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Abstract. We show that the total number of edges of m faces of an arrangement of n 

lines in the plane is O(m21~-6n2t3+26+ n) for any 6 > 0. The proof takes an 

algorithmic approach, that is, we describe an algorithm for the calculation of these m 

faces and derive the upper bound from the analysis of the algorithm. The algorithm 

uses randomization and its expected time complexity is O(m2J3-an2/3+2~logn + 

n log n log m). If instead of lines we have an arrangement of n line segments, then the 

maximum number of edges of m faces is O(m2/3-~n2/3+2~+ n~ (n)logm) for any 

> 0, where ~(n) is the functional inverse of Ackerrnann's function. We give a 

(randomized) algorithm that produces these faces and takes expected time 
0(m2t3- ~n2/3 + 2~ log + n~(n) log2n log m). 

1. Introduction 

Let L = {11, 12 . . . . .  ln} be a finite set of lines in the plane. Let L induce a partition of 

the plane, known as the arrangement A(L) of L, into O(n z) faces, edges, and vertices. 
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Sci. 1-6-44862 and the National Science Foundation under Grant CCR-8714565. Work on this paper 
by the third author has been supported by Office of Naval Research Grant N00014-82-K-0381, by 
National Science Foundation Grant DCR-83-20085, by grants from the Digital Equipment Corpora- 
tion, and the IBM Corporation, and by a research grant from the NCRD-the Israeli National Council 
for Research and Development. A preliminary version of this paper has appeared-in the Proceedings of 
the 4th ACM Symposium on Computational Geometry, 1988, pp. 44-55. 
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The vertices are the points of intersection of the lines in L, the edges are the 

connected components of the lines after removing the vertices, and the faces are the 

(convex) connected components of the complement of the union of the lines Ii (see 

I'G] or iEl  for more details concerning arrangements in the plane and in higher 

dimensions). 

Many combinatorial properties of arrangements of lines have been studied 

extensively. In this paper we consider the maximum number, K(m, n), of edges 

bounding m distinct faces in an arrangement of n lines in the plane (where we count 

an edge twice if it bounds two of these faces). Note that m can vary between 1 and 

x ( n ) = ( ~ ) + n +  I, and that at these extreme values we have K(1, n)=n and 
\ - - /  

K(x(n), n) = 2n 2 (there are altogether n 2 edges in the arrangement and each edge 

bounds two faces). A trivial upper bound for K(m, n) is mn and a trivial lower 

bound is 2m. Prior to this and a companion paper [CEG*],the best-known bounds 

on K(m, n) for general values of m were 

(m) o 
(i) K(m, n) = n + 4 for m > 2 and n > 4/" [Ca], 

2 - - \ 2 /  

(ii) K(m, n) O(mn 1/2) for n 1/2 _< m [EW1], 

(iii) K(m, n) = O(ml/2n) [EW1], and 
(iv) K(m, n) = f~(m2/3n 2/3) [EW1] 

(see also Chapter 6 of [E]). Note that each of the upper bounds has a different 

range of values of m for which it is better than the other (or the trivial) bounds. A 

graph showing these upper and lower bounds on a logarithmic scale is given in 

Fig. 1.1. 

In this paper we improve the upper bounds by showing that 

K(m, n) = 0 ( m 2 / 3 - # 1 l  2/3+2;J "a t- rl) 

for any positive 6 (with the constants of proportionality depending on 6). 
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Fig. 1.1. Previous bounds on K(m, n). l°gnrn 

1 With some effort, we can determine for each m and n the optimal choice of ~, and thus obtain a 

somewhat tighter bound for K(m, n). 
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Fig. 1.2. Points designate desired faces. 

This bound is slightly weaker than a tight bound O(rn2/3rl 2/3 + n), obtained in 

the companion paper [CEG*]. We nevertheless present this result here because (i) 

it serves as a simple introduction to the more complex case of segments, (ii) it uses a 

different proof technique than the one used in [CEG*],  and (iii) it leads to an 

efficient algorithm for computing the desired m faces. 

Our approach to the combinatorial probelm is different from previous work on 

this problem in that it has an algorithmic flavor. We obtain an algorithm for the 

calculation of rn faces in an arrangement of n lines, where each face is designated by 

specifying an arbitrary interior point in it. In other words, we consider a set L of n 

lines, 11, 12 . . . . .  ln, and a set P ofm points, Pl, P2 . . . . .  Pro, in the plane, and calculate 

the faces of the arrangement that contain the given points (see Fig. 1.2; for reasons 

that will become clear later we allow more than one point designating a single face). 

We construct these faces using the following divide-and-conquer strategy. 

It is convenient to describe this strategy in dual space although it is possible to 

find a fairly natural interpretation of it also in primal space. For  this reason, we 

dualize the points and lines and thus obtain lines p* and points l~ in the dual plane. 

Those lines are referred to as dual lines and the points are called dual points. The 

duality transform that we use maps a point p: (a, b) into a line p*: y = ax + b, and 

a line l: y = cx + d into a point l*: ( - c ,  d). This duality has the properties that it 

preserves line-point incidences, and that it maps a point p lying above (resp. below) 

a line I to a line p* lying above (resp. below) a point l*. 

Our divide-and-conquer strategy amounts to partitioning the dual plane 

recursively into convex regions. At each step we have a convex region v in the dual 

plane, and two sets associated with it: L*--the set of dual points l* ~ v, and P*- - the  

set of dual lines p* crossing v. We then partition v into convex subregions, w, obtain 

a corresponding partitioning of L* into subsets L *  and distribute a copy of each 

line in P* to all sets P* associated with the regions w it crosses. 

What is the subproblem, in the primal plane, that a dual region v induces? We 

have a set of lines L~ ~_ L and a set of points P~ ~_ P, so the corresponding 

subproblem is that of calculating the faces of the arrangement A(L~) that contain 

points of Pv. But what about the other points? For  the success of our recursive 
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scheme it is important that we calculate these faces as well. Fortunately, it turns out 

that all the remaining points lie either in the topmost face or in the bottommost 

face of A(Lv); these two faces are easy to calculate and we add them to collection of 

the other, recursively computed, faces. 

Note that this divide-and-conquer scheme is such that, on the average, the 

number of dual lines associated with a region v will eventually become much larger 

than the number of dual points in v. We stop the recursive partitioning at regions v 

for which I e*l > I L* 12, because in this case we are able to afford to calculate the 

entire arrangement A(Lv) in the primal plane (and select out of it the desired faces). 

Finally, having solved the problem associated with each subregion of v, we need 

to combine the solutions to obtain a solution for the entire v. In the primal plane, 

this means that we are given the faces containing points of P~ in each of the 

subarrangements A(Lw) associated with the subregions w of v, and we wish to 

combine (actually, intersect) these faces to obtain the faces containing points of P~ 

in the full arrangement A(Lo). A major tool that we develop for this purpose is the 

so-called "combination lemma" which gives a tight upper bound on the maximum 

combinatorial complexity 2 of the desired faces in terms of the combinatorial 

complexity of the corresponding faces in the subarrangements (see Lemma i). We 

expect this result to have applications to other problems as well. 

If we examine the recursion tree that results from this divide-and-conquer 

strategy, we obtain a structure that is very similar to so-called partition trees, 
originally designed to solve half-plane range searching problems. Indeed, thinking 

of the dual points as "data"  and the dual lines as "queries," we obtain a partition of 

the set of dual points into disjoint subsets, according to some underlying convex 

decomposition of the dual plane; this is similar to standard partition trees [EW2], 

[HW],  except that each node v (that is, a region in the dual plane) knows a priori all 

the query lines that require further processing at v (these are the lines in P*- - the  

lines that cross u); we use this information to further partition v, thus making the 

tree "customized" and easier to "search." 

To reiterate, an offshoot of the analysis given in this paper yields a technique for 

constructing a partition tree for a set of data points and a predetermined set of 

query lines. Such a tree can then be used to obtain better bounds for batched half- 

plane range searching when the queries are known in advance (applications include 

counting the number of intersections between n line segments [GOS],  calculating 

the "signature" of a polygonal curve [O1  multiple ray-tracing I-SML], etc.). 

In our present application, the desired upper bound on K (m, n) is obtained by 

analyzing the space complexity of the resulting algorithm. The time complexity of 

the algorithm is roughly a polylogarithmic factor times the upper bound on K(m, n) 

mentioned above (see Section 3 for a more precise bound). The algorithm is based 

on a random sampling technique akin to the e-net method of Haussler and Welzel 

[HW !  and to the random sampling method of Clarkson [CI]. We obtain a 

randomized algorithm which almost always terminates, produces the desired 

output upon termination, and whose expected running time is as stated above. 

2 We use the term "combinatorial complexity" and sometimes just "complexity" for the number of 
edges bounding some collection of faces. 
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Next we consider the problem of estimating the maximum number of edges 

bounding m faces in an arrangement A of n line segments in the plane, and of 

calculating these faces. This problem is considerably more difficult than the one for 

lines, because the faces of A are not necessarily convex or simply connected. This 

makes it harder to process such faces efficiently. Nevertheless, using an intricate 

extension of our combination lemma (see Lemma 5), we obtain essentially the same 

bound on the maximum complexity, R(m, n), of m distinct faces in an arrangement 

of n line segments. More precisely, we prove 

R(m, n) = O ( m 2 / 3 - ' ~ n 2 / 3 +  2a -I- net(n) log m) 

for any 6 > 0, where ~(n) is the extremely slowly growing inverse of Ackermann's 

function. To the best of our knowledge this is the first nontrivial upper bound 

known for R(m, n). Note that this upper bound almost matches the above- 

mentioned lower bound on K(m, n). Since trivially K(m, n) < R(m, n) this implies 

that our upper bound on R(m, n) is almost tight. 
As in the case of lines, our method also yields an algorithm for calculating the 

designated faces. From a high-level point of view the algorithms for the calculation 

of the desired faces in arrangements of lines and of line segments are quite similar. 

Both algorithms employ a key procedure for the following problem: 

given a collection of k points and the faces containing them in each of two 

subarrangements of the given lines or line segments, calculate the faces contain- 

ing these points in the arrangement formed by the union (that is, overlay) of the 

two subarrangements. 

In the case of lines this is easy to achieve efficiently because each face is convex. In 

the case of line segments this is more difficult because of the potentially highly 

irregular shapes of individual faces. We present an efficient line-sweeping method 

for merging faces containing k given points in line segment arrangements whose 

complexity is O((t + k) log (t + k)), where t is the total complexity of input and 

output faces. Applying this merge recursively, we can calculate the required faces in 

(randomized expected) time which is within a polylogarithmic factor of the bound 

on R(m, n). An interesting consequence of our merging procedure is that a single 

face in an arrangement of n line segments in the plane can be constructed 

deterministically in time O(n~(n) log 2 n). This problem arises in certain two- 

dimensional motion-planning problems in robotics, and has been previously 

studied in [PSS]. A companion paper, [GSS], extends the line-sweep technique of 

this paper to the calculation of a single face in arrangements of more general curves. 

The technique used in this paper is one of several related approaches that were 

developed recently, all of which use e-nets and random sampling as basic tools. 

This paper uses e-nets to partition the given lines (or line segments) into a fixed 

number of (disjoint) subsets so that each subset interacts only with a relatively 

small number of the given points. These interactions are taken care of recursively. 

In constrast, we might try to partition the given points into (disjoint) subsets, each 

interacting with only a small number of the given lines (or line segments). This 
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alternative approach has been studied in a companion paper [CEG*]. It yields 

tight combinatorial results for the case of lines, and can be used to obtain upper 

bounds for the complexity of many faces, and for the total number of incidences 

with many points, in arrangements of other types of curves, and also in arrange- 

ments in higher dimensions. While the point-partitioning approach of [CEG*] is 

mainly combinatorial, the line-partitioning approach used here also yields efficient 

randomized algorithms. Another advantage of the line-partitioning method over 

the point-partitioning one is that it extends to line segments (which have not been 

amenable to the other approach yet). In addition, our "dual" aproach has turned 

out to be better than the "primal" one in analyzing the complexity of many cells in 

arrangements of planes or hyperplanes, as is demonstrated in another companion 

paper [EGSh]. 
The paper is organized as follows. In Section 2 we analyze the combinatorial 

complexity of many faces in an arrangement of lines. This analysis is explained in 

terms of an algorithm that constructs the faces; its implementation is discussed in 

Section 3. In Sections 4 and 5 we analyze the combinatorial complexity of many 

faces in an arrangement of line segments, and in Sections 6 and 7 we discuss the 

implementation of the algorithm implicitly described in the combinatorial analysis. 

Concluding remarks and open problems are given in Section 8. 

2. The Complexity of Many Faces in an Arrangement of Lines 

Let L = {i 1, 12 . . . . .  In} be a set of n lines in the plane, and let A = A(L) denote its 

arrangement as defined in the introduction. Let P = {Pl, P2 . . . . .  Pro} be a set of m 
given points that do not lie on any of these lines. Consider the problem of 

calculating all faces of A that contain the points Pi, producing each such face just 

once, even if it contains several of these points (see Fig. 1.2). We seek an algorithm 

for solving this problem with a small worst-case space complexity. This space 

complexity will serve as an upper bound on the maximum number of edges 

bounding any m faces in any arrangement ofn lines in the plane. As it turns out, the 

expected time complexity of our (randomized) algorithm is within a log n factor (or 

a log n log m factor ifm = O(x/~)) of its worst-case space complexity, so we also get 

a nearly time-optimal (although randomize~) algorithm for the calculation of the 

faces. 
We assume that initially no two of the given points lie in the same face of A. The 

algorithm that we present below uses a divide-and-conquer approach and each 

recursive step involves some subset L' of the lines It and some subset P' of the points 

p~. Since L' is only a subset of L it thus can happen that in the arrangement formed 

by L' two or more points of P' fall into the same face. In this case we will want the 

algorithm to maintain this face just once, and have pointers to it from each of the 

points contained in it. To reflect this potential duplication, we denote by g(rn, n) 

the maximum complexity of the faces in an arrangement of n lines that contain m 

given points (counting each face just once). Unlike K(m, n) which is defined only ff 

m < r(n), g(m, n) is defined for all integers m > 0, n > 0. However, when both 

functions are defined, we cleary have K(m, n) = K(m, n). 
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We next describe the algorithm for calculating the required faces. The discussion 

ignores implementation issues (addressed in Section 3) and instead concentrates on 

combinatorial problems that arise. 

First we dualize the line I i to points l* and the points pi to lines p*, using the 

duality transformation defined in the introduction. This gives a set L* of n points 

and a set P* of m lines in the dual plane. To process the dual points and lines, we 

choose some constant integer r > 0, and select a random sample of r of the dual 

lines p*. When we draw the arrangement of these lines in the dual plane and 

triangulate each of the faces of this arrangement we obtain a total of M = O(r 2) 

triangles. The e-net theory of Haussler and Welzl [HW] or, alternatively, the 

random sampling lemma of Clarkson I-C1] imply that, with high probability, the 

interior of each of these triangles intersects at most (cm/r) log r dual lines, for some 

absolute constant c independent of r and m. The sample is called an e-net if it has 

the property that any triangle in the dual plane not meeting in its interior any of the 

lines p* in the sample intersects at most (cm/r) log r dual lines in P*. The e-net 

theory implies that (i) such a sample always exists (which suffices for the 

combinatorial analysis given in this section), and (ii) a random sample of r lines of 

P* is an e-net with high probability (which can be made arbitrarily close to 1 if we 

choose c large enough). The second property is important for the algorithm that 

calculates the faces, as given in the following section. 

We now divide our problem into subproblems, each associated with one of the 

M triangles v in the dual plane. We associate with v the subset L*of  the dual points 

in L* that lie inside v, and the subset P* of the dual lines in P* that intersect v. In 

what follows we denote the cardinality of L* by n v and the cardinality of P* by my. 3 

The subproblem associated with v, in the primal plane, is to compute the faces of 

A(L~) that contain points of P~ (where L~ is the subset of lines in L whose dual 

points belong to L*, and Po is the subset of points in P whose dual lines belong to 

P*). Note that this subproblem may be "incomplete," in the sense that we ignore 

faces that contain points in P - Pv. We address this problem shortly below. 

Each of the M subproblems is solved recursively. That is, we take a random 

sample of r  lines from the corresponding set P*, and construct and triangulate their 

arrangement. For  each triangle w in this arrangement we obtain, as above, a 
Ill  subproblem involving the subset L* of the dual points of Lv contained in w and the 

subset P* of dual lines of P* that intersect the interior of w. (A schematic 

representation of this process is shown in Fig. 2.1; the arrangement is formed by 

r = 2 lines, thus it is not necessary to triangulate further the four faces that result 

from this partitioning.) 

This process is continued recursively, but not all the way, until just one or no 

point or line remains. Whenever we reach a subproblem associated with a triangle v 

for which m~ > x(n~), we stop the process and solve the subproblem directly. That 

is, we undo the dualization to obtain L~ from L* and Pv from P*. Then we 

3 The reader is advised to note that we consistently use the letters L and n in association with the 
primal lines (and therefore with the dual points) and that P and m are used in connection with primal 
points (and thus dual lines). 
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Fig. 2.1. Partition tree and corresponding decomposition. 

construct the arrangement A(Lv) (in the primal plane, locate 4 in it each of the 

points of Pv, and report the faces of A(Lv) that contain them (each face only once). 

The total number of edges bounding these faces (which is proportional to the space 

needed to store them) is at most O(n2~) = O(mv). In passing we mention that the 

time-complexity of this step is at most O(n~ + my log n~) = O(m v log n~) using the 

arrangement construction algorithm of [EOS1 and the optimal point-location 

structure of [EGSt]. Another case where we stop the recursion is when P* = ~ .  In 

this case we do not have to bother constructing A(Lv) since there are no points for 

which faces need to be calculated. 

We obtain the required collection of faces of A(L) using the following "merging" 

procedure. For  each point Pie P, let F(pi) denote the face of A(L) that contains p~, 

and, for each triangle v in the dual partitioning, let F~(p~) denote the face of the 

arrangement A(Lv) that contains Pu (Recall that such a face will be shared by all 

points that lie in it.) For points Pt ~ P~, the face F~(pt) is available recursively. Let 

Qv = P - P~, which is the set of face-designating points that the subproblem at v so 

far has ignored. Note that Q~ is the set of points whose dual lines miss the interior of 

v. By duality, each of these points pt lies either above all the lines in Lo (that is, in the 

topmost face F~ + of A(L~)) or below all of them (in the bottommost face F~ ). This is 

illustrated in Fig. 2.2. These two faces together have at most n~ + 2 edges, and they 

can be constructed in time O(n~ log n~) (see, e.g., [PS]). As required, we store each of 

these two faces just once, and maintain a pointer from each point pi ~ Q~ to either 

F~ + or F~ whichever contains it. Hence, at this stage all the faces of A(Lo) 

containing points of P are accounted for. We note that the topmost and 

bottommost faces in A(Lv) must be constructed even if m v = 0 and we stop the 

recursion at t,. 

Now the merging step proceeds as follows. Our goal is to compute F(Pi) for all 

p~ ~ P. Let vl, v2 . . . . .  vM be the triangles formed by the partitioning (recall that 

M = O(r2)). For each point p~ e P, and for each triangle v j, either p~ ~ P~j or pi ~ Q~. 

In the former case, F~(p.,) is calculated recursively at vj. In the latter case, Fvj(pj) is 

4 Locating a point in an arrangement means to find the face (or edge or vertex) of the arrangement 
that contains the point. It is a fairly common term in computational geometry which, among other 
things, considers data structures that facilitate fast point-location queries (see, e.g., [EGSt]). 
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Fig. 2.2. Dual and primal plane. 

either F~ or F~, which are also assumed to be available. Since L = Lv, w. . .  u LvM, 

it is clear that 

F(pi) = ~ Fv,(P,). 
vj  

This intersection is plainly a convex polygon that contains p~ and the number of its 
edges is at most the sum of the number of edges of the intersected faces. 

However, a, major technical problem arises now. Since some of the faces F,,j(p3 

may be shared by other points, we need to avoid duplicate processing and counting 

of the same face for each point it contains, or else our algorithm might have 
unacceptably high time-complexity and our upper bound on the total number of 
edges will be annoyingly loose. A typical case where duplicate processing of this 

sort can slow down the algorithm is depicted in Fig. 2.3. 
A solution of this problem is provided by the following technical lemma, which 

we refer to as the "combination Iemma (for lines)." 

Lemma 1. Let Pl, P2 . . . .  , Pk be points in the plane, and let {B 1, B 2 . . . .  , B,} and 
{R 1, R 2 . . . . .  Rt} be collections of s "blue" and t "red" (topologically) open convex 

polygons that satisfy the following three properties: 

(i) The blue (red) polygons are pairwise disjoint and the total number of blue 

(red) edges is fl (p). 

i"-" ---4 

i . ~ . . _ J  

Fig. 2.3. Six faces designated by three points each. 
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Fig. 2.4. One blue and six red faces. 

(ii) Each point Pi is contained in a blue polygon Bs, and in a red poly#on Rt,. 

(iii) I f  for  each 1 < i < k we define E i = Bs, c~ Rt,, then E t ~ Ej  i f  i # j. 

Then the total number o f  sides o f  the E i is at most fl + p + 4k - 2s - 2t. 

Proof. Take one of the blue polygons B = B j, and assume that it contains kj 

points, say Pl, P2 . . . . .  Pkg. Each of these points pz lies in a different red polygon Rt,. 

We consider the ks cells E~ = B c~ Rt, for 1 < i < k j, which are convex polygons (see 

Fig. 2.4). To give an upper bound on the number of blue edges of the E t we define 

for an edge e of B the intersection of e with R,, and denote it by e~. Now write down 

the cyclic sequence of the nonempty e~ in clockwise order around the boundary, ~B, 

of B. We observe the following two properties: 

(i) The sequence of indices (red polygons intersecting dB) contains no cyclic 

scattered subsequence of the form i..j., i..j. 
(ii) If two consective indices (red polygons) are the same, then the edges of B in 

both elements are different. 

To prove (i) just note that if such a case were to arise, then we could connect the 

first and third edges and the second and fourth edges by two straight segments 

lying respectively inside the red convex polygons R,, and Rt~. Both segments have 

their endpoints on ~B which implies by the Jordan curve theorem that they 

intersect. This is a contradiction to Rt, n R,~ = ~ if i # j. The claim (ii) follows 

from the fact that a single edge of B intersects a red polygon in a connected 

piece--after all both the blue edge and the red polygon are convex. 

Ignoring repetitions of indices, (i) implies that the cyclic sequence is a Daven- 

port-Schinzel cycle of order 2 and thus consists of at most 2k~ - 2 edges (see [ES] 

for details). By (ii), the number of index repetitions is at most IB[, the number of 

edges of B. It follows that the E ,  for 1 _< i < kj, have at most IBI + 2ki - 2 blue 

edges. 

If we take the sum over all blue polygons we get at most/7 + 2k - 2s blue edges 

bounding the cells Ei for all i. By a symmetric argument we can show that the 

number of red edges bounding the E~ is at most p + 2k - 2t. It follows that the 
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total number of edges of the Ei (each edge either blue or red) is at most 

fl + p + 4 k -  2 s -  2t. [ ]  

By applying Lemma 1 a fixed number of times (M - 1 times to be precise), it 

follows that the overall complexity, K,of all faces F(p~) can be bounded from above 

by 

M M M M 

2 (Kv~ + (n,,, + 2)) + M Z 4m,,j = Z (K,,, + O(n,,,)) + M ~ O(m,,), 
j=1 j = l  j=1 / = I  

where Kv~ is the number of edges counted at v j, and the second subterm of the first 

sum arises from the faces F~ and F~. But ~ j  nvj = n and M ~_~10(rnv) = O(m), 

since r and thus M is a constant. We can thus rewrite the recurrence relation as 

M 

K = ~, Kv~ + O(m + n). 
j= l  

To solve this recurrence relation, let K(m, n) denote as above the maximum 

complexity of the collection of faces that arise for m points in an arrangement of n 

lines. Then we have 

if ra >_ x(n), 
g(m, n) _ 

K(m~, n~) +bm + b'n if m < x(n), 
J 

for some constants a, b, b' > 0 (note that b, b' depend on r but a does not), where M, 
m~, and n~ satisfy the following three conditions (which are immediate from our 

construction): 

M = O(r2), (I) 

M 

n, = n, (II) 

and 

cm 
for each i we have m t < ~ l o g  r for some constant c > O. (III) 

Under these constraints we have 

Lemma 2. K(m, n) ~ Dm2/a-an 2/3+ 2a + Am + Bn log re, for any 6 > O, where the 

coefficients A, B, D depend on 3. 
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Proof. We first note that at each level of the recursion m decreases by a factor 

f~(r log r), for a constant r, and thus the recursion has only O(log m) levels. The sum 

of the n v, over all nodes v at the same recursion level, is clearly n, so that the total 

contribution of the rightmost term, b'n, is at most  O(n log m). We thus ignore this 

term in the recurrence relation for K and prove that the solution to the modified 

recurrence satisfies K(m, n) < Dm2/3-~n 2/3+ 2~ + Am for any 6 > 0. 

Fix 0 < 6 < 1/6 and choose r = r(3) > 0 sufficiently large (how large will be 

apparent from the analysis below). 

The bound is trivial for m = 0. If m > r(n), then g(m, n) < am plainly satisfies 

the required inequality, assuming A > a. It  follows that the bound is trivially true 

for constant n since m < x(n) only if m is also at most a constant (we need this 

observation only for n _< 1). So assume m < r(n). In this case 

m = m2/3-dm 1/3+6 <_~ m2/3-6n 2/3+26, (,) 

assuming n > 2. By induction hypothesis we then have 

M 

g(m, n) < ~ (Dm2/3-rrt 2/3+2~ + Ami) + bm. 
i=1 

By properties (III)  and (I) we have 

cMm log r 
~'. ms < < (clr log r)m 

t = 1  r 

for some constant c 1 independent of r. Hence 

M 

.K(m, n) < D. ~, m2/3-an 2/3+6 + (Aclr log r + b)m. 
i=1 

Thus, using ( . )  and putting d = Aclr log r + b, we obtain 

M 
g(m, n) ~ D. ~ rn2/3-~n 2/3+ 2~ + dm 2/3-~ n 2/3+26. 

i=I 

But 

y .  , < cm g r 21 -, 

iffi l i=1 

which, by the H61der inequality, does not exceed 

t 
,'m loo  r \2 /3-6  
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Hence 

K ( m , n ) < ( D .  o( ( l °g  r)2/3 - a r ~  ~ -)q- d)m2/3-an 2/3+26. 

But since c$ > 0, it is clear that if r is chosen sufficiently large so that 

o [ ( log  r)2/3-6 ) 
\ r 3' <½, 

say and ifD is taken to be sufficiently large so that 1)/2 > d = Ac~r log r + b, then 

the expression in the bracket will be less or equal to D, thus establishing the 

asserted inequality. [ ]  

Theorem 3. The total number of edges, K(m, n), boundino m distinct faces in an 
arran#ement of n lines is at most O(mZ/3-~nZ/a+ z# + n) for any 6 > 0 (where the 

constants of proportionality depends on 6). 

Proof. Recall that when both functions are defined, we have K(m, n) = £(m, n). 

For m < n ~/z the asserted bound follows immediately from the results of 

[Ca] mentioned in the introduction. For  n~/2< m < x(n) it is easily checked 

that the term O(m2/3-6n z/3+z~) dominates O(m) and O(n log m) in the bound of 

Lemma 2. []  

Remarks. (1) The preceding bounds imply that K(m, n) = O(m2/3-6n 2/3+2b) for 

any 6 > 0, provided neither m nor n is too small. 

(2) Our result leaves a small gap between our upper bound and the lower bound 

of~(m2/3n 2/3 + n)obtained in I'EWl]. An alternative, point-partitioning approach 

as presented in a companion paper [CEG*] closes this gap and shows that 
®(m2/3n2/3 + n) is the real bound. 

(3) A related result is that of Szemer6di and Trotter [ST] who give a tight 
bound, ®(m2/3n 2/3 + n), on the maximum sum of the degrees of m vertices in an 

arrangement of n lines. There does not appear to be an easy way to extend the proof 

technique of [ST] to the case of faces. 

3. Calculating Many Faces in an Arrangement of Lines 

To complete our analysis of line arrangements, we turn to the implementation of 

the algorithm outlined in section 2 which constructs the faces in an arrangement of 

n lines 11, 12 . . . . .  in that contain m given points pl, Pz , - . . ,  Pro. Let T(m, n) denote 

the expected time needed for this task using the approach described in Section 

2. We have already noted that at the bottom of the recursion we have 

T(m, n) = O(m log n) if m >_ r(n) and T(m, n) = O(n log n) if m = 0 (this is the time 

needed for the calculation of the two corresponding faces F + and F~-). 

As for the general merging step of the algorithm, we need to calculate, for each 

Pi ~ P, the face F(pi) of the arrangement A(L) that contains p~; this face is the 

intersection of the M faces Fv~(pt), j = 1, 2 . . . .  , M, where v~ . . . . .  vu are the 
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triangles obtained by the partitioning step, and where Fvj(Pi) is the face of A(Lv~) 
containing p~. Recall that a major technical difficulty in the analysis of the space 

complexity of the algorithm, given in the preceding section, was to avoid duplicate 

access to a face in some A(Lv~) that is shared by several of the points. To overcome 

this difficulty algorithmically, we proceed as follows. For expository reasons we 

assume M = 2, so that we need to intersect only two faces around each Pi- 

(i) With each p~ we associate the pair (Fvl(pi), F~2(pi) ). Regard two points as 

equivalent if they have the same associated pair of faces. The equivalence 

classes can be constructed in time O(m log m) = O(m log n) by sorting the 

face-pairs and removing repetitions. This also yields a representative point 

for each equivalence class; we clearly need to calculate F(p~) only for these 

representative points. 
(ii) For each representative point p~, we need to calculate the intersection, E, of 

the two convex polygons, B = F~,(p~) and R = Fv2(P~, in time that mainly 

depends on the number of edges of E. This is accomplished using the 

following "ray-shooting" procedure. First we find a starting point z on aE 

by shooting a horizontal ray from p~ ~ E and finding the nearest of its 

intersections with 0B and OR. We next traverse the boundary of E in 

counterclockwise direction from z as follows. Suppose we have reached 

some point x on some edge e of 0B. We shoot a ray from x along e (so that B 

lies to the left of the ray) and find its intersection, x', with OR. Ife ends before 

x', then we turn at the endpoint of e to the adjacent edge, e', along 0B and 

repeat shooting along e' toward 0R. Otherwise, we turn at x' to OR in 

counterclockwise direction, and shoot along the new edge toward 0B. 

Repeating this process, we will eventually return to z, thereby completely 

tracing the boundary of 6E. (Figure 3.1 illustrates this process.) Since both 

faces, B and R, are convex each ray shooting query can be carried out in 

time O(log n) (see [CD]). Thus, the calculation of F(pt ) can be accomplished 

in time O([ F(p~)llog n), I F(pi)[ being the number of edges bounding F(Pi). 

In general, that is, if M > 2, we apply the merging process M - 1 times to take into 

account all M subproblems generated at v. Since M is a constant depending only 

on r, the sample size, all faces F(pi) can be obtained in time O((K(m, n) + m) log n). 

Finally, we consider the overhead of the divide part of our recursion. At each 

recursive step we take a random sample of size r of the current set of dual lines, 

Fig. 3,1. Tracing the boundary of the intersection. 
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construct and triangulate their arrangement, split the current set of dual points 

among these triangles, and determine for each triangle which of the current dual 

lines p* it intersects. Each triangle gives rise to a subproblem which is passed the 

points that fall into the triangle as well as the lines that intersect it. Each step either 
takes constant (randomized) time or time linear in n~ or my. 

At this point, we would like to verify that the random sample is indeed an e-net. 

The reason for this is that, although we know that this will be the case with high 

probability, we have to perform random sampling at many steps during the 

recursion, and the small probabilities of failure may add up to a nonnegligible 

amount. To rectify this, we simply check whether the number of dual lines cutting a 

subtriangle is sufficiently small, for all subtriangles resulting from the partitioning. 

If not, we discard the sample and try another random selection of r dual lines. In a 

constant expected number of trials we will obtain an e-net. 

We can therefore obtain the following recurrence formula for T(m, n), the 

expected time needed for m points and n lines. For  m < n 2 we have 

M 

T(m, n) < ~ T(m~, ni) + O((K(m, n) + m + n) log n), 
i=l 

where mi, n~, and M satisfy conditions (I), (II), and ( l id  of the analysis in Section 2. 
For m > n 2 we have 

T(m, n) = O(m log n), 

and for m = 0 we have 

T(m, n) = O(n log n). 

Using the bounds on /((m, n) and K(m, n) obtained above, we can derive the 

following bound on T(m, n); the proof is a straighforward generalization of the 

proofs of Lemma 2 and Theorem 3 and is left to the reader. 

The following theorem also derives a bound on the maximum space complexity, 

S(m, n), required by the algorithm. This is easily seen to be proportional to the 

space used along a single path in the recursion tree, which is easily seen to be 
O(m2/3-~n2/3+26 + n log m). We thus summarize. 

Theorem 4. The expected time complexity of the above randomized aloorithm for 

computino m distinct faces in an arranoement of n lines is 

T(m, n) = O ( m 2 / a - 6 n  2/3+2~ log n + n log n log m) 

for any 6 > O. ?he space required by the aloorithm is 

S(m, n) = O ( m 2 / a - a n  2/3+ 2~ + n log m) 

for any t5 > O. 
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Remarks. (1) If m is much smaller than n 2, the log n factor in the first term in the 

time bound given above can be dropped, simply by taking a slightly larger value of 

6. 

(2) The ray shooting technique used in the above algorithm does not seem to 

generalize to the more complicated task of constructing m faces in an arrangement 

of n line segments, which is what we study in Sections 4-7. The alternative merging 

technique that we use for line segments, described in Section 7, can also be applied 

to the simpler case at hand. However, we have chosen to present here the ray 

shooting technique because of its relative simplicity in the case of convex polygons. 

4. The Complexity of  Many Faces in an Arrangement of Line Segments 

This section extends the analysis given in Section 2 to the case of line-segment 

arrangements, that is, we consider the problem of estimating the maximum 

combinatorial complexity, R (m, n), of m faces in an arrangement of n line segments 

in the plane. In constrast to the case of lines where all faces are convex, a face in a 

line-segment arrangement is not necessarily convex and need not even be simply 

connected (see Fig. 4.1). Because of the nonconvexity of faces, there is no reason 

why the maximum number of edges bounding a single face should be at most n. 

Indeed, the total number of edges bounding a single face can be as large as f~(not(n)), 
where ~t(n) is the inverse Ackermann's function, and this bound is tight in the worst 

case, as was shown in [HS], [PSS], and [WS-I. Lines are a special case of line 

segments, which implies R(m, n) > K (m, n). Thus, the lower bound of [EWl]  for 

line arrangements extends to line segments, which, combined with the result of 
[WS], yields R(m, n) = ~'~(m2/3t l  2/3 --1- net(n)). 

In spite of the technical difficulties caused by the boundedness of line segments, 

we obtain an upper bound on R(ra, n) that is roughly the same as the bound on 

K(m, n) obtained in Section 2. Again, the bound will be derived from an analysis of 

the space complexity of an algorithm for calculating m such faces. In Sections 6 and 

7 we show how to implement the 'algorithm so that the calculation of m faces in an 

Fig. 4.1. A face in a line-segment arrangement. 
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arrangement of n line segments takes time that is only slightly more than our upper 

bound on R(m, n). 

Let S = {si, s2 . . . . .  s,} be a set o fn  line segments in the plane, and let A = A(S) 

be their arrangement. Let P = {pl, P2 . . . . .  p,~} be a set of points that we use to 

designate faces of A, and consider the problem of calculating the faces of A that 

contain the points Pi. Since we may reach a situation where a face of a 

subarrangement contains more than one point, we use the auxiliary notation 

/~(m, n) to denote the maximum complexity of the faces in an arrangement of n 

segments that contain m given points (accounting for each face only once). Clearly, 

R(m, n) = R(m, n) whenever both functions are defined. 

For  each i let l~ denote the line containing s i, and define L = {l~[ 1 < i < n}. 

Apply the dual construction given in Section 2 to the lines in L and to the points in 

P. Thus we recursively partition the dual plane into triangles v, and associate with 

each v the subset L~ of lines in L whose dual points lie in v, and the subset P~ of 

points in P whose dual lines intersect v. Implicitly through Lo, v also represents the 

set of line segments S~ = {s~ll~ ~ Lv }. Consistent with the notation in Section 2, we 

define m v = I P~ I and nv = I So I. The subproblem associated with v is to compute the 

faces of A(So) that contain points of P~. 

When m v >>_ x(no) we stop the recursion at v, pass back to the primal plane, 

construct there the arrangement A(S~) of the nv line segments s~ in S~, and collect 

the required faces of A(S~) that contain the points in P~,. The space complexity of 

the entire A(S~), and thus also of the faces in question, is O(n~) = O(mo). ~ We also 

stop the recursion if rn~ = 0. In this case, as is argued shortly, we only need to 

construct the unbounded face of the associated line-segment arrangement. How to 

implement this efficiently is described in Sections 6 and 7 below (see Theorem 11). 

However, in terms of space complexity, we already know that this face has only 

O(n~ot(n~)) edges [PSS]. 
(Note that an important feature of the construction is that in the dual plane we 

use the dual points l* of the (unbounded) lines l~. We thus ignore the fact that we 

have to consider only the portions s~ of these lines. However, when we pass back to 

the primal plane, we always process the line segments st rather than the lines that 

contain them.) 

We now proceed to the discussion of how the relevant faces of A(S) are obtained 

if0 < m < re(n). As in the case of lines, we compute Q~ = P - P~, for each resulting 

triangle v. Every point in Qo either lies above all lines in Lo or below all these lines. 

In any case, those points lie in the unique unbounded face, F~, of A(Sv). As 

mentioned above, this face is bounded by O(nvo~(n)) edges. (If the given collection S 

also contains unbounded rays of lines, we may have to consider two unbounded 

faces of A(S~), as in the case of lines.) 

The main difficulty lies of course in merging (or rather intersecting) the 

recursively available faces of the subarrangements A(S~,) . . . . .  A(S~M) associated 

with the triangles v~, v~ . . . . .  v M, to get the desired faces of A(S). For a particular 

Indeed, the number of vertices, edges, and faces of A(Sv) is proportional to the number of 
intersecting line.segment pairs which is, of course, at most (~). 
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point, p ~ P, this means that we construct F(p) by intersecting the faces Fv~(p) that 

contain p in the subarrangements associated with the triangles vj. Our goal is to 

obtain an appropriate generalization of the combination lemma for lines (Lemma 

1) that will enable us to bound in a similar manner the total complexity of the faces 

F(p~). This generalization is quite complicated and is described in detail in the 

following section. This section continues with explaining the result of this general- 

ization and using it to complete the combinatorial analysis of many faces in line- 

segment arrangements, 
For the remainder of this section (as well as for Sections 5-7) we define a polygon 

as an open region in the plane that can occur as a face in a line-segment 

arrangement. Thus, a polygon is neither necessarily convex nor simply connected. 

The boundary of a polygon consists of one or more connected components called 

contour cycles. We think of a contour cycle as a Jordan curve that may touch but 

cannot cross itself. In particular, if an edge lies in the interior of the closure of the 

polygon (it bounds the polygon on both sides), then the contour cycle has two 

portions that touch along the edge (see Fig 4.1). When we count the number of 

edges of a polygon we count each such edge portion twice. A vertex of the polygon 

is reflex if the inside angle at this vertex exceeds ~. With these definitions we have 

the following generalization of Lemma 1--the proof of this lemma, called the 

"combination lemma for line segments," is given in Section 5. 

Lemma 5. Let Pl, P2 . . . . .  Pk be k points in the plane, and let {B 1, B 2 . . . . .  Bs} and 
{R1, R 2 . . . . .  Rt} be collections of "blue" and "red" polygons that satisfy the 

following three properties: 

(i) The blue (red) polygons are pairwise disjoint, the total number of blue (red) 

edges is fl(p), and the total number of reflex vertices is r. 

(ii) Each point Pi is contained in a blue polygon Bs, and a red polygon Rt,. 

(iii) I f  for each 1 < i <_ k we define Ei to be the connected component of B~, n Rt, 

that contains Pi (see Fig. 5.3), then Ei ~ E j / f  i ~ j. 

Then the total number of edges of the Ei is at most fl + p + O(k) + O(r). 

Using Lemma 5, we can complete the analysis of the merge step. Applying 

Lemma 5 a constant number of times we conclude that the overall complexity of 

the faces F(Pt) is at most the sum of the complexities of all the faces Fvj(Pt), i = 1, 
2 . . . . .  m and j = 1, 2 . . . . .  M, plus O(m) + O(r), where r is the number of reflex 

vertices in all faces F~(p~). But each such reflex vertex must be an endpoint of one of 

the n segments in S, so O(r) = O(n). In addition to the complexity of the recursively 

available faces Fvj(P~) we need to take into account the total number of edges 
oo bounding the unbounded faces F~j, which is at most 

M 

~.. o(nv:(n,)) = o(n~(n)). 

j=l 
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We thus obtain the following recurrence formula for/~(m, n): 

/~m if m = 0 ,  

if m > x(n), 
/~(m, n) _< 

R(mi, ni) + bm+ b'no~(n) if m < x(n), 
i 

for some constants a, b, b' > 0, where mi, n~, and M satisfy conditions (I)-(III) 
stated in Section 2. A proof that is almost identical to the proof of Lemma 2 (which 
is therefore omitted) implies the following solution of the recurrence relation. 

1.emma 6. R(m, n) < Dm 2/3 -'~n 2/3+2~ -I- Am + Brig(n) log re, for any 6 > O, where 

the coefficients A, B, D depend on ¢5. 

Remark. A major feature ofLemma 5 (and of its simpler variant Lemma 1) is that 
the terms fl and p appear with multiplicative constant 1 in the bound for the total 

combinatorial complexity of the E~. This ensures that the recurrence formula for 
/~(m, n) given above involves the term )-'~ 1/~(mi, n~) with multiplicative constant 1. 
This is essential for obtaining the bound stated in Lemma 6. 

If m < x(n) (that is, at most one point per face in the original arrangement is 
specified), then 

m <_ m2/3-~n 2/3+2~ 

so that we can drop the second term from the bound in Lemma 6. We thus 
conclude with the main result of this section. 

Theorem 7. The maximum number of  edges of  m distinct faces in an arrangement of  

n line segments is 

R(m, n) = O(m z/a-an 2:a + za + net(n) log m) 

for any 6 > O. 

Remark. It is easy to check that/~(m, n) = O(m 2+6 + n~(n) log m), for any 6 > 0, 

also satisifies the recurrence relation derived for /~. This constitutes a weak 

generalization of Canham's theorem for lines [Ca] to the case of line segments. 

5. Proof of the Combination Lemma for Line Segments 

In this section we provide a proof of Lemma 5, the combination lemma for line 
segments. This is the crucial lemma in the analysis of the complexity of many faces 
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in a line-segment arrangement presented in Section 4. We proceed by considering 

the interaction between a blue and a red polygon, a blue polygon and many red 

polygons, and finally many blue and many red polygons. The results in this section 

have a topological and combinatorial flavor and add up to a proof of Lemma 5. 

The main concept in this section is that of a polygon which is defined general 

enough so that every face in a line-segment arrangement passes as a polygon. As 

mentioned in Section 4, a polygon is thus connected but not necessarily simply 

connected, and its boundary consists of connected components which we call 

contour cycles. We can avoid the technical difficulty caused by the fact that a 

connected component of the boundary need not be a simple Jordan curve, 6 if we 

replace each line segment by a rectangle of sufficiently small width. For small 

enough widths we get the same intersection pattern for the rectangles as for the line 

segments, and a face (a connected component of the plane minus the union of all 

rectangles) is now bounded by contour cycles that are simple Jordan curves. For  

technical reasons we direct each contour cycle so that the polygon it bounds lies to 

its left. Thus, a contour cycle that delimits a hole of the polygon is directed in 

clockwise order whereas the outside contour cycle (if it exists) is directed in 

counterclockwise order. 

Our first result is topological and asserts that the traversal of every contour 

cycle of a connected component E of B ca R, B a "blue" and R a " red"  polygon, 

"agrees" with the teraversal of the contour cycles of B and R. By this we mean that 

the common points of a contour cycle of E and one of B (or R) are traversed in the 

same order independent of whether we follow the contour cycle of E or that of B 

(or R). 

L e m m a  8. Let E, B, and R by polygons such that E is a connected component of 

B ca R, and let a, b, c be three points on 7 ca ~, where 7 is a contour cycle of E and ~ is a 

contour cycle of B. ?he order of points a, b, c along C is the same as along 7. 

Proof. Note first that the directions of 7 and ~ along common boundary pieces 

agree since E and B lie on the same side of these pieces. Take C, the contour cycle of 

B that contains points a, b, c, and let ab e, bQ and ca¢ be the pieces (Jordan arcs) of 

from a to b, from b to c, and from c to a. By assumption, points a, b, c belong also to 

),. If abe is contained in 7, then the assertion is trivially true since the traversal from 

a to b on ), only passes points of abe, and c does not belong to abe. Otherwise, aby, 

the portion of 7 leading from a to b, contains pieces that do not belong to C--these 

pieces are necessarily contained in the union of dR and OB--C (see Fig. 5.1). Let 

be such a piece, that is, 6 is a maximal connected component of Y--C, whose 

starting point, z, lies on abe. We prove below that the endpoint, w, of 6 also lies on 

A (simple) Jordan curve has the property that every sufficiently small disk whose center lies on the 

curve is cut into two connected components if we remove from it all points of the curve. This implies that 

a Jordan curve is either unbounded at both ends or it is bounded in which case it is said to be closed. A 
connected piece of a Jardan curve is called a Jordan arc; it satisfies the same condition as the Jordan 

curve expect at its two endpoints at which removing the points of the arc leaves every small enough disk 

connected. 
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f 

a 

\ ! \ 

Fig. 5.1. Traversing the boundary of the intersection. 

\ 

ab¢ which implies the lemma since we cannot reach any point of ~--ab¢ before 

passing through b. 

Assume that w does not lie on abe. Let 6' be the portion of ~ leading from z to w, 

including the endpoints (see Fig. 5.2; note that 6' must contain b). By construction, 

6 and 6' are disjoint and their union is a closed Jordan curve a. Let a' and b' be two 

interior points of E that lie sufficiently close to a and b. It is thus possible to connect 

a' and b' by a Jordan arc, a, that lies sufficiently close to ab~ such that a c~ b' = O 

and a and 6 cross in a single point. Thus, a' and b' lie in different components of the 

complement of a which is impossible since a is disjoint from E and E is connected 

(see Fig. 5.2). []  

Remark. Lemma 8 expresses a consistency property of intersections of polygons. 

Among other things it implies that if an edge e of B (or R, for that matter) contains 

several edges of a contour cycle of E, then these edges appear in the same order 

along this contour cycle as along e. 

Consider next a blue polygon B with d contour cycles ~1, ~z , - . . ,  ~e and let 

Pl,P2 . . . . .  Pm be the points designating m desired regions contained in B. We let R i 

be the red polygon that contains pa for 1 < i < m, and we write E i for the connected 

/ / / / / /  bl ~ 

ab~ 

Fig. 5.2. An impossible configuration. 
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arcs removed 

. -  . . . . . . . . . . . . .  -_~S" / in second step / I - . .  

, , • ,~,,'_-,. ~ y i , " i  

aB ' )  ~ ~ . . ' i ,  '+' I , : . - - l _ ]  I ," , '  / / , ~ '  / , ' l  ~ " " ~ - ~ " "  ," ' 

/ ~.Z>../'o~. q, ;?~,. 'L~ ~ - "  ~ o.> , 

Fig. 5.3. The graph c~ B. 

component of the polygon B c~ Ri that contains pi (see Fig. 5.3). To be consistent 

with the assumptions for Lemma 5 we allow R~ = Rj but we assume that E~ # Ej if 

i # j. We analyze the blue boundary pieces of the Ei by constructing a graph, faB, 

and proving certain properties about (qB. This graph is instrumental in proving an 

upper bound on the total number of blue edges bounding the Ei. 

We need a few definitions. A blue boundary piece of E i is a connected component 

of OE~ ca aB. Every blue boundary piece, 6, belongs to a contour cycle 7 of some Ei 

and to a blue contour cycle ~j. Since contour cycles are directed, we can define a 

predecessor and a successor of 6 in both cycles, which are the blue boundary pieces 

immediately before and after ~ in y and in ~j. Note that it is possible that the 

predecessor (successor) of 6 in y is the same as in ~ ,  but this is not necessarily the 

case. Graph ~s  is a graph whose nodes are the points Pl, P2 . . . . .  p~ and d 

additional points ql, q2 . . . . .  qe so that q~ lies in the interior of the connected 

component of the complement R 2 -  B of B bounded by ~; we denote this 

component by Xl (thus we have one point q~ in each such component). For every 

blue boundary piece 6 c OEi ca ~j, 1 < i < m and 1 < j < d, we draw a curve 

connecting p~ with q~. This curve, a plane embedding of an arc of f#n, connects an 

arbitrary point on 6 with p~ and qj. Since 6 is part of the common boundary of E~ 

and Xj we can draw the curve completely within E~ u X~. The connectedness of 

each Et and X~ implies, by a consequence of Sch6nfliess theorem [M], that we can 

draw all such edges without any crossings. Hence, fan is planar. 

The second step of the construction removes sufficiently many of the duplicate 

arcs (connecting the same two points) so that we can apply Euler's relation to 

derive an upper bound on the numbe~ of remaining arcs. Whenever two arcs of fan 

connect the same two points and they correspond to two blue boundary pieces 

such that one is the successor of the other in both contour cycles, then we delete the 
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successor arc. (In the case that both blue boundary pieces are successors of each 

other, we make an arbitrary decision to break the tie.) As a result of this deletion 

operation, every blue boundary piece 6 c E i n ~j intersects an arc of ~B, unless 

there is another such piece ~' c E~ n ~i that precedes 6 in both contour cycles. Note 

that the removal of arcs as described does not eliminate all multiarcs but it 

guarantees that, barring one extreme situation mentioned below, every region of 

the embedding of fqB is bounded by at least four arcs, counting an arc twice if it lies 

in the closure of the region. The one case where this does not hold is when (gn 

contains only two vertices and one connecting (doubly counted) arc. This arises 

when B contains just one point Pl, and the corresponding E i uses only one contour 

cycle of B. In this case we can delete this arc too, because it will not be used in the 

argument to follow. The factor "four"  rather than "three" which is typical for 

planar graph arguments can be used because f~n is bipartite by definition and has 

therefore no odd cycles. Using Euler's relation we derive that the number of 

remaining arcs is at most 2(m + ~) - 4 (also in the special case mentioned above). 

We are now ready to prove a strong variant of Lemma 5 stating that the k 

connected components of the B i n  R j, 1 < i < s and 1 <_ j ~ t, containing the k 

points Pl, P2 . . . . .  PR are bounded by a total of at most fl + p + r + 12k + 6E - 24 
edges, where 

fl is the total number of (blue) edges of the B~, 

p is the total number of (red) edges of the R j, 

r is the total number of reflex vertices of the B~ and R~, and 

is the total number of contour cycles of the Bi and Rj. 

Lemma 5 is implied because ~ < r + 2k (each B i or R~ has at most one exterior 

contour cycle, there are at most 2k blue and red polygons, and each interior 

contour cycle must contain a reflex vertex), and thus fl + p + r + 12k + 6C - 

24 = fl + p + O(r) + O(k). In the argument to come we traverse all blue (and 

symmetrically all red) contour cycles and count the blue (red) edges of the Ei, 

1 _< i < k, as we encounter them, by charging them to various "acounts." Note that 

a blue (red) edge can contain several such edges. We define f¢ as the union of all 

graphs c~B, and ,,~ as the union of all graphs ~R~ defined symmetrically for all red 

polygons. 

The easy case is if a blue (red) edge, e, contains at most one edge of all the 

E~--the appearance of this edge is accounted for by the term fl (p) in the upper 

bound. Otherwise, let el and e2 be two components of e c~ ( U  1 <i,:k OEi), consecu- 

tive along e, and assume that el is already accounted for. (We always charge the 

first such component to e itself, so these charges are absorbed in the term fl (p).) We 

assume e is blue. 

(i) If e a and e2 do not lie on a common contour cycle of an Et (and thus belong 

to the boundaries of two different polygons E), then we charge e:  to the arc 

of (~ that is induced by the blue boundary piece that contains e2 (note that 

this arc cannot have been deleted from f~; see Fig. 5.4 (a)). 

On the other hand, if e~ and e2 belong to a common contour cycle ~, of some E~, 

then we distinguish two cases. Let ~'o be the piece of ~ connecting the last point of e~ 
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(a) Charging rule (i). (b) Charging rule (ii)(a). (c) Charging rule (ii)(b). (d) Charging rule (iii). 

with the first point of e 2. Note that, by Lemma 8, the relative interior of V is disjoint 

from e. Moreover, it is disjoint from the blue contour cycle containing e. 

(ii) If Y0 contains no blue boundary piece, then there are two subcases: 

(a) Y0 contains a red reflex vertex (see Fig. 5.4 (b)). Then we charge e2 to the 

first such reflex vertex. 

(b) Vo contains no red reflex vertices. In this case Vo must "go around" e, as 

shown in Fig. 5.4 (c);.that is, Vo keeps turning to the left after leaving el, 

crosses the line containing e before e, crosses it again after e, and 

eventually reaching e again at e2 (making only left turns all along). In 

this case we charge e2 to the arc of ~g induced by Vo, or, if this arc has 

been removed from ~g', to the preceding arc of g that connects the 

same two nodes of that graph. 

(iii) Otherwise, we charge ez to the arc of ~ that is induced by the first blue 

boundary piece on ~o (again, by Lemma 8, this arc cannot have been 

deleted from f#; see Fig. 5.4 (d)). 

It is easy to see that each reflex vertex is charged in (ii)(a) at most once. The 

definition o f ~  guarantees that in each case where we charge ~ there is in fact an arc 

that takes the charge. We now argue that the mechanism we use can charge an arc 

' o f~  at most twice. In ease (i) the arc takes the charge for an edge, e2, that is the first 

edge of the corresponding blue boundary piece. Since every blue boundary piece 

has only one first edge, this case can occur only once. In case (iii), the arc that takes 

the charge for a pair of edges, el and %, corresponds to a different blue contour 
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cycle. However, el, the blue boundary piece ~ that corresponds to the charged arc, 

and e 2 all belong to the same contour cycle of some E l and 6 is the first blue 

boundary piece that occurs between el and e2 in this cycle. Clearly, it cannot be the 

first blue boundary piece after a blue boundary piece other than that containing el, 

which implies that this case also puts at most one charge onto any one arc. 

Finally we claim that in case (ii)(b) no arc of ~ is charged more than once. 

Assume to the contrary that such an arc is charged twice, because it is induced by 

two red boundary pieces, Y0, Y~, that bound the same region Ei, and each of them is 

being charged by rule (ii)(b). It is easily checked that these charges must be induced 

by two distinct blue edges e, e' (recall that by our convention e represents just one 

side of a blue segment, and similarly for e'). Let el, e2 be the two consecutive 

portions of e, separated along OEi by Yo, and similarly let et', e 2' be the two 
consecutive portions of e', separated along OE~ by ~,~. 

Take a point p s e lying immediately after e~ and a point p' e e' lying immediately 

after e' t. If we move from p slightly away from e to its left, and similarly for p', we 

will be in the same connected component of the complement of the red polygon 

containing E~--this is the component bounded by the red contour cycle containing 

both ~o and y;. We can therefore connect p to p' by a path n that is disjoint from E~. 

Let us form a "dummy" blue contour cycle ~ composed of e, e', and n and of the 

other sides of e, e', and n (this argument shows incidentally that e' cannot be the 

other side of e). 

Our assumptions imply that the four subsegments e~, e 2, e'~, and e~ appear in 

this (circular) order along 0E~. By Lemma 8 this must also be the order in which 

they appear along ft. However, it is easily verified that this is impossible. This 

contradiction shows that no arc of ,ge is charged more than once. 

Thus, summing over all blue and red edge duplications, we see that the total 

number of edges bounding the E~, 1 < i < k, is at most 

/~ + p + r plus three times the total number of arcs of ~ and ~ .  

The number of arcs of ~ and ~ is at most 4k + 2: -- 4s - 4t since every point Pt is 

counted twice (once for the blue and once for the red polygon that contains it). This 

implies the claim and completes the proof of Lemma 5. []  

6. Calculating Many Faces in an Arrangement of Line Segments 

We next turn to the task of calculating the faces in an arrangement of n line 

segments, sl, s 2 . . . . .  s,, that contain m given points, Pl, P2 . . . . .  Pro. Generalizing the 

ray shooting method used in Section 3 for line arrangements is problematic 

because it would call for performing such ray shooting queries inside polygonal 

regions that are not simply connected. No efficient technique for doing so is 

currently known. This section presents an alternative approach based on the line- 

sweeping technique (see, e.g., [PS]). 
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Consider the algorithmic issues that arise in efficiently implementing the 

algorithm implicitly described in Sections 4 and 5. At the bottom of the recursion, 

when my-> r(nv), we need to calculate the entire arrangement of the no 

line segments in Sv, and extract from it the faces containing the m~ points 
reaching v. Using the sweep algorithm in [BO] this arrangement can be con= 

structed in O(n~ log no) time, and the faces that contain the me points can be 
identified in time O(mo log nv) using any of a number of efficient point-location 

methods. Hence, such a node v can be processed in time O(mo log nv). 

In the general merging step, we first need to calculate, for each subregion v, the 

exterior face of A(S~), which contains the points in Qo by definition. This step of the 

computation is described at the end of Section 7. It falls out as a special case of the 

general merge procedure described there. The resulting algorithm, stated in 

Theorem 11 of Section 7, has time complexity O(no~(n~) log 2 no), if the unbounded 

face has to be constructed from scratch (which is the case if rno = 0), but this can be 

improved to O(nv~(no) log n~), if we already have available the unbounded faces in 

the subarrangements whose overlay gives A(S~) (which is the case if 0 < m~ < 

(nv); if rn~ > r(n~) we compute the entire arrangement A(Sv), so no special attention 

is required for the unbounded face). 

Next, in the merging itself, for each Pie P we need to calculate the face F(pt) of 

the arrangement A(S) that contains p~. This face is the connected component 

containing Pi of the intersection of the M faces Foj(P~), j = 1, 2 . . . .  , M, where 
vl . . . . .  v~ are the triangles formed in the partitioning (note that each of these faces 

is either computed recursively or is the corresponding unbounded face F~ whose 

computation has just been discussed). As in Section 3, our goal is to construct these 

faces in time that only depends on their total combinatorial complexity. Section 7 

presents a method, called the blue-red merge, that can be used to construct the faces 

F(pt) in such an efficient manner. 

Let us be more specific about the blue-red merge. The input to this procedure is 

a set of pairwise disjoint blue (and red) polygons bounded by a total number of/~ 

(p) edges, and a set of k points each one inside some blue and some red polygon. 

The output is the set of k polygons that are the connected components of the 

blue-red intersections that contain the k points. The blue-red merge constructs the 

output polygons in time O((/~ + p + k) log (/~ + p + k)) (s¢¢ Theorem 10). To 

construct the faces F(p~ we apply the blue-red merge M - 1 times to the faces 

Fvj(p~),j = 1, 2 . . . . .  M. The amount of time required for the merging is thus 

M 

~, O((g(rn~j, n~j) + m~j) log n~j + no#~(nvj) log n~#) 
jffil 

= O((R(m, n) + m + n~(n)) log  n). 

Here we use the fact that the number of reflex vertices in the relevant faces is 

O(n)--they must be endpoints of line segments in Sv. In addition, we use Lemma 5 

for each of the M - 1 blue-red merging steps to deduce that the output size of each 

merge is linear in its input size. From this the above bound follows readily. We now 

put everything together, also taking into account the cost of the recursive 

partitioning of the dual plane (as in Section 3). 
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Let T(m, n) denote the time needed by our algorithm to calculate the faces in an 

arrangement of n line segments that contain m given points, under the assumption 

that the random samples that we draw at each recursive step are indeed 8-nets. (As 

in Section 3, we verify this property after each sampling, discard the sampling if it is 

not an e-net, and try another one. This makes the expected running time of the 

algorithm within a constant factor of T(m, n).) We get the following recurrence 

relation for T(m, n): 

T(m, n) = O(not(n) log z n) if 

T(m, n) = O(m log n) if 

and 

M 

T(m, n) < ~ T(mi, n~) + O(( R(m, n) + m + not(n)) log n) if 
i=1 

m=0,  

m >_ x(n), 

m < r(n), 

where mi, hi, and M satisfy conditions (I)-(III) stated in the analysis given in 

Section 2. Using the bounds on/~(m, n) and R(m, n) obtained above, we can easily 

obtain the following bounds, in much the same way as in the proofs of Lemma 2 

and Theorem 3. 

Theorem 9. The m faces designated by m points in an arranoement of n line 

seoments in the plane can be constructed in randomized expected time 

T(m, n) = O(m 2:3 -6n2/3 + 2a log n + n~(n) log 2 n log m), 

where 6 is any positive real number. The space required by the aloorithm is 

S(m, n) = O(m2/a-~n 2/3+ 2a + not(n) log m) 

for any 6 > O. 

7. The Blue-Red Merge 

This section presents the details of the blue-red merge which computes the relevant 

faces in an arrangement A(S~) assuming that the faces at the M subarrangements 

A(Sws) have already been constructed recursively. As in Section 3 we assume 

M = 2, so that we need to intersect only two faces around each point p~. We are 

thus given two collections of (not necessarily simply connected) open polygons in 

the plane, {Bz, B2 . . . . .  Bs} and {R 1, R 2 . . . . .  Rt}; the B l are called the blue polygons 

and the R s are the red polygons. We can assume that any two blue (red) polygons 

are disjoint. In addition we are given a set P of k points, Pl . . . . .  p~, where each Pt is 
contained in some blue polygon and in some red polygon. See Fig. 7.1 (a) and (b) 

for an illustration of this set-up. Let p and p denote the total number of edges of the 

blue and red polygons, respectively. 
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Fig. 7.1. Intersecting blue and red polygons. (a) The blue polygons. (b) The red polygons. (c) The 
purple polygons. 

Our goal is to calculate all polygons E~, where, for each p~e P, E~ is the 

connected component containing pz of the intersection of the red polygon and the 

blue polygon that contain p~. The resulting Et are called the purple polygons, as 
each is covered by a red and a blue polygon. Fig. 7.1 (c) shows the purple polygons 
that arise from the blue and red polygons and surround the points shown in Fig. 7.1 

(a) and (b). As in Section 3, we do not exclude the possibility that Ei = Ej for i ~ j. 
If ~ is the total number of purple edges, then ~ = ~ + p + O(k) + O(r), by Lemma 

5, where r is the total number of reflex blue and red vertices. Since r < / / +  p we 
have 7r = O(p + p + k). 

To facilitate the merge, we require certain information to be precomputed and 

available for each collection of polygons. Specifically, let Ps  and Px be the set of 

reflex vertices of the blue and red polygons, respectively. We require that each blue 

polygon B~ be subdivided into convex regions by drawing vertical rays from each 
point p ~ (P  u Ps)  ra B~ and stopping them as they encounter an edge of Bl; we call 
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the resulting vertical line segment through p the blue vertical divider of p, and 

denote it by blue(p) (see Fig. 7.1 (a)). Symmetrically, we require that each red 

polygon Rj is decomposed into convex regions by red vertical dividers red(p), 

P e (P ~) PR) c~ Rj (see Fig. 7.1 (b)). These convex decompositions of the blue and 

red polygons will be available recursively. These decompositions do not increase 

the complexity of the procedure by more than a constant factor. 

A particular convex blue (or red) region terminates on the left or the right either 

(i) because of a point of P, 

(ii) because of a blue (or red) reflex vertex, or 

(iii) because of a locally x-extremal (nonreflex) vertex of the corresponding 

polygon. 

The blue-red merge produces a similar decomposition of the purple polygons into 

convex regions, which we call the purple regions. 

We construct the purple regions by sweeping a vertical line across the plane. A 

purple region starts (and ends) at 

(i) a point of P, 

(ii) a blue or red reflex vertex, 

(iii) an x-extremal vertex of a blue or red polygon, or 

(iv) the intersection of a blue and red edge. 

In a left-to-right sweep we discover the portion of each purple polygon that is to the 

right of the leftmost point in P w PB w PR that lies in it. Afterward, in a right-to-left 

sweep, we get the portion of each purple polygon to the left of the rightmost point 

in P w Pn w PR that lies in the polygon. Together, the two sweeps discover all edges 

of the purple polygons. In fact, the sweeps construct slightly more than the purple 

regions (the convex decomposition of the purple polygons) and we have to remove 

superfluous regions after the two sweeps (see Fig. 7.1 (c)). More about this later. 

We are now ready to describe the left-to-right sweep--the right-to-left sweep is 

symmetric. We start by constructing a priority queue that stores P u Pn u PR 

ordered by x-coordinates. This priority queue is referred to as the event schedule. 

During the sweep we maintain separate data structures for the blue, red and purple 

regions. Thus, it is convenient to think of blue, red, and purple planes swept 

simultaneously and independently. The main purpose of keeping the blue and red 

regions separate is to avoid processing "uninteresting" blue-red intersections that 

do not contribute to the boundary of a purple region. The only data structure that 

represents blue, red, and purple data mixed together is the event schedule. The 

main part of the blue-red merge is to detect intersections of blue and red edges that 

occur on the boundary of a purple region. When such an intersection is detected it 

is added to the event schedule and appropriate actions are taken to adjust the data 

structures supporting the sweep. 

Introduction of Scouts. Each time a point p e P u Pn u P~ is encountered, we 

possibly start one or two new purple regions in the purple plane. If p ~ P, then it 

belongs to a blue and a red region and we start one new purple region. If p is a 

reflex vertex of a blue (red) polygon we check whether it lies inside a red (blue) 
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polygon. If it does not we simply discard it, and if it does we start two or one purple 

region(s) depending on whether or not both incident edges ofp  lie to the right of the 

vertical line through p7 Whenever a new purple region is started we create two 

scouts, an upper and a lower scout for the region. The job of the two scouts is to 

walk along the upper and lower boundary of the new purple region and to look out 

for events to come which might influence the shape of their region. The scouts 

always stay with the sweep line and never stroll ahead or stay behind. We describe 

the way the upper scout of the purple region does its j ob - - t he  lower scout behaves 

symmetrically. 

The upper scout, u, starts on the lowest blue or red edge above p, the point that 

gives rise to the purple region at hand. If  p e P, then the edge is either the blue edge 

that contains the upper endpoint of blue(p) or the red edge that contains the upper 

endpoint of red(p). If  p is a blue (red) reflex vertex, then we consult the data 

structure that represents the rod (blue) sweep to find the lowest red edge vertically 

above ps and we compare this edge with the blue (red) edge that contains the upper 

endpoint of blue(p) (red(p)). The scout moves right along that edge following the 

sweep line and it watches out for certain events that might influence the construc- 

tion of the purple boundary. 

Without loss of generality, assume that u currently lies on a blue edge. Most 

importantly, u looks up to the lowest red edge above--cal l  it e r. Since u is a point of 

a purple region, all points between u and e r including u lie in the red polygon 

bounded by er. The reason for u's concern is that, at  some future point in time, the 

red boundary above u might drop below the blue boundary u is currently following. 

If  this indeed happens u will switch to the red boundary which will then delimit the 

purple region. However, there might be another scout, v, already watching the same 

red edge from below. In that case only the higher of  u and v needs to watch er-- tbe 

other scout can rest, since it is protected by the other scout, who will have to warn it 

in case the red boundary drops unexpectedly. 

In more technical detail, "watching er" means that u determines whether e r and 

eb, the edge it walks on, intersect to the right of the sweep line. I f  so it adds the 

intersection point to the event schedule of the sweep. If  such an intersection does 

not exist and u reaches the right endpoint of eb (or e~) it continues walking on 

(watching) the next blue (red) edge, if it exists. On the other hand, if e b and e~ 

intersect, then u switches over to e, when the sweep line passes the intersection. In 

this case, u starts watching e~ which is now the lowest blue edge above u. Of  course, 

there is also the case that the red boundary watched by u discontinuously changes 

Assuming that we deal with polygons bounded by simple Jordan curves there are exactly two such 
edges. In our application, however, each reflex vertex is an endpoint of a line segment and thus, 
assuming general position of the segments, is incident to only one edge. We treat the two sides of this 
edge as two edges. Thus, either both incident edges are to the left or both are to the right of the vertical 
line through the reflex vertex. However, it is also easy to handle the case of endpoints being shared by 
more  than one segment. 

s This data structure is a balanced tree that stores the red (blue) edges that currently intersect the 
sweep line. Thus, logarithmic time (in the number of red (blue) edges) is sufficient to find the lowest red 
(blue) edge above a given point. New edges can be added and old edges can be removed in logarithmic 
time. 
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at some point-- in this case u must look for a new assignment. Below, this case is 

treated in detail. 

Another job of u is to watch its partner, the lower scout of the sample purple 

region. This is because when the two scouts meet then the purple region ends. Of 

course, the region ends earlier if another point of P or a reflex vertex is encountered 

between the two scouts. 

Scout Invariants. There are two key properties that are satisfied at any given time. 

The first is that at any point in time each blue and each red edge is watched by at 

most one upper or lower scout. Of course, the assignment of the scouts may change 

and, over time, a single edge can be watched by many scouts. The second property 

is that a blue edge is watched only by scouts that walk along red edges, and a red 

edge is watched only by scouts walking along blue edges. 

Changing Assignments. Reassignments for scouts are necessary when new purple 

regions start and old ones end. A purple region might end, for example, when its 

two scouts meet. This occurs, for instance, when the rightmost vertex of a blue 

region lies inside a red region. In this event, the two purple scouts are dismissed. 

However, some transfer of watching responsibility is indicated before the two 

scouts leave the scene. If the dismissed upper scout, u, was watching a red edge, e r, 

then we must check v, the next upper scout below u. If v is idle (this can only be 

because u protected v from e,), then v takes over the responsibility to watch e~. If v is 

already watching another red edge, then we leave it undisturbed as its red edge 

must lie below e~. 

The two scouts of a purple region also come together when a purple region ends 

at the intersection of a red and a blue edge. Any reassignment of watching 

responsibilities are handled as before. 

I fa  purple region ends because of a point p e P u Pn w P~ that appears between 

the scouts, then again the two scouts are dimissed. In this case, however, they will 

generally be replaced by new scouts employed to guard the purple region(s) started 

at the vertical divider of p. 

The reassignment of watching responsibility necessary when we sweep through 

such a point p is done as follows. At the time p is encountered, one or two new 

purple regions are created. Assume for simplicity that there is only one new region, 

let u be its upper scout and assume that u starts out on a blue edge. First, u finds the 

lowest red edge above it using the data structure that represents the sweep in the 

red plane. Second, u consults the upper scout, w, immediately above and the upper 

scout, v, immediately below. If w is watching the same red edge as u, then u forgets 

about its assignment and becomes idle. Otherwise, u takes up its assignment and 

checks whether v watches the same red edge. If yes, then v becomes idle. Similar 

actions are taken when two new purple regions are spawned at p. 

Finally, some transfer of watching responsibility may be required at a blue-red 

crossing lying, say, on the upper boundary of some purple region. Suppose the 

corresponding upper scout, u, walks along a blue edge, eb, just before the 

intersection occurs. To the right of the crossing u follows a red edge, er. As noted 

above, u now starts watching eb, but we also need to cheek the upper scout v 
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immediately below u, who might want to start watching e r. Details are similar as in 

the cases considered above. 

Analyzing the Blue-Red Sweep. The scouts simply trace the boundaries of the 

purple regions. Each scout adds the intersections between blue and red edges that it 

predicts to the event schedule. New events are added only when we sweep through 

a point in P, through a blue vertex, through a red vertex, or through the 

intersection between a blue and a red edge that is also a vertex of a purple region. 

Moreover, at each such point only a constant number of additions of new events 
are made. Thus the total number of events ever scheduled is proportional to the 

total input and output size, which, by Lemma 5, is O(fl + p + k). The time to add 

or remove an entry to or from the event schedule is logarithmic in its size which is 

thus O(log(fl + p + k)). The additional operations involve updating the balanced 

trees that represent the blue, red, and purple cross-sections along the sweep line, 

creating and dismissing scouts, and reassigning watching responsibilities. It is plain 

that we need to perform only O(fl + p + k) such operations, and that each one can 

be carried out in time O(log(fl + p + k)). 

There is a minor point to be clarified here: the algorithm constructs more than 

only the "true" purple regions (those that are connected by sequences of adjacen- 

cies across vertical dividers to regions that contain points of P). Indeed, it 

constructs all connected components of the blue-red intersections that contain a 

point of P or a reflex blue or red vertex (see, for example, Fig. 7.1 (c) which shows 

two purple faces that contain no point of P). The construction of these additional 

faces seems necessary since a genuine purple face can go back and forth in a 

serpentine-like fashion, which makes it difficult for a sweep to capture its entire 

boundary unless it collects various portions of the face in advance. Since the 

number of reflex vertices is at most fl + p, this does not affect the asymptotic 

time-complexity of the above algorithm. The final step now removes fake purple 

regions. This can be done by a simple graph search in time proportional to the 

number of purple regions produced by the algorithm, hence in time O(fl + p + k). 

Thus the blue-red merge takes time O((fl + p + k) log(fl + p + k)). 

Theorem 10. Let the B~ (R j ) form a collection of pairwise disjoint blue (red) 

polygons in the plane bounded by a total number of fl (p) edges, and let P be a set of k 

points each contained in a blue and a red polygon. The connected components of the 

intersections between the blue and the red polygons that contain the given points can 

be constructed in time O((fl + p + k) log(fl + p + k)). 

We next show how to apply the blue-red merge to the calculation of a single 

face, F, in an arrangement of a collection of n line segments, S = {s 1, s 2 . . . .  , s,}. As 
usual, F is assumed to be represented by a single point p contained in F. We now 

employ a straightforward divide-and-conquer procedure (nothing l~e  our present 

intricate partition tree scheme): 

Step 1. Partition S into subsets $1 and $2 of about half the size of S each. 

Step 2. Calculate the faces Ft  and F2 in the arrangements A(SO and A(S 2) that 

contain p. 
Step 3. Apply the blue-red merge described above to F1, F2, and {p}. 
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By the results of [PSS], we know that F 1 and F 2 together have O(no~(n)) edges. 

Thus, by Theorem 10, Step 3 constructs F from F1 and F2 in time O(not(n) log n). 

We therefore get 

T(n) = 2T(n/2) + O(n~(n) log n) = O(nct(n) log 2 n) 

for the total amount of time required to construct F. We state this result as a 

theorem. 

Theorem 11. A single face in an arrangement of n line segments in the plane can be 

calculated in time O(no~(n) log 2 n). 

Remarks. (1) Theorem 11 extends and simplifies previous results on constructing 

a single face in a line-segment arrangement obtained in I'PSS]. 

(2) In the construction of m faces in a line-segment arrangement, we need 

Theorem 11 for calculating the unbounded face, F~, in A(S,,), at each subregion v. If 

v represents an inner recursive step, then we already have a constant number of 

unbounded faces available such that F~ is the unbounded connected component of 

their intersection. Hence, we do not have to pay for the recursive overhead (as in 

Theorem t 1), which gives us an O(nv~t(nv) log n~)-time algorithm for constructing 

F~. No log nv factor can be saved, however, if v is at the bottom of recursion. 

(3) Note that the algorithm given in Theorem 11 is deterministic. 

8. Discussion and Open Problems 

In this paper we have obtained almost tight upper bounds for the maximum 

number of edges bounding m faces in an arrangement of n lines or line segments. 

We also presented efficient randomized algorithms for the calculation of these 

faces. The expected randomized time-complexity of these algorithms is only slightly 

higher than the upper bounds on the nuber of edges that are to be reported. The 

main technical tools that we have introduced and used in our analysis are 

(i) efficient planar partitioning schemes for a set ofn  points and m lines, using a 

random sampling technique similar to those of [HW'J and [C1], and 

(ii) the combination lemmas for faces in arrangements of lines and of line 

segments. 

This final section concludes with some comments on our techniques, reports on 

further progress, and states related open problems. 

The problem of calculating m faces in an arrangement of n lines or line segments 

generalizes two simpler variants. One of them, originally posed by Hopcroft, is the 
following: 

Given m points and n lines in the plane, determine whether any of the points lies 

on any of the lines. 
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Another variant is 

Given m points and n lines in the plane, find for each point the nearest line that 

lies vertically below it. 

Since both problems are restricted cases of the problem studied in this paper, our 

algorithm yields efficient solutions to these simpler problems as well, improving 

earlier solutions in I-CSY]. Note, however, that in these problems the output size is 

not a significant issue--the first problem is just a decision problem and the output 

in the second problem has only linear size. In constrast, for the problem studied in 

this paper the output size, and thus the space- and time-complexity of the 
algorithm, can be forced to be superlinear, that is, ~(m2/an2/3). An obvious open 

problem that arises is whether the two simpler problems can be solved in 
o(m213n 2/3) time. As is shown elsewhere [EGSh-I, the straightforward generaliza- 

tions of the two problems to three dimensions can indeed be solved faster than the 

best-known solution for the problem of calculating the entire cells of the arrange- 

ment containing the given points. 

Our approach to calculating faces in arrangements is based on a dualization of 

the problem which puts limits on its generality. Nevertheless, we could give an 

equivalent description of our technique using only the primal plane. We thus draw 

a random sample of r of the given points and then partition the lines into O(r 2) 

so-called 3-corridors each being the primal equivalent of a triangle in the dual plane 

(see [HW]). Each point is passed to all 3-corridors that contain it. It is an 

interesting open problem whether or not this primal view of our technique can be 

generalized to apply to arrangements of other curves such as circles and alike. 

Recently, after the original submission of this paper, considerable progress was 

made on the problems studied here and on many related problems. The new results 

improve, extend, or apply the results and techniques developed here. Many of these 

latter works, listed below, are based on the tools and methods of this paper: 

(1) We have already mentioned the companion paper [CEG*], in which an 

improved and tight combinatorial bound has been obtained for the case of 

lines. 
(2) Later, Edelsbrunner et al. [EGH*'I have obtained efficient algorithms to 

preprocess an arrangement of n lines so that, given a query point, the face of 

the arrangement containing the point can be computed efficiently. 

(3) Our complexity bound for the case of segments has been recently improved 
by Aronov et al. [AEGS] t o  O(m2/3n 2/3 logl/a(n2/m) + n~t(n) + n log m). 

This is still not known to be tight, but the gap between the upper and lower 

bounds has been reduced considerably. 

(4) The blue-red merge, and a weaker version of the combination lemma, have 

been extended in Guibas et al. [GSS] to the case of arrangements of curved 

arcs, provided no pair of the arcs intersect in more than a fixed constant 

number s of points. They have applied these tools to obtain a n  O(,~s+2(n ) 
log 2 n) algorithm for the calculation of a single face in such an arrangement, 

where ,~s+2(n) is the maximum length of (n,s + 2)-Davenport-Schinzel 

sequences. 
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(5) 

(6) 

The results obtained in this paper have been applied in [AS] to bound the 

complexity of all nonconvex cells in an arrangement of n triangles in 3-space. 

A by-product of the research in [AS] is a simpler proof of the combination 

lemmas, Lemmas 1 and 5. 

Finally, there has been recently considerable progress in obtaining determin- 

istic algorithms for partitioning arrangements of lines in the plane. The best 

result in this direction is due to Agarwal [AI, and it leads, among other 

applications, to a deterministic algorithm for computing m faces in an 
arrangement ofn line segments in time O(m2/3n 2/3 log" n + (m + n) log n) for 

some constant a < 3. 
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