, versus time will thus consist of a 

fast oscillation whic~ (if uo~ # 0) is superimposed 

by a larger scale slowly oscillating solution. This 

is observed in the complex Lorenz equations 

(see fig. 2). 
In the fixed frame, we have xv = Rx, therefore 

(3.32) is, using the property that R(a)R(/~) 

= R ( a  + 13), and that ua = RUn, 

thus 

4) '~ - ~kk.~ -a~', 

- exp[ i lk~tk~-  k,~kiR]r 1 
- t ~ i~-  -t J'  (3.36) 

It follows that t ae solutions in the fixed frame 

can be written in component form as the sum of 

products of two functions of distinct periods, 

thus 

x ~  ~ R ( t  + d , ( * ) ) i x o  + e { A ( r ) V ~  e ~'' + (* ) }  + ~ ( e ' ) ] .  

(3.34) 

In the limit its ¢ ~ ~ (w:,th Re k~ < 0, Re kt > 0), 

we have 

4. ¢{A(z)Rii(t  + ¢~('rDU,! e i"' + (*)} + ¢7(C) 

= ~ pl"(t)q~(t). (3.37) 

where 

:Rek?~= k~, 
(3.35) 

pl"(t) = R~:t + 0(~)), 

q~(t) = xo~ + e{Aer)U~j e "~' + (*)} + ~(e"), 

   ilV Y  vv lll 
Fig. 2. Plot of  ya versus time at b = 0.8, rr ~ 2, r, = 220, r~ ~ I and e ,~ 3r~. at which there is a stable finite amplitude motion. 
Note the slow and fast ~rtods i~ ti~ o~illatioas. 
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and p~'  and q~ have  per iods  o~ and ~o., respect ive ly ,  

where  

+ C f . ~ : . ~  - k . , k , . ~  
,o2= ~ " ( -  ) ~  ~ . . . 

(3.38) 

The  presence  ol two dist inct ,  general ly  incom- 

mensu ra t e  f r e q u e n . i e s  character ise  these  solu- 

t ions as doubly periodic. A spectral  ana lys is  o f  

the solut ions should thus  reveal  a peak at the  

fundamenta l  f r equency  to~, together  with smal ler  

peaks,  at Io~ +-- wzl, etc. Such  behoviour  is found  

by Fens te rmacher ,  Swinney  and Gollub [17] in 

an exper imenta l  analys is  o f  Taylor  vor tex flow. 

3.4 A p p l i c a t i o n  to  c o m p l e x  L o r e t ; z  e q u a t i o n s  

In the rotating phme,  the  complex  Lorenz  

equat ions are 

X = - (~r  + i to)x +¢rY, 

~' = (r  -- Z ) X  - (a  + i~o) Y. 

2 = ! I X Y *  + X * Y I  - b Z ,  

(3.39) 

~v(e + r.,) 
w . . . . . . . . . . . . .  . ( 3 . 4 0 )  

( r + l  

The non-zero equilibria are 

ito) 
X = A ,  Y = A ( I + 7 ,  Z~!AI:Ib, 

iA!: = b ( r , -  r~,). (3.41) 

r~ = I + (e + r:)(e - c r r , )  
~.~ + ]~r (3.42) 

Note that the equa t ions  are invar iant  unde r  the  

rotation ( X ,  Y ,  Z ) ~ ( X  e x p ( i . ) ,  Y exp( ia) ,  Z),  

Putt ing 

A ( x ,  + ix:), Y = A f x ~  + ix4), Z = [ ' ~  x~, 

(3.43) 

w e  get 

~ + i.~: = - (or + i,O(xl + ix:) + tr(x~ + ix~), 

t,~ + i,~4 = [r~ + it:  - (r~ - rl3x.d(xl + ix_,) 

- ( 1 - ie + i~o)(x~ + ixg .  

.~ = b[}{(x, + ix:)(x~ - ix,) 

+ (x, - ix..)(x~ + ix~)} - x , ] ,  

w h e n c e  

~1 = - -  ~rx, + 00X2 + O'X;, 

• ~'2 ~" -- (OXl + O'X? + ¢~r.r/.l, 

.i'~ = [ r l  - ( r ,  - rl, .)x~lx, - r x ,  - x~ + (to - e )x4 ,  

.t4 = r..xl + [rl - (rl  - rl , . )x~lx: - (to - e )x~  - x4, 

.~  = b [ x , x ~  + x..x~ - x d ,  (3.44) 

with an equi l ibr ium point  

to 
x~= I, x . ,=0 ,  x ~ = l .  x4 = - ,  x r = t .  (3.45) 

O" 

By' rotat ion th rough  an angle ct of  X and  Y, 

o ther  equil ibria are g iven  by 

Xi = c o s  i f ,  

X2 = s i n  or, 

(o . 
x~ = cos  a - - s m . ,  (3.46) 

cr 

to 
Xa = - -  COS Ot 4- s i n  or, 

fir 

x s =  1. 

T he  t r ans fo rma t ion  X ~ X exp( ia ) ,  

Y --, Y exp(id) ,  Z --+ Z c o r r e s p o n d s  to 

XI ~ X ~ c o s ~ - x . ~ s i n ~ .  x :  ~ x l s i n ~ + x . * c O S ~ .  

x3 -~ x~ cos  a 7 x~ sin a ,  x4 --, x~ sin a + x~ cos  a ,  

x~ --+ xs: t hus  the rotat ion matr ix  in this  c a se  can  

be  wri t ten down  as  
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/ s i n t ~  cosc~ 0 0 

R(,~) = |  0 0 cos ~t - sin a 

{I sin ~ cos a 

0 0 0 

(3.47) 

and the methods previously descr:bed can be 

used to r tudy the bifurcation of the limit cycle 

solution of (3.44): the algebra involved is 

somewhat tedious, and is not ~mrsued here. 

However,  we can already draw some con- 

clusions from (3.47), (3.32) and (3.37). 

In the rotating frame, the components  of x 

will bifurcate to a small amplitude oscillation 

about a large scale osc{llation of much smaller 

frequency. This follows from (3.32), and is 

essentially observed in fig. 2. In the fixed frame, 

we will see the same picture, but with the dis- 

crepancy in frequencies less visible. However, 

note that since, from (3.47), we must have 

R~xoj = xos, and similarly for Ut~. the z-com- 

ponent of x is given in either f ixed or rotating 

f r a m e  by 

Z = x~ = x0.~ + ~{A(¢) e ta' + (*)} + ~(O'); (3.48) 

therefore, the solution for z is singly periodic at 

bifurcation, and no slow variation of large am- 

plitude shot°td exist: this is seen in fig. 6. 

4. Numerical results and conclusions 

In the previous sections, we have shown that, 

except for the singular case e + ~ = 0, only the 

origin is a fixed point. The two further fixed 

points of the real Lorenz equations which exist 

when r > I are replaced by the limit cycle which 

has frequency to. Much of this paper has been 

devoted to the stability of this limit cycle and 

the nature of the bifurcation when it becomes 

unstabl~. The analysis of section 3 showed that 

the sign of Re(k2) effectively determines 

whether  ~his bifurcation is of a subcritical 
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(Re(k9 > 0) or supercritical nature (Re(k~) < 0) 

with a transition to doubly periodic motion in 

the latter case. As McLaughlin and Martin [6] 

have shown for the real Lorenz equations, the 

case Re(k2)>0 is a sub-critical Hopf bifur- 

cation. In our problem the actual determination 

of the criterion Re(k2) --- 0, giving the exact del- 

ination between the two types of behaviour, is 

extremely messy to calculate. Instead we have 

performed a limited number of namerical in- 

tegrations to examine the kind of bifurcations 

which can occur. 

There are five parameters in the equations 

(1.1): tr, b, rb r:. and e. We will concern our- 

selves mainly with holding these fixed, except 

for r~, which is thus the bifurcation parameter. 

Clearly a complete numerical analysis of (L1) is 

out of the question in a paper of the present 

nature, and we can only give a brief idea of the 

types of bifurcation which occur. 

In fig. 3, we show a stability diagram in (rh r2) 

space which shows the dependence of r~ and ri~ 

on rz at tr = 2, e = 3r2, b = 0.8, These represent 

the analytic results of sections 2 and 3. Thus to 

the left of A, the origin is linearly stable; to the 

right, it is unstable and the stable solution is a 

limit cycle whose frequency decreases to zero 

~0 

0 5  

J "  j J  C 
J . j J  

J J f  

I J  //jf'~/ 

/ / 

,t . . . . .  

Fig, 3. Stabiiity diagram in ~rt, r:) space shoVAi~g r;~, rl,, and 
also the approximate region of su;'.~itical transition. 
Parameter values are b =0.8, a = 2, e = 3r:. 
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as rz ~ 0. This limit cycle is linearly stable be- 

tween A and C, and iir~early unstable below C, 

Fig, 4 shows the dec~y of  a trajeci~ry in the 

ro*~ating (Rex,  Re y) phase space at a value of  

r~ = 254 (here r;~ = 255~ 7 . .  ~ a! r: = I): motion is 

trom top to bottom, an'~ considers of a fa~t oscil- 

lation of  slowly decaying s~mptitude, which 

slowly precesses around the um~rlying limit 

cycle (set of e~,ui:ibria). 

At a value .-,f r~ = 256>-i , . .  a small pertur- 

bation to the li~,,it cycle initially grows as pre- 

dicted by the ana:;/si.-., but the final resultant 

motion is hardly of small amplitude, though in 

other  respects  it resembles  the result of a 

supercritical bifurcation. L4~ter s tages in the 

evolution of  a small perturbation to the limit 

cycle v,:e shown in ritz, 5, The motion is anti- 

clockwise,  in fig, 5a, we see that from t = 835 to 

t = 935, the solution processes  slowly around 

the underlying limit cycle,  with a precess ion rate 

that slowly increases.  Fig. 5b shows the  solution 

from t = 900 to i,000: the bot tom o f  5a is visible 

on the inside (though the scale is different);  we 

see that the precess ion rate increases  dramatic-  

ally (more than three comple te  processions are 

visible) anJ  the solution rapidly attain,,, a s teady 

form, which is shown in fig. 5c, Corre~,ponding 

plots o f  Re(x), Re(y) and : are shown in fig, 6. 

.,-~ V i 
.I 

i 

i 

! 

¥R 

Fig. 4. S owl), decaying trajectory m (x~,).~} phase space at r~ = 254.-~ r¢~ = &%~.67 . . . . .  r: = 1; other parameters ,,is for fig. 3, 
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Fig. 6 shows that between t = 50 and t = 100 

(different initial values were chosen so that the 

final steady solution was approached rapidly, in 

t < 50) ten full precessions occur, and there are 

about eight to nine fast oscillations per pre- 

cession. Close examination of the time plots 

suggests that (as fig. 5c also indicates) the solu- 

tions are periodic (or very nearly so) with a 

period of forty-two fast oscillations, or five 

precessiot~ ~. 

The large amplitude of this oscillation sug- 

gests that the bifurcation at r t =  r~¢= 

255.67. . .  is sub-critical, and so Re k , > 0  

there. In this case, we suggest that at values 

rt<ri,,, there may exist an unstable and a 

(larger) stable toru,,;, for which the amplitude of 

the smaller tends to zero as rt ~ r~o Generally, 

the nature of the stable large-amplitude solution 

is inaccessible to analysis, but we suggest on the 

basis of fig. 5c (and other numerical evidence) 

that it also consists of motion on a torus which 

one lnight expect to be doubly periodic. As r~ 

decreases to a value r~'~.< r~,, the stable and 

unstable forms may coalesce and vanish: or, 

they may both be unstable. The dashed line 

marked B in fig. 3 represents (roughly) the 

.a 

YR 

Fig, ,~, Evolution of a small disturbance to the limit cycle a~ n = ~ 6 >  r[~; other parameters as for fig, 4; (a) t = 835 to 935. 
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j 

i 

I 

J 

J 

~J 

J 

vR 

Fig.  5. Ib)  t = 90~1 to 1,0Og. 

position of the graph of r'~', as a function of r:. It 

has been determined on the basis of a limited 

, amber  of integrations. As long as B lies above 

C, the bifurcation will then be suhcritical. If B 

intersects C, then at this point Re(k.,) --- 0, and 

for greater values we should expect Re(k: )<0,  

and a supercritical bifurcation: we have not 

determined this coefficient, however. Although 

the motion exhibited in fig. 6 is not of small 

an~ptitude, the nature of the m, merical solution 

nevertheless suggests a multiple time scales 

analysis. One possibility for such an analysis is 

that the parameters are "clo~e' to the values at 

which k.,~ = 0: an analysis near this point (and 

fo: Irl - r~:l "~ !) would describe the o u t e r  stable 

oscillation as wel!: on the other hand its form 

may be due to the largeness of rl. 

Fig. 7 exhibits the finite amplitude stable torus 

at a subci-itical value of r~ :: 220 < rT, As far as 

can be seen, the motion is doub!y periodic 

(frequency locking does not occur): the occur- 

rence of precisely two incommensurate 

frequencies may be (and has been) checked by 

spectral analyses, and by computing phase plots 

of !XI: versus IYI" (which appear as limit cycles 

in a doobly periodic motion). 

We have found further bifurcations o! famil- 

iar type, by decreasing r.,. Of the two pos- 

sibilities, we have found no further instabil?ty of 

the 2-torus to a higher dtmensional a t t rac to!  b'~t 
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! 

.z, 

o 

o r : ~  

i 

' 90 .~0 - : ' 0  O.~ SO J,~ .~b ,30 ;C 3d d JO 3O od  ~0 JO "O JO ~0 O0 

YR 

Fig. 5, to) Final motion, t ~ ~. 

we have found an approach to 'chaos' by 

'period-doubling' of the torus; specifically, IX[-" 

versus IYI 2 (or Z) phase plots exhibit period- 

doubling limit cycles as r., is reduced at, for 

example, r ,=40 .  This is analogous to the 

period-doubling approach to chaos in the real 

Lorenz equations as r, is reduced from infinity 

(Rcbbins. 1979). Fig. 8 shows an example of a 

stighfly supercritical (rl > r~) chaotic motion (in 
the rotating frame) at values r, = 60, rz = 0.02, 

close to the real Lorenz transition to chaos (at 

r ,  =58, r2 = 0)~ 
Generally speaking, the effect of the corn- 

plexification is to convert oscillatory states ~r~to 

'doubly' oscillatory ones: limit cycles into t~ri, 

fixed points into limit cycles. Thus increasing 

the dimension of the system effectively in- 

creases the dimension of the attractors, and 

there is no particular reason to suppose the rich 

behaviour of the real Lorenz equations is 

otherwise modified, except in this manner: fuller 

numer{cal investigation is necessary for the 

corroboration of this statement. The chaotic 

behaviour in the ~'eai Lorenz model does not, 
however, appear to extend very far into the 

parameter space of the complex Lorenz equa- 
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. I 

c~ 

T 

Fig. 6. x~. y~ and z plols  ve r su s  t ime  fo r  fig. 5c. 
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ol 
o 

YR 

Figure 7. NonpeHodic solution at r~ < r~:  same parameters as fig. 2. 
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E - , I  

I 
! 

" ~ - - ' ~ - . ~  . . . . . . .  • ~ ~ ~ - ~ ' ~  

. . . .  • ,-~ ~ ~ ,  • ~ I . "  ~ ~ ¢  ~ ~ ~ 3~: ~ 
v ~  

Fig. 8. C h a o t i c  m o t i o n  a~ r, - 60.  r ,  : ~).02: o~her p a r a m e t e r s  a s  fig 3. 
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tions, at least when e = 3r:. The general ten- 

dency of complexifying the equations at fixed rt 

is thus to replace chaotic behaviour by motion 

on a torus or a limit cycle. 
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