
Discrete Comput Geom 5:161-196 (1990)

G '6 ' try
© 1990 Sprinser-Ve~la s New York lne,

The Complexity and Construction of Many Faces in

Arrangements of Lines and of Segments*

Herbert Edelsbrunner, 1 Leonidas J. Guibas, 2'3 and Micha Sharir 4,s

Department of Computer Science, University of Illinois at Urbana-Champaign,
Urbana, Ill 61801, USA

2 DEC Systems Research Center, 130 Lytton Avenue Palo Alto, Ca 94301, USA

3 Department of Computer Science, Stanford University, Ca 94305, USA.

Courant Institute of Mathematical Sciences, New York University, New York,
NY 10012, USA

5 School of Mathematical Science, Tel Aviv University, 69978 Tel Aviv, Israel.

Abstract. We show that the total number of edges of m faces of an arrangement of n

lines in the plane is O(m21~-6n2t3+26+ n) for any 6 > 0. The proof takes an

algorithmic approach, that is, we describe an algorithm for the calculation of these m

faces and derive the upper bound from the analysis of the algorithm. The algorithm

uses randomization and its expected time complexity is O(m2J3-an2/3+2~logn +

n log n log m). If instead of lines we have an arrangement of n line segments, then the

maximum number of edges of m faces is O(m2/3-~n2/3+2~+ n~ (n)logm) for any

> 0, where ~(n) is the functional inverse of Ackerrnann's function. We give a

(randomized) algorithm that produces these faces and takes expected time
0(m2t3- ~n2/3 + 2~ log + n~(n) log2n log m).

1. Introduction

Let L = {11, 12 ln} be a finite set of lines in the plane. Let L induce a partition of

the plane, known as the arrangement A(L) of L, into O(n z) faces, edges, and vertices.

* The first author is pleased to acknowledge partial support by the Amoco Fnd. Fac. Dev. Comput.
Sci. 1-6-44862 and the National Science Foundation under Grant CCR-8714565. Work on this paper
by the third author has been supported by Office of Naval Research Grant N00014-82-K-0381, by
National Science Foundation Grant DCR-83-20085, by grants from the Digital Equipment Corpora-
tion, and the IBM Corporation, and by a research grant from the NCRD-the Israeli National Council
for Research and Development. A preliminary version of this paper has appeared-in the Proceedings of
the 4th ACM Symposium on Computational Geometry, 1988, pp. 44-55.

162 H. Edelsbrunner, L. J. Guibas, and M. Sharir

The vertices are the points of intersection of the lines in L, the edges are the

connected components of the lines after removing the vertices, and the faces are the

(convex) connected components of the complement of the union of the lines Ii (see

I'G] or iEl for more details concerning arrangements in the plane and in higher

dimensions).

Many combinatorial properties of arrangements of lines have been studied

extensively. In this paper we consider the maximum number, K(m, n), of edges

bounding m distinct faces in an arrangement of n lines in the plane (where we count

an edge twice if it bounds two of these faces). Note that m can vary between 1 and

x (n) = (~) + n + I, and that at these extreme values we have K(1, n)=n and
\ - - /

K(x(n), n) = 2n 2 (there are altogether n 2 edges in the arrangement and each edge

bounds two faces). A trivial upper bound for K(m, n) is mn and a trivial lower

bound is 2m. Prior to this and a companion paper [CEG*],the best-known bounds

on K(m, n) for general values of m were

(m) o
(i) K(m, n) = n + 4 for m > 2 and n > 4/" [Ca],

2 - - \ 2 /

(ii) K(m, n) O(mn 1/2) for n 1/2 _< m [EW1],

(iii) K(m, n) = O(ml/2n) [EW1], and
(iv) K(m, n) = f~(m2/3n 2/3) [EW1]

(see also Chapter 6 of [E]). Note that each of the upper bounds has a different

range of values of m for which it is better than the other (or the trivial) bounds. A

graph showing these upper and lower bounds on a logarithmic scale is given in

Fig. 1.1.

In this paper we improve the upper bounds by showing that

K(m, n) = 0 (m 2 / 3 - # 1 l 2/3+2;J "a t- rl)

for any positive 6 (with the constants of proportionality depending on 6).

2 0

1.8

16

1.4

1.2

1.0

i

i ~ ~ 2 / 3 n 2 / 3

rant/2

F I

.2 A .6 .8 t .0 1.2 1.4 1.6 1.8 2.0

Fig. 1.1. Previous bounds on K(m, n). l°gnrn

1 With some effort, we can determine for each m and n the optimal choice of ~, and thus obtain a

somewhat tighter bound for K(m, n).

Complexity and Construction of Many Faces in Arrangements of Lines and Segments 163

Fig. 1.2. Points designate desired faces.

This bound is slightly weaker than a tight bound O(rn2/3rl 2/3 + n), obtained in

the companion paper [CEG*]. We nevertheless present this result here because (i)

it serves as a simple introduction to the more complex case of segments, (ii) it uses a

different proof technique than the one used in [CEG*], and (iii) it leads to an

efficient algorithm for computing the desired m faces.

Our approach to the combinatorial probelm is different from previous work on

this problem in that it has an algorithmic flavor. We obtain an algorithm for the

calculation of rn faces in an arrangement of n lines, where each face is designated by

specifying an arbitrary interior point in it. In other words, we consider a set L of n

lines, 11, 12 ln, and a set P ofm points, Pl, P2 Pro, in the plane, and calculate

the faces of the arrangement that contain the given points (see Fig. 1.2; for reasons

that will become clear later we allow more than one point designating a single face).

We construct these faces using the following divide-and-conquer strategy.

It is convenient to describe this strategy in dual space although it is possible to

find a fairly natural interpretation of it also in primal space. For this reason, we

dualize the points and lines and thus obtain lines p* and points l~ in the dual plane.

Those lines are referred to as dual lines and the points are called dual points. The

duality transform that we use maps a point p: (a, b) into a line p*: y = ax + b, and

a line l: y = cx + d into a point l*: (- c , d). This duality has the properties that it

preserves line-point incidences, and that it maps a point p lying above (resp. below)

a line I to a line p* lying above (resp. below) a point l*.

Our divide-and-conquer strategy amounts to partitioning the dual plane

recursively into convex regions. At each step we have a convex region v in the dual

plane, and two sets associated with it: L*--the set of dual points l* ~ v, and P*- - the

set of dual lines p* crossing v. We then partition v into convex subregions, w, obtain

a corresponding partitioning of L* into subsets L * and distribute a copy of each

line in P* to all sets P* associated with the regions w it crosses.

What is the subproblem, in the primal plane, that a dual region v induces? We

have a set of lines L~ ~_ L and a set of points P~ ~_ P, so the corresponding

subproblem is that of calculating the faces of the arrangement A(L~) that contain

points of Pv. But what about the other points? For the success of our recursive

164 H. Edelsbrunner, L. J. Guibas, and M. Sharir

scheme it is important that we calculate these faces as well. Fortunately, it turns out

that all the remaining points lie either in the topmost face or in the bottommost

face of A(Lv); these two faces are easy to calculate and we add them to collection of

the other, recursively computed, faces.

Note that this divide-and-conquer scheme is such that, on the average, the

number of dual lines associated with a region v will eventually become much larger

than the number of dual points in v. We stop the recursive partitioning at regions v

for which I e*l > I L* 12, because in this case we are able to afford to calculate the

entire arrangement A(Lv) in the primal plane (and select out of it the desired faces).

Finally, having solved the problem associated with each subregion of v, we need

to combine the solutions to obtain a solution for the entire v. In the primal plane,

this means that we are given the faces containing points of P~ in each of the

subarrangements A(Lw) associated with the subregions w of v, and we wish to

combine (actually, intersect) these faces to obtain the faces containing points of P~

in the full arrangement A(Lo). A major tool that we develop for this purpose is the

so-called "combination lemma" which gives a tight upper bound on the maximum

combinatorial complexity 2 of the desired faces in terms of the combinatorial

complexity of the corresponding faces in the subarrangements (see Lemma i). We

expect this result to have applications to other problems as well.

If we examine the recursion tree that results from this divide-and-conquer

strategy, we obtain a structure that is very similar to so-called partition trees,
originally designed to solve half-plane range searching problems. Indeed, thinking

of the dual points as "data" and the dual lines as "queries," we obtain a partition of

the set of dual points into disjoint subsets, according to some underlying convex

decomposition of the dual plane; this is similar to standard partition trees [EW2],

[HW], except that each node v (that is, a region in the dual plane) knows a priori all

the query lines that require further processing at v (these are the lines in P*- - the

lines that cross u); we use this information to further partition v, thus making the

tree "customized" and easier to "search."

To reiterate, an offshoot of the analysis given in this paper yields a technique for

constructing a partition tree for a set of data points and a predetermined set of

query lines. Such a tree can then be used to obtain better bounds for batched half-

plane range searching when the queries are known in advance (applications include

counting the number of intersections between n line segments [GOS], calculating

the "signature" of a polygonal curve [O1 multiple ray-tracing I-SML], etc.).

In our present application, the desired upper bound on K (m, n) is obtained by

analyzing the space complexity of the resulting algorithm. The time complexity of

the algorithm is roughly a polylogarithmic factor times the upper bound on K(m, n)

mentioned above (see Section 3 for a more precise bound). The algorithm is based

on a random sampling technique akin to the e-net method of Haussler and Welzel

[HW ! and to the random sampling method of Clarkson [CI]. We obtain a

randomized algorithm which almost always terminates, produces the desired

output upon termination, and whose expected running time is as stated above.

2 We use the term "combinatorial complexity" and sometimes just "complexity" for the number of
edges bounding some collection of faces.

Complexity and Construction of Many Faces in Arrangements of Lines and Segments 165

Next we consider the problem of estimating the maximum number of edges

bounding m faces in an arrangement A of n line segments in the plane, and of

calculating these faces. This problem is considerably more difficult than the one for

lines, because the faces of A are not necessarily convex or simply connected. This

makes it harder to process such faces efficiently. Nevertheless, using an intricate

extension of our combination lemma (see Lemma 5), we obtain essentially the same

bound on the maximum complexity, R(m, n), of m distinct faces in an arrangement

of n line segments. More precisely, we prove

R(m, n) = O (m 2 / 3 - ' ~ n 2 / 3 + 2a -I- net(n) log m)

for any 6 > 0, where ~(n) is the extremely slowly growing inverse of Ackermann's

function. To the best of our knowledge this is the first nontrivial upper bound

known for R(m, n). Note that this upper bound almost matches the above-

mentioned lower bound on K(m, n). Since trivially K(m, n) < R(m, n) this implies

that our upper bound on R(m, n) is almost tight.
As in the case of lines, our method also yields an algorithm for calculating the

designated faces. From a high-level point of view the algorithms for the calculation

of the desired faces in arrangements of lines and of line segments are quite similar.

Both algorithms employ a key procedure for the following problem:

given a collection of k points and the faces containing them in each of two

subarrangements of the given lines or line segments, calculate the faces contain-

ing these points in the arrangement formed by the union (that is, overlay) of the

two subarrangements.

In the case of lines this is easy to achieve efficiently because each face is convex. In

the case of line segments this is more difficult because of the potentially highly

irregular shapes of individual faces. We present an efficient line-sweeping method

for merging faces containing k given points in line segment arrangements whose

complexity is O((t + k) log (t + k)), where t is the total complexity of input and

output faces. Applying this merge recursively, we can calculate the required faces in

(randomized expected) time which is within a polylogarithmic factor of the bound

on R(m, n). An interesting consequence of our merging procedure is that a single

face in an arrangement of n line segments in the plane can be constructed

deterministically in time O(n~(n) log 2 n). This problem arises in certain two-

dimensional motion-planning problems in robotics, and has been previously

studied in [PSS]. A companion paper, [GSS], extends the line-sweep technique of

this paper to the calculation of a single face in arrangements of more general curves.

The technique used in this paper is one of several related approaches that were

developed recently, all of which use e-nets and random sampling as basic tools.

This paper uses e-nets to partition the given lines (or line segments) into a fixed

number of (disjoint) subsets so that each subset interacts only with a relatively

small number of the given points. These interactions are taken care of recursively.

In constrast, we might try to partition the given points into (disjoint) subsets, each

interacting with only a small number of the given lines (or line segments). This

166 H. Edelsbrunner, L J. Guibas, and M. Sharir

alternative approach has been studied in a companion paper [CEG*]. It yields

tight combinatorial results for the case of lines, and can be used to obtain upper

bounds for the complexity of many faces, and for the total number of incidences

with many points, in arrangements of other types of curves, and also in arrange-

ments in higher dimensions. While the point-partitioning approach of [CEG*] is

mainly combinatorial, the line-partitioning approach used here also yields efficient

randomized algorithms. Another advantage of the line-partitioning method over

the point-partitioning one is that it extends to line segments (which have not been

amenable to the other approach yet). In addition, our "dual" aproach has turned

out to be better than the "primal" one in analyzing the complexity of many cells in

arrangements of planes or hyperplanes, as is demonstrated in another companion

paper [EGSh].
The paper is organized as follows. In Section 2 we analyze the combinatorial

complexity of many faces in an arrangement of lines. This analysis is explained in

terms of an algorithm that constructs the faces; its implementation is discussed in

Section 3. In Sections 4 and 5 we analyze the combinatorial complexity of many

faces in an arrangement of line segments, and in Sections 6 and 7 we discuss the

implementation of the algorithm implicitly described in the combinatorial analysis.

Concluding remarks and open problems are given in Section 8.

2. The Complexity of Many Faces in an Arrangement of Lines

Let L = {i 1, 12 In} be a set of n lines in the plane, and let A = A(L) denote its

arrangement as defined in the introduction. Let P = {Pl, P2 Pro} be a set of m
given points that do not lie on any of these lines. Consider the problem of

calculating all faces of A that contain the points Pi, producing each such face just

once, even if it contains several of these points (see Fig. 1.2). We seek an algorithm

for solving this problem with a small worst-case space complexity. This space

complexity will serve as an upper bound on the maximum number of edges

bounding any m faces in any arrangement ofn lines in the plane. As it turns out, the

expected time complexity of our (randomized) algorithm is within a log n factor (or

a log n log m factor ifm = O(x/~)) of its worst-case space complexity, so we also get

a nearly time-optimal (although randomize~) algorithm for the calculation of the

faces.
We assume that initially no two of the given points lie in the same face of A. The

algorithm that we present below uses a divide-and-conquer approach and each

recursive step involves some subset L' of the lines It and some subset P' of the points

p~. Since L' is only a subset of L it thus can happen that in the arrangement formed

by L' two or more points of P' fall into the same face. In this case we will want the

algorithm to maintain this face just once, and have pointers to it from each of the

points contained in it. To reflect this potential duplication, we denote by g(rn, n)

the maximum complexity of the faces in an arrangement of n lines that contain m

given points (counting each face just once). Unlike K(m, n) which is defined only ff

m < r(n), g(m, n) is defined for all integers m > 0, n > 0. However, when both

functions are defined, we cleary have K(m, n) = K(m, n).

Complexity and Construction of Many Faces in Arrangements of Lines and Segments 167

We next describe the algorithm for calculating the required faces. The discussion

ignores implementation issues (addressed in Section 3) and instead concentrates on

combinatorial problems that arise.

First we dualize the line I i to points l* and the points pi to lines p*, using the

duality transformation defined in the introduction. This gives a set L* of n points

and a set P* of m lines in the dual plane. To process the dual points and lines, we

choose some constant integer r > 0, and select a random sample of r of the dual

lines p*. When we draw the arrangement of these lines in the dual plane and

triangulate each of the faces of this arrangement we obtain a total of M = O(r 2)

triangles. The e-net theory of Haussler and Welzl [HW] or, alternatively, the

random sampling lemma of Clarkson I-C1] imply that, with high probability, the

interior of each of these triangles intersects at most (cm/r) log r dual lines, for some

absolute constant c independent of r and m. The sample is called an e-net if it has

the property that any triangle in the dual plane not meeting in its interior any of the

lines p* in the sample intersects at most (cm/r) log r dual lines in P*. The e-net

theory implies that (i) such a sample always exists (which suffices for the

combinatorial analysis given in this section), and (ii) a random sample of r lines of

P* is an e-net with high probability (which can be made arbitrarily close to 1 if we

choose c large enough). The second property is important for the algorithm that

calculates the faces, as given in the following section.

We now divide our problem into subproblems, each associated with one of the

M triangles v in the dual plane. We associate with v the subset L*of the dual points

in L* that lie inside v, and the subset P* of the dual lines in P* that intersect v. In

what follows we denote the cardinality of L* by n v and the cardinality of P* by my. 3

The subproblem associated with v, in the primal plane, is to compute the faces of

A(L~) that contain points of P~ (where L~ is the subset of lines in L whose dual

points belong to L*, and Po is the subset of points in P whose dual lines belong to

P*). Note that this subproblem may be "incomplete," in the sense that we ignore

faces that contain points in P - Pv. We address this problem shortly below.

Each of the M subproblems is solved recursively. That is, we take a random

sample of r lines from the corresponding set P*, and construct and triangulate their

arrangement. For each triangle w in this arrangement we obtain, as above, a
Ill subproblem involving the subset L* of the dual points of Lv contained in w and the

subset P* of dual lines of P* that intersect the interior of w. (A schematic

representation of this process is shown in Fig. 2.1; the arrangement is formed by

r = 2 lines, thus it is not necessary to triangulate further the four faces that result

from this partitioning.)

This process is continued recursively, but not all the way, until just one or no

point or line remains. Whenever we reach a subproblem associated with a triangle v

for which m~ > x(n~), we stop the process and solve the subproblem directly. That

is, we undo the dualization to obtain L~ from L* and Pv from P*. Then we

3 The reader is advised to note that we consistently use the letters L and n in association with the
primal lines (and therefore with the dual points) and that P and m are used in connection with primal
points (and thus dual lines).

168 H. Edelsbrunner, L. J. Guibas, and M. Sharir

f "@.J-

Fig. 2.1. Partition tree and corresponding decomposition.

construct the arrangement A(Lv) (in the primal plane, locate 4 in it each of the

points of Pv, and report the faces of A(Lv) that contain them (each face only once).

The total number of edges bounding these faces (which is proportional to the space

needed to store them) is at most O(n2~) = O(mv). In passing we mention that the

time-complexity of this step is at most O(n~ + my log n~) = O(m v log n~) using the

arrangement construction algorithm of [EOS1 and the optimal point-location

structure of [EGSt]. Another case where we stop the recursion is when P* = ~ . In

this case we do not have to bother constructing A(Lv) since there are no points for

which faces need to be calculated.

We obtain the required collection of faces of A(L) using the following "merging"

procedure. For each point Pie P, let F(pi) denote the face of A(L) that contains p~,

and, for each triangle v in the dual partitioning, let F~(p~) denote the face of the

arrangement A(Lv) that contains Pu (Recall that such a face will be shared by all

points that lie in it.) For points Pt ~ P~, the face F~(pt) is available recursively. Let

Qv = P - P~, which is the set of face-designating points that the subproblem at v so

far has ignored. Note that Q~ is the set of points whose dual lines miss the interior of

v. By duality, each of these points pt lies either above all the lines in Lo (that is, in the

topmost face F~ + of A(L~)) or below all of them (in the bottommost face F~). This is

illustrated in Fig. 2.2. These two faces together have at most n~ + 2 edges, and they

can be constructed in time O(n~ log n~) (see, e.g., [PS]). As required, we store each of

these two faces just once, and maintain a pointer from each point pi ~ Q~ to either

F~ + or F~ whichever contains it. Hence, at this stage all the faces of A(Lo)

containing points of P are accounted for. We note that the topmost and

bottommost faces in A(Lv) must be constructed even if m v = 0 and we stop the

recursion at t,.

Now the merging step proceeds as follows. Our goal is to compute F(Pi) for all

p~ ~ P. Let vl, v2 vM be the triangles formed by the partitioning (recall that

M = O(r2)). For each point p~ e P, and for each triangle v j, either p~ ~ P~j or pi ~ Q~.

In the former case, F~(p.,) is calculated recursively at vj. In the latter case, Fvj(pj) is

4 Locating a point in an arrangement means to find the face (or edge or vertex) of the arrangement
that contains the point. It is a fairly common term in computational geometry which, among other
things, considers data structures that facilitate fast point-location queries (see, e.g., [EGSt]).

Complexity and Construction of Many Faces in Arrangements of Lines and Segments 169

l l * •

12. •

DUAL I PRIMAL

°13" • • [

Q

Fig. 2.2. Dual and primal plane.

either F~ or F~, which are also assumed to be available. Since L = Lv, w. . . u LvM,

it is clear that

F(pi) = ~ Fv,(P,).
vj

This intersection is plainly a convex polygon that contains p~ and the number of its
edges is at most the sum of the number of edges of the intersected faces.

However, a, major technical problem arises now. Since some of the faces F,,j(p3

may be shared by other points, we need to avoid duplicate processing and counting

of the same face for each point it contains, or else our algorithm might have
unacceptably high time-complexity and our upper bound on the total number of
edges will be annoyingly loose. A typical case where duplicate processing of this

sort can slow down the algorithm is depicted in Fig. 2.3.
A solution of this problem is provided by the following technical lemma, which

we refer to as the "combination Iemma (for lines)."

Lemma 1. Let Pl, P2 , Pk be points in the plane, and let {B 1, B 2 , B,} and
{R 1, R 2 Rt} be collections of s "blue" and t "red" (topologically) open convex

polygons that satisfy the following three properties:

(i) The blue (red) polygons are pairwise disjoint and the total number of blue

(red) edges is fl (p).

i"-" ---4

i . ~ . . _ J

Fig. 2.3. Six faces designated by three points each.

170 H. Edelsbrunner, L. J. Guibas, and M. Sharir

i l i t il"~t
I ,i , ,. / ?

t ! \ . . - / , \ Jl , '~ . - ~

_ J \ ,,

Fig. 2.4. One blue and six red faces.

(ii) Each point Pi is contained in a blue polygon Bs, and in a red poly#on Rt,.

(iii) I f for each 1 < i < k we define E i = Bs, c~ Rt,, then E t ~ Ej i f i # j.

Then the total number o f sides o f the E i is at most fl + p + 4k - 2s - 2t.

Proof. Take one of the blue polygons B = B j, and assume that it contains kj

points, say Pl, P2 Pkg. Each of these points pz lies in a different red polygon Rt,.

We consider the ks cells E~ = B c~ Rt, for 1 < i < k j, which are convex polygons (see

Fig. 2.4). To give an upper bound on the number of blue edges of the E t we define

for an edge e of B the intersection of e with R,, and denote it by e~. Now write down

the cyclic sequence of the nonempty e~ in clockwise order around the boundary, ~B,

of B. We observe the following two properties:

(i) The sequence of indices (red polygons intersecting dB) contains no cyclic

scattered subsequence of the form i..j., i..j.
(ii) If two consective indices (red polygons) are the same, then the edges of B in

both elements are different.

To prove (i) just note that if such a case were to arise, then we could connect the

first and third edges and the second and fourth edges by two straight segments

lying respectively inside the red convex polygons R,, and Rt~. Both segments have

their endpoints on ~B which implies by the Jordan curve theorem that they

intersect. This is a contradiction to Rt, n R,~ = ~ if i # j. The claim (ii) follows

from the fact that a single edge of B intersects a red polygon in a connected

piece--after all both the blue edge and the red polygon are convex.

Ignoring repetitions of indices, (i) implies that the cyclic sequence is a Daven-

port-Schinzel cycle of order 2 and thus consists of at most 2k~ - 2 edges (see [ES]

for details). By (ii), the number of index repetitions is at most IB[, the number of

edges of B. It follows that the E , for 1 _< i < kj, have at most IBI + 2ki - 2 blue

edges.

If we take the sum over all blue polygons we get at most/7 + 2k - 2s blue edges

bounding the cells Ei for all i. By a symmetric argument we can show that the

number of red edges bounding the E~ is at most p + 2k - 2t. It follows that the

Complexity and Construction of Many Faces in Arrangements of Lines and Segments 171

total number of edges of the Ei (each edge either blue or red) is at most

fl + p + 4 k - 2 s - 2t. []

By applying Lemma 1 a fixed number of times (M - 1 times to be precise), it

follows that the overall complexity, K,of all faces F(p~) can be bounded from above

by

M M M M

2 (Kv~ + (n,,, + 2)) + M Z 4m,,j = Z (K,,, + O(n,,,)) + M ~ O(m,,),
j=1 j = l j=1 / = I

where Kv~ is the number of edges counted at v j, and the second subterm of the first

sum arises from the faces F~ and F~. But ~ j nvj = n and M ~_~10(rnv) = O(m),

since r and thus M is a constant. We can thus rewrite the recurrence relation as

M

K = ~, Kv~ + O(m + n).
j= l

To solve this recurrence relation, let K(m, n) denote as above the maximum

complexity of the collection of faces that arise for m points in an arrangement of n

lines. Then we have

if ra >_ x(n),
g(m, n) _

K(m~, n~) +bm + b'n if m < x(n),
J

for some constants a, b, b' > 0 (note that b, b' depend on r but a does not), where M,
m~, and n~ satisfy the following three conditions (which are immediate from our

construction):

M = O(r2), (I)

M

n, = n, (II)

and

cm
for each i we have m t < ~ l o g r for some constant c > O. (III)

Under these constraints we have

Lemma 2. K(m, n) ~ Dm2/a-an 2/3+ 2a + Am + Bn log re, for any 6 > O, where the

coefficients A, B, D depend on 3.

172 H. Edelsbrunner, L. J. Guibas, and M. Sharir

Proof. We first note that at each level of the recursion m decreases by a factor

f~(r log r), for a constant r, and thus the recursion has only O(log m) levels. The sum

of the n v, over all nodes v at the same recursion level, is clearly n, so that the total

contribution of the rightmost term, b'n, is at most O(n log m). We thus ignore this

term in the recurrence relation for K and prove that the solution to the modified

recurrence satisfies K(m, n) < Dm2/3-~n 2/3+ 2~ + Am for any 6 > 0.

Fix 0 < 6 < 1/6 and choose r = r(3) > 0 sufficiently large (how large will be

apparent from the analysis below).

The bound is trivial for m = 0. If m > r(n), then g(m, n) < am plainly satisfies

the required inequality, assuming A > a. It follows that the bound is trivially true

for constant n since m < x(n) only if m is also at most a constant (we need this

observation only for n _< 1). So assume m < r(n). In this case

m = m2/3-dm 1/3+6 <_~ m2/3-6n 2/3+26, (,)

assuming n > 2. By induction hypothesis we then have

M

g(m, n) < ~ (Dm2/3-rrt 2/3+2~ + Ami) + bm.
i=1

By properties (III) and (I) we have

cMm log r
~'. ms < < (clr log r)m

t = 1 r

for some constant c 1 independent of r. Hence

M

.K(m, n) < D. ~, m2/3-an 2/3+6 + (Aclr log r + b)m.
i=1

Thus, using (.) and putting d = Aclr log r + b, we obtain

M
g(m, n) ~ D. ~ rn2/3-~n 2/3+ 2~ + dm 2/3-~ n 2/3+26.

i=I

But

y . , < cm g r 21 -,

iffi l i=1

which, by the H61der inequality, does not exceed

t
,'m loo r \2 /3-6

Complexity and Construction of Many Faces in Arrangements of Lines and Segments 173

Hence

K (m , n) < (D . o((l °g r)2/3 - a r ~ ~ -)q- d)m2/3-an 2/3+26.

But since c$ > 0, it is clear that if r is chosen sufficiently large so that

o [(log r)2/3-6)
\ r 3' <½,

say and ifD is taken to be sufficiently large so that 1)/2 > d = Ac~r log r + b, then

the expression in the bracket will be less or equal to D, thus establishing the

asserted inequality. []

Theorem 3. The total number of edges, K(m, n), boundino m distinct faces in an
arran#ement of n lines is at most O(mZ/3-~nZ/a+ z# + n) for any 6 > 0 (where the

constants of proportionality depends on 6).

Proof. Recall that when both functions are defined, we have K(m, n) = £(m, n).

For m < n ~/z the asserted bound follows immediately from the results of

[Ca] mentioned in the introduction. For n~/2< m < x(n) it is easily checked

that the term O(m2/3-6n z/3+z~) dominates O(m) and O(n log m) in the bound of

Lemma 2. []

Remarks. (1) The preceding bounds imply that K(m, n) = O(m2/3-6n 2/3+2b) for

any 6 > 0, provided neither m nor n is too small.

(2) Our result leaves a small gap between our upper bound and the lower bound

of~(m2/3n 2/3 + n)obtained in I'EWl]. An alternative, point-partitioning approach

as presented in a companion paper [CEG*] closes this gap and shows that
®(m2/3n2/3 + n) is the real bound.

(3) A related result is that of Szemer6di and Trotter [ST] who give a tight
bound, ®(m2/3n 2/3 + n), on the maximum sum of the degrees of m vertices in an

arrangement of n lines. There does not appear to be an easy way to extend the proof

technique of [ST] to the case of faces.

3. Calculating Many Faces in an Arrangement of Lines

To complete our analysis of line arrangements, we turn to the implementation of

the algorithm outlined in section 2 which constructs the faces in an arrangement of

n lines 11, 12 in that contain m given points pl, Pz , - . . , Pro. Let T(m, n) denote

the expected time needed for this task using the approach described in Section

2. We have already noted that at the bottom of the recursion we have

T(m, n) = O(m log n) if m >_ r(n) and T(m, n) = O(n log n) if m = 0 (this is the time

needed for the calculation of the two corresponding faces F + and F~-).

As for the general merging step of the algorithm, we need to calculate, for each

Pi ~ P, the face F(pi) of the arrangement A(L) that contains p~; this face is the

intersection of the M faces Fv~(pt), j = 1, 2 , M, where v~ vu are the

174 H. Edelsbrunner, L. ,I, Guibas, and M. Sharir

triangles obtained by the partitioning step, and where Fvj(Pi) is the face of A(Lv~)
containing p~. Recall that a major technical difficulty in the analysis of the space

complexity of the algorithm, given in the preceding section, was to avoid duplicate

access to a face in some A(Lv~) that is shared by several of the points. To overcome

this difficulty algorithmically, we proceed as follows. For expository reasons we

assume M = 2, so that we need to intersect only two faces around each Pi-

(i) With each p~ we associate the pair (Fvl(pi), F~2(pi)). Regard two points as

equivalent if they have the same associated pair of faces. The equivalence

classes can be constructed in time O(m log m) = O(m log n) by sorting the

face-pairs and removing repetitions. This also yields a representative point

for each equivalence class; we clearly need to calculate F(p~) only for these

representative points.
(ii) For each representative point p~, we need to calculate the intersection, E, of

the two convex polygons, B = F~,(p~) and R = Fv2(P~, in time that mainly

depends on the number of edges of E. This is accomplished using the

following "ray-shooting" procedure. First we find a starting point z on aE

by shooting a horizontal ray from p~ ~ E and finding the nearest of its

intersections with 0B and OR. We next traverse the boundary of E in

counterclockwise direction from z as follows. Suppose we have reached

some point x on some edge e of 0B. We shoot a ray from x along e (so that B

lies to the left of the ray) and find its intersection, x', with OR. Ife ends before

x', then we turn at the endpoint of e to the adjacent edge, e', along 0B and

repeat shooting along e' toward 0R. Otherwise, we turn at x' to OR in

counterclockwise direction, and shoot along the new edge toward 0B.

Repeating this process, we will eventually return to z, thereby completely

tracing the boundary of 6E. (Figure 3.1 illustrates this process.) Since both

faces, B and R, are convex each ray shooting query can be carried out in

time O(log n) (see [CD]). Thus, the calculation of F(pt) can be accomplished

in time O([F(p~)llog n), I F(pi)[being the number of edges bounding F(Pi).

In general, that is, if M > 2, we apply the merging process M - 1 times to take into

account all M subproblems generated at v. Since M is a constant depending only

on r, the sample size, all faces F(pi) can be obtained in time O((K(m, n) + m) log n).

Finally, we consider the overhead of the divide part of our recursion. At each

recursive step we take a random sample of size r of the current set of dual lines,

Fig. 3,1. Tracing the boundary of the intersection.

Complexity and Construction of Many Faces in Arrangements of Lines and Segments 175

construct and triangulate their arrangement, split the current set of dual points

among these triangles, and determine for each triangle which of the current dual

lines p* it intersects. Each triangle gives rise to a subproblem which is passed the

points that fall into the triangle as well as the lines that intersect it. Each step either
takes constant (randomized) time or time linear in n~ or my.

At this point, we would like to verify that the random sample is indeed an e-net.

The reason for this is that, although we know that this will be the case with high

probability, we have to perform random sampling at many steps during the

recursion, and the small probabilities of failure may add up to a nonnegligible

amount. To rectify this, we simply check whether the number of dual lines cutting a

subtriangle is sufficiently small, for all subtriangles resulting from the partitioning.

If not, we discard the sample and try another random selection of r dual lines. In a

constant expected number of trials we will obtain an e-net.

We can therefore obtain the following recurrence formula for T(m, n), the

expected time needed for m points and n lines. For m < n 2 we have

M

T(m, n) < ~ T(m~, ni) + O((K(m, n) + m + n) log n),
i=l

where mi, n~, and M satisfy conditions (I), (II), and (l id of the analysis in Section 2.
For m > n 2 we have

T(m, n) = O(m log n),

and for m = 0 we have

T(m, n) = O(n log n).

Using the bounds on /((m, n) and K(m, n) obtained above, we can derive the

following bound on T(m, n); the proof is a straighforward generalization of the

proofs of Lemma 2 and Theorem 3 and is left to the reader.

The following theorem also derives a bound on the maximum space complexity,

S(m, n), required by the algorithm. This is easily seen to be proportional to the

space used along a single path in the recursion tree, which is easily seen to be
O(m2/3-~n2/3+26 + n log m). We thus summarize.

Theorem 4. The expected time complexity of the above randomized aloorithm for

computino m distinct faces in an arranoement of n lines is

T(m, n) = O (m 2 / a - 6 n 2/3+2~ log n + n log n log m)

for any 6 > O. ?he space required by the aloorithm is

S(m, n) = O (m 2 / a - a n 2/3+ 2~ + n log m)

for any t5 > O.

176 H. Edelsbrunner, L. J. Guibas, and M. Sharir

Remarks. (1) If m is much smaller than n 2, the log n factor in the first term in the

time bound given above can be dropped, simply by taking a slightly larger value of

6.

(2) The ray shooting technique used in the above algorithm does not seem to

generalize to the more complicated task of constructing m faces in an arrangement

of n line segments, which is what we study in Sections 4-7. The alternative merging

technique that we use for line segments, described in Section 7, can also be applied

to the simpler case at hand. However, we have chosen to present here the ray

shooting technique because of its relative simplicity in the case of convex polygons.

4. The Complexity of Many Faces in an Arrangement of Line Segments

This section extends the analysis given in Section 2 to the case of line-segment

arrangements, that is, we consider the problem of estimating the maximum

combinatorial complexity, R (m, n), of m faces in an arrangement of n line segments

in the plane. In constrast to the case of lines where all faces are convex, a face in a

line-segment arrangement is not necessarily convex and need not even be simply

connected (see Fig. 4.1). Because of the nonconvexity of faces, there is no reason

why the maximum number of edges bounding a single face should be at most n.

Indeed, the total number of edges bounding a single face can be as large as f~(not(n)),
where ~t(n) is the inverse Ackermann's function, and this bound is tight in the worst

case, as was shown in [HS], [PSS], and [WS-I. Lines are a special case of line

segments, which implies R(m, n) > K (m, n). Thus, the lower bound of [EWl] for

line arrangements extends to line segments, which, combined with the result of
[WS], yields R(m, n) = ~'~(m2/3t l 2/3 --1- net(n)).

In spite of the technical difficulties caused by the boundedness of line segments,

we obtain an upper bound on R(ra, n) that is roughly the same as the bound on

K(m, n) obtained in Section 2. Again, the bound will be derived from an analysis of

the space complexity of an algorithm for calculating m such faces. In Sections 6 and

7 we show how to implement the 'algorithm so that the calculation of m faces in an

Fig. 4.1. A face in a line-segment arrangement.

Complexity and Construction of Many Faces in Arrangements of Lines and Segments 177

arrangement of n line segments takes time that is only slightly more than our upper

bound on R(m, n).

Let S = {si, s2 s,} be a set o fn line segments in the plane, and let A = A(S)

be their arrangement. Let P = {pl, P2 p,~} be a set of points that we use to

designate faces of A, and consider the problem of calculating the faces of A that

contain the points Pi. Since we may reach a situation where a face of a

subarrangement contains more than one point, we use the auxiliary notation

/~(m, n) to denote the maximum complexity of the faces in an arrangement of n

segments that contain m given points (accounting for each face only once). Clearly,

R(m, n) = R(m, n) whenever both functions are defined.

For each i let l~ denote the line containing s i, and define L = {l~[1 < i < n}.

Apply the dual construction given in Section 2 to the lines in L and to the points in

P. Thus we recursively partition the dual plane into triangles v, and associate with

each v the subset L~ of lines in L whose dual points lie in v, and the subset P~ of

points in P whose dual lines intersect v. Implicitly through Lo, v also represents the

set of line segments S~ = {s~ll~ ~ Lv }. Consistent with the notation in Section 2, we

define m v = I P~ I and nv = I So I. The subproblem associated with v is to compute the

faces of A(So) that contain points of P~.

When m v >>_ x(no) we stop the recursion at v, pass back to the primal plane,

construct there the arrangement A(S~) of the nv line segments s~ in S~, and collect

the required faces of A(S~) that contain the points in P~,. The space complexity of

the entire A(S~), and thus also of the faces in question, is O(n~) = O(mo). ~ We also

stop the recursion if rn~ = 0. In this case, as is argued shortly, we only need to

construct the unbounded face of the associated line-segment arrangement. How to

implement this efficiently is described in Sections 6 and 7 below (see Theorem 11).

However, in terms of space complexity, we already know that this face has only

O(n~ot(n~)) edges [PSS].
(Note that an important feature of the construction is that in the dual plane we

use the dual points l* of the (unbounded) lines l~. We thus ignore the fact that we

have to consider only the portions s~ of these lines. However, when we pass back to

the primal plane, we always process the line segments st rather than the lines that

contain them.)

We now proceed to the discussion of how the relevant faces of A(S) are obtained

if0 < m < re(n). As in the case of lines, we compute Q~ = P - P~, for each resulting

triangle v. Every point in Qo either lies above all lines in Lo or below all these lines.

In any case, those points lie in the unique unbounded face, F~, of A(Sv). As

mentioned above, this face is bounded by O(nvo~(n)) edges. (If the given collection S

also contains unbounded rays of lines, we may have to consider two unbounded

faces of A(S~), as in the case of lines.)

The main difficulty lies of course in merging (or rather intersecting) the

recursively available faces of the subarrangements A(S~,) A(S~M) associated

with the triangles v~, v~ v M, to get the desired faces of A(S). For a particular

Indeed, the number of vertices, edges, and faces of A(Sv) is proportional to the number of
intersecting line.segment pairs which is, of course, at most (~).

178 H. Edelsbrunner, L. J. Guibas, and M. Sharir

point, p ~ P, this means that we construct F(p) by intersecting the faces Fv~(p) that

contain p in the subarrangements associated with the triangles vj. Our goal is to

obtain an appropriate generalization of the combination lemma for lines (Lemma

1) that will enable us to bound in a similar manner the total complexity of the faces

F(p~). This generalization is quite complicated and is described in detail in the

following section. This section continues with explaining the result of this general-

ization and using it to complete the combinatorial analysis of many faces in line-

segment arrangements,
For the remainder of this section (as well as for Sections 5-7) we define a polygon

as an open region in the plane that can occur as a face in a line-segment

arrangement. Thus, a polygon is neither necessarily convex nor simply connected.

The boundary of a polygon consists of one or more connected components called

contour cycles. We think of a contour cycle as a Jordan curve that may touch but

cannot cross itself. In particular, if an edge lies in the interior of the closure of the

polygon (it bounds the polygon on both sides), then the contour cycle has two

portions that touch along the edge (see Fig 4.1). When we count the number of

edges of a polygon we count each such edge portion twice. A vertex of the polygon

is reflex if the inside angle at this vertex exceeds ~. With these definitions we have

the following generalization of Lemma 1--the proof of this lemma, called the

"combination lemma for line segments," is given in Section 5.

Lemma 5. Let Pl, P2 Pk be k points in the plane, and let {B 1, B 2 Bs} and
{R1, R 2 Rt} be collections of "blue" and "red" polygons that satisfy the

following three properties:

(i) The blue (red) polygons are pairwise disjoint, the total number of blue (red)

edges is fl(p), and the total number of reflex vertices is r.

(ii) Each point Pi is contained in a blue polygon Bs, and a red polygon Rt,.

(iii) I f for each 1 < i <_ k we define Ei to be the connected component of B~, n Rt,

that contains Pi (see Fig. 5.3), then Ei ~ E j / f i ~ j.

Then the total number of edges of the Ei is at most fl + p + O(k) + O(r).

Using Lemma 5, we can complete the analysis of the merge step. Applying

Lemma 5 a constant number of times we conclude that the overall complexity of

the faces F(Pt) is at most the sum of the complexities of all the faces Fvj(Pt), i = 1,
2 m and j = 1, 2 M, plus O(m) + O(r), where r is the number of reflex

vertices in all faces F~(p~). But each such reflex vertex must be an endpoint of one of

the n segments in S, so O(r) = O(n). In addition to the complexity of the recursively

available faces Fvj(P~) we need to take into account the total number of edges
oo bounding the unbounded faces F~j, which is at most

M

~.. o(nv:(n,)) = o(n~(n)).

j=l

Complexity and Construction of Many Faces in Arrangements of Lines and Segments 179

We thus obtain the following recurrence formula for/~(m, n):

/~m if m = 0 ,

if m > x(n),
/~(m, n) _<

R(mi, ni) + bm+ b'no~(n) if m < x(n),
i

for some constants a, b, b' > 0, where mi, n~, and M satisfy conditions (I)-(III)
stated in Section 2. A proof that is almost identical to the proof of Lemma 2 (which
is therefore omitted) implies the following solution of the recurrence relation.

1.emma 6. R(m, n) < Dm 2/3 -'~n 2/3+2~ -I- Am + Brig(n) log re, for any 6 > O, where

the coefficients A, B, D depend on ¢5.

Remark. A major feature ofLemma 5 (and of its simpler variant Lemma 1) is that
the terms fl and p appear with multiplicative constant 1 in the bound for the total

combinatorial complexity of the E~. This ensures that the recurrence formula for
/~(m, n) given above involves the term)-'~ 1/~(mi, n~) with multiplicative constant 1.
This is essential for obtaining the bound stated in Lemma 6.

If m < x(n) (that is, at most one point per face in the original arrangement is
specified), then

m <_ m2/3-~n 2/3+2~

so that we can drop the second term from the bound in Lemma 6. We thus
conclude with the main result of this section.

Theorem 7. The maximum number of edges of m distinct faces in an arrangement of

n line segments is

R(m, n) = O(m z/a-an 2:a + za + net(n) log m)

for any 6 > O.

Remark. It is easy to check that/~(m, n) = O(m 2+6 + n~(n) log m), for any 6 > 0,

also satisifies the recurrence relation derived for /~. This constitutes a weak

generalization of Canham's theorem for lines [Ca] to the case of line segments.

5. Proof of the Combination Lemma for Line Segments

In this section we provide a proof of Lemma 5, the combination lemma for line
segments. This is the crucial lemma in the analysis of the complexity of many faces

180 H. Edelsbrunner, L. J. Guibas, and M. Sharir

in a line-segment arrangement presented in Section 4. We proceed by considering

the interaction between a blue and a red polygon, a blue polygon and many red

polygons, and finally many blue and many red polygons. The results in this section

have a topological and combinatorial flavor and add up to a proof of Lemma 5.

The main concept in this section is that of a polygon which is defined general

enough so that every face in a line-segment arrangement passes as a polygon. As

mentioned in Section 4, a polygon is thus connected but not necessarily simply

connected, and its boundary consists of connected components which we call

contour cycles. We can avoid the technical difficulty caused by the fact that a

connected component of the boundary need not be a simple Jordan curve, 6 if we

replace each line segment by a rectangle of sufficiently small width. For small

enough widths we get the same intersection pattern for the rectangles as for the line

segments, and a face (a connected component of the plane minus the union of all

rectangles) is now bounded by contour cycles that are simple Jordan curves. For

technical reasons we direct each contour cycle so that the polygon it bounds lies to

its left. Thus, a contour cycle that delimits a hole of the polygon is directed in

clockwise order whereas the outside contour cycle (if it exists) is directed in

counterclockwise order.

Our first result is topological and asserts that the traversal of every contour

cycle of a connected component E of B ca R, B a "blue" and R a " red" polygon,

"agrees" with the teraversal of the contour cycles of B and R. By this we mean that

the common points of a contour cycle of E and one of B (or R) are traversed in the

same order independent of whether we follow the contour cycle of E or that of B

(or R).

L e m m a 8. Let E, B, and R by polygons such that E is a connected component of

B ca R, and let a, b, c be three points on 7 ca ~, where 7 is a contour cycle of E and ~ is a

contour cycle of B. ?he order of points a, b, c along C is the same as along 7.

Proof. Note first that the directions of 7 and ~ along common boundary pieces

agree since E and B lie on the same side of these pieces. Take C, the contour cycle of

B that contains points a, b, c, and let ab e, bQ and ca¢ be the pieces (Jordan arcs) of

from a to b, from b to c, and from c to a. By assumption, points a, b, c belong also to

),. If abe is contained in 7, then the assertion is trivially true since the traversal from

a to b on), only passes points of abe, and c does not belong to abe. Otherwise, aby,

the portion of 7 leading from a to b, contains pieces that do not belong to C--these

pieces are necessarily contained in the union of dR and OB--C (see Fig. 5.1). Let

be such a piece, that is, 6 is a maximal connected component of Y--C, whose

starting point, z, lies on abe. We prove below that the endpoint, w, of 6 also lies on

A (simple) Jordan curve has the property that every sufficiently small disk whose center lies on the

curve is cut into two connected components if we remove from it all points of the curve. This implies that

a Jordan curve is either unbounded at both ends or it is bounded in which case it is said to be closed. A
connected piece of a Jardan curve is called a Jordan arc; it satisfies the same condition as the Jordan

curve expect at its two endpoints at which removing the points of the arc leaves every small enough disk

connected.

Complexity and Construction of Many Faces in Arrangements of Lines and Segments 181

f

a

\ ! \

Fig. 5.1. Traversing the boundary of the intersection.

\

ab¢ which implies the lemma since we cannot reach any point of ~--ab¢ before

passing through b.

Assume that w does not lie on abe. Let 6' be the portion of ~ leading from z to w,

including the endpoints (see Fig. 5.2; note that 6' must contain b). By construction,

6 and 6' are disjoint and their union is a closed Jordan curve a. Let a' and b' be two

interior points of E that lie sufficiently close to a and b. It is thus possible to connect

a' and b' by a Jordan arc, a, that lies sufficiently close to ab~ such that a c~ b' = O

and a and 6 cross in a single point. Thus, a' and b' lie in different components of the

complement of a which is impossible since a is disjoint from E and E is connected

(see Fig. 5.2). []

Remark. Lemma 8 expresses a consistency property of intersections of polygons.

Among other things it implies that if an edge e of B (or R, for that matter) contains

several edges of a contour cycle of E, then these edges appear in the same order

along this contour cycle as along e.

Consider next a blue polygon B with d contour cycles ~1, ~z , - . . , ~e and let

Pl,P2 Pm be the points designating m desired regions contained in B. We let R i

be the red polygon that contains pa for 1 < i < m, and we write E i for the connected

/ / / / / / bl ~

ab~

Fig. 5.2. An impossible configuration.

182 H. Edelsbrunner, L. J. Guibas, and M. Sharir

arcs removed

. - -_~S" / in second step / I - . .

, , • ,~,,'_-,. ~ y i , " i

aB ') ~ ~ . . ' i , '+' I , : . - - l _] I ," , ' / / , ~ ' / , ' l ~ " " ~ - ~ " " ," '

/ ~.Z>../'o~. q, ;?~,. 'L~ ~ - " ~ o.> ,

Fig. 5.3. The graph c~ B.

component of the polygon B c~ Ri that contains pi (see Fig. 5.3). To be consistent

with the assumptions for Lemma 5 we allow R~ = Rj but we assume that E~ # Ej if

i # j. We analyze the blue boundary pieces of the Ei by constructing a graph, faB,

and proving certain properties about (qB. This graph is instrumental in proving an

upper bound on the total number of blue edges bounding the Ei.

We need a few definitions. A blue boundary piece of E i is a connected component

of OE~ ca aB. Every blue boundary piece, 6, belongs to a contour cycle 7 of some Ei

and to a blue contour cycle ~j. Since contour cycles are directed, we can define a

predecessor and a successor of 6 in both cycles, which are the blue boundary pieces

immediately before and after ~ in y and in ~j. Note that it is possible that the

predecessor (successor) of 6 in y is the same as in ~ , but this is not necessarily the

case. Graph ~s is a graph whose nodes are the points Pl, P2 p~ and d

additional points ql, q2 qe so that q~ lies in the interior of the connected

component of the complement R 2 - B of B bounded by ~; we denote this

component by Xl (thus we have one point q~ in each such component). For every

blue boundary piece 6 c OEi ca ~j, 1 < i < m and 1 < j < d, we draw a curve

connecting p~ with q~. This curve, a plane embedding of an arc of f#n, connects an

arbitrary point on 6 with p~ and qj. Since 6 is part of the common boundary of E~

and Xj we can draw the curve completely within E~ u X~. The connectedness of

each Et and X~ implies, by a consequence of Sch6nfliess theorem [M], that we can

draw all such edges without any crossings. Hence, fan is planar.

The second step of the construction removes sufficiently many of the duplicate

arcs (connecting the same two points) so that we can apply Euler's relation to

derive an upper bound on the numbe~ of remaining arcs. Whenever two arcs of fan

connect the same two points and they correspond to two blue boundary pieces

such that one is the successor of the other in both contour cycles, then we delete the

Complexity and Construction of Many Faces in Arrangements of Lines and Segments 183

successor arc. (In the case that both blue boundary pieces are successors of each

other, we make an arbitrary decision to break the tie.) As a result of this deletion

operation, every blue boundary piece 6 c E i n ~j intersects an arc of ~B, unless

there is another such piece ~' c E~ n ~i that precedes 6 in both contour cycles. Note

that the removal of arcs as described does not eliminate all multiarcs but it

guarantees that, barring one extreme situation mentioned below, every region of

the embedding of fqB is bounded by at least four arcs, counting an arc twice if it lies

in the closure of the region. The one case where this does not hold is when (gn

contains only two vertices and one connecting (doubly counted) arc. This arises

when B contains just one point Pl, and the corresponding E i uses only one contour

cycle of B. In this case we can delete this arc too, because it will not be used in the

argument to follow. The factor "four" rather than "three" which is typical for

planar graph arguments can be used because f~n is bipartite by definition and has

therefore no odd cycles. Using Euler's relation we derive that the number of

remaining arcs is at most 2(m + ~) - 4 (also in the special case mentioned above).

We are now ready to prove a strong variant of Lemma 5 stating that the k

connected components of the B i n R j, 1 < i < s and 1 <_ j ~ t, containing the k

points Pl, P2 PR are bounded by a total of at most fl + p + r + 12k + 6E - 24
edges, where

fl is the total number of (blue) edges of the B~,

p is the total number of (red) edges of the R j,

r is the total number of reflex vertices of the B~ and R~, and

is the total number of contour cycles of the Bi and Rj.

Lemma 5 is implied because ~ < r + 2k (each B i or R~ has at most one exterior

contour cycle, there are at most 2k blue and red polygons, and each interior

contour cycle must contain a reflex vertex), and thus fl + p + r + 12k + 6C -

24 = fl + p + O(r) + O(k). In the argument to come we traverse all blue (and

symmetrically all red) contour cycles and count the blue (red) edges of the Ei,

1 _< i < k, as we encounter them, by charging them to various "acounts." Note that

a blue (red) edge can contain several such edges. We define f¢ as the union of all

graphs c~B, and ,,~ as the union of all graphs ~R~ defined symmetrically for all red

polygons.

The easy case is if a blue (red) edge, e, contains at most one edge of all the

E~--the appearance of this edge is accounted for by the term fl (p) in the upper

bound. Otherwise, let el and e2 be two components of e c~ (U 1 <i,:k OEi), consecu-

tive along e, and assume that el is already accounted for. (We always charge the

first such component to e itself, so these charges are absorbed in the term fl (p).) We

assume e is blue.

(i) If e a and e2 do not lie on a common contour cycle of an Et (and thus belong

to the boundaries of two different polygons E), then we charge e: to the arc

of (~ that is induced by the blue boundary piece that contains e2 (note that

this arc cannot have been deleted from f~; see Fig. 5.4 (a)).

On the other hand, if e~ and e2 belong to a common contour cycle ~, of some E~,

then we distinguish two cases. Let ~'o be the piece of ~ connecting the last point of e~

184 H. Edelsbrunner, L. J. Guibas, and M. Sharir

e

(a)

~"~J't ~ ~ t J e 2

charged ~ 1"~/17r/~ e I

(b)

!-~ ..,,.I,,,~) t~ I!LL r
- ~ 7J

~:(~':(t/kr)))))) L.~ :X ~' ~')'>"

. . , , : ',~ .) q

\', -~' ', " .21e

Fig. 5.4.

(c) (d)

(a) Charging rule (i). (b) Charging rule (ii)(a). (c) Charging rule (ii)(b). (d) Charging rule (iii).

with the first point of e 2. Note that, by Lemma 8, the relative interior of V is disjoint

from e. Moreover, it is disjoint from the blue contour cycle containing e.

(ii) If Y0 contains no blue boundary piece, then there are two subcases:

(a) Y0 contains a red reflex vertex (see Fig. 5.4 (b)). Then we charge e2 to the

first such reflex vertex.

(b) Vo contains no red reflex vertices. In this case Vo must "go around" e, as

shown in Fig. 5.4 (c);.that is, Vo keeps turning to the left after leaving el,

crosses the line containing e before e, crosses it again after e, and

eventually reaching e again at e2 (making only left turns all along). In

this case we charge e2 to the arc of ~g induced by Vo, or, if this arc has

been removed from ~g', to the preceding arc of g that connects the

same two nodes of that graph.

(iii) Otherwise, we charge ez to the arc of ~ that is induced by the first blue

boundary piece on ~o (again, by Lemma 8, this arc cannot have been

deleted from f#; see Fig. 5.4 (d)).

It is easy to see that each reflex vertex is charged in (ii)(a) at most once. The

definition o f ~ guarantees that in each case where we charge ~ there is in fact an arc

that takes the charge. We now argue that the mechanism we use can charge an arc

' o f~ at most twice. In ease (i) the arc takes the charge for an edge, e2, that is the first

edge of the corresponding blue boundary piece. Since every blue boundary piece

has only one first edge, this case can occur only once. In case (iii), the arc that takes

the charge for a pair of edges, el and %, corresponds to a different blue contour

Complexity and Construction of Many Faces in Arrangements of Lines and Segments 185

cycle. However, el, the blue boundary piece ~ that corresponds to the charged arc,

and e 2 all belong to the same contour cycle of some E l and 6 is the first blue

boundary piece that occurs between el and e2 in this cycle. Clearly, it cannot be the

first blue boundary piece after a blue boundary piece other than that containing el,

which implies that this case also puts at most one charge onto any one arc.

Finally we claim that in case (ii)(b) no arc of ~ is charged more than once.

Assume to the contrary that such an arc is charged twice, because it is induced by

two red boundary pieces, Y0, Y~, that bound the same region Ei, and each of them is

being charged by rule (ii)(b). It is easily checked that these charges must be induced

by two distinct blue edges e, e' (recall that by our convention e represents just one

side of a blue segment, and similarly for e'). Let el, e2 be the two consecutive

portions of e, separated along OEi by Yo, and similarly let et', e 2' be the two
consecutive portions of e', separated along OE~ by ~,~.

Take a point p s e lying immediately after e~ and a point p' e e' lying immediately

after e' t. If we move from p slightly away from e to its left, and similarly for p', we

will be in the same connected component of the complement of the red polygon

containing E~--this is the component bounded by the red contour cycle containing

both ~o and y;. We can therefore connect p to p' by a path n that is disjoint from E~.

Let us form a "dummy" blue contour cycle ~ composed of e, e', and n and of the

other sides of e, e', and n (this argument shows incidentally that e' cannot be the

other side of e).

Our assumptions imply that the four subsegments e~, e 2, e'~, and e~ appear in

this (circular) order along 0E~. By Lemma 8 this must also be the order in which

they appear along ft. However, it is easily verified that this is impossible. This

contradiction shows that no arc of ,ge is charged more than once.

Thus, summing over all blue and red edge duplications, we see that the total

number of edges bounding the E~, 1 < i < k, is at most

/~ + p + r plus three times the total number of arcs of ~ and ~ .

The number of arcs of ~ and ~ is at most 4k + 2: -- 4s - 4t since every point Pt is

counted twice (once for the blue and once for the red polygon that contains it). This

implies the claim and completes the proof of Lemma 5. []

6. Calculating Many Faces in an Arrangement of Line Segments

We next turn to the task of calculating the faces in an arrangement of n line

segments, sl, s 2 s,, that contain m given points, Pl, P2 Pro. Generalizing the

ray shooting method used in Section 3 for line arrangements is problematic

because it would call for performing such ray shooting queries inside polygonal

regions that are not simply connected. No efficient technique for doing so is

currently known. This section presents an alternative approach based on the line-

sweeping technique (see, e.g., [PS]).

186 H. Edelsbrunner, L. J. Guibas, and M. Sharir

Consider the algorithmic issues that arise in efficiently implementing the

algorithm implicitly described in Sections 4 and 5. At the bottom of the recursion,

when my-> r(nv), we need to calculate the entire arrangement of the no

line segments in Sv, and extract from it the faces containing the m~ points
reaching v. Using the sweep algorithm in [BO] this arrangement can be con=

structed in O(n~ log no) time, and the faces that contain the me points can be
identified in time O(mo log nv) using any of a number of efficient point-location

methods. Hence, such a node v can be processed in time O(mo log nv).

In the general merging step, we first need to calculate, for each subregion v, the

exterior face of A(S~), which contains the points in Qo by definition. This step of the

computation is described at the end of Section 7. It falls out as a special case of the

general merge procedure described there. The resulting algorithm, stated in

Theorem 11 of Section 7, has time complexity O(no~(n~) log 2 no), if the unbounded

face has to be constructed from scratch (which is the case if rno = 0), but this can be

improved to O(nv~(no) log n~), if we already have available the unbounded faces in

the subarrangements whose overlay gives A(S~) (which is the case if 0 < m~ <

(nv); if rn~ > r(n~) we compute the entire arrangement A(Sv), so no special attention

is required for the unbounded face).

Next, in the merging itself, for each Pie P we need to calculate the face F(pt) of

the arrangement A(S) that contains p~. This face is the connected component

containing Pi of the intersection of the M faces Foj(P~), j = 1, 2 , M, where
vl v~ are the triangles formed in the partitioning (note that each of these faces

is either computed recursively or is the corresponding unbounded face F~ whose

computation has just been discussed). As in Section 3, our goal is to construct these

faces in time that only depends on their total combinatorial complexity. Section 7

presents a method, called the blue-red merge, that can be used to construct the faces

F(pt) in such an efficient manner.

Let us be more specific about the blue-red merge. The input to this procedure is

a set of pairwise disjoint blue (and red) polygons bounded by a total number of/~

(p) edges, and a set of k points each one inside some blue and some red polygon.

The output is the set of k polygons that are the connected components of the

blue-red intersections that contain the k points. The blue-red merge constructs the

output polygons in time O((/~ + p + k) log (/~ + p + k)) (s¢¢ Theorem 10). To

construct the faces F(p~ we apply the blue-red merge M - 1 times to the faces

Fvj(p~),j = 1, 2 M. The amount of time required for the merging is thus

M

~, O((g(rn~j, n~j) + m~j) log n~j + no#~(nvj) log n~#)
jffil

= O((R(m, n) + m + n~(n)) log n).

Here we use the fact that the number of reflex vertices in the relevant faces is

O(n)--they must be endpoints of line segments in Sv. In addition, we use Lemma 5

for each of the M - 1 blue-red merging steps to deduce that the output size of each

merge is linear in its input size. From this the above bound follows readily. We now

put everything together, also taking into account the cost of the recursive

partitioning of the dual plane (as in Section 3).

Complexity and Construction of Many Faces in Arrangements of Lines and Segments 187

Let T(m, n) denote the time needed by our algorithm to calculate the faces in an

arrangement of n line segments that contain m given points, under the assumption

that the random samples that we draw at each recursive step are indeed 8-nets. (As

in Section 3, we verify this property after each sampling, discard the sampling if it is

not an e-net, and try another one. This makes the expected running time of the

algorithm within a constant factor of T(m, n).) We get the following recurrence

relation for T(m, n):

T(m, n) = O(not(n) log z n) if

T(m, n) = O(m log n) if

and

M

T(m, n) < ~ T(mi, n~) + O((R(m, n) + m + not(n)) log n) if
i=1

m=0,

m >_ x(n),

m < r(n),

where mi, hi, and M satisfy conditions (I)-(III) stated in the analysis given in

Section 2. Using the bounds on/~(m, n) and R(m, n) obtained above, we can easily

obtain the following bounds, in much the same way as in the proofs of Lemma 2

and Theorem 3.

Theorem 9. The m faces designated by m points in an arranoement of n line

seoments in the plane can be constructed in randomized expected time

T(m, n) = O(m 2:3 -6n2/3 + 2a log n + n~(n) log 2 n log m),

where 6 is any positive real number. The space required by the aloorithm is

S(m, n) = O(m2/a-~n 2/3+ 2a + not(n) log m)

for any 6 > O.

7. The Blue-Red Merge

This section presents the details of the blue-red merge which computes the relevant

faces in an arrangement A(S~) assuming that the faces at the M subarrangements

A(Sws) have already been constructed recursively. As in Section 3 we assume

M = 2, so that we need to intersect only two faces around each point p~. We are

thus given two collections of (not necessarily simply connected) open polygons in

the plane, {Bz, B2 Bs} and {R 1, R 2 Rt}; the B l are called the blue polygons

and the R s are the red polygons. We can assume that any two blue (red) polygons

are disjoint. In addition we are given a set P of k points, Pl p~, where each Pt is
contained in some blue polygon and in some red polygon. See Fig. 7.1 (a) and (b)

for an illustration of this set-up. Let p and p denote the total number of edges of the

blue and red polygons, respectively.

188 H. Edelsbrunner, L. J. Guibas, and M. Sharir

(a)

?

E(rrrl7 r . r l ~i~,fr.~l.r.~.A.

.E ~ p 3 I

r ~ I~ •

(b)

f fake

fake

(c)

Fig. 7.1. Intersecting blue and red polygons. (a) The blue polygons. (b) The red polygons. (c) The
purple polygons.

Our goal is to calculate all polygons E~, where, for each p~e P, E~ is the

connected component containing pz of the intersection of the red polygon and the

blue polygon that contain p~. The resulting Et are called the purple polygons, as
each is covered by a red and a blue polygon. Fig. 7.1 (c) shows the purple polygons
that arise from the blue and red polygons and surround the points shown in Fig. 7.1

(a) and (b). As in Section 3, we do not exclude the possibility that Ei = Ej for i ~ j.
If ~ is the total number of purple edges, then ~ = ~ + p + O(k) + O(r), by Lemma

5, where r is the total number of reflex blue and red vertices. Since r < / / + p we
have 7r = O(p + p + k).

To facilitate the merge, we require certain information to be precomputed and

available for each collection of polygons. Specifically, let Ps and Px be the set of

reflex vertices of the blue and red polygons, respectively. We require that each blue

polygon B~ be subdivided into convex regions by drawing vertical rays from each
point p ~ (P u Ps) ra B~ and stopping them as they encounter an edge of Bl; we call

Complexity and Construction of Many Faces in Arrangements of Lines and Segments 189

the resulting vertical line segment through p the blue vertical divider of p, and

denote it by blue(p) (see Fig. 7.1 (a)). Symmetrically, we require that each red

polygon Rj is decomposed into convex regions by red vertical dividers red(p),

P e (P ~) PR) c~ Rj (see Fig. 7.1 (b)). These convex decompositions of the blue and

red polygons will be available recursively. These decompositions do not increase

the complexity of the procedure by more than a constant factor.

A particular convex blue (or red) region terminates on the left or the right either

(i) because of a point of P,

(ii) because of a blue (or red) reflex vertex, or

(iii) because of a locally x-extremal (nonreflex) vertex of the corresponding

polygon.

The blue-red merge produces a similar decomposition of the purple polygons into

convex regions, which we call the purple regions.

We construct the purple regions by sweeping a vertical line across the plane. A

purple region starts (and ends) at

(i) a point of P,

(ii) a blue or red reflex vertex,

(iii) an x-extremal vertex of a blue or red polygon, or

(iv) the intersection of a blue and red edge.

In a left-to-right sweep we discover the portion of each purple polygon that is to the

right of the leftmost point in P w PB w PR that lies in it. Afterward, in a right-to-left

sweep, we get the portion of each purple polygon to the left of the rightmost point

in P w Pn w PR that lies in the polygon. Together, the two sweeps discover all edges

of the purple polygons. In fact, the sweeps construct slightly more than the purple

regions (the convex decomposition of the purple polygons) and we have to remove

superfluous regions after the two sweeps (see Fig. 7.1 (c)). More about this later.

We are now ready to describe the left-to-right sweep--the right-to-left sweep is

symmetric. We start by constructing a priority queue that stores P u Pn u PR

ordered by x-coordinates. This priority queue is referred to as the event schedule.

During the sweep we maintain separate data structures for the blue, red and purple

regions. Thus, it is convenient to think of blue, red, and purple planes swept

simultaneously and independently. The main purpose of keeping the blue and red

regions separate is to avoid processing "uninteresting" blue-red intersections that

do not contribute to the boundary of a purple region. The only data structure that

represents blue, red, and purple data mixed together is the event schedule. The

main part of the blue-red merge is to detect intersections of blue and red edges that

occur on the boundary of a purple region. When such an intersection is detected it

is added to the event schedule and appropriate actions are taken to adjust the data

structures supporting the sweep.

Introduction of Scouts. Each time a point p e P u Pn u P~ is encountered, we

possibly start one or two new purple regions in the purple plane. If p ~ P, then it

belongs to a blue and a red region and we start one new purple region. If p is a

reflex vertex of a blue (red) polygon we check whether it lies inside a red (blue)

190 H. Edelsbrunner, L J. Guibas, and M. Sharir

polygon. If it does not we simply discard it, and if it does we start two or one purple

region(s) depending on whether or not both incident edges ofp lie to the right of the

vertical line through p7 Whenever a new purple region is started we create two

scouts, an upper and a lower scout for the region. The job of the two scouts is to

walk along the upper and lower boundary of the new purple region and to look out

for events to come which might influence the shape of their region. The scouts

always stay with the sweep line and never stroll ahead or stay behind. We describe

the way the upper scout of the purple region does its j ob - - t he lower scout behaves

symmetrically.

The upper scout, u, starts on the lowest blue or red edge above p, the point that

gives rise to the purple region at hand. If p e P, then the edge is either the blue edge

that contains the upper endpoint of blue(p) or the red edge that contains the upper

endpoint of red(p). If p is a blue (red) reflex vertex, then we consult the data

structure that represents the rod (blue) sweep to find the lowest red edge vertically

above ps and we compare this edge with the blue (red) edge that contains the upper

endpoint of blue(p) (red(p)). The scout moves right along that edge following the

sweep line and it watches out for certain events that might influence the construc-

tion of the purple boundary.

Without loss of generality, assume that u currently lies on a blue edge. Most

importantly, u looks up to the lowest red edge above--cal l it e r. Since u is a point of

a purple region, all points between u and e r including u lie in the red polygon

bounded by er. The reason for u's concern is that, at some future point in time, the

red boundary above u might drop below the blue boundary u is currently following.

If this indeed happens u will switch to the red boundary which will then delimit the

purple region. However, there might be another scout, v, already watching the same

red edge from below. In that case only the higher of u and v needs to watch er-- tbe

other scout can rest, since it is protected by the other scout, who will have to warn it

in case the red boundary drops unexpectedly.

In more technical detail, "watching er" means that u determines whether e r and

eb, the edge it walks on, intersect to the right of the sweep line. I f so it adds the

intersection point to the event schedule of the sweep. If such an intersection does

not exist and u reaches the right endpoint of eb (or e~) it continues walking on

(watching) the next blue (red) edge, if it exists. On the other hand, if e b and e~

intersect, then u switches over to e, when the sweep line passes the intersection. In

this case, u starts watching e~ which is now the lowest blue edge above u. Of course,

there is also the case that the red boundary watched by u discontinuously changes

Assuming that we deal with polygons bounded by simple Jordan curves there are exactly two such
edges. In our application, however, each reflex vertex is an endpoint of a line segment and thus,
assuming general position of the segments, is incident to only one edge. We treat the two sides of this
edge as two edges. Thus, either both incident edges are to the left or both are to the right of the vertical
line through the reflex vertex. However, it is also easy to handle the case of endpoints being shared by
more than one segment.

s This data structure is a balanced tree that stores the red (blue) edges that currently intersect the
sweep line. Thus, logarithmic time (in the number of red (blue) edges) is sufficient to find the lowest red
(blue) edge above a given point. New edges can be added and old edges can be removed in logarithmic
time.

Complexity and Construction of Many Faces in Arrangements of Lines and Segments 191

at some point-- in this case u must look for a new assignment. Below, this case is

treated in detail.

Another job of u is to watch its partner, the lower scout of the sample purple

region. This is because when the two scouts meet then the purple region ends. Of

course, the region ends earlier if another point of P or a reflex vertex is encountered

between the two scouts.

Scout Invariants. There are two key properties that are satisfied at any given time.

The first is that at any point in time each blue and each red edge is watched by at

most one upper or lower scout. Of course, the assignment of the scouts may change

and, over time, a single edge can be watched by many scouts. The second property

is that a blue edge is watched only by scouts that walk along red edges, and a red

edge is watched only by scouts walking along blue edges.

Changing Assignments. Reassignments for scouts are necessary when new purple

regions start and old ones end. A purple region might end, for example, when its

two scouts meet. This occurs, for instance, when the rightmost vertex of a blue

region lies inside a red region. In this event, the two purple scouts are dismissed.

However, some transfer of watching responsibility is indicated before the two

scouts leave the scene. If the dismissed upper scout, u, was watching a red edge, e r,

then we must check v, the next upper scout below u. If v is idle (this can only be

because u protected v from e,), then v takes over the responsibility to watch e~. If v is

already watching another red edge, then we leave it undisturbed as its red edge

must lie below e~.

The two scouts of a purple region also come together when a purple region ends

at the intersection of a red and a blue edge. Any reassignment of watching

responsibilities are handled as before.

I fa purple region ends because of a point p e P u Pn w P~ that appears between

the scouts, then again the two scouts are dimissed. In this case, however, they will

generally be replaced by new scouts employed to guard the purple region(s) started

at the vertical divider of p.

The reassignment of watching responsibility necessary when we sweep through

such a point p is done as follows. At the time p is encountered, one or two new

purple regions are created. Assume for simplicity that there is only one new region,

let u be its upper scout and assume that u starts out on a blue edge. First, u finds the

lowest red edge above it using the data structure that represents the sweep in the

red plane. Second, u consults the upper scout, w, immediately above and the upper

scout, v, immediately below. If w is watching the same red edge as u, then u forgets

about its assignment and becomes idle. Otherwise, u takes up its assignment and

checks whether v watches the same red edge. If yes, then v becomes idle. Similar

actions are taken when two new purple regions are spawned at p.

Finally, some transfer of watching responsibility may be required at a blue-red

crossing lying, say, on the upper boundary of some purple region. Suppose the

corresponding upper scout, u, walks along a blue edge, eb, just before the

intersection occurs. To the right of the crossing u follows a red edge, er. As noted

above, u now starts watching eb, but we also need to cheek the upper scout v

192 H. Edelsbrunner, L J. Guibas, and M. Sharir

immediately below u, who might want to start watching e r. Details are similar as in

the cases considered above.

Analyzing the Blue-Red Sweep. The scouts simply trace the boundaries of the

purple regions. Each scout adds the intersections between blue and red edges that it

predicts to the event schedule. New events are added only when we sweep through

a point in P, through a blue vertex, through a red vertex, or through the

intersection between a blue and a red edge that is also a vertex of a purple region.

Moreover, at each such point only a constant number of additions of new events
are made. Thus the total number of events ever scheduled is proportional to the

total input and output size, which, by Lemma 5, is O(fl + p + k). The time to add

or remove an entry to or from the event schedule is logarithmic in its size which is

thus O(log(fl + p + k)). The additional operations involve updating the balanced

trees that represent the blue, red, and purple cross-sections along the sweep line,

creating and dismissing scouts, and reassigning watching responsibilities. It is plain

that we need to perform only O(fl + p + k) such operations, and that each one can

be carried out in time O(log(fl + p + k)).

There is a minor point to be clarified here: the algorithm constructs more than

only the "true" purple regions (those that are connected by sequences of adjacen-

cies across vertical dividers to regions that contain points of P). Indeed, it

constructs all connected components of the blue-red intersections that contain a

point of P or a reflex blue or red vertex (see, for example, Fig. 7.1 (c) which shows

two purple faces that contain no point of P). The construction of these additional

faces seems necessary since a genuine purple face can go back and forth in a

serpentine-like fashion, which makes it difficult for a sweep to capture its entire

boundary unless it collects various portions of the face in advance. Since the

number of reflex vertices is at most fl + p, this does not affect the asymptotic

time-complexity of the above algorithm. The final step now removes fake purple

regions. This can be done by a simple graph search in time proportional to the

number of purple regions produced by the algorithm, hence in time O(fl + p + k).

Thus the blue-red merge takes time O((fl + p + k) log(fl + p + k)).

Theorem 10. Let the B~ (R j) form a collection of pairwise disjoint blue (red)

polygons in the plane bounded by a total number of fl (p) edges, and let P be a set of k

points each contained in a blue and a red polygon. The connected components of the

intersections between the blue and the red polygons that contain the given points can

be constructed in time O((fl + p + k) log(fl + p + k)).

We next show how to apply the blue-red merge to the calculation of a single

face, F, in an arrangement of a collection of n line segments, S = {s 1, s 2 , s,}. As
usual, F is assumed to be represented by a single point p contained in F. We now

employ a straightforward divide-and-conquer procedure (nothing l~e our present

intricate partition tree scheme):

Step 1. Partition S into subsets $1 and $2 of about half the size of S each.

Step 2. Calculate the faces Ft and F2 in the arrangements A(SO and A(S 2) that

contain p.
Step 3. Apply the blue-red merge described above to F1, F2, and {p}.

Complexity and Construction of Many Faces in Arrangements of Lines and Segments 193

By the results of [PSS], we know that F 1 and F 2 together have O(no~(n)) edges.

Thus, by Theorem 10, Step 3 constructs F from F1 and F2 in time O(not(n) log n).

We therefore get

T(n) = 2T(n/2) + O(n~(n) log n) = O(nct(n) log 2 n)

for the total amount of time required to construct F. We state this result as a

theorem.

Theorem 11. A single face in an arrangement of n line segments in the plane can be

calculated in time O(no~(n) log 2 n).

Remarks. (1) Theorem 11 extends and simplifies previous results on constructing

a single face in a line-segment arrangement obtained in I'PSS].

(2) In the construction of m faces in a line-segment arrangement, we need

Theorem 11 for calculating the unbounded face, F~, in A(S,,), at each subregion v. If

v represents an inner recursive step, then we already have a constant number of

unbounded faces available such that F~ is the unbounded connected component of

their intersection. Hence, we do not have to pay for the recursive overhead (as in

Theorem t 1), which gives us an O(nv~t(nv) log n~)-time algorithm for constructing

F~. No log nv factor can be saved, however, if v is at the bottom of recursion.

(3) Note that the algorithm given in Theorem 11 is deterministic.

8. Discussion and Open Problems

In this paper we have obtained almost tight upper bounds for the maximum

number of edges bounding m faces in an arrangement of n lines or line segments.

We also presented efficient randomized algorithms for the calculation of these

faces. The expected randomized time-complexity of these algorithms is only slightly

higher than the upper bounds on the nuber of edges that are to be reported. The

main technical tools that we have introduced and used in our analysis are

(i) efficient planar partitioning schemes for a set ofn points and m lines, using a

random sampling technique similar to those of [HW'J and [C1], and

(ii) the combination lemmas for faces in arrangements of lines and of line

segments.

This final section concludes with some comments on our techniques, reports on

further progress, and states related open problems.

The problem of calculating m faces in an arrangement of n lines or line segments

generalizes two simpler variants. One of them, originally posed by Hopcroft, is the
following:

Given m points and n lines in the plane, determine whether any of the points lies

on any of the lines.

194 H. Edelsbrunner, L. J. Guibas, and M. Sharir

Another variant is

Given m points and n lines in the plane, find for each point the nearest line that

lies vertically below it.

Since both problems are restricted cases of the problem studied in this paper, our

algorithm yields efficient solutions to these simpler problems as well, improving

earlier solutions in I-CSY]. Note, however, that in these problems the output size is

not a significant issue--the first problem is just a decision problem and the output

in the second problem has only linear size. In constrast, for the problem studied in

this paper the output size, and thus the space- and time-complexity of the
algorithm, can be forced to be superlinear, that is, ~(m2/an2/3). An obvious open

problem that arises is whether the two simpler problems can be solved in
o(m213n 2/3) time. As is shown elsewhere [EGSh-I, the straightforward generaliza-

tions of the two problems to three dimensions can indeed be solved faster than the

best-known solution for the problem of calculating the entire cells of the arrange-

ment containing the given points.

Our approach to calculating faces in arrangements is based on a dualization of

the problem which puts limits on its generality. Nevertheless, we could give an

equivalent description of our technique using only the primal plane. We thus draw

a random sample of r of the given points and then partition the lines into O(r 2)

so-called 3-corridors each being the primal equivalent of a triangle in the dual plane

(see [HW]). Each point is passed to all 3-corridors that contain it. It is an

interesting open problem whether or not this primal view of our technique can be

generalized to apply to arrangements of other curves such as circles and alike.

Recently, after the original submission of this paper, considerable progress was

made on the problems studied here and on many related problems. The new results

improve, extend, or apply the results and techniques developed here. Many of these

latter works, listed below, are based on the tools and methods of this paper:

(1) We have already mentioned the companion paper [CEG*], in which an

improved and tight combinatorial bound has been obtained for the case of

lines.
(2) Later, Edelsbrunner et al. [EGH*'I have obtained efficient algorithms to

preprocess an arrangement of n lines so that, given a query point, the face of

the arrangement containing the point can be computed efficiently.

(3) Our complexity bound for the case of segments has been recently improved
by Aronov et al. [AEGS] t o O(m2/3n 2/3 logl/a(n2/m) + n~t(n) + n log m).

This is still not known to be tight, but the gap between the upper and lower

bounds has been reduced considerably.

(4) The blue-red merge, and a weaker version of the combination lemma, have

been extended in Guibas et al. [GSS] to the case of arrangements of curved

arcs, provided no pair of the arcs intersect in more than a fixed constant

number s of points. They have applied these tools to obtain a n O(,~s+2(n)
log 2 n) algorithm for the calculation of a single face in such an arrangement,

where ,~s+2(n) is the maximum length of (n,s + 2)-Davenport-Schinzel

sequences.

Complexity and Construction of Many Faces in Arrangements of Lines and Segments 195

(5)

(6)

The results obtained in this paper have been applied in [AS] to bound the

complexity of all nonconvex cells in an arrangement of n triangles in 3-space.

A by-product of the research in [AS] is a simpler proof of the combination

lemmas, Lemmas 1 and 5.

Finally, there has been recently considerable progress in obtaining determin-

istic algorithms for partitioning arrangements of lines in the plane. The best

result in this direction is due to Agarwal [AI, and it leads, among other

applications, to a deterministic algorithm for computing m faces in an
arrangement ofn line segments in time O(m2/3n 2/3 log" n + (m + n) log n) for

some constant a < 3.

Acknowledgments

We wish to thank Ken Clarkson for providing valuable insights into the random

sampling technique which have helped us in substantial improvements of our

technique. Thanks are also extended to John Hershberger, Janos Pach, Raimund

Seidel, Jack Snoeyink, Jorge Stolfi, and Emo Welzl for useful discussions on the

problems studied in this paper. Part of the work on this paper has been carried out

at DEC Systems Research Center, and the authors would like to express their

gratitude for its generous hospitality.

References

[A]

[AEGS]

[AS]

[BO]

[Ca]

[CD]

[C1]

[CEG*]

[csY]

[El
[EGH*]

[EGSh]

Agarwal, P. K. An efficient algorithm for partitioning arrangements of lines and its
applications. In Proc. 5th ACM Syrup. Comput. Geom., 1989, pp. II-22.
Aronov, B., Edelsbrunner, H., Guibas, L, and Sharir, M. Improved bounds on the number
of edges of many faces in arrangements of line segments. Report UIUCDCS-R-89-1527,
Department of Computer Science, University of Illinois, Urbana, Illinois, 1989.
Aronov, B., and Sharir, M. Triangles in space, or: Building (and analyzing) castles in the air.
In Proc. 4th ACM Syrup. Comput. Geom., 1988, pp. 381-391.
Bentley, J. L., and Ottmann, T. A. Algorithms for reporting and counting geometric
intersections. IEEE Trans. Comput. 28 (1979), 643-647.
Canham, R. J. A theorem on arrangements of lines in the plane. Isreal J. Math. 7 (1969),
393-397.
Chazelle, B., and Dobkin, D. P. Intersection of convex objects in two and three dimensions.
J. Assoc. Comput. Mach. 34 (1987), 1-27.
Clarkson, K. New applications of random sampling in computational geometry. Discrete

Comput. Geom. 2 (1987), 195-222.
Clarkson, K., Edelsbrunner, H., Guibas, L. J., Sharir, M., and Welzl, E. Combinatorial
complexity bounds for arrangements of curves and spheres. Discrete Comlmt. Geom., this
issue, 99-160.
Cole, R., Sharir M., and Yap, C. K. On k-hulls and related problems. SlAM J. Comput. 16
(1987), 61-77.
Edelsbrunner, H. Algorithms in Combinatorial Geometry. Springer-Vedag, Heidelberg, 1987.
Edelsbrunuer, H., Guibas, L. J., Hershberger, J., Seidel, R., Sharir, M., Snceyink, J., and
Welzl, E. Implicitly representing arrangements of lines or segments. Discrete Comput. Geom.

4 (1989), 433-466.
Edelsbrunner, H., Guibas, L J., and Sharir, M. The complexity of many cells in arrange-
ments of planes and related problems. Discrete Comput. Geom., this issue, 197-216.

196 H. Edelsbrunner, L. J. Guibas, and M. Sharir

[EGSt]

[EOS]

[ES]

JEW1]

[EW2]

[G]
[GOS]

lOSS]

[HS]

[HW]

[M]
[O]

[PSS]

[PS]

[SML]

[ST]

[ws]

Edeisbrunner, H., Guibas, L. J., and Stolfi, J. Optimal point location in a monotone

subdivision. SlAM J. Comput. 15 (1986), 317-340.
Edelsbrunner, H., O'Rourke, J., and Seidel, R. Constructing arrangements of lines and
hyperplanes with applications. SlAM J. Comput. 15 (1986), 341-363.
Edelsbrunner, H., and Sharir, M. The maximum number of ways to stab n convex
nonintersecting sets in the plane is 2n - 2. Discrete Comput. Geom. 5 (1990), 35-42.

Edelsbrunner, H., and Welzl, E. On the maximal number of edges of many faces in an
arrangement. J. Combin. Theory Ser. A 41 (1986), 159-166.
Edelsbrunner, H., and Welzl, E. Halfplanar range search in linear space and O(n °69s) query

time. lnforrr~ Process. Lett. 23 (1986), 289-293.
Griinbaum, B. Convex Polytopes. Wiley, London, t967.
Guibas, L. J., Overmars, M. H., and Sharir, M. Counting and reporting intersections in

arrangements of line segments. Tech. Report 434, Computer Science Department, NYU,
1989.
Guibas, L J., Sharir, M., and Sifrony, S. On the general motion planning problem with two
degrees of freedom. In Proc. 4th ACM Syrup. Comput. Geom., 1988, pp. 289-298.
Hart, S., and Sharir, M. Nonlinearity of Davenport-Schinzel sequences and of generalized

path compression schemes. Combinatorica 6 (1986), 151 - 177.
Haussler, D., and Welzl, E. Epsilon-nets and simplex range queries. Discrete Comput. Geom.

2 (1987), 127-151.
Moise, E. E. Geometric Topology in Dimension 2 and 3. Springer-Verlag, New York, 1977.
O'Rourke, J. The signature of a plane curve, SIAM J. Comput. 15 (1986), 34-51.

Pollack, R., Sharir, M., and Sifrony, S. Separating two simple polygons by a sequence of
translations. Discrete Comput. Geom. 3 (1988), 123-136.
Preparata, F. P., and Shamos, M. I. Computational Geometry--An Introduction. Springer-

Verlag, New York, 1985.
Schmitt, A., Miiller, H., and Leister, W. Ray tracing algorithms--theory and practice. In
Theoretical Foundations of Computer Graphics and CAD (R. A. Earnshaw, Ed.), NATO ASI

Series, Vol. F40, Springer-Verlag, Berlin, 1988, pp. 997-1030.
Szemer6di, E., and Trotter, W. T. Extremal problems in discrete geometry. Combinatorica 3

(1983), 381-392.
Wiernik, A., and Sharir, M. Planar realization of nonlinear Davenport-Schinzel sequences

by segments. Discrete Comput. Geom. 3 (1988), 15-47.

Received March 28, 1988, and in revised form July 10, 1989.

