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Abstract

Personalised dietary modulation of the gut microbiota may be key to disease management. Current investigations

provide a broad understanding of the impact of diet on the composition and activity of the gut microbiota, yet

detailed knowledge in applying diet as an actionable tool remains limited. Further to the relative novelty of the field,

approaches are yet to be standardised and extremely heterogeneous research outcomes have ensued. This may be

related to confounders associated with complexities in capturing an accurate representation of both diet and the gut

microbiota. This review discusses the intricacies and current methodologies of diet-microbial relations, the implications

and limitations of these investigative approaches, and future considerations that may assist in accelerating applications.

New investigations should consider improved collection of dietary data, further characterisation of mechanistic

interactions, and an increased focus on -omic technologies such as metabolomics to describe the bacterial and

metabolic activity of food degradation, together with its crosstalk with the host. Furthermore, clinical evidence with

health outcomes is required before therapeutic dietary strategies for microbial amelioration can be made. The potential

to reach detailed understanding of diet-microbiota relations may depend on re-evaluation, progression, and unification

of research methodologies, which consider the complexities of these interactions.

Keywords: Personalised nutrition, Gut microbiome, Diet, Research methods

Background
The field of microbiome research has progressed rapidly

in recent years, driven by technological advances and re-

duced costs of analysis [1]. Significant insights have been

made into the nature of microbial communities and

their impact on host health [1]. However, there are in-

herent challenges and complexities in defining the

boundary of a ‘healthy’ microbiome landscape [2]. Mi-

crobial signatures are highly individual and multi-

dimensional [3] with multiple landscapes likely to be

considered healthful depending on the context [4]. In a

study by Ghosh et al., researchers investigated the

impact of a 1-year Mediterranean diet intervention on

the gut microbiota and frailty [5]. The authors remind

us of the Anna Karenina principle which posits that

healthy individuals typically display microbiomes more

similar to one another, while those of unhealthy individ-

uals are each aberrant in their own way [5, 6]. The in-

volvement of the microbiome in an extensive number of

diseases suggests the need for its incorporation into con-

temporary medicine for an improved understanding of

disease pathogenesis and pathology [7]. A clear link ex-

ists between loss of keystone taxa that drive microbiome

structure and function (such as Faecalibacterium praus-

nitzii [8]), and various disease states [9]. However, one

of the biggest challenges in microbiome research is dis-

cerning association from causation [10]. To date, there is

limited evidence to support causation in humans, pre-

dominantly due to limitations in accurately manipulating
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the human microbiome [11]. Methods such as faecal

microbiome transplants (FMT) have provided evidence

that the microbiome alone can causally alter the human

phenotype [12]. The ability of FMT from lean donors to

reorientate host glucose metabolism is influenced by the

recipient’s baseline microbial profile [13]. This could be

explained, in part, by species from both recipient and

donors remaining durably in the gut post-FMT, demon-

strating the difficulties in precisely manipulating the

composition of the microbiome [14].

Besides invasive solutions, therapeutic modulation of

the gut microbiota could be achieved through diet [15].

Human and animal models have highlighted the influence

of diet in shaping the gut microbial community through

the provision of substrates for the metabolic requirements

of individual or subsets of microbial taxa [16], in addition

to modulating host gut microbiota crosstalk [17]. Al-

though diet provides one of the most promising means of

selectively altering the microbiome [18], current descrip-

tions of human dietary habits and food compositions pro-

vide a simplistic insight into a complex world that is still

largely unmapped [19]. Homogenous outcomes within the

nutrition field are stymied by several factors. An accurate

description of dietary intake is fundamental to health and

nutrition research, yet capturing dietary exposure is chal-

lenging [20]. As per the microbiome, one’s diet is often

composed of a multitude of components that are poorly

characterised individually and rarely investigated in com-

bination or as a food matrix structure [15, 21]. While

current investigations into the diet-microbial relationship

have provided a broad understanding of some of these re-

lations [22], further progress has been restricted.

We propose this review as a readout of the current flaws

in diet-microbiome studies while proposing points of im-

provements that should enable the furthering of current

knowledge in this field. Together, this should pave the

way towards a global improvement of population health.

Firstly, we describe the gut microbiome as a complex eco-

system with multiple interactions, secondly, we discuss

the intricacies of dietary investigations, and thirdly, we

consider the importance of combining these two fields

when researching diet-microbe relations. For the scope of

this review, we refer to the microbiome as an ecosystem

which incorporates all microorganisms together with the

metabolites and other components of the gut environment

as defined by Marchesi and Ravel [23]. However, the pre-

dominant focus of the research within this field has been

towards investigating bacteria and their interactions.

The gut microbiome a complex ecosystem
Multiple intricate interactions

While phyla and functional pathways are widespread

within the population (encountered in over 50% of indi-

viduals), species tend to be more subject-specific with,

on average, two unrelated individuals sharing approxi-

mately 43% of species [24–26]. Functional equivalence

can be explained by the notion of niches with multiple

species interacting in a competitive or synergistic nature

[27]. Hence, past work has shown that manipulation of a

single species can prove difficult [25], while the system-

wide influence of the microbial community can be

achieved [28, 29]. A number of studies reported the in-

volvement of microbes in an orchestrated maintenance

of host homeostasis. Microbial networks of species and

metabolic products, for example, act on both microbes

and host cell gene expression selectively dictating cellu-

lar productivity [7], emphasising the urgent development

of tools that can capture the full complexity of these in-

teractions [30, 31].

Microbial species observed within the modern gut

may have evolved through ecological adaptations of

host-microbe interactions to ensure microbial stability

in response to periods of limited nutritional availabil-

ity [7]. Even so, the gut microbiome is not a static

community. The complexity of studying the microbial

ecosystem is deepened by its temporal dynamics,

shifting diurnally, seasonally, and in constant flux [32,

33] requiring longitudinal investigations [34]. The

high rate of strain-level turnover may allow for mi-

crobial evolution to impact certain species’ long-term

persistence and colonisation in the gut [35]. In vitro

and model organisms have assisted our current un-

derstanding of these dynamics, however through the

lens of a reduced or simplified microbial ecosystem

[36]. Mathematical models should be developed com-

bining large human datasets together with in vitro

and in vivo modelling in order to incorporate these

dynamics (Fig. 1) [41]. Likewise, further emphasis

must be made to interpret temporal dynamics

through longitudinal sampling, with a limited number

of longitudinal microbiome studies to date [27].

Mechanistic studies are difficult to implement in

humans due to immense genetic and lifestyle heterogen-

eity together with ethical limitations [42]. Consequently,

the functional contribution of the gut microbiome to hu-

man physiology remains largely unexplored [43].

Current knowledge stems from animal models, in vitro

and in vivo assays, and is complemented by population-

based studies [42]. In this way, Suez et al. displayed that

non-caloric artificial sweeteners (NAS) induced glucose

intolerance in both mice and humans via modulation of

the gut microbial community [44]. Functional analysis of

the saccharin-associated metagenome suggests a number

of enriched pathways in heterocyclic compound metab-

olism, with a proliferation of certain taxa possibly linked

with their capacity to harness saccharin as an energy

source [44]. Several studies have explored mechanistic

modelling directly in humans. Sanna et al. used
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bidirectional Mendelian randomisation (MR) analyses to

assess causality in a cohort of 1539 individuals from the

LifeLines cohort [45]. An increase in microbial butyrate

production driven by host genetics was reported to be

associated with an ameliorated insulin response to an

oral glucose-tolerance challenge. Likewise, abnormal

production or absorption of propionate was shown to be

causally related with an increased risk of type II diabetes

[45]. Characterising the functional differences of the mi-

crobial taxa is fundamental in understanding their im-

pact on human physiology [43]. Functional -omics and

FMT [46] have demonstrated their potential in assisting

in the identification of functional gut microbial traits

[43], in conjunction with other more traditional mea-

sures. Detailed theoretical simulations to characterise

the functional difference of specific microbiological eco-

systems are also thought to be feasible, such as Larsen

and Claassen’s work which support the mechanistic link

between alpha-diversity and health [47].

The spatial organisation of microbial communities is

critical to understanding microbial signalling and meta-

bolic interactions at a micron-scale but is yet relatively

uncharted territory (Fig. 1) [48, 49]. Within this bio-

geography, microbial taxa tend to be localised according

to their functional niche, for example, anaerobic taxa

typically residing to the interior and consumers and pro-

ducers of a metabolite found to be within equidistance

of each other [50, 51]. The availability of relevant sub-

strates within the gut is also expected to drive this

spatial organisation. While multi-omic techniques such

as metagenomics, metabolomics, transcriptomics, and

proteomics provide key tools in investigating the intri-

cate crosstalk within the microbial community and be-

tween microbes and host, these techniques tend to be

Fig. 1 Understanding interactions between microbes, the microbiome, and the host both locally and systemically to enable its manipulation in

order to improve human health. Suggested approaches for the characterisation of (1) intra-microbe interactions include in vitro mono- and co-

culture systems; (2) inter-microbe interactions include in vitro co-culture and mass culture systems alongside quorum sensors to detect

autoinducers that orchestrate collective behaviours [36, 37]; (3) communities include in vitro synthetic continuous communities with novel

microarray technologies [38]; (4) spatial organisation include confocal microscopy integrated with multi-dimension algorithms alongside multi-

omic technologies [39]; and (5) local host-microbe interactions include in vivo animal models accompanied by metabolomics providing a direct

functional output of the metabolite profile, a result of local-host-microbial interactions [40], whereby the simultaneous profiling and integration of

various -omic technologies is necessary to then identify (6) interactions at the molecular level systemically [40]. Image created with Biorender.com
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applied to homogenised samples [49] with spatial het-

erogeneity typically neglected. The use of confocal mi-

croscopy on biopsy samples enables the identification of

single cells, a specific challenge in the dense cellular en-

vironment within the lower intestine [49]. Several tools

have been developed to facilitate semi-automated cur-

ation of cell boundaries, which can be challenging due

to close bacterial contact, or pixel-based quantitative

measures for large-scale measurements [49]. Integration

of spatial organisation within multi-dimensional algo-

rithms, in conjunction with -omic technology, may assist

in advancing the study of the organisation and dynamics

of the microbial community and its relationship with

host health. Retention of the structure by dissecting and

spreading out the sample on a slide may aid in revealing

the spatial organisation. With this method, investigations

of the oral microbiome using dental plaque allowed for

characterisation of the microbiota as highly structured

with multi-genus consortia [50]. The gold standard ap-

proach is whole-stool homogenised sampling, although

implementation of this can be impractical. Whether to

collect complete or partial stool samples or biopsy speci-

mens should be considered by the investigators and is

dependent on feasibility, costs, patient cooperation, and

downstream analysis [52].

Finally, the typical faecal sample represents the final

point of a developing and maturing ecosystem through

the gastrointestinal tract [53]. With varying gut transit

times between individuals, the collection of dietary data

and its corresponding stool sample can be fraught with

inconsistencies [54]. Faecal consistency, a proxy for tran-

sit time, has been identified as a major co-variate of mi-

crobial structure. This suggests that transit time data

should be included in future microbiome investigations

and considered when capturing dietary information [55].

While there are several validated measures of transit

time, including scintigraphy and radiopaque markers,

many are expensive with high participant burden [56].

Other cheaper scalable measures include the blue dye

method, faecal consistency, and frequency [57].

Optimising microbial data collection, storage, and

analysis

Microbiome data processing pipeline, collection, storage,

and analysis of samples are particularly vulnerable to sig-

nificant error [54, 58] that contribute to high variability

in research outcomes [59]. Collection methods include

variable storage temperatures, freeze-thaw cycles, lysis

conditions, and physical perturbations [54]. While a de-

tailed approach is required, protocols that are perceived

as too arduous can induce attrition bias in and of them-

selves [54]. Numerous techniques and differing protocols

have been suggested with a verified gold standard ap-

proach yet to be established [52].

Traditional culture-based technologies that have been

used to investigate the microbial ecosystem have re-

cently regained attention with the development of new

methods enabling the culturing of an extended number

of bacteria from the human gut. Though bacterial taxa

including Ruminococcaceae and Faecalibacterium tend

to be overrepresented by these methods [60]. Besides,

only 50–60% of bacterial species present in the human

gut have been observed to produce spores resistance to

multiple environmental challenges [60], thereby facilitat-

ing transmission from host-to-host [61], consequently

limiting the scope for FMT studies. While this is an ex-

pensive, cumbersome approach with clear methodo-

logical limitations, the majority of current knowledge

within microbiome research originates from culture-

based studies and has been informative in steering future

directions with more progressive techniques [62].

Development of new methodologies should assist in

addressing sample processing bias. For example, whole

shotgun metagenomic sequencing has allowed investiga-

tors to bypass the PCR amplification used within 16s

rRNA sequencing related to an overestimation of certain

taxa [63]. Outside of the wet lab, a wide variety of bio-

informatics tools can be used to classify microbial taxa

from sequencing data [64]. A number of bioinformatic

tools are publicly available for quality control, sequence

assembly, operational taxonomic units, functional profil-

ing, and prediction and to determine diversity evenness

and richness [65]. Resources such as PICRUSt use evolu-

tionary modelling to predict metagenomes from 16S

data and a reference genome database [66] and have

shown correlations between inferred and metagenomi-

cally measured content of close to 0.9 [66]. Platforms

such as MGnify, a free-to-use platform for the assembly,

analysis and archiving of microbial data have allowed for

publicly available analysed datasets [67]; however, exten-

sive action is required to populate these platforms, and

differences between pipelines can also lead to variations

in outcomes.

Improved accuracy and throughput of DNA sequen-

cing techniques, together with multi-omic analysis and

mechanistic experiments in animal models, increased

our understanding on the structure and function of the

microbiome in health and disease [42]. Several method-

ologies are required to further characterise how micro-

bial functionality may relate to health and disease [68].

These include but are not limited to (i) the development

and application of molecular and cellular high-

throughput measurements; (ii) experimental models and

human studies of direct molecular effects [43], for ex-

ample, the use of germ-free mice can provide insights

into disease causality [69]; and (iii) the incorporation of

transcriptomics and epigenetic data into the gut metage-

nomic profile. These allow us to understand how a shift
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in microbiome composition can modify pathways in-

volved in disease pathogenesis. For instance, microbiota-

dependent histone modification has emerged as a mo-

lecular mechanism involved in tumour suppression, al-

though findings are currently non-conclusive [34]. These

steps will facilitate research in shifting away from infer-

ences and towards a more causative understanding of

the relationship between the microbiome and the patho-

genesis of disease states.

Capturing dietary diversity and food interactions
Food is rarely consumed on its own and contains

numerous compounds

The complexity of the human gut microbiome is largely

mirrored by that of diet [4]. While we have a broad un-

derstanding of the impact of diet on the gut microbiota,

formulating meaningful targeted dietary strategies re-

mains a key challenge [70]. Foods are rarely consumed

alone, and the number of available combinations is in-

calculable, although some may be more recurrent than

others [19]. Diet is a highly individualised, multifaceted

and changing measure, yet specifically linked to the geo-

graphical and cultural context, restraining research gen-

eralisation [71, 72]. Variable nutrition content within the

same food item related to climate, soil type, and season

also contribute confounding factors and limitations [73,

74]. Food composition values within food composition

databases are typically obtained from laboratory ana-

lyses; however, due to the high procedural costs, many

values are estimated based on conversion factors or as a

ratio of similar food types [75]. There is limited potential

to consider the biochemical digestibility, absorption and

subsequent bioavailability of substrates for microbial

communities as a time-dependent process and one

which is highly variable between individuals [76]. No

method of collecting dietary data is totally devoid of

error, and the efficacy of each is dependent on the sce-

nario. The guidance of research dietitians in diet investi-

gations is strongly recommended, with inconsistent

findings as a result of suboptimal use of dietary assess-

ments. While numerous significant or strong observa-

tions have been determined by epidemiological studies,

these have not always been supported by the outcomes

of randomised controlled trials [77]. Failure to confirm a

dietary effect may be due to a magnitude of cumulative

biases [78], in conjunction with a small effect size,

amongst others, rather than a lack of validity.

While a shift towards bigger datasets is undoubtedly

required, this cannot be considered a ‘catch-all’ solution.

With dietary bioactive compounds acting synergistically,

and present within a multitude of food sources, almost

all nutritional variables correlate between each other and

health outcomes, particularly evident in large datasets

[79]. Other factors such as eating behaviours, eating

times, nutrient provenance, habitual diet, and other so-

cial and behavioural factors are not currently addressed

within the majority of diet-microbiome investigations,

yet all play a role in mediating host health [15, 80]. A

move from simplistic reductionist strategies towards

multi-faceted approaches is required.

Advancing nutritional research techniques has not

progressed at the same pace as the rapid development of

microbial investigations in the last decade. To improve

understanding of diet-microbial relations, drastic pro-

gress is required to further our ability to characterise

diet beyond the established macro and micronutrients.

Emphasis on the importance of accurate dietary data

methodologies and application of techniques typically

applied within other scientific research fields, such as

machine learning, may assist. While the nutritional com-

munity includes outstanding scientists, a large number

of dietary research are undertaken by investigators in

other fields, without the input of dietitians, nutritionists,

or scientists trained in nutritional epidemiology. This

may limit the quality of dietary data collection, process-

ing, analysis, and reporting. For diet-microbial investiga-

tions, the involvement of a trained nutrition research

professional should undoubtedly improve research out-

comes and aid in the elucidation of some of the intrica-

cies within these relations.

Dietary data collection, processing, and analysis for

microbiome studies

Study design

In designing study protocols for diet-microbiome inves-

tigations, collaborations between dietitians and/or nutri-

tionists and microbiologists, epidemiologists, and

biostatisticians are essential in order to capture a broad

spectrum of accurate data. Establishing the cause and ef-

fect of diet has been acknowledged as challenging [81].

Nutritional epidemiology typically identifies dietary com-

ponents that modify health risk, which can then be

tested within a clinical trial [82]. Controlled feeding

studies are considered to be robust in determining

cause-and-effect relationships between diet and physio-

logical health outcomes, as they facilitate deep pheno-

typical analysis [81]. Nevertheless, only a small fraction

of studies are of an experimental study design within the

diet-microbial field. Interventions investigating diet and

health require a large amount of participant burden,

substantial time and financial costs, and a high level of

participant commitment [83]. Habitual diet is acknowl-

edged to play a strong role in shaping the microbial

ecology through the daily provision of substrates [15].

The collection of habitual dietary data may be essential

regardless of the investigative format and should be in-

corporated into experimental study designs (Fig. 2). Pre-

vious work suggested that gut microbial communities
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can be clustered into typical ‘enterotypes’, defined as

densely populated multi-dimensional areas in the gut

microbial community. These ‘enterotypes’ could be used

as a way to stratify samples to reduce complexity [84]

and previously have been linked to cardiometabolic risk

[85], and a differential response to T2D treatment [86].

Microbial and metabolic phenotypes exhibit enterotype-

specific links, emphasising the importance of enterotype

stratification in investigating metabolic responses to diet

[87]. Multi-centre studies allow for the investigation of

enterotypes in wider population groups. These acknow-

ledge the influence of geographical, ethnic, and cultural

influences on the microbiome and diet amongst others.

Investigations of diet-microbe relations, particularly

multi-centre randomised control trials, that stratify ac-

cording to enterotype profile and account for baseline

habitual diet, with longitudinal sampling and health

measures, may lead to increased homogeneity of out-

comes. In combination, these suggestions would

undoubtably assist in promoting general, and

individualised or enterotype-based, diet-microbe thera-

peutic recommendations for the prevention or amelior-

ation of relevant disease states (Fig. 2).

Measurement

Investigators of diet-microbiome relations often rely on

food frequency questionnaires and self-reported food

diaries [88]. Yet, multiple weighed 24-h dietary recalls,

involving a retrospective assessment held by a trained

nutrition professional or dietitian, are generally acknowl-

edged to provide the highest accuracy in capturing diet-

ary intake [72]. Resources such as the DIETary

Assessment Tools NETwork (DIET@NET), who devel-

oped the Nutritools website [89], facilitate researchers’

awareness of the strengths and weaknesses of dietary as-

sessment methods [90, 91], summarised in Table 1. High

participant burden and costs, such as interview time and

data entry, limit the utility of dietary recalls for large co-

horts [72], though recent progress in technological appli-

cations, such as web-, app-, and computer-based 24-h

Fig. 2 Current approaches vs. ideal approaches (image modified from Leeming et al. [15]). Current microbiome-diet-host approaches carry a

number of caveats which may contribute to highly heterogeneous responses, such as the individualised microbiome [15]. A new ideal approach

that may allow for further elucidation of diet-microbial-host relations includes stratification by microbial signature, collection of habitual diet data,

longitudinal sampling and big data, machine learning, and AI approaches in order to enhance the predictability of outcomes in response to the

dietary intervention. Image created with Biorender.com
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Table 1 Advantages and disadvantage of dietary assessment methods

Dietary assessment tool Strengths Weaknesses

Retrospective

Dietary recalls—short-term method, where
foods and drinks consumed are recalled.

- Self-reported manually or electronically.
- Can be interview led, face-to-face, by phone,
or online.

- Typically, recall past 24 h but can be employed
to recall longer durations/instances.

- Multiple 24-h recalls can estimate habitual
intakes.

- Facilitates collection of extra information (meal
timing, frequency, and location).

- Flexibility of collected data is applicable to
diverse research questions and analytical
methods.

- Limited literacy skills and cultural differences
can be overcome using an interviewer.

- Moderate participant burden and high
compliance rates.

- A skilled interviewer using multi-pass methods
can prompt information, increasing accuracy.

- Habitual intake can change during the recall
period. Overcome if participants are not
forewarned.

- Limited accuracy when recalling distant
periods.

- Unsuitable for subjects with memory
disorders or elderly.

- Items often omitted and incorrect items can
be recalled.

- One 24-h recall has limited accuracy, typic-
ally underestimating intake and overlooks
day-to-day variation.

- Moderate-to-high burden when analysing,
requiring standardised protocols.

- Expensive to employ face-to-face interviews
in studies with large samples.

- Reliance on subjects’ ability to remember
portion size.

Food frequency questionnaire—retrospective
methods recording frequencies of common
foods over a period of time (weeks, months,
years). Can be qualitative (frequency only), semi-
qualitative (estimated portion size), or quantita-
tive (portion size queried).

- Self-reported manually or electronically or
interviewer led.

- Useful for estimating long-term intakes
retrospectively.

- Low cost and participant burden, higher
completion rate, applicable to large population
studies.

- Comprehensive questionnaires can estimate
total nutrient intake if the portion size is
prompted.

- Can utilise short questionnaires specific to
foods or nutrients pertinent to the research
question.

- Analysis is typically less burdensome on
researchers.

- Arduous for participants if > 100 food items
are queried.

- Limits comparisons across cultures/countries
unless comparable diets.

- Typically, shorter questionnaires have less
reliability and accuracy of intake.

- Relies on participants’ memory, literacy, and
numeracy skills. Longer periods of time
reduces the accuracy of intakes.

- Requires a proxy for accurate reporting in
children.

- Prone to misreporting, particularly with
longer questionnaires.

- Finite list of items included in the
questionnaire.

- Expensive software required to convert
frequencies to nutrients.

Prospective

Food diaries—prospective methods where
details of everything consumed is logged over
several days. Portions can be either estimated by
the subject or via photographical evidence or
weighed by the subject or research assistant at
the time of consumption.

- Provides detailed depiction of foods and drinks
consumed, including portions.

- Generates good estimates of short-term dietary
intake, if conducted thoroughly.

- Facilitates collection of contextual data (meal
timing, location, satiety levels).

- Not influenced by subjects’ memory if
recorded prospectively.

- Weighed provides more accurate quantitative
intake, can also include ingredients and food
waste.

- Can be conducted via digitally or manually.
- Prompts can promote the inclusion of specific
foods, nutrients or occasions, pertinent to the
research question and limit misreporting.

- Reasonably cost-effective.
- Accuracy increases with standardised protocols
and analysis.

- Not applicable to retrospective studies.
- High participant burden, particularly over
longer durations, adding to the high
participant burden of microbiome research.

- Costly in time and resources for coding and
analysis.

- Compliance rate reduces as the duration of
recording increases.

- Requires sufficient literacy and numeracy
skills of subject/proxy.

- Heavy reliance on subjects’ perception of
portions (can be improved with
photographs).

- Relies on trust that the diary is complete at
the time of consumption and not as a
recall.

Dietary checklist—prospective short-term
method where specified foodstuffs are ticked
from a checklist over a number of days. Can in-
clude frequencies or portion sizes. Typically used
as a screening tool. Shares many strengths and
weaknesses of FFQs.

- Useful for estimating dietary patterns over
short periods.

- Low cost.
- Low participant and researcher burden.
- Relatively simple coding.

- Generally, very short, cannot determine
total intakes. This is of concern for microbial
research as determination of effects are
limited.

- Cross-cultural/cross-country comparisons are
limited unless diets are comparable.

- Restricted to items that are listed in the
instrument.
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dietary recall tools, may mitigate some of these limita-

tions [93]. A minimum of four to eight repeated 24-h

dietary recalls have been previously recommended to ac-

curately characterise habitual dietary intake [94, 95].

Typically, food frequency questionnaires (FFQs) are

employed in nutrition research for large population

studies as a cost-effective tool for assessing habitual diet

[88].

Bias, error, and further limitations

Besides collection methodology, the majority of nutrition

research investigates diet as a limited series of macro

and micronutrients [96] covered by food composition

databases [19]. Dietary mediators of gut microbial action

may not be described, overlooking the impact of > 26,

000 biochemicals encapsulated within the food matrix,

as well as the production, preparation, and consumption

of foods with the potential passage of environmental and

food-borne microbial communities [16, 19]. Zhang and

Li recently demonstrated that consuming cooked foods

drastically reduced microbial diversity in comparison

with consuming non-thermally processed foods in an

animal model [97]. Moving towards detailed descriptions

of foods is required, including food processing, cooking

methods, and mealtime [76, 98] together with rhythmi-

city of nutritional responses of nutrient sensing and cel-

lular decision-making [71]. Certain biochemicals have

been observed to mitigate or exacerbate the health ef-

fects of others present in other foods [19]. For instance,

trimethylamine N-oxide (TMAO), a product of tri-

methylamine (TMA) transformation by the liver, has

been extensively associated with the negative health

effects linked to red meat consumption [99]. Yet, allicin, a

biochemical in garlic, blocks the microbial generation of

TMA in the gut, preventing the potential adverse effects

of TMAO [19]. Many other bioactive compounds found

in food are separately documented elsewhere within the

literature; however, extensive systematic collaboration is

required for a unified database. Barabasi et al. displayed

that an advanced library for garlic and cocoa can be devel-

oped by integrating machine learning into study searches

for aggregation despite numerous diverse sources [19,

100]. Future efforts could utilise this technology to effi-

ciently analyse large datasets to develop global databases

for the benefit of researchers and institutes in the food do-

main [101]. For example, the FiberTAG project is tagging

fibre types, including soluble and insoluble dietary fibre

and prebiotic oligosaccharides, by measuring biomarkers

related to the gut microbiota in order to aid progression

in future diet-microbiome research [102].

Although epidemiological research has succeeded in

identifying a link between the gut microbiome and nutri-

ents derived from food composition databases [103], the

association with specific food sources remains underex-

plored. Johnson et al. recently highlighted that measur-

ing food intakes may provide increased insight into day-

to-day variations in microbiota than a traditional nutri-

ent model [55]. For example, red wine has been shown

to be associated with increased microbial alpha-diversity

that was not observed with other alcohols hypothesised

to be related to the high polyphenol content of red wine

[104]. However, the investigators were unable to confirm

due to the restricted descriptions of bioactive com-

pounds available.

Table 1 Advantages and disadvantage of dietary assessment methods (Continued)

Dietary assessment tool Strengths Weaknesses

Retrospective and prospective

Diet histories—combination of multiple
methods, typically 24-h recalls, food frequency
questionnaires, and food diaries. More applicable
in clinical settings by experienced dieticians to
generate an in-depth analysis at an individual
level.

- Long periods > 1month can determine
habitual intake.

- Combinations of methods is ideally suited to
capture accurate dietary intake during a period
of interest surrounding faecal matter collection.

- Facilitates assessment of meal patterns and
food preparation.

- Typically uses automated tools that have been
adapted for self-administration.

- No standardised protocols available.
- Meal based approaches is not suitable for
individuals with irregular eating patterns.

- High participant and researcher burden.
- Requires complex analytical methods.
- Expensive, as requires experienced
interviewer and researcher to code data.

Novel technologies—collect and process
dietary data using wearable hardware (such as
sensors) and software (such as web-based pro-
grammes and mobile apps based on traditional
dietary assessment tools). Many have close
agreement to traditional methods, yet notice-
able differences persist when comparing against
the gold standard, doubly labelled water tech-
niques [92].

- Facilitates real-time data entry and results irre-
spective of location.

- Enhanced portion size quantitation and food
waste estimating using digitally captured
photos.

- Reduces participant burden and increases
motivation (dependent on participants’
technological ability).

- Facilitates easier prompting to reduce mis-
recording.

- Automation of web-based recording reduces
the burden on researchers and interviewers.

- Due to novelty, no validation performed to
determine the quality of the technology.

- Prone to similar measurement errors as
traditional assessment tools.

- Potential security risk using a web-based
computer or mobile-technologies.

- Requires participant education/training if
the tool is not intuitive.

- Potential high initial costs of specialist
equipment and software.

This table is adapted from Nutritools [89]

Leeming et al. Genome Medicine           (2021) 13:10 Page 8 of 14



While many further limitations and biases are worthy

of discussion, the final note on this subject should high-

light the importance of rigorous reporting to allow for

scientific reproducibility. Standardised reporting guide-

lines of all future research efforts should be developed

following a consultative process [105]. Extensions to

current guidelines, such as the STROBE-nut, have been

successfully implanted [105]. While these are currently

only specified within a number of nutrition journals, in-

vestigators are encouraged to incorporate the guidance

offered despite this.

Investigating diet-microbiome interactions

The pliable nature of the gut microbiota composition fa-

cilitates its modulation via environmental factors, the

most important of which is diet [106]. Yet, to date, un-

scrambling the effects of diet and the gut microbiota on

host health has proved challenging; particularly consid-

ering the two are closely aligned [103]. Moreover, the

presence of highly complex crosstalk between diet,

microbiota, and the host has proven a major confounder

[4] with full characterisations of the complex interac-

tions between dietary substrates and metabolites, and

the crosstalk between host and microbes not yet fully ex-

plored [107].

Diet influences not only the microbial composition,

but also regulates the activity of the ecosystem (and its

effects on the host) without noticeable compositional al-

terations [108] (Fig. 3). Further investigations to identify

factors that influence these three-way interactions be-

tween the host, diet and the microbiota are required.

These complex and intricate relations demands the em-

ployment of a holistic approach moving beyond simple

association studies [110]. While diet may at times have

minimal impact on the microbial community structure,

the production of dietary metabolites may differ [111].

Thousands of dietary biomolecules are present within a

food matrix, many of which are unknown [19]. Identifi-

cation of strains implicated in the metabolism of dietary

substrates remains unclear with multiple others per-

forming similar or the same pathways, some of which

work synergistically [16]. To date, the wealth of

Fig. 3 Diet contributes to the intertwined mechanisms between the microbiota and host that have yet to be fully elucidated [107]. The physical

structure and chemical composition of dietary intake is a large effector of health; moreover, dietary nutrients that bypass host absorption and

secretion support the activity of the gut microbiome [109], yet there remains a complex inter-change between multiple other components

outside of these. Image created with Biorender.com
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metabolic functionality studies has demonstrated the ex-

tensive reach of the gut microbiota throughout the

metabolic system of gnotobiotic [112], antibiotic-treated

animals [113, 114], and also some human studies [115].

Recent advances in mathematical models to capture key

aspects of the gut microbiome and its hosts’ physio-

logical response facilitate the generation of hypotheses

that can later be experimentally validated [115]. The fu-

ture inclusion of data points in artificial intelligence (AI)

models beyond the typical may also further assist in

expanding our understanding of diet-microbiome rela-

tions, for example, the functional genomic analyses of

carbohydrate utilisation of strains and species and the

cross-feeding of fermentation products and vitamins

unidirectionally or bidirectionally [116, 117]. For in-

stance, the growth of many butyrate-producing gut bac-

teria, such as F. prausnitzii, S. variabile, and Roseburia,

has been shown to be auxotrophic for B vitamins, and

therefore rely on exogenous sources [117], with links be-

tween increased consumption of B vitamins and abun-

dance of taxa [118]. By including such data, a greater

understanding of diet-based approaches to modulate

beneficial microbes and improve health may be modelled

[117, 119].

Reconceptualization of the current approaches towards

big data technical methodologies and improved study

design may assist in further characterisation of the diet-

microbial landscape [120]. Technological advances in

high-throughput -omic technologies have greatly im-

proved the accessibility to functional information sur-

rounding the microbiome [49]. Such studies are

indispensable for the progression of the field alongside

the increased focus on developing comprehensive and

reproducible workflows and improved choice of methods

and scientific rigour in the conduct of the study [59]. In-

tegrating the fields of microbiology, genetics, epigenetics,

metabolomics, proteomics, and nutrition, we can con-

solidate our understanding of techniques, thereby de-

velop investigations which may capture a richer and

more coherent picture [121]. For example, in a 2019

study, investigators explored diet-microbiome relations

and their individual impact on visceral fat mass (VFM).

The pair-wise association and conditional analyses, to-

gether with machine learning approaches, enabled to

both estimate and separate the effects of diet and the gut

microbial community on host VFM [103]. Additionally,

the integration of multiple fields assists in overcoming

some of the limitations of individual technologies by

looking at a broader picture of disease networks rather

than, for example, compounds in isolation [122]. Fur-

thermore, the emergence of novel visualisation tools

such as bio-orthogonal click chemistry labelling [123]

and optical windows for real-time tracking has shown

potential but has yet to be fully applied [49].

Consideration must be made as to how to best integrate

quantitative imaging techniques with the quantitative

pipeline to advance diagnostics, improve population

health through disease prevention and management [49].

Longitudinal large multi-centre studies are required

which employ standardised protocols for the collection

of validated biomarkers of health for phenotyping, sub-

ject demographics, dietary information, biological sam-

ples, laboratory processing, genetic analyses, and data

analysis and manipulation [3]. Generation of substantial

data pools could be overcome by integration of the

mechanistic, hypothesis-driven approach with machine

learning AI [124]. Machine learning methods to identify

microbiota characteristics associated with host pheno-

types of interest can be categorised into two types, su-

pervised and unsupervised learning [125]. Supervised

learning can be useful when aiming to predict a health

outcome or a phenotype based on microbiome profiles.

It also enables the formation of a prediction model based

on the multitudes of microbial taxa, enabling a view of

the ecosystem rather than organisms in isolation. Un-

supervised learning can also assist in identifying patterns

within the ecosystem as well as within a population, as

demonstrated by the concept of enterotypes [125]. Al-

though currently in its infancy within the microbiome

field, AI-based recommendation systems (RS) have

shown promise [126]. By integrating blood parameters,

dietary patterns, anthropometrics, physical activity, and

gut microbiota into a RS, Zeevi et al. were able to pre-

dict glycaemic response to meals [127]. The researchers

successfully manipulated dietary intake to alter the gut

microbiome, enabling them to reduce host postprandial

glucose response [127]. However, RS are limited by our

current incomplete understanding of microbial meta-

bolic pathways, microbial community, and definition of

a healthy microbiome.

Large databanks typically include limited phenotypes

to limit researcher burden and cost, whereas typically

small finite samples facilitate more in-depth phenotyping

[128]. Maximising phenotypic trait data within a sub-

stantial sample size allows for cohorts to be sufficiently

powered to discover and replicate associations [129].

Meta-analysis techniques can then be used to pool sam-

ples or to combine with clinical trial results in order to

detect ‘true’ signals and to reduce false-positive rates,

strengthening the findings by demonstrating reproduci-

bility [130]. By providing data from varying perspectives,

researchers are able to answer a diverse array of scien-

tific questions, whereby findings are more generalisable

[128]. For example, AI technologies, such as those men-

tioned above, have been shown to outperform humans

in predicting patient re-admission following congestive

heart failure [131], though these technologies alone can-

not provide translatable information for human health,
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requiring integration of AI, interventions, and mechanis-

tic studies.

Conclusions and outlook
To advance our understanding of the role of diet-

microbiota interactions on human health and disease, it

is crucial to step back and re-evaluate current ap-

proaches. Standardisation and optimisation of method-

ologies may assist in capturing the complex spectrum of

these relations. To inform dietary strategies for the pre-

vention and amelioration of chronic metabolic disease

states, we first need to ensure intrinsic data is sufficient

and relevant, in a manner that considers the deeply indi-

vidual aspects of both diet and microbiome. Character-

isation of the natural intricacies of the ecosystem and

the interactions existing between its multiple members

at various levels of complexity remains critical. Both mi-

cro- and macro-scale influences that drive microbial

variation should be considered, from spatial organisation

to transmission amongst hosts and between the host and

the environment. A comprehensive, multidisciplinary re-

search agenda is required to accurately describe the gut

microbial composition and function. Individual and

combined complexities of both microbial research and

nutrition research demand reconsideration of standard

approaches, with a push towards gold standard proto-

cols, further emphasis on the use of randomised control

trials, and mechanistic studies, and analysis techniques

that include big data, multi-omics, and machine learning

approaches. Without multifactorial approaches towards

investigations of the diverse aspects of the microbiome,

diet, and diet-microbiome relations, we will be limited in

our progression towards therapeutic interventions on a

personalised or population level. While the path ahead

may be unclear in how we may reach these targeted

strategies to improve host health, the approaches out-

lined within this review may assist in a collaborative

move forward.
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