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Abstract. We show that the total number of edges of m faces of an arrangement of n
lines in the plane is O(m*® %n?3*2% 4 ) for any & > 0. The proof takes an
algorithmic approach, that is, we describe an algorithm for the calculation of these m
faces and derive the upper bound from the analysis of the algorithm. The algorithm
uses randomization and its expected time complexity is O(m*>~n***¥logn +
nlog n log m). If instead of lines we have an arrangement of n line segments, then the
maximum number of edges of m faces is O(m*>~n?3*22 4 ny (n) logm) for any
d > 0, where a(n) is the functional inverse of Ackermann’s function. We give a
(randomized) algorithm that produces these faces and takes expected time
0?3223+ 2% 109 + nafn) log?n log m).

Introduction

, I,} be a finite set of lines in the plane. Let L induce a partition of

the plane, known as the arrangement A(L) of L, into O(n?) faces, edges, and vertices.
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The vertices are the points of intersection of the lines in L, the edges are the
connected components of the lines after removing the vertices, and the faces are the
(convex) connected components of the complement of the union of the lines /; (see
[G] or[E] for more details concerning arrangements in the plane and in higher
dimensions).

Many combinatorial properties of arrangements of lines have been studied
extensively. In this paper we consider the maximum number, K{(m, n), of edges
bounding m distinct faces in an arrangement of n lines in the plane (where we count
an edge twice if it bounds two of these faces). Note that m can vary between 1 and

xk(n) = ; + n+ 1, and that at these extreme values we have K(1, n) = n and

K(x(n), n) = 2n? (there are altogether n? edges in the arrangement and each edge
bounds two faces). A trivial upper bound for K(m, n) is mn and a trivial lower
bound is 2m. Prior to this and a companion paper [CEG*],the best-known bounds
on K(m, n) for general values of m were

G) K(m, n)=n + 4 ’;’ form>2andn> 4(';') [Cal,

(ii) K(m, n) = O(mn''?) for n*’? < m [EW1],

(iii) K(m, n) = O(m*'*n) [EW1]}, and

(iv) K(m, n) = Qm*3n%3) [EW1]
(see also Chapter 6 of [E]). Note that each of the upper bounds has a different
range of values of m for which it is better than the other (or the trivial) bounds. A
graph showing these upper and lower bounds on a logarithmic scale is given in
Fig. 1.1.

In this paper we improve the upper bounds by showing that

K(m, n) = O(m?3~9p23%28 4 p)

for any positive & (with the constants of proportionality depending on §).!
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Fig.1.1. Previous bounds on K(m, n). log,m

! With some effort, we can determine for each m and n the optimal choice of 4, and thus obtain a
somewhat tighter bound for K(m, n).
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Fig. 1.2. Points designate desired faces.

This bound is slightly weaker than a tight bound @(m?3n?3 + n), obtained in
the companion paper [CEG*]. We nevertheless present this result here because (i)
it serves as a simple introduction to the more complex case of segments, (ii) it uses a
different proof technique than the one used in [CEG™*], and (iii) it leads to an
efficient algorithm for computing the desired m faces.

Our approach to the combinatorial probelm is different from previous work on
this problem in that it has an algorithmic flavor. We obtain an algorithm for the
calculation of m faces in an arrangement of n lines, where each face is designated by
specifying an arbitrary interior point in it. In other words, we consider a set L of n
lines, I, 1,,...,1,,and a set P of m points, p,, p3, ..., P, in the plane, and calculate
the faces of the arrangement that contain the given points (see Fig. 1.2; for reasons
that will become clear later we allow more than one point designating a single face).
We construct these faces using the following divide-and-conquer strategy.

It is convenient to describe this strategy in dual space although it is possible to
find a fairly natural interpretation of it also in primal space. For this reason, we
dualize the points and lines and thus obtain lines p¥ and points I} in the dual plane.
Those lines are referred to as dual lines and the points are called dual points. The
duality transform that we use maps a point p: (g, b) into a line p*: y = ax + b, and
a line I: y = cx + d into a point [*: (—¢, d). This duality has the properties that it
preserves line-point incidences, and that it maps a point p lying above (resp. below)
a line [ to a line p* lying above (resp. below) a point I*.

Our divide-and-conquer strategy amounts to partitioning the dual plane
recursively into convex regions. At each step we have a convex region v in the dual
plane, and two sets associated with it: L*—the set of dual points I} € v, and P} —the
set of dual lines p¥ crossing v. We then partition v into convex subregions, w, obtain
a corresponding partitioning of L*into subsets L}, and distribute a copy of each
line in P¥ to all sets P* associated with the regions w it crosses.

What is the subproblem, in the primal plane, that a dual region v induces? We
have a set of lines L, = L and a set of points P, < P, so the corresponding
subproblem is that of calculating the faces of the arrangement A(L,) that contain
points of P,. But what about the other points? For the success of our recursive
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scheme it is important that we calculate these faces as well. Fortunately, it turns out
that all the remaining points lie either in the topmost face or in the bottommost
face of A(L,); these two faces are easy to calculate and we add them to collection of
the other, recursively computed, faces.

Note that this divide-and-conquer scheme is such that, on the average, the
number of dual lines associated with a region v will eventually become much larger
than the number of dual points in ». We stop the recursive partitioning at regions v
for which | P*| > |L*|?, because in this case we are able to afford to calculate the
entire arrangement A(L,) in the primal plane (and select out of it the desired faces).

Finally, having solved the problem associated with each subregion of v, we need
to combine the solutions to obtain a solution for the entire v. In the primal plane,
this means that we are given the faces containing points of P, in each of the
subarrangements A(L,,) associated with the subregions w of v, and we wish to
combine (actually, intersect) these faces to obtain the faces containing points of P,
in the full arrangement A(L,). A major tool that we develop for this purpose is the
so-called “combination lemma” which gives a tight upper bound on the maximum
combinatorial complexity? of the desired faces in terms of the combinatorial
complexity of the corresponding faces in the subarrangements (see Lemma 1). We
expect this result to have applications to other problems as well.

If we examine the recursion tree that results from this divide-and-conquer
strategy, we obtain a structure that is very similar to so-called partition trees,
originally designed to solve half-plane range searching problems. Indeed, thinking
of the dual points as “data” and the dual lines as “queries,” we obtain a partition of
the set of dual points into disjoint subsets, according to some underlying convex
decomposition of the dual plane; this is similar to standard partition trees [EW2],
[HW], except that each node v (that is, a region in the dual plane) knows a priori all
the query lines that require further processing at v (these are the lines in P¥—the
lines that cross v); we use this information to further partition v, thus making the
tree “customized” and easier to “search.”

To reiterate, an offshoot of the analysis given in this paper yields a technique for
constructing a partition tree for a set of data points and a predetermined set of
query lines. Such a tree can then be used to obtain better bounds for batched half-
plane range searching when the queries are known in advance (applications include
counting the number of intersections between n line segments [GOS], calculating
the “signature” of a polygonal curve [O], multiple ray-tracing [SML], etc.).

In our present application, the desired upper bound on K (m, n) is obtained by
analyzing the space complexity of the resulting algorithm. The time complexity of
the algorithm is roughly a polylogarithmic factor times the upper bound on K(m, n)
mentioned above (see Section 3 for a more precise bound). The algorithm is based
on a random sampling technique akin to the e-net method of Haussler and Welzel
[HW] and to the random sampling method of Clarkson [Cl]. We obtain a
randomized algorithm which almost always terminates, produces the desired
output upon termination, and whose expected running time is as stated above.

2 We use the term “combinatorial complexity” and sometimes just “complexity” for the number of
edges bounding some collection of faces.
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Next we consider the problem of estimating the maximum number of edges
bounding m faces in an arrangement A4 of n line segments in the plane, and of
calculating these faces. This problem is considerably more difficult than the one for
lines, because the faces of A4 are not necessarily convex or simply connected. This
makes it harder to process such faces efficiently. Nevertheless, using an intricate
extension of our combination lemma (see Lemma 5), we obtain essentially the same
bound on the maximum complexity, R(m, n), of m distinct faces in an arrangement
of u line segments. More precisely, we prove

R(m, n) = O(m?~%n?3*2¢ 4 na(n) log m)

for any 6 > 0, where a(n) is the extremely slowly growing inverse of Ackermann’s
function. To the best of our knowledge this is the first nontrivial upper bound
known for R(m, n). Note that this upper bound almost matches the above-
mentioned lower bound on K(m, n). Since trivially K(m, n) < R(m, n) this implies
that our upper bound on R(m, n) is almost tight.

As in the case of lines, our method also yields an algorithm for calculating the
designated faces. From a high-level point of view the algorithms for the calculation
of the desired faces in arrangements of lines and of line segments are quite similar.
Both algorithms employ a key procedure for the following problem:

given a collection of k points and the faces containing them in each of two
subarrangements of the given lines or line segments, calculate the faces contain-
ing these points in the arrangement formed by the union (that is, overlay) of the
two subarrangements.

In the case of lines this is easy to achieve efficiently because each face is convex. In
the case of line segments this is more difficult because of the potentially highly
irregular shapes of individual faces. We present an efficient line-sweeping method
for merging faces containing k given points in line segment arrangements whose
complexity is O((t + k) log (¢ + k)), where t is the total complexity of input and
output faces. Applying this merge recursively, we can calculate the required faces in
(randomized expected) time which is within a polylogarithmic factor of the bound
on R(m, n). An interesting consequence of our merging procedure is that a single
face in an arrangement of n line segments in the plane can be constructed
deterministically in time O(no(n) log?n). This problem arises in certain two-
dimensional motion-planning problems in robotics, and has been previously
studied in [PSS]. A companion paper, [GSS], extends the line-sweep technique of
this paper to the calculation of a single face in arrangements of more general curves.

The technique used in this paper is one of several related approaches that were
developed recently, all of which use z-nets and random sampling as basic tools.
This paper uses ¢-nets to partition the given lines {or line segments) into a fixed
number of (disjoint) subsets so that each subset interacts only with a relatively
small number of the given points. These interactions are taken care of recursively.
In constrast, we might try to partition the given points into (disjoint) subsets, each
interacting with only a small number of the given lines (or line segments). This
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alternative approach has been studied in a companion paper [CEG*]. It yields
tight combinatorial results for the case of lines, and can be used to obtain upper
bounds for the complexity of many faces, and for the total number of incidences
with many points, in arrangements of other types of curves, and also in arrange-
ments in higher dimensions. While the point-partitioning approach of [CEG*] is
mainly combinatorial, the line-partitioning approach used here also yields efficient
randomized algorithms. Another advantage of the line-partitioning method over
the point-partitioning one is that it extends to line segments (which have not been
amenable to the other approach yet). In addition, our “dual” aproach has turned
out to be better than the “primal” one in analyzing the complexity of many cells in
arrangements of planes or hyperplanes, as is demonstrated in another companion
paper [EGSh].

The paper is organized as follows. In Section 2 we analyze the combinatorial
complexity of many faces in an arrangement of lines. This analysis is explained in
terms of an algorithm that constructs the faces; its implementation is discussed in
Section 3. In Sections 4 and 5 we analyze the combinatorial complexity of many
faces in an arrangement of line segments, and in Sections 6 and 7 we discuss the
implementation of the algorithm implicitly described in the combinatorial analysis.
Concluding remarks and open problems are given in Section 8.

2. The Complexity of Many Faces in an Arrangement of Lines

Let L={l,,1,,...,1,} be a set of n lines in the plane, and let 4 = A(L) denote its
arrangement as defined in the introduction. Let P = {p,, p,,..., p,,} be asetof m
given points that do not lie on any of these lines. Consider the problem of
calculating all faces of A that contain the points p;, producing each such face just
once, even if it contains several of these points (see Fig. 1.2). We seek an algorithm
for solving this problem with a small worst-case space complexity. This space
complexity will serve as an upper bound on the maximum number of edges
bounding any m faces in any arrangement of n lines in the plane. As it turns out, the
expected time complexity of our (randomized) algorithm is within a log n factor (or

alognlog mfactorifm = O(\/;)) of its worst-case space complexity, so we also get
a nearly time-optimal (although randomized) algorithm for the calculation of the
faces.

We assume that initially no two of the given points lie in the same face of A. The
algorithm that we present below uses a divide-and-conquer approach and each
recursive step involves some subset L' of the lines /; and some subset P’ of the points
p; Since L' is only a subset of L it thus can happen that in the arrangement formed
by L’ two or more points of P fall into the same face. In this case we will want the
algorithm to maintain this face just once, and have pointers to it from each of the
points contained in it. To reflect this potential duplication, we denote by K(m, n)
the maximum complexity of the faces in an arrangement of n lines that contain m
given points (counting each face just once). Unlike K(m, n) which is defined only if
m < x(n), K(m, n) is defined for all integers m > 0, n > 0. However, when both
functions are defined, we cleary have K(m, n) = K(m, n).
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We next describe the algorithm for calculating the required faces. The discussion
ignores implementation issues (addressed in Section 3) and instead concentrates on
combinatorial problems that arise.

First we dualize the line /; to points [} and the points p; to lines p¥, using the
duality transformation defined in the introduction. This gives a set L* of n points
and a set P* of m lines in the dual plane. To process the dual points and lines, we
choose some constant integer r > 0, and select a random sample of r of the dual
lines p¥. When we draw the arrangement of these lines in the dual plane and
triangulate each of the faces of this arrangement we obtain a total of M = 0(r?)
triangles. The ¢-net theory of Haussler and Welzl [HW] or, alternatively, the
random sampling lemma of Clarkson [C1] imply that, with high probability, the
interior of each of these triangles intersects at most (cm/r) log r dual lines, for some
absolute constant ¢ independent of r and m. The sample is called an ¢-net if it has
the property that any triangle in the dual plane not meeting in its interior any of the
lines p¥ in the sample intersects at most (cm/r) log r dual lines in P*. The ¢-net
theory implies that (i) such a sample always exists (which suffices for the
combinatorial analysis given in this section), and (ii) a random sample of r lines of
P* is an ¢-net with high probability (which can be made arbitrarily close to 1 if we
choose ¢ large enough). The second property is important for the algorithm that
calculates the faces, as given in the following section.

We now divide our problem into subproblems, each associated with one of the
M triangles v in the dual plane. We associate with v the subset L*of the dual points
in L* that lie inside v, and the subset P* of the dual lines in P* that intersect v. In
what follows we denote the cardinality of L* by n, and the cardinality of P* by m,.3

The subproblem associated with v, in the primal plane, is to compute the faces of
A(L,) that contain points of P, (where L, is the subset of lines in L whose dual
points belong to L¥, and P, is the subset of points in P whose dual lines belong to
P¥). Note that this subproblem may be “incomplete,” in the sense that we ignore
faces that contain points in P — P,. We address this problem shortly below.

Each of the M subproblems is solved recursively. That is, we take a random
sample of r lines from the corresponding set P¥, and construct and triangulate their
arrangement. For each triangle w in this arrangement we obtain, as above, a
subproblem involving the subset L* of the dual points of L* contained in w and the
subset P% of dual lines of P* that intersect the interior of w. (A schematic
representation of this process is shown in Fig. 2.1; the arrangement is formed by
r = 2 lines, thus it is not necessary to triangulate further the four faces that result
from this partitioning.)

This process is continued recursively, but not all the way, until just one or no
point or line remains. Whenever we reach a subproblem associated with a triangle v
for which m, > x(n,), we stop the process and solve the subproblem directly. That
is, we undo the dualization to obtain L, from L* and P, from P* Then we

3 The reader is advised to note that we consistently use the letters L and n in association with the
primal lines (and therefore with the dual points) and that P and m are used in connection with primal
points (and thus dual lines).
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construct the arrangement A(L,) (in the primal plane, locate* in it each of the
points of P,, and report the faces of A(L,) that contain them (each face only once).
The total number of edges bounding these faces (which is proportional to the space
needed to store them) is at most O(n2) = O(m,). In passing we mention that the
time-complexity of this step is at most O(n? + m, log n,) = O(m, log n,) using the
arrangement construction algorithm of [EOS] and the optimal point-location
structure of [EGSt]. Another case where we stop the recursion is when P¥ = (J. In
this case we do not have to bother constructing A(L,) since there are no points for
which faces need to be calculated.

We obtain the required collection of faces of A(L) using the following “merging”
procedure. For each point p; € P, let F(p,) denote the face of A(L) that contains p;,
and, for each triangle v in the dual partitioning, let F (p;) denote the face of the
arrangement A(L,) that contains p,. (Recall that such a face will be shared by all
points that lie in it.) For points p, e P,, the face F,(p,) is available recursively. Let
Q, = P — P,, which is the set of face-designating points that the subproblem at v so
far has ignored. Note that Q, is the set of points whose dual lines miss the interior of
v. By duality, each of these points p, lies either above all the lines in L, (that is, in the
topmost face F.7 of A(L,)) or below all of them (in the bottommost face F, ). Thisis
illustrated in Fig, 2.2. These two faces together have at most n, + 2 edges, and they
can be constructed in time O(n, log n,) (see, e.g., [PS]). As required, we store each of
these two faces just once, and maintain a pointer from each point p; € @, to either
F} or F,; whichever contains it. Hence, at this stage all the faces of A(L,)
containing points of P are accounted for. We note that the topmost and
bottommost faces in A(L,) must be constructed even if m, = 0 and we stop the
recursion at v.

Now the merging step proceeds as follows. Our goal is to compute F(p;) for all
p:€ P. Let vy, v,,..., vy, be the triangles formed by the partitioning (recall that
M = 0(r*)). For each point p; € P, and for each triangle v;, either p;e P, orp;€ Q, .
In the former case, F, (p,) is calculated recursively at v;. In the latter case, F, (p;) is

+ Locating a point in an arrangement means to find the face (or edge or vertex) of the arrangement
that contains the point. It is a fairly common term in computational geometry which, among other
things, considers data structures that facilitate fast point-location queries (see, .z, [EGSt]).
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either F,; or F, , which are also assumed to be available. Since L = L,, U --- U L,
it is clear that

1.7 &4

F(p) = ) F,(po)-
vy

This intersection is plainly a convex polygon that contains p; and the number of its
edges is at most the sum of the number of edges of the intersected faces.

However, a, major technical problem arises now. Since some of the faces F, (p;)
may be shared by other points, we need to avoid duplicate processing and counting
of the same face for each point it contains, or else our algorithm might have
unacceptably high time-complexity and our upper bound on the total number of
edges will be annoyingly loose. A typical case where duplicate processing of this
sort can slow down the algorithm is depicted in Fig. 2.3.

A solution of this problem is provided by the following technical lemma, which
we refer to as the “combination lemma (for lines).”

Lemma 1. Let p,, ps, ..., D, be points in the plane, and let {B,, B,, ..., B,} and
{Ry, R, ..., R} be collections of s “blue” and t “red” (topologically) open convex
polygons that satisfy the following three properties:

(1) The blue (red) polygons are pairwise disjoint and the total number of blue

(red) edges is f (p).
——t 4
R L L ] L ] H
g._._... T e ._. :;—. e j
A R O O

Fig. 2.3. Six faces designated by three points each.
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Fig. 24. One blue and six red faces.

(i) Each point p; is contained in a blue polygon B,, and in a red polygon R,,.
(iii) If for each 1 <i < k we define E;= B, " R,,then E; # E; if i #].

Then the total number of sides of the E, is at most B + p + 4k — 2s — 2t.

Proof. Take one of the blue polygons B = B;, and assume that it contains k;
points, say p,, p,, - .., Py, Each of these points p; lies in a different red polygon R,,.
We consider the k; cells E; = B n R, for 1 <i < k;, which are convex polygons (see
Fig. 2.4). To give an upper bound on the number of blue edges of the E; we define
for an edge e of B the intersection of e with R, and denote it by e;. Now write down
the cyclic sequence of the nonempty ¢, in clockwise order around the boundary, 0B,
of B. We observe the following two properties:

(i) The sequence of indices (red polygons intersecting 6B) contains no cyclic
scattered subsequence of the form i..j..i..j.

(i1} If two consective indices (red polygons) are the same, then the edges of B in
both elements are different.

To prove (i) just note that if such a case were to arise, then we could connect the
first and third edges and the second and fourth edges by two straight segments
lying respectively inside the red convex polygons R,, and R, . Both segments have
their endpoints on dB which implies by the Jordan curve theorem that they
intersect. This is a contradiction to R, N R, = J if i # j. The claim (ii) follows
from the fact that a single edge of B intersects a red polygon in a connected
piece—after all both the blue edge and the red polygon are convex.

Ignoring repetitions of indices, (i) implies that the cyclic sequence is a Daven-
port-Schinzel cycle of order 2 and thus consists of at most 2k; — 2 edges (see [ES]
for details). By (ii), the number of index repetitions is at most | B|, the number of
edges of B. It follows that the E;, for 1 < i < k;, have at most | B| + 2k; — 2 blue
edges.

If we take the sum over all blue polygons we get at most f + 2k — 2s blue edges
bounding the cells E; for all i. By a symmetric argument we can show that the
number of red edges bounding the E, is at most p + 2k — 2t. It follows that the
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total number of edges of the E, (each edge cither blue or red) is at most
B+p+4k—2s—2t (]

By applying Lemma 1 a fixed number of times (M — 1 times to be precise), it
follows that the overall complexity, K,of all faces F(p;) can be bounded from above
by

j=

ji=

M M M M
Y (K, +(n,, +2)+ M Y dm, = Y (K,, + O(n,)) + M Z Oo(m,),
1 1 i1 i1

where K, is the number of edges counted at v;, and the second subterm of the first
sum arises from the faces F;, and F;. But ) ;n, =nand M Y }L, O(m,) = O(m),
since r and thus M is a constant. We can thus rewrite the recurrence relation as

M
K= YK, + O@m+n).
j=1

J

To solve this recurrence relation, let K(m, n) denote as above the maximum
complexity of the collection of faces that arise for m points in an arrangement of n
lines. Then we have

0 if m=0,

_ if m2>x(n),
K(m,n) <

M
Y K(m,n)+bm+bn if m<xn),
j=1

for some constants a, b, b’ > 0 (note that b, b’ depend on r but a does not), where M,
my, and n; satisfy the following three conditions (which are immediate from our
construction):

M = 0(r%), @O
M
Y n=n, {an
i=1
and
foreach i we have m; < E?log r for some constant ¢ > 0. 4414

Under these constraints we have

Lemma 2. K(m, n) < Dm*3~%n?3+2% + Am + Bnlogm, for any é > O, where the
coefficients A, B, D depend on é.
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Proof. We first note that at each level of the recursion m decreases by a factor
Q(r log r), for a constant r, and thus the recursion has only O(log m) levels. The sum
of the n,, over all nodes v at the same recursion level, is clearly n, so that the total
contribution of the rightmost term, b'n, is at most O(n log m). We thus ignore this
term in the recurrence relation for K and prove that the solution to the modified
recurrence satisfies K(m, n) < Dm*2~%n23*2% 4 Am for any § > 0.

Fix 0 < § < 1/6 and choose r = r(§) > 0 sufficiently large (how large will be
apparent from the analysis below).

The bound is trivial for m = 0. If m > k(n), then K(m, n) < am plainly satisfies
the required inequality, assuming 4 > a. It follows that the bound is trivially true
for constant n since m < x(n) only if m is also at most a constant (we need this
observation only for n < 1). So assume m < x(n). In this case

M= mA3 =413 46 < 2/3-6p2/3+28 (*)

assuming n > 2. By induction hypothesis we then have

M
Rim,n) < Y (Dm*3~2n23+2 4 Am) + bm.
iz

By properties (III) and (I) we have
%l:. m < cMmrlog r

< (c,rlogrm
i=1

for some constant c, independent of r. Hence

M
R(m,n) <D- Y m¥*~n23*% 4 (Ac,rlogr + b)m.

i=1
Thus, using (+) and putting d = Ac,r log r + b, we obtain
M
Rmny<D- Z M3 3p23428 | q213-8 p2/3+28
i=1
But

M 2/3-8 M
N cmlogr

Z mf” op2i3+28 < ( ) Z p2i3+20

i=1 r i=1

which, by the Hélder inequality, does not exceed

cmlogr\*?*~¢ , (log r)*3~¢ -
3+28 1/3~28 __ 2/3~8,,2/3+28
( " ) n M =0 Y m n ,
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Hence
2/3-4
K(m, n) < (D.0<99g_:3)6__> + d>m2/3"’n2/3+2"_

But since 4 > 0, it is clear that if r is chosen sufficiently large so that

log )22 ~*
0<——-( 4 )<%,

say and if D is taken to be sufficiently large so that D/2 > d = Ac,rlogr + b, then
the expression in the bracket will be less or equal to D, thus establishing the
asserted inequality. 0

Theorem 3. The total number of edges, K(m, n), bounding m distinct faces in an
arrangement of n lines is at most O(m*3~%n?*3*2% 4 ) for any & > 0 (where the
constants of proportionality depends on 6).

Proof. Recall that when both functions are defined, we have K(m, n) = K(m, n).
For m <n'? the asserted bound follows immediately from the results of
[Ca] mentioned in the introduction. For n'/? < m < k(n) it is easily checked
that the term O(m?/*~%n?3*2%) dominates O(m) and O(nlog m) in the bound of
Lemma 2. O

Remarks. (1) The preceding bounds imply that K(m, n) = O(m?3~%n?/3+2) for
any ¢ > 0, provided neither m nor n is too small.

(2) Our result leaves a small gap between our upper bound and the lower bound
of Q(m**n?? + n)obtained in [EW1]. An alternative, point-partitioning approach
as presented in a companion paper [CEG*] closes this gap and shows that
O(m*3n?? + n) is the real bound.

(3) A related result is that of Szemerédi and Trotter [ST] who give a tight
bound, @(m?*n?/® + n), on the maximum sum of the degrees of m vertices in an
arrangement of n lines. There does not appear to be an easy way to extend the proof
technique of [ST] to the case of faces.

3. Calculating Many Faces in an Arrangement of Lines

To complete our analysis of line arrangements, we turn to the implementation of
the algorithm outlined in section 2 which constructs the faces in an arrangement of
nlines I, 1,,..., I, that contain m given points p,, p,, ..., P,. Let T(m, n) denote
the expected time needed for this task using the approach described in Section
2. We have already noted that at the bottom of the recursion we have
T(m, n) = O(m log n) if m = x(n) and T(m, n) = O(n log n) if m = 0 (this is the time
needed for the calculation of the two corresponding faces F/ and F,).

As for the general merging step of the algorithm, we need to calculate, for each
p:€ P, the face F(p,) of the arrangement A(L) that contains p;; this face is the
intersection of the M faces F,(p)j=1 2,..., M, where v,,..., vy are the
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triangles obtained by the partitioning step, and where F, (p;) is the face of A(L,,)
containing p;. Recall that a major technical difficulty in the analysis of the space
complexity of the algorithm, given in the preceding section, was to avoid duplicate
access to a face in some A(L,,) that is shared by several of the points. To overcome
this difficulty algorithmically, we proceed as follows. For expository reasons we
assume M = 2, so that we need to intersect only two faces around each p,.

(i) With each p; we associate the pair (F,,(p;), F,,(p;)). Regard two points as
equivalent if they have the same associated pair of faces. The equivalence
classes can be constructed in time O(m log m) = O(m log n) by sorting the
face-pairs and removing repetitions. This also yields a representative point
for each equivalence class; we clearly need to calculate F(p;) only for these
representative points.

(ii) For each representative point p;, we need to calculate the intersection, E, of
the two convex polygons, B = F, (p) and R = F,(p;), in time that mainly
depends on the number of edges of E. This is accomplished using the
following “ray-shooting” procedure. First we find a starting point z on JE
by shooting a horizontal ray from p,e E and finding the nearest of its
intersections with 6B and dR. We next traverse the boundary of E in
counterclockwise direction from z as follows. Suppose we have reached
some point x on some edge e of B. We shoot a ray from x along e (so that B
lies to the left of the ray) and find its intersection, x', with dR. If e ends before
x', then we turn at the endpoint of e to the adjacent edge, ¢, along 0B and
repeat shooting along ¢ toward JR. Otherwise, we turn at x’ to 4R in
counterclockwise direction, and shoot along the new edge toward &B.
Repeating this process, we will eventually return to z, thereby completely
tracing the boundary of 6E. (Figure 3.1 illustrates this process.) Since both
faces, B and R, are convex each ray shooting query can be carried out in
time O(log n) (see [CD]). Thus, the calculation of F(p,) can be accomplished
in time O(|F(p))|log n), | F(p;)| being the number of edges bounding F(p,).

In general, that is, if M > 2, we apply the merging process M — 1 times to take into
account all M subproblems generated at v. Since M is a constant depending only
on r, the sample size, all faces F(p,) can be obtained in time O((K(m, n) + m) logn).

Finally, we consider the overhead of the divide part of our recursion. At each
recursive step we take a random sample of size r of the current set of dual lines,

Fig. 3.1. Tracing the boundary of the intersection.



Complexity and Construction of Many Faces in Arrangements of Lines and Segments 175

construct and triangulate their arrangement, split the current set of dual points
among these triangles, and determine for each triangle which of the current dual
lines p} it intersects. Each triangle gives rise to a subproblem which is passed the
points that fall into the triangle as well as the lines that intersect it. Each step either
takes constant (randomized) time or time linear in n, or m,.

At this point, we would like to verify that the random sample is indeed an &-net.
The reason for this is that, although we know that this will be the case with high
probability, we have to perform random sampling at many steps during the
recursion, and the small probabilities of failure may add up to a nonnegligible
amount, To rectify this, we simply check whether the number of dual lines cutting a
subtriangle is sufficiently small, for all subtriangles resulting from the partitioning.
If not, we discard the sample and try another random selection of r dual lines. In a
constant expected number of trials we will obtain an ¢-net.

We can therefore obtain the following recurrence formula for T(m, n), the
expected time needed for m points and n lines. For m < n* we have

T(m, n) = AM T(mi’ ni) + 0((K—(mv n) +m+ n) log n);

i=1

where m;, n;, and M satisfy conditions (I), (I}, and (ITI) of the analysis in Section 2.
For m > n® we have

T(m, n) = O(m log n),
and for m = 0 we have

T(m, n) = O(nlog n).
Using the bounds on K(m, n) and K(m, n) obtained above, we can derive the
following bound on T(m, n); the proof is a straighforward generalization of the
proofs of Lemma 2 and Theorem 3 and is left to the reader.

The following theorem also derives a bound on the maximum space complexity,

S(m, n), required by the algorithm. This is easily seen to be proportional to the
space used along a single path in the recursion tree, which is easily seen to be

O(m?3-213+25 1 4 log m). We thus summarize.

Theorem 4. The expected time complexity of the above randomized algorithm for
computing m distinct faces in an arrangement of n lines is

T(m, n) = O(m*3~*n?3*2% log n + nlog nlog m)
Jor any 6 > 0. The space required by the algorithm is
S(m, n) = Om**~*n?3*2% 4 nlog m)

for any § > 0.
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Remarks. (1) If mis much smaller than n?, the log n factor in the first term in the
time bound given above can be dropped, simply by taking a slightly larger value of
0.

(2) The ray shooting technique used in the above algorithm does not seem to
generalize to the more complicated task of constructing m faces in an arrangement
of n line segments, which is what we study in Sections 4-7. The alternative merging
technique that we use for line segments, described in Section 7, can also be applied
to the simpler case at hand. However, we have chosen to present here the ray
shooting technique because of its relative simplicity in the case of convex polygons.

4. The Complexity of Many Faces in an Arrangement of Line Segments

This section extends the analysis given in Section 2 to the case of line-segment
arrangements, that is, we consider the problem of estimating the maximum
combinatorial complexity, R (m, n), of m faces in an arrangement of n line segments
in the plane. In constrast to the case of lines where all faces are convex, a face in a
line-segment arrangement is not necessarily convex and need not even be simply
connected (see Fig. 4.1). Because of the nonconvexity of faces, there is no reason
why the maximum number of edges bounding a single face should be at most n.
Indeed, the total number of edges bounding a single face can be as large as Q(no(n)),
where a(n) is the inverse Ackermann’s function, and this bound is tight in the worst
case, as was shown in [HS], [PSS], and [WS]. Lines are a special case of line
segments, which implies R(m, n) > K (m, n). Thus, the lower bound of [EW1] for
line arrangements extends to line segments, which, combined with the result of
[WS], yields R(m, n) = Q(m**n*> + na(n)).

In spite of the technical difficulties caused by the boundedness of line segments,
we obtain an upper bound on R(m, n) that is roughly the same as the bound on
K(m, n) obtained in Section 2. Again, the bound will be derived from an analysis of
the space complexity of an algorithm for calculating m such faces. In Sections 6 and
7 we show how to implement 