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Abstract We show that the Fréchet derivative of a matrix function f at A
in the direction E, where A and E are real matrices, can be approximated
by Im f (A + ihE)/h for some suitably small h. This approximation, requiring
a single function evaluation at a complex argument, generalizes the complex
step approximation known in the scalar case. The approximation is proved
to be of second order in h for analytic functions f and also for the matrix
sign function. It is shown that it does not suffer the inherent cancellation
that limits the accuracy of finite difference approximations in floating point
arithmetic. However, cancellation does nevertheless vitiate the approximation
when the underlying method for evaluating f employs complex arithmetic.
The ease of implementation of the approximation, and its superiority over
finite differences, make it attractive when specialized methods for evaluat-
ing the Fréchet derivative are not available, and in particular for condition
number estimation when used in conjunction with a block 1-norm estimation
algorithm.
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1 Introduction

The Fréchet derivative of a matrix function f : C
n×n → C

n×n determines
the sensitivity of f to small perturbations in the input matrix. The Fréchet
derivative of f at A ∈ C

n×n is a linear mapping

C
n×n L f (A)−→ C

n×n

E �−→ L f (A, E)

such that

f (A + E) − f (A) − L f (A, E) = o(‖E‖) (1.1)

for all E ∈ C
n×n. The norm of the Fréchet derivative yields a condition number

of the matrix function f at A [12, Thm. 3.1]:

cond( f, A) := lim
ε→0

sup
‖E‖≤ε‖A‖

‖ f (A + E) − f (A)‖
ε‖ f (A)‖ = ‖L f (A)‖‖A‖

‖ f (A)‖ , (1.2)

where

‖L f (A)‖ := max
‖Z‖=1

‖L f (A, Z )‖ (1.3)

and the norm is any matrix norm. When calculating f (A), it is desirable to be
able to efficiently estimate cond( f, A), and from (1.2) and (1.3) we see that
this will in general require the evaluation of L f (A, Z ) for certain Z . Thus it
is important to be able to compute or estimate the Fréchet derivative reliably
and efficiently. A natural approach is to approximate the Fréchet derivative by
the finite difference

L f (A, E) ≈ f (A + hE) − f (A)

h
, (1.4)

for a suitably chosen h. This approach has the drawback that h needs to be se-
lected to balance truncation errors with errors due to subtractive cancellation
in floating point arithmetic, and as a result the smallest relative error that can
be obtained is of order u1/2, where u is the unit roundoff [12, Sec. 3.4].

In this work we pursue a completely different approach. Like (1.4), it
requires one additional function evaluation, but now at a complex argument:

L f (A, E) ≈ Im
f (A + ihE)

h
, (1.5)
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where i = √−1. This complex step (CS) approximation is known in the scalar
case but has not, to our knowledge, been applied previously to matrix func-
tions. The approximation requires A and E to be real and f to be real-valued
at real arguments. The advantage of (1.5) over (1.4) is that in principle (1.5)
allows h to be chosen as small as necessary to obtain an accurate approximation
to L f (A, E), without cancellation errors contaminating the result in floating
point arithmetic. It also provides an approximation to f (A) from this single
function evaluation. Unlike (1.4), however, it requires the use of complex
arithmetic.

In Section 2 we review the complex step approximation for scalars. We
extend the approximation to the matrix case in Section 3 and show that it
is second order accurate for analytic functions f . The computational cost is
considered in Section 4. In Section 5 we show that the CS approximation is
also second order accurate for the matrix sign function, which is not analytic.
In Section 6 we show that good accuracy can be expected in floating point
arithmetic for sufficiently small h, but that if the method for evaluating f
uses complex arithmetic then catastrophic cancellation is likely to vitiate
the approximation. Finally, numerical experiments are given in Section 7 to
illustrate the advantages of the CS approximation over finite differences, the
role of the underlying method for evaluating f , and the application of the
approximation to condition number estimation.

2 Complex step approximation: scalar case

For an analytic function f : R → R, the use of complex arithmetic for the
numerical approximation of derivatives of f was introduced by Lyness [19]
and Lyness and Moler [20]. The earliest appearance of the CS approximation
itself appears to be in Squire and Trapp [26]. Later uses of the formula appear
in Kelley [15, Sec. 2.5.2] and Cox and Harris [3], while Martins, Sturdza,
and Alonso [22] and Shampine [24] investigate the implementation of the
approximation in high level languages.

The scalar approximation can be derived from the Taylor series expansion,
with x0, h ∈ R,

f (x0 + ih) =
∞∑

k=0

(ih)k f (k)(x0)

k! = f (x0) + ihf ′(x0) − h2 f ′′(x0)

2! + O(h3). (2.1)

Equating real and imaginary parts yields

f (x0) = Re f (x0 + ih) + O(h2), f ′(x0) = Im
f (x0 + ih)

h
+ O(h2). (2.2)

Unlike in the finite difference approximation (1.4), subtractive cancellation
is not intrinsic in the expression Im f (x0 + ih)/h, and this approximation
therefore offers the promise of allowing h to be selected based solely on
the need to make the truncation error sufficiently small. Practical experience
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reported in the papers cited above has indeed demonstrated the ability of (2.2)
to produce accurate approximations, even with h as small as 10−100, which
is the value used in software at the National Physical Laboratory according
to [3].

In the next section we generalize the complex step approximation to
real-valued matrix functions over R

n×n.

3 Complex step approximation: matrix case

Assume that the Fréchet derivative L f (A, E) is defined, a sufficient condition
for which is that f is 2n − 1 times continuously differentiable on an open subset
of R or C containing the spectrum of A [12, Thm. 3.8]. Replacing E by ihE in
(1.1), where E is independent of h, and using the linearity of L f , we obtain

f (A + ihE) − f (A) − ihL f (A, E) = o(h).

Thus if f : R
n×n → R

n×n and A, E ∈ R
n×n then

lim
h→0

Im
f (A + ihE)

h
= L f (A, E),

which justifies the CS approximation (1.5). However, this analysis does not
reveal the rate of convergence of the approximation as h → 0. To determine
the rate we need a more careful analysis with stronger assumptions on f .

Denote by L[ j]
f (A, E) the jth Fréchet derivative of f at A in the direction

E, given by

L[ j]
f (A, E) = d j

dt j
f (A + tE)

∣∣∣
t=0

,

with L[0]
f (A, E) = f (A) and L[1]

f ≡ L f . The next result provides a Taylor
expansion of f in terms of the Fréchet derivatives.

Theorem 1 Let f : C → C have the power series expansion f (x) = ∑∞
k=0 ak xk

with radius of convergence r. Let A, E ∈ C
n×n such that ρ(A + μE) < r, where

μ ∈ C. Then

f (A + μE) =
∞∑

k=0

μk

k! L[k]
f (A, E),

where

L[k]
f (A, E) =

∞∑

j=k

a j L
[k]
x j (A, E).
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The Fréchet derivatives of the monomials satisfy the recurrence

L[k]
x j (A, E) = AL[k]

x j−1(A, E) + kEL[k−1]
x j−1 (A, E). (3.1)

Proof Najfeld and Havel [23, pp. 349–350] show that

(A + μE) j =
j∑

k=0

μk

k! L[k]
x j (A, E)

and that the L[k]
x j satisfy the recurrence (3.1). By the assumption on the spectral

radius, we have

f (A + μE) =
∞∑

j=0

a j(A + μE) j

=
∞∑

j=0

a j

( j∑

k=0

μk

k! L[k]
x j (A, E)

)

=
∞∑

k=0

μk

k!
∞∑

j=k

a jL
[k]
x j (A, E).

By the sum rule for Fréchet derivatives [12, Thm. 3.2], the inner summation in
the last expression is L[k]

f (A, E). �

Replacing μ in Theorem 1 by ih, where h ∈ R, we obtain

f (A + ihE) =
∞∑

k=0

(−1)k

(2k)! h2kL[2k]
f (A, E) + i

∞∑

k=0

(−1)k

(2k + 1)!h2k+1L[2k+1]
f (A, E).

To be able to extract the desired terms from this expansion we need f :
R

n×n → R
n×n and A, E ∈ R

n×n. Then

f (A) = Re f (A + ihE) + O(h2), (3.2a)

L f (A, E) = Im
f (A + ihE)

h
+ O(h2). (3.2b)

Theorem 1 can be used to develop approximations to higher Fréchet
derivatives (cf. [18]), but we will not pursue this here.

The analyticity of f is sufficient to ensure a second order approximation, but
it is not necessary. In Section 5 we consider the matrix sign function, which is
not analytic, and show that the CS approximation error is nevertheless O(h2).
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4 Cost analysis

The CS approximation has the major attraction that it is trivial to implement,
as long as code is available for evaluating f at a complex argument. We now
look at the computational cost, assuming that the cost of evaluating f (A) is
O(n3) flops, where a flop is a real scalar addition or multiplication.

First we note that the cost of multiplying two n × n real matrices is 2n3 flops.
To multiply two n × n complex matrices requires 8n3 flops if complex scalar
multiplications are done in the obvious way. However, by using a formula
for multiplying two complex scalars in 3 real multiplications the cost can be
reduced to 6n3 flops at the cost of weaker rounding error bounds [9], [10,
Chap. 23]. For an algorithm for computing f (A) whose cost is dominated by
level 3 BLAS operations it follows [8], [14] that the cost of computing the CS
approximation to L f (A, E) is 3–4 times that of the cost of computing f (A)

alone, though of course the CS approximation does yield approximations to
both f (A) and L f (A, E).

Next, we compare with another way of computing the Fréchet derivative,
which is from the formula [12, Sec. 3.1]

f
([

A E
0 A

])
=

[
f (A) L f (A, E)

0 f (A)

]
. (4.1)

This formula requires the evaluation of f in real arithmetic at a 2n × 2n matrix,
which in principle is 8 times the cost of evaluating f (A). However, it will
usually be possible to reduce the cost by exploiting the block triangular, block
Toeplitz structure of the argument. Hence this approach may be of similar cost
to the CS approximation. Al-Mohy and Higham [1] note a drawback of (4.1)
connected with the scaling of E. Since L f (A, αE) = αL f (A, E) the norm of
E can be chosen at will, but the choice may affect the accuracy of a particular
algorithm based on (4.1) and it is difficult to know what is the optimal
choice.

Another comparison can be made under the assumption that f is a polyno-
mial, which is relevant since a number of algorithms for evaluating f (A) make
use of polynomial or rational approximations. Let πm be the number of matrix
multiplications required to evaluate f (A) by a particular scheme. Al-Mohy
and Higham [1, Thm. 4.1] show that for a wide class of schemes the extra cost
of computing L f (A, E) via the scheme obtained by differentiating the given
scheme for f (A) is at most 2πm if terms formed during the evaluation of f (A)

are re-used. The CS approximation is therefore likely to be more costly, but it
requires no extra coding effort and is not restricted to polynomials.

5 Sign function

The matrix sign function is an example of a function that is not analytic, so the
analysis in Section 3 showing a second order error for the CS approximation is
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not applicable. We prove in this section that the CS approximation neverthe-
less has an error of second order in h for the sign function.

For A ∈ C
n×n with no eigenvalues on the imaginary axis, sign(A) is the limit

of the Newton iteration

Xk+1 = 1

2

(
Xk + X−1

k

)
, X0 = A. (5.1)

Moreover, the iterates Ek defined by

Ek+1 = 1

2

(
Ek − X−1

k Ek X−1
k

)
, E0 = E (5.2)

converge to Lsign(A, E). Both iterations converge quadratically; see [12, Thms.
5.6, 5.7].

The next theorem uses these iterations to determine the order of the error
of the CS approximation.

Theorem 2 Let A, E ∈ R
n×n and let A have no eigenvalues on the imaginary

axis. In the iteration

Zk+1 = 1

2

(
Zk + Z −1

k

)
, Z0 = A + ihE, h ∈ R (5.3)

the Zk are nonsingular for all h sufficiently small and

Re sign(A + ihE) = lim
k→∞

Re Zk = sign(A) + O(h2),

Im sign(A + ihE) = lim
k→∞

Im
Zk

h
= Lsign(A, E) + O(h2).

Proof Write Zk = Mk + iNk ≡ Re Zk + i Im Zk. It suffices to show that

Mk = Xk + O(h2), Nk = hEk + O(h3), (5.4)

where Xk and Ek satisfy (5.1) and (5.2), which we prove by induction. First, set
k = 1 and assume that ρ(EA−1) < 1/h, which is true for sufficiently small h.
Then we have the expansion

(A + ihE)−1 = A−1
∞∑

j=0

(−ih) j(EA−1) j.

Therefore the first iteration of (5.3) gives

M1 = 1

2

(
A + A−1

) + O(h2), N1 = h
2

(
E − A−1 EA−1

) + O(h3),
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so that (5.4) holds for k = 1. Suppose that (5.4) holds for k. Then we can write
Mk = Xk + h2 Rk, for some matrix Rk ∈ R

n×n. Assuming ρ(Rk X−1
k ) < 1/h2,

which again is true for sufficiently small h, we have

M−1
k = X−1

k

∞∑

j=0

h2 j(−Rk X−1
k ) j = X−1

k + O(h2). (5.5)

Now assume ρ(Nk M−1
k ) < 1, which is true for sufficiently small h since Nk =

O(h). Then, using (5.5) and (Mk + iNk)
−1 = M−1

k

∑∞
j=0(−i) j(Nk M−1

k ) j, we
have

Mk+1 = 1

2

(
Mk + M−1

k + M−1
k

∞∑

j=1

(−1) j (Nk M−1
k

)2 j )

= 1

2

(
Xk + X−1

k

) + O(h2),

Nk+1 = 1

2

(
Nk − M−1

k Nk M−1
k + M−1

k

∞∑

j=1

(−1) j+1
(
Nk M−1

k

)2 j+1 )

= h
2

(
Ek − X−1

k Ek X−1
k

) + O(h3),

which completes the induction. �

Note that another approach to proving Theorem 2 would be to use existing
perturbation theory for the matrix sign function, such as that of Sun [27].
However, the perturbation expansions in [27] make use of the Schur and
Jordan forms and do not readily permit the real and imaginary parts to be
extracted.

The cost of evaluating the Ek in (5.2) is twice the cost of evaluating the
Xk (assuming an LU factorization of Xk is computed for (5.1) and re-used).
The CS approximation provides an approximation to Lsign(A, E) by iterating
(5.1) with a complex starting matrix, so the cost is 3–4 times that for computing
sign(A) alone. Given the ease of implementing (5.2) one would probably not
use the CS approximation with the Newton iteration. However, with other
methods for evaluating sign(A), of which there are many [12, Chap. 5], the
economics may be different.

6 Accuracy

What accuracy can we expect from the CS approximation in floating point
arithmetic? Equivalently, how accurately is the imaginary part of f (A + ihE)

computed when h is small, bearing in mind that the imaginary part is expected
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to be of order h, and hence much smaller than the real part? In order to
obtain an accurate result it is necessary that the information contained in hE is
accurately transmitted through to the imaginary part of f (A + ihE), and this
is most likely when the imaginary part does not undergo large growth and then
reduction (due to subtractive cancellation) during the computation.

It is straightforward to show that the sum and product of two complex
matrices with tiny imaginary part has tiny imaginary part and that the inverse
of a matrix with tiny imaginary part has tiny imaginary part. It follows that
when a polynomial or rational function with real coefficients is evaluated at
a matrix with tiny imaginary part the result has tiny imaginary part. Hence
when we evaluate f (A + ihE) using an algorithm for f based on polynomial
or rational approximations with real coefficients there is no a priori reason to
expect damaging cancellation within the imaginary part. In particular, there
is no a priori lower bound on the accuracy that can be expected, unlike for
the finite difference approximation (1.4), for which such a lower bound is of
order u1/2.

However, numerical instability is possible if the algorithm for f (A) itself
employs complex arithmetic, as we now show. Suppose we compute C =
cos(A) by the simple algorithm [12, Alg 12.7]

X = eiA, (6.1a)

C = (X + X−1)/2. (6.1b)

The CS approximation gives

Lcos(A, E) ≈ Im
cos(A + ihE)

h
= Im

eiA−hE + e−iA+hE

2h
. (6.2)

Making the simplifying assumption that A and E commute, in which case
Lcos(A, E) = −E sin(A) [12, Sec. 12.2], we have

eiA−hE + e−iA+hE = eiAe−hE + e−iAehE

= cos(A)(e−hE + ehE) + i sin(A)(e−hE − ehE),

and the CS approximation reduces to

Lcos(A, E) ≈ sin(A)(e−hE − ehE)

2h
.

Thus −E is being approximated by (e−hE − ehE)/(2h), and the latter expression
suffers massive subtractive cancellation for small h. We illustrate in Fig. 1
with A and E both the scalar 1. These computations, and those in the next
section, were performed in MATLAB R2009a, with unit roundoff u = 2−53 ≈
1.1 × 10−16. Note that the CS approximation deteriorates once h decreases
below 10−5, yielding maximum accuracy of about 10−10. This weakness of
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Fig. 1 Relative errors for approximating Lcos(A, E) for scalars A = E = 1 using the CS approxi-
mation with (6.2) and h = 10−k, k = 0 : 15

the CS approximation for scalar problems is noted by Martins, Sturdza, and
Alonso [21].

The unwanted resonance between complex arithmetic in the underlying
algorithm and the pure imaginary perturbation used by the CS approximation
affects any algorithm based on the Schur form, such as those in [4], [6], [17].
Since B := A + ihE is nonreal, the complex Schur form B = QT Q∗, with Q
unitary and T upper triangular, must be used. In general, Q will have real and
imaginary parts of similar norm (since A may have some nonreal eigenvalues),
and likewise for T. The O(h) imaginary part of f (B) = Qf (T)Q∗ is therefore
the result of massive cancellation, which signals a serious loss of accuracy of
the CS approximation in floating point arithmetic. The first experiment in the
next section illustrates this phenomenon.

7 Numerical experiments

We now give some experiments to illustrate the CS approximation and its
advantage over the finite difference approximation (1.4).

For our first experiment we take A = gallery(’triw’,10), the unit
upper triangular matrix with every superdiagonal element equal to −1, and
a random matrix E = randn(10). The function is f (A) = eA, which we
compute using two MATLAB functions: expm, which implements the scaling
and squaring method [11], and funm, which handles general matrix functions
via the Schur–Parlett method [4] and treats the diagonal Schur form blocks
specially in the case of the exponential.

For h ranging from 10−3 to 10−20, Fig. 2 plots the normwise relative
error ‖Lexp(A, E) − L̂‖1/‖Lexp(A, E)‖1, where L̂ represents the approximate
Fréchet derivative from the finite-difference approximation (1.4) or the CS
approximation (1.5). The “exact” Lexp(A, E) is obtained via the relation (4.1)
evaluated at 100 digit precision using the Symbolic Math Toolbox.

In this example the CS approximation has full accuracy when using expm
with h ≤ 10−8, reflecting its O(h2) error (see (3.2b)). By contrast, the finite
difference approximation returns its best result at around h = 10−8 with error
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Fig. 2 Relative errors for approximating Lexp(A, E) using the CS approximation and the finite
difference (FD) approximation (1.4), for h = 10−k, k = 3 : 20

of O(h), and then diverges as h decreases, just as the theory on the choice of
h suggests [12, Sec. 3.4]. Equipping the CS approximation with funm leads
to poor results, due to the complex arithmetic inherent in the Schur form
(see Section 6), though the results are superior to those obtained with finite
differences. Note that the fact that A has real eigenvalues does not help: as a
result of A being highly nonnormal (indeed defective, with a single Jordan
block), the perturbed matrix B = A + ihE has eigenvalues with imaginary
parts of order 10−2 for all the chosen h!

Interestingly, the error for the CS approximation with expm remains
roughly constant at around 10−16 for h decreasing all the way down to 10−292,
at which point it starts to increase, reaching an error of 10−1 by the time h
underflows to zero at around 10−324.

The performance of the CS approximation is of course method-dependent.
Figure 3 repeats the previous experiment except that we set a15 = 106 and
compare expm with expm2, the latter function using an improved scaling and
squaring algorithm of Al-Mohy and Higham [2] designed to avoid overscaling.
The large off-diagonal element of A causes expm to overscale in its scaling
phase, that is, to reduce ‖A‖ much further than necessary in order to achieve
an accurate result: the relative error of the computed exponentials is of order
10−11 for expm and 10−16 for expm2. We see from Fig. 3 that there is a
corresponding difference in the accuracy of the Fréchet derivative approxi-
mations. But the superiority of the CS approximation over the finite difference
approximation is evident for both expm and expm2.
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Fig. 3 Relative errors for approximating Lexp(A, E) using the CS approximation and the finite
difference (FD) approximation (1.4), for h = 10−k/‖A‖1, k = 2 : 21

Our next experiment involves a different function: the principal matrix
square root, A1/2. The Fréchet derivative Lsqrt(A, E) is the solution L of
LX + XL = E, where X = A1/2 [12, Sec. 6.1]. The product form of the
Denman–Beavers iteration,

Mk+1 = 1

2

(
I + Mk + M−1

k

2

)
, M0 = A, (7.1)

Xk+1 = 1

2
Xk(I + M−1

k ), X0 = A, (7.2)

is a variant of the Newton iteration, and Mk → I and Xk → A1/2

quadratically as k → ∞ [12, Sec. 6.3]. With A the 8 × 8 Frank matrix
(gallery(’frank’,8)), which has positive real eigenvalues, and E =
randn(8), we apply the CS approximation using this iteration as the means
for evaluating (A + ihE)1/2. Figure 4 shows the results, along with the er-
rors from finite differencing. Again we see second order convergence of
the CS approximations, which follows from the analyticity of the square
root. Note, however, that the minimal relative error is of order 104u. Since
‖Lsqrt(A, E)‖1 ≈ 9 × 103 this is consistent with the maxim that the condition
number of the condition number is the condition number [5].

Our final experiment illustrates the use of the CS approximation in condi-
tion estimation. As (1.2) shows, to estimate cond( f, A) we need to estimate
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Fig. 4 Relative errors for approximating Lsqrt(A, E) using the CS approximation and the finite
difference (FD) approximation (1.4) with the product form of the Denman–Beavers iteration, for
h = 10−k/‖A‖1, k = 1 : 15

‖L f (A)‖, and this can be done by applying a matrix norm estimator to the
Kronecker matrix form K f (A) ∈ C

n2×n2
of L f (A), defined by vec(L f (A, E))

= K f (A) vec(E), where vec is the operator that stacks the columns of a matrix
into one long vector [12, Chap. 3]. We will use the block 1-norm estimation
algorithm of Higham and Tisseur [13], which requires the ability to form matrix
products K f y ≡ vec(L f (A, E) and KT

f y ≡ vec(L f (A, ET)T), where vec(E) =
y (where we are assuming A ∈ R

n×n and f : R
n×n → R

n×n). We use a modified
version of the function funm_condest1 from the Matrix Function Toolbox
[7], which interfaces to the MATLAB function normest1 that implements
the block 1-norm estimation algorithm. With f the exponential, evaluated by
expm, we approximate the Fréchet derivative using three different approaches:
the CS approximation, finite differences, and the method from [1], which is a
specialized method based on scaling and squaring and Padé approximation.
We take a collection of 28 real matrices from the literature on methods for
eA, which are mostly ill conditioned or badly scaled and are all of dimension
10 or less. For the finite difference approximation (1.4) we take the value
h = (u‖ f (A)‖1)

1/2/‖E‖1, which is optimal in the sense of balancing truncation
error and rounding error bounds [12, Sec. 3.4]. For the CS approximation
we take h = tol‖A‖1/‖E‖1 with tol = u2; we found that for tol = u1/2 and
tol = u the estimates were sometimes very poor on the most badly scaled prob-
lems. The exact ‖K f (A)‖1 is obtained by explicitly computing K f (A) using
expm_cond from the Matrix Function Toolbox [7]. The ratios of the estimate
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Fig. 5 Ratios of estimate of ‖K f (A)‖1 divided by true value for f (A) = eA, computed using a
block 1-norm estimator, where the Fréchet derivative is approximated by the CS approximation,
the finite difference (FD) approximation (1.4), and a scaling and squaring method

divided by ‖K f (A)‖1 are shown in Fig. 5. All should be at most 1, so a value
larger than 1 is a sign of inaccurate Fréchet derivative approximations. The
results show that the condition estimates obtained with the CS approximation
are significantly more reliable than those from finite differences (one estimate
of the wrong order of magnitude as opposed to four), but that neither is as
reliable as when the Fréchet derivative is computed by a method specialized to
the exponential.

8 Concluding remarks

The CS approximation provides an attractive way to approximate Fréchet
derivatives L f when specialized methods for f but not L f are available.
This situation pertains, for example, to the functions ψk(z) = ∑∞

j=0 z j/( j + k)!,
k ≥ 0 [12, Sec. 10.7.4], related to the matrix exponential, for which efficient
numerical methods are available [16], [25]. The CS approximation is trivial to
implement assuming the availability of complex arithmetic. In floating point
arithmetic its accuracy is not limited by the cancellation inherent in finite
difference approximations, and indeed the accuracy of the computed approx-
imation is in practice remarkably insensitive to the choice of the parameter h,
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as long as it is chosen small enough: typically h ≤ u1/2‖A‖/‖E‖ suffices thanks
to the O(h2) approximation error.

The main weakness of the CS approximation is that it is prone to damaging
cancellation when the underlying method for evaluating f employs complex
arithmetic. But for many algorithms, such as those based on real polynomial
and rational approximations or matrix iterations, this is not a concern.

The CS approximation is particularly attractive for use within a general
purpose matrix function condition estimator. We intend to update the function
funm_condest1 in the Matrix Function Toolbox [7] to augment the current
finite difference approximation with the CS approximation, which will be the
preferred option when it is applicable.
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