
The Complexity Ecology of Parameters: An

Illustration Using Bounded Max Leaf Number

Michael Fellows1, Daniel Lokshtanov2, Neeldhara Misra3, Matthias Mnich4,
Frances Rosamond1 and Saket Saurabh2

1 University of Newcastle, Callaghan, Australia
{michael.fellows,frances.rosamond}@newcastle.edu.au

2 University of Bergen, Norway
{daniel.lokshtanov,saket.saurabh}@ii.uib.no

3 The Institute of Mathematical Sciences, Chennai 600113, India
neeldhara@imsc.res.in

4 Technical University of Eindhoven, The Netherlands
m.mnich@tue.nl

Abstract. In the framework of parameterized complexity, exploring how
one parameter affects the complexity of a different parameterized (or un-
parameterized problem) is of general interest. A well-developed example
is the investigation of how the parameter treewidth influences the com-
plexity of (other) graph problems. The reason why such investigations
are of general interest is that real-world input distributions for computa-
tional problems often inherit structure from the natural computational
processes that produce the problem instances (not necessarily in obvious,
or well-understood ways). The max leaf number ml(G) of a connected
graph G is the maximum number of leaves in a spanning tree for G. Ex-
ploring questions analogous to the well-studied case of treewidth, we can
ask: how hard is it to solve 3-Coloring, Hamilton Path, Minimum

Dominating Set, Minimum Bandwidth or many other problems, for
graphs of bounded max leaf number? What optimization problems are
W [1]-hard under this parameterization? We do two things:
(1) We describe much improved FPT algorithms for a large number of
graph problems, for input graphs G for which ml(G) ≤ k, based on
the polynomial-time extremal structure theory canonically associated to
this parameter. We consider improved algorithms both from the point of
view of kernelization bounds, and in terms of improved fixed-parameter
tractable (FPT) runtimes O∗(f(k)).
(2) The way that we obtain these concrete algorithmic results is gen-
eral and systematic. We describe the approach, and raise programmatic
questions.

1 Introduction

The analysis of the complexity of problems, for graphs of bounded treewidth,
is well-developed and supports many systematic approaches that have devel-
oped over a number of years [Cou90,ALS91,Bod96,DF99,Nie06,BK07]. For ex-
ample, determining whether a graph is 3-colorable can be solved in time O(n)

for graphs of treewidth at most k. In the terminology of parameterized complex-
ity [DF99,FG06,Nie06], Graph 3-Coloring is fixed parameter tractable for the
parameter treewidth. In this small example, the asymptotic notation conceals
serious costs associated to the treewidth bound k, from two sources:
(1) The complexity of computing a tree-decomposition of width k is O(235k3

n)
for an n-vertex graph.
(2) Once the tree-decomposition is obtained, one would then solve the problem
by dynamic programming, in time O(3kn).

Suppose that we wish to solve Graph 3-Coloring for graphs having a
different structural restriction — how should this be done? Here we consider the
structural parameter of bounded max leaf number, ml(G), where this is defined
for a connected graph G as the maximum number of leaves of a spanning tree for
G. (We choose this parameter mainly to illustrate the key issues, and because
enough is known of the associated polynomial-time extremal structure theory to
provide a good example of the general approach. We are not aware of any strong
direct applications of bounded max leaf number for natural input distributions.)

One way to approach the problem of determining 3-colorability, parameter-
izing by max leaf number, is to note that graphs of bounded max leaf num-
ber exclude a tree minor and therefore have bounded pathwidth, so that the
above-sketched bounded treewidth approach can be used. This classifies Graph
3-Coloring, parameterized by max leaf number, as FPT, but this is not an
efficient algorithm.

We have two main objectives in this paper:
(1) We describe efficient FPT algorithms for Graph 3-Coloring and many
other graphs problems, for input G parameterized by a bound ml(G) ≤ k. We
consider such FPT algorithms from both the exponential complexity O∗(f(k))
and polynomial-time kernelization points of view.
(2) We do so in a way that is generally systematic, and that “fits” the study of
how parameterized structure affects computational complexity in what we term
the “ecology” of parameterized complexity.5

In the next section, we discuss the basics of parameterized complexity and
motivate the general setting for this investigation.

2 Background on Parameterized Complexity and the
Complexity Ecology of Parameters

Parameterized complexity is a special case of what one might call a “multivari-
ate” approach to complexity analysis and algorithm design. Here, in addition
to the overall input size n, a secondary measurement k (the parameter) is also
considered, where one expects the parameter k to be significantly smaller than
n and to capture information about the structure of typical inputs or other
aspects of the problem situation that affect computational complexity. In the

5 One can view this issue as a kind of generalized bidimensionality theory in the sense
of Demaine and Hajiaghayi [DFHT05,DH05,DH07].

2

familiar “classical” one-dimensional approach, the central concept is polynomial
time (P) (“the good class”). In the parameterized complexity framework the
central notion is fixed-parameter tractability (FPT), defined to be solvability in
time f(k)nc, where f is some function (unrestricted), and c is a constant. In
the classical framework, an algorithm with running time in P is the desirable
outcome, as contrasted with the possibility that only running times of the form
O(2poly(n)) (the “bad class”) might be achievable. Classical complexity analysis
unfolds in the contrast between these two univariate function classes.

Parameterized complexity analysis unfolds analogously in the contrast be-
tween the “good class” of bivariate functions FPT, and the “bad class” of run-
times6 of the form O(ng(k)). To emphasize the contrast, one could also consider
defining FPT additively as solvability in time f(k) + nc. It turns out that this
makes no difference qualitatively7: a parameterized problem is additively FPT if
and only if it is FPT by the usual definition [DFS99,DF99]. The basic contrast in
parameterized complexity is thus concerned with whether any exponential costs
of the problem can be confined to the parameter.

In the classical framework, evidence that a problem is unlikely to have an
algorithm with a runtime in the good class is given by determining that it is NP-
hard, PSPACE-hard, EXP-hard, etc. In parameterized complexity analysis there
are analogous means to show likely parameterized intractability. The current
tower of the main parameterized complexity classes is:

FPT ⊆ M [1] ⊆ W [1] ⊆ M [2] ⊆ W [2] ⊆ · · · ⊆ W [P] ⊆ XP

Parameterized by the size k of a solution, the familiar Independent Set
problem is complete for W [1] [DF95a], and Dominating Set is complete for
W [2] [DF95b]. The naturally parameterized Bandwidth problem is hard for
W [t] for all t [BFH94]. The best known algorithms for the parameterized Inde-
pendent Set and Dominating Set problems are slight improvements on the
brute-force approach of trying all k-subsets, and run in time O(nO(k)) [NP85].
The parameterized class W [1] is strongly analogous to NP, because the k-Step
Halting Problem for Turing machines of unlimited nondeterminism is com-
plete for W [1] [DFHKW94,CCDF97]. FPT is equal to M [1] if and only if the
so-called Exponential Time Hypothesis fails [IP01,DEF+03]. There is an algo-
rithm for the k-Independent Set problem that runs in time O(no(k)) if and
only if FPT is equal to M [1], and there is an algorithm for the k-Dominating
Set problem that runs in time O(no(k)) if and only if FPT is equal to M [2]
[CCF+06].

There are numerous useful recent surveys about parameterized complexity
and algorithm design [Ra97,DFS99,Fe02,Fe03,Nie04,GN07,CJ08]; one can also
turn to the books and monographs [DF99,FG06,Nie06] for further background.

Major motivation for the subject of parameterized complexity and algorith-
mics has come from the graph minors project of Robertson and Seymour [RS85].

6 Solvability in such time defines the parameterized complexity class XP.
7 However, quantitatively, in classifying a parameterized problem as additively FPT,

it might be necessary to use a “larger” function f(k).

3

The parameterized problem Graph Minor takes as input graphs G and H and
asks whether H is a minor of G (that is, whether a graph isomorphic to H can
be obtained from G by contracting edges of a subgraph of G). This is a funda-
mental problem, naturally parameterized by H. To show that this problem is
FPT (according to present knowledge) requires the entire panoply of the graph
minors structure theory.

The followingwell-known lemma codifies how every FPT parameterized prob-
lem has a canonically associated structure theory project, via the quest for effi-
cient FPT kernelization bounds.

Lemma 1. A parameterized problem Π is in FPT if and only if there is a
transformation from Π to itself, and a function g, that reduces an instance (x, k)
to (x′, k′) such that:
(1) the transformation runs in time polynomial in |(x, k)|,
(2) (x, k) is a yes-instance of Π if and only if (x′, k′) is a yes-instance of Π,
(3) k′ ≤ k, and
(4) |x′| ≤ g(k).

We say that we have a kernelization bound of g(k) in the situation described.
The proof is completely trivial, yielding a kernelization bound of only g(k) =
f(k) for a parameterized problem solvable in FPT time f(k)nc. However, the
shift of perspective that the Lemma codifies is useful and important.

With regards to improved kernelization bounds (“better g(k)”) we can of-
ten achieve strikingly non-exponential bounds, and the polynomial-time “pre-
processing” routines that produce small kernels have proven practical value
[ACFLSS04,Nie04,Nie06,Wei98]. The Vertex Cover problem can be kernelized
in polynomial time to a graph on at most 2k vertices [NT75,ACFLSS04,CFJ04].
Planar Dominating Set also has a problem kernel of linear size [AFN04].
The Undirected Feedback Vertex Set problem was recently shown to
have a polynomial-sized P-time kernelization [BEF+06], subsequently improved
to a kernelization bound of O(k3) [Bod07]. For a useful recent survey of FPT
kernelization see [GN07].

In our results in this paper we address the question of efficient algorithms
for solving various problems on graphs of bounded max leaf number, from both
the “better f(k)” and “better kernelization” points of view, a dual perspective
that is now standard in parameterized algorithmics [Nie06].

2.1 A Complexity Ecology of Parameters

A striking fact about the structure theory of the graph minors project is its
practical relevance. For one example, many naturally occuring databases have
bounded treewidth (or bounded hypertreewidth, a related notion). This provides
significant inroads for hard database problems [GM99,FFG01,Gr01]. Bounded
treewidth seems to be an almost universally relevant parameter.

An example to illustrate the main idea of this paper is afforded by the prob-
lem of Type Checking of programs written in high-level logic-based program-
ming languages such as ML. This problem has been shown to be complete for

4

EXP [HM91,KTU94], and thus is highly intractable from the classical point of
view. Nevertheless, the ML compilers (that include type-checking subroutines)
work efficiently. The explanation is that human-composed programs typically
have a maximum type-declaration nesting depth of k ≤ 5. The FPT type-
checking subroutine that runs in time O(2kn) is thus entirely adequate in prac-
tice. One can reasonably speculate that naturally occuring programs have small
nesting depth because the programs would otherwise risk becoming incompre-
hensible to the programmer creating them.

What this example points to (we think) is that often the “inputs” to one
computational problem of interest to real-world algorithmics are not at all arbi-
trary, but rather are produced by other natural computational processes (e.g.,
the thinking processes and abilities of the programmer) that are themselves
subject to computational complexity constraints. In this way, the natural input
distributions encountered by abstractly defined computational problems often
have inherited structural regularities and restrictions (relevant parameters, in
the sense of parameterized complexity) due to the natural complexity constraints
on the generative processes. This seems reasonable, although what the resulting
relevant “parameters” are may not be obvious. This connection is what we refer
to as the ecology of computation.

Our thesis is that it is useful to know how all the various parameterized
structural notions interact with all the other computational objectives one might
have. The main objective of this paper is to illustrate how such a quest can
be systematically engaged. The familiar paradigm of efficiently solving various
problems for graphs of bounded treewidth just represents one row of a matrix
of algorithmic questions that arise from the relevant parameterized structure
theories. For the Max Leaf row, we investigate how to solve various problems
optimally on graphs G having bounded max leaf number, ml(G) ≤ k, exploiting
the structure that bounding this parameter yields.

Table 1 illustrates the idea of such a matrix of algorithmic questions. We use
here the shorthand: TW is Treewidth, BW is Bandwidth, VC is Vertex
Cover, DS is Dominating Set, G is Genus and ML is Max Leaf. The
entry in the 2nd row and 4th column indicates that there is an FPT algorithm
to optimally solve the Dominating Set problem for a graph G of bandwidth
at most k. The entry in the 4th row and second column indicates that it is
unknown whether Bandwidth can be solved optimally by an FPT algorithm
when the parameter is a bound on the domination number of the input. An
entry in the table describes the current state of knowledge about the complexity
of the problem where the input graph is assumed to have a structural bound
described by the row, and the problem described by the column is to be solved
to optimality. The table just gives a few examples of the unbounded conceptual
matrix that we are concerned with.

Most of the research in algorithms so far that pertains to this matrix is
concerned with the first row and the diagonal. In this paper, we systematically
explore the Max Leaf row. In a sequel paper we explore the Vertex Cover
row [FLMRS08].

5

TW BW VC DS G ML

TW FPT W [1]-hard FPT FPT ? FPT

BW FPT W [1]-hard FPT FPT ? FPT

VC FPT FPT FPT FPT ? FPT

DS W [1]-hard ? W [1]-hard W [1]-hard ? ?

G W [1]-hard W [1]-hard W [1]-hard W [1]-hard FPT W [1]-hard

ML FPT FPT FPT FPT FPT FPT

Table 1. The Complexity Ecology of Parameters

One might ask whether these rows are really interesting, since a graph of
bounded max leaf number is severely restricted in its structure. To be fair, how-
ever, a graph of bounded treewidth is also severely restricted, in contrast to
an arbitrary graph. How to determine whether a graph of bounded max leaf
number is 3-colorable in the “best possible” FPT runtime is an easily stated
problem for which the answer is not obvious. Another observation that points
to the interest in these rows is that there are now known to be many examples
of problems that are W [1]-hard parameterized by a bound on treewidth, includ-
ing Bandwidth [BFH94]; List Coloring, Pre-Coloring Extension and
Equitable Coloring [FFL+07]; General Factor [Sz08a]; and Minimum
Maximum Outdegree [Sz08b]. One must therefore look “below treewidth”
for FPT structural parameterizations for these problems. Note that while both
bounded vertex cover number and bounded max leaf number imply bounded
treewidth, neither of these structural bounds implies a bound on the other. List
Coloring even remains W [1]-hard for graphs of bounded vertex cover number
[FLMRS08]. Lastly, it seems that for severe structural parameterizations such
as bounded vertex cover number and bounded max leaf number, different FPT
techniques are brought forward to importance, such as well-quasi-ordering and
bounded variable integer linear programming.

3 Systematically Attacking a Row: Kernelization

We first develop the polynomial-time extremal structure theory for graphs of
bounded max leaf number, using the approach developed in [Pr05,EFLR05]. We
prove a polynomial-time kernelization bound for the Max Leaf problem, based
on a collection of P-time reduction rules, and then describe kernelizations for
various problems in the Max Leaf row of the ecology matrix by: (1) deploying
similar reduction rules, and (2) adjusting the kernelization bound. We try to
describe what we are doing from a general point of view that suggests how the
approach might be adapted to other problems.

6

3.1 Kernelization for the Max Leaf Problem

In order to articulate the structure that a bound on the max leaf number imposes,
we seek to prove (for the best possible constant c) the following lemma regarding
FPT kernelization for the problem:

Lemma 2. Suppose (G, k) is a reduced instance of Max Leaf, with (G, k) a
yes-instance of the problem and (G, k + 1) a no-instance. Then |G| ≤ ck. (Here
c is a small constant that we will clarify below.)

Proving such a “Boundary Lemma” involves two crucial strategic choices:
(1) A choice of witness structure for the hypothesis that (G, k) is a yes-instance.
(2) A choice of inductive priorities.
Below, we prove two versions of such a result, to illustrate the methodology.

The overall structure of the argument is “by minimum counterexample” ac-
cording to the priorities established by (2), which generally make reference to
(1). Given these choices, our proof proceeds by a series of small steps consisting
of structural claims that lead to a detailed structural picture at the “boundary”
— and thereby to the bound on the size of G that is the conclusion of the lemma.

3.2 Boundary Lemma I

Lemma 3. Boundary Lemma I. Suppose (G, k) is a reduced instance of Max
Leaf, with (G, k) a yes-instance of the problem and (G, k + 1) a no-instance.
Then |G| ≤ 7.75k.

Proof. The proof is by minimum counterexample. If (G, k) is a yes-instance,
G = (V, E), then we can assume we are given as a witness structure a tree
subgraph T = (V ′, E′) of G that has k leaves, and we can also assume that G is
connected.

We do not assume that T is a spanning subgraph. (If T is not spanning, then
it clearly extends to a spanning tree T ′ for G that has at least k leaves.)

A counterexample to the lemma would be a graph G = (V, E) such that: (1)
(G, k) is a reduced instance of Max Leaf, (2) (G, k) is a yes-instance of Max
Leaf, (3) (G, k + 1) is a no-instance, and (4) |G| > 7.75k.

Among all such counterexamples, consider one where the witness subgraph
tree T is as small as possible.

Let O = V −V ′ be the set of vertices not in the witness subtree T , which we
will refer to as outsiders. Let L denote the leaves of T , I the internal (non-leaf)
vertices of T , B ⊆ I the branch vertices of T (the non-leaf, internal vertices of T
that have degree at least 3 with respect to T), and let J denote the subdivider
vertices of T (the non-branch internal vertices of T that have degree 2 with
respect to T). See Figure 1.

We will also need to discuss the structure of T in more detail, so we introduce
the following further terminology. A path 〈b, j1, ..., jr, b

′〉 in T where b, b′ ∈ B are
branch vertices of T , and the vertices ji for i = 1, ..., r are subdivider vertices of

7

Fig. 1. The witness tree and various sets of vertices.

T is termed a topological edge or topo-edge of the tree T . In this situation we will
say that b and b′ are topologically adjacent in T , and in order to be able to refer
to the length of the path 〈b, j1, ..., jr, b

′〉, we may say that b and b′ are joined by
an r-topo-edge in T . We will eventually be interested in structures that arise by
considering the subtrees of T induced by 0-topo-edges and 1-topo-edges of T .
(Note that a 0-topo-edge is just an ordinary edge of T .)

Claim 1. No internal vertex of T is adjacent in G to a vertex of O.

Proof of Claim 1. Otherwise, we could augment T to a subgraph tree with k + 1
leaves, contradicting that (G, k + 1) is a no-instance. (See Figure 2.)

Fig. 2. No internal vertex of T is adjacent to an outsider, else k + 1 leaves.

8

Claim 2. A leaf vertex of T is adjacent to at most one outsider.

Proof of Claim 2. Otherwise we contradict that (G, k + 1) is a no-instance.

Claim 3. The subgraph 〈O〉 induced by the outsiders is acyclic.

Proof of Claim 3. Otherwise, since G is connected, we contradict that (G, k + 1)
is a no-instance. See Figure 3.

Fig. 3. 〈O〉 is acyclic, else k + 1 leaves.

Claim 4. The subgraph 〈O〉 induced by the outsiders has maximum degree at
most 2.

Proof of Claim 4. Otherwise we contradict that (G, k + 1) is a no-instance. See
Figure 4.

By Claims 3 and 4, the subgraph 〈O〉 induced by the outsiders consists of a
union of paths.

Claim 5. A leaf of G cannot be adjacent to an interior vertex of a path of 〈O〉.

Proof of Claim 5. Otherwise we contradict that (G, k + 1) is a no-instance.

Claims 1-5 show that 〈O〉 consists of a disjoint union of paths, and that the
interior vertices of these paths have degree 2 in G. This motivates us to look for
a reduction rule that addresses this structure. The Two Adjacent Degree 2 Rule
says that for k′ = k, if u and v are two adjacent vertices of degree 2, then the
edge uv can either be deleted or contracted, depending on whether or not it is
a bridge.
Claim 6. 〈O〉 consists of a union of paths, where each path has at most 3 vertices.

Proof of Claim 6. Otherwise the “Two Adjacent Degree 2” reduction rule applies.

9

Fig. 4. 〈O〉 has maximum degree at most 2, else k + 1 leaves.

The evident structure of 〈O〉 suggests looking for a reduction that applies to
vertices of degree 1 in G. In fact, there is a simple but not at all obvious rule
to eliminate vertices of degree 1. (The reader might want to take a moment to
try to discover it, in order to appreciate some of the depth of the subject of
reduction rules. A degree one rule: how hard can that be?)

Claim 7. |O| ≤ .75k

Proof of Claim 7. This follows from the fact that T has k leaves, and from Claims
2,5 and 6, inducting on the number of path components in 〈O〉. The “worst case”
for the induction is where a path component of 〈O〉 has 3 vertices (a path of
length 2). In this case each endpoint of the path must be adjacent to at least two
leaves of T , else G is reducible either by the “Degree 1” or the “Two Adjacent
Degree 2” reduction rules. Thus the number of leaves is k ≥ 4|O|/3.

The picture that has emerged through Claims 1-7 is starting to give us a
handle on how big G can be. Next we must bound the size of T .

Claim 8. |B| ≤ k − 2

Proof of Claim 8. A straightforward induction on the number of leaves.

Claim 9. The subgraph induced by the vertices of a topological edge of T contains
no further edges.

Proof of Claim 9. This is trivially true for an r-topo-edge where r = 0, so suppose
r ≥ 1. But then we can re-engineer T to have k + 1 leaves, as shown in Figure 5.

Claim 10. There are no r-topological edges in T for r ≥ 6.

Proof of Claim 10. Suppose we have a path 〈b, j1, ..., jr, b
′〉 in T where b, b′ ∈ B

are branch vertices of T , and the vertices ji for i = 1, ..., r are subdivider vertices
of T , where r ≥ 6. let Tb denote the subtree of T “to the left” of b, and let Tb′

denote the subtree of T “to the right” of b′. The vertex j3 cannot be adjacent

10

Fig. 5. Topo-edges are induced subgraphs.

in G to a vertex of Tb, otherwise we can re-engineer T to have k + 1 leaves as
shown in Figure 6.

Fig. 6. Long topo-edges of T have middle vertices of degree 2 in G.

The vertex j3 cannot be adjacent to a vertex of Tb′ for similar reasons. By
Claim 9, and by symmetry, the vertices j3 and j4 must have degree 2 in G. But
then G is reducible, either by contracting a bridge or by the “Two Adjacent
Degree 2 Rule”.

Claim 11. Each leaf in T is adjacent in T to a branch vertex.

Proof of Claim 11. Otherwise, we would contradict that T is as small as possible.
See Figure 7.

Claim 12. |J | ≤ 5(k − 3)

Proof of Claim 12. This follows from Claims 9 and 10.

11

Fig. 7. A leaf is adjacent to a branch, else smaller T.

We can now conclude the proof of Boundary Lemma I on the basis of Claims
7,8 and 12.

3.3 Boundary Lemma II

Lemma 4. Boundary Lemma II. Suppose (G, k) is a reduced instance of
Max Leaf, with (G, k) a yes-instance of the problem and (G, k + 1) a no-
instance. Then |G| ≤ 5.75k.

Proof. The proof is by minimum counterexample. Witnessing that (G, k) is a
yes-instance we have a tree T with k leaves, as in the proof of Boundary Lemma
I. Here we will have a little more structure and another inductive priority. We
consider that the tree T is equipped with a root vertex r ∈ V ′. The possible
counterexample that we entertain in our argument is one where:
(1) T is as small as possible, and among all counterexamples satisfying this
requirement, one where
(2) the sum over all leaves l ∈ L of the distance in T from r to l is minimized.

All of the structural claims from the proof of Boundary Lemma I hold here
as well, since essentially all we have done is add one further inductive priority.
This additional priority allows us to establish a strengthening of Claim 10.

Claim 13. T does not have r-topological edges for r ≥ 4.

Proof of Claim 13. Suppose we have a path 〈b, j1, ..., jr, b
′〉 in T where b, b′ ∈ B

are branch vertices of T , and the vertices ji for i = 1, ..., r are subdivider vertices
of T , where r ≥ 4. Let Tb denote the subtree of T “to the left” of b, and let Tb′

denote the subtree of T “to the right” of b′. We can suppose that the root of T
lies in Tb′ , without loss of generality. The vertices j1 and j2 cannot be adjacent
to vertices in Tb′ , else we can re-engineer T to have k + 1 leaves, as in the proof
of Claim 10. By Claim 9, and since G is irreducible (in particular, j1 and j2 do

12

not both have degree 2 in G), at least one of j1 or j2 is adjacent by an edge e to
a vertex x of Tb. But then by adding e to T and removing the edge xu, where
xu is the first edge on the path in T from x to b, we can obtain a modified tree
with k leaves where the priority (2) has been improved.

That concludes the proof of BL II.

We next turn to the issue of how this understanding can be used to efficiently
solve problems in our chosen row of the parameterized complexity ecology ma-
trix.

Theorem 1. For graphs of max leaf number bounded by k, the minimum dom-
ination number can be computed in time O∗(143k) based on a polynomial-time
reduction to a kernel of size at most 7.5k.

Proof. Since this is an FPT result, we are necessarily (by Lemma 1) interested in
effective kernelization for this problem. We must therefore develop a polynomial-
time extremal account of the boundary case for the induction.

We take the following hypotheses:
(1) (G, k) is a yes-instance of Max Leaf.
(2) (G, k + 1) is a no-instance of Max Leaf.
(3) There is a witness structure for (1) that satisfies the inductive priorities of
the proof of Boundary Lemma II.
(4) G is reduced according to an admissible set of polynomial time kernelization
rules.

Here by reduced we mean P-time reduction rules that are compatible with
the objective of computing a minimum dominating set. Many of the structural
claims proved above can be imported to this new situation, modified in some
cases because of changes to the admissible set of reduction rules.

Here, because we are computing a minimum dominating set, we are allowed
reduction rules that are compatible with this objective: rules that transform G
to G′ in such a way that given a minimum dominating set for G′, we can easily
compute a minimum dominating set for G. To the extent that we can find re-
duction rules for this new computational objective that “mimic” or approximate
the ones that were available for the Max Leaf problem, the structural claims
about the kernel still (with some modifications) carry over, and we can conclude
similar kernelization bounds for problems in the row of the complexity ecology
matrix that are amenable to this approach.

The reduction rules shown in Figure 8 below can be used in this way for the
Minimum Dominating Set (MDS) problem, for graphs of bounded max leaf
number. To solve the minimum domination problem on graphs of bounded max-
leaf number, we attempt to solve the decision problem for MDS (that is: does
G have a dominating set of cardinality l) for each l. For each l, we iteratively
apply the reduction rules for MDS given in Figure 8 until they can no longer be
applied. Since the reduction rules given in Figure 8 can be performed by a series
of vertex deletions, edge deletions, and edge contractions, the resulting reduced
graph G′ is a minor of the original graph G. Since the max-leaf number of a graph
is a monotonically non-decreasing property of the graphs in the minor ordering

13

(that is, if H and G are connected and H is a minor of G, then ml(H) ≤ ml(G)),
we have that ml(G′) ≤ ml(G) ≤ k. In particular, the resulting reduced graph
G′ has no chains of vertices of degree 2 longer than 2.

Rule 1 Rule 2

l ’ = l - 1

Rule 3

l ’ = l
l ’ = l - 1l ’ = l - 1

Fig. 8. Reduction rules for minimum domination.

The argument for the bound on the kernel size is by minimum counterexam-
ple. One of our hypotheses is that (G, k) is a yes-instance for Max Leaf. We
can assume we are given as a witness structure a tree subgraph T = (V ′, E′) of
G that has k leaves, and we can also assume that G is connected.

We do not assume that T is a spanning subgraph. (If T is not spanning, then
it clearly extends to a spanning tree T ′ for G that has at least k leaves.)

A counterexample to our theorem would be a graph G = (V, E) such that:
(1) (G, k) is a reduced instance of Max Leaf, (2) (G, k) is a yes-instance of
Max Leaf, (3) (G, k + 1) is a no-instance, and (4) |G| > 7.5k.

Among all such counterexamples, we consider one where a rooted witness
subgraph tree T is as small as possible, and meeting the secondary inductive
priority of Boundary Lemma II. We now consider how the various Claims of
the Max Leaf kernelization bound fare under the modified notion of “reduced
instance” that we must consider here in order to solve the MDS problem (that
is: we consider the structure of an instance that is reduced with respect to the
similar but modified reduction rules depicted in Figure 8).

Claims 1 through 5, as well as 8, 9 and 11, hold by the same arguments as
before. We next argue that modified versions of the other structural claims hold,
yielding our claimed kernelization bound.
Claim 6′. 〈O〉 consists of a union of paths, where each path has at most 4 vertices.
Proof of Claim 6′. Otherwise, MDS Reduction Rule 1 could be applied, contra-
dicting our hypothesis that the instance is reduced.
Claim 7′. |O| ≤ 1.5k
Proof of Claim 7′. The argument for Claim 7 is modified by noting that the
“worst case” is where a component of 〈0〉 consists of a three-vertex path, where
one endpoint is a vertex of degree 1, and the other endpoint has at least two leaf
neighbors.

14

Claim 13′. The witness tree T does not have r-topological edges for r ≥ 5.
Proof of Claim 13′. The argument for Claim 13 is modified (where we use the
same notation to discuss the situation) by noting that none of the vertices j1, j2
or j3 can be adjacent to vertices in Tb′ , else we can re-engineer T to have k + 1
leaves. These three vertices cannot all have degree 2, else Reduction Rule 1
applies. By Claim 9, at least one of these must be adjacent to a vertex x in Tb,
providing an opportunity to improve the secondary inductive priority.

The kernel can be analyzed by means of the algorithm due to Fomin, Kratsch
and Woeginger [FKW04], yielding the running time stated for our algorithm.
Knowing the domination number of the problem kernel allows us to compute the
domination number of the input graph by retracing this information backwards
along the kernelization path in polynomial time. ✷

What was the best previous result for this problem? A graph of bounded max
leaf number has bounded pathwidth, and thus almost all of the entries in the
“max leaf row” can be handled by standard bounded pathwidth algorithmics.
This is true, but applied in a simple manner, entails a cost of O∗(235k3

) in order
to compute the path decomposition. The point of this investigation is to ask for
the best possible FPT algorithms for FPT entries in this row, that is, how does
one best (and hopefully, systematically) exploit bounded max leaf number?

The following theorem is based on essentially the same approach, making use
of the reduction rules shown in Figure 9.

Theorem 2. For graphs of max leaf number bounded by k, the maximum size of
an independent set can be computed in time O∗(2.972k) based on a polynomial-
time reduction to a kernel of size at most 7k.

Proof. The imported structural claims give a bound of 4.5k on the size of a
vertex cover for the kernel, which yields the claimed running time by using the
algorithm of Chen, Kanj and Xia [CKX05] to analyze the kernel. We must first
note that all of the reduction rules shown in Figure 9 are admissible in the sense
that they preserve a bound on the max-leaf number. An upper bound of 4.5k on
the size of a minimum cardinality vertex cover is demonstrated by considering
a vertex cover that consists of the leaves of G (at most k), the branch vertices
of the tree T (at most k), together with at most 2k vertices of the J vertices
(based on Claim 13′, as in the proof of Theorem 1), and together with at most
k/2 vertices of 〈O〉.

Many other NP-hard problems can be addressed for graphs of bounded max-
leaf number in much the same way.

Theorem 3. For graphs of max leaf number bounded by k, it can be determined
in O∗(54k) whether the graph has a Hamiltonian circuit, based on a polynomial-
time reduction to a kernel of size at most 5.75k.

Proof. Reduction rules admissible for this problem (because they preserve the
bound on ml(G)) include:

15

Rule 1 Rule 2

l ’ = l - 1

Rule 3

l ’ = l
l ’ = l - 1l ’ = l - 1

Fig. 9. Reduction rules for Maximum Independent Set.

• If there is a vertex of degree 1, then answer NO.
• Edges between vertices of degree 2 can be contracted.
This leads to a kernelization bound identical to that for Max Leaf (via Bound-
ary Lemma II), since all of the structural claims hold in this case by the same
arguments. The analysis of the kernel is by means of the dynamic programming
algorithm of Held and Karp [HK70]. ✷

4 Systematically Attacking a Row: A Win/Win
Connection to Pathwidth

Several of our results in the previous section based on the combination of sys-
tematic kernelization and exponential analysis of the kernel can be improved by
what has been called a “Win/Win” algorithm that in polynomial time provides
a useful connection between two different parameters [PS03,Fe03]. An early ex-
ample in the study of parameterized algorithms is the linear time algorithm
described by Fellows and Langston that given a graph G outputs either a cycle
of length at least k, or a tree decomposition of width at most k [FL89b]. (To
emphasize — the algorithm runs in O(n) time for any k ≤ n.)

Theorem 4. There is a linear time algorithm that on input a connected graph
G, outputs either:
(1) A spanning tree of G having at least k leaves, or
(2) A path-decomposition of G of width at most 2k.

Although the proof is easy, we have not been able to find this already in the
literature.

Proof. Compute a breadth-first spanning tree of G. If any layer of the tree has
population at least k, then the breadth-first spanning tree computed in this way
has at least k leaves. Otherwise, suppose the layers of the spanning tree are:
L0, L1, ..., Lr. The series of bags:

L0 ∪ L1, L1 ∪ L2, ..., Lr−2 ∪ Lr−1, Lr−1 ∪ Lr

gives a path decomposition of G of width bounded by 2k.

16

This yields more efficient FPT algorithms for some (but not all) of the prob-
lems we have considered. For example, combining the above algorithm with the
carefully engineered dynamic programming algorithm for Dominating Set of
Telle and Proskurowsky [TP93] (refined by Alber and Niedermeier [AN02]), we
get an O∗(4k) FPT algorithm for the Minimum Dominating Set problem, for
graphs of max leaf number bounded by k. Similarly, determining whether a graph
of max leaf number bounded by k is 3-colorable can be accomplished in O∗(9k)
time.

5 Systematically Attacking a Row: Well-Quasiordering

One of the most powerful FPT classification tools is well-quasiordering. Graphs
in general are well-quasiordered by minors (the celebrated Graph Minor The-
orem), and also importantly, determining whether a graph H is a minor of a
graph G, parameterized by H, is FPT (we say that the minor order has FPT
order tests) [RS85,RS04].

Bounding a structural parameter, such as the max leaf number, can lead to
“even more powerful” — but generally easier to prove(!) — well-quasiordering
FPT classification tools applicable to a given row of the parameterized complex-
ity ecology matrix. In [Fe03] it is shown that graphs of bounded vertex cover
number are well-quasiordered by induced subgraphs and admit linear-time FPT
order tests.

Here we prove an analogous result, and give an application. For background
on well-quasiordering concepts and standard methods of proof in the context of
FPT algorithms, we refer the reader to [DF99].

Definition 1. The topological order on graphs (with loops and multiple edges
allowed) is defined: H ≤top G if and only if G contains a subgraph G′ that is
(up to isomorphism) a subdivision of H, where a subdivision of H is a graph
obtained from H by replacing edges of H by (vertex disjoint) paths. We use Fk

to denote the set of graphs

Fk = {G : ml(G) ≤ k}

Theorem 5. For every k, Fk

(1) is well-quasiordered by the topological ordering, and
(2) admits linear time FPT order tests.

Proof. By a theorem of Kleitman and West [KW91] every graph G with ml(G) ≤
k is a subdivision of a graph on at most 4k−2 vertices. Suppose there is an infinite
bad sequence of graphs of bounded max leaf number in the topological order.
Because the number of distinct graphs on at most 4k− 2 vertices is bounded by
a function of k, by the Pigeonhole Principle there is an infinite bad subsequence
(G1, G2, ...) where for all i, Gi is a subdivision of a fixed graph G on k′ ≤ 4k− 2
vertices. Let (e1, ..., em) be a fixed enumeration of the edges of G. Then each Gi

is essentially described by the information: (1) the graph G, and (2) a length m

17

census vector (si,1, ..., si,m) that records the numbers si,j of degree 2 vertices on
the path that replaces the edge ej in order to produce Gi from G. Clearly, if for
i < i′, and for all j, si,j ≤ si′,j , then Gi ≤top Gi′ . By Higman’s Lemma, this has
to happen, contradicting that the sequence is bad. This establishes (1).

By a theorem of Bienstock et al. [BRST91] (see also §4) graphs of bounded
max leaf number have bounded pathwidth, and since for a fixed graph H, the
property of containing H topologically is expressible in MSO logic, we have (2).

We next describe an application to the problem Topological Bandwidth.
The bandwidth bw(G) of a graph G is the minimum, over all permutations of the
vertex set of G, of the maximum distance in the order given by a permutation
of adjacent vertices of G. It can happen that a subdivision G′ of G has smaller
bandwidth than the bandwidth of G. The topological bandwidth tbw(G) of a
graph G is the minimum, taken over all subdivisions G′ of G, of the bandwidth
of G′. Determining if tbw(G) ≤ k (parameterized by k) is hard for W [t] for all
t, even for the restriction to trees [BFH94].

We address the following decision problem in our row of the parameterized
complexity ecology matrix:
Topological Bandwidth parameterized by max leaf number (TBW-
ml)
Instance: A graph G with ml(G) ≤ k, and a positive integer r.
Parameter: k
Question: Is tbw(G) ≤ r?

Theorem 6. TBW-ml is fixed-parameter tractable.

Proof. It is sufficient to show that if ml(G) ≤ k then tbw(G) ≤ k′ where k′ =
f(k) depends only on k, where the function f(k) is computable. Suppose this is
shown. Then we compute k′ (in time that depends only on k) and if r ≥ k′, then
we answer YES. Otherwise, by the well-quasiordering of Fk under ≤top, there is
a finite obstruction set Or such that tbw(G) ≤ r if and only if for every graph
H ∈ Or, H is not topologically contained in G. By (2) of the above theorem,
this is sufficient to conclude that TBW-ml is solvable in linear-time nonuniform
FPT.8 This result can be converted into uniform FPT by the methods of [FL89a]
and [FL89b] (both methods are exposited in [DF99]).

To show what we propose, we argue that the bandwidth of G is bounded by
k′ = (4k − 3) + 2

(

4k−2
2

)

, so that this is an upper bound on tbw(G). For this we
can use the fact that G is a subdivision of a graph H on at most 4k− 2 vertices
(by the theorem of Kleitman and West [KW91]). Let v1, ..., vn be the vertices of
H, and let e1, ..., em be the edges of H. We describe a layout of G that achieves
the claimed bound. A layout is a 1:1 mapping l : V (G) → Z, and the bandwidth
of a layout l is the maximum, over all pairs u, v of adjacent vertices of G of
|l(u) − l(v)|.
(1) Assign vertex vi the position l(vi) = −i.
(2) Associate to each edge ej the set of positive integers

Pj = {r : r ≡ j − 1 (mod m)}

8 See [DF99] for the distinction between uniform and nonuniform FPT.

18

(3) As G is obtained from H by replacing each edge ej with a path pj, complete
the description of the layout l of G by assigning the vertices of the path pj to
positions in Pj in the natural way. This means that the path goes “out and back”
in an interleaved manner.
It is straightforward to check that the bound is achieved.

6 Bandwidth is FPT parameterized by max leaf number

The Bandwidth problem, parameterized in the natural way, is known to be hard
for W [t] for all t [BFH94]. Since a graph of bandwidth at most b has pathwidth
at most b, it follows that if we parameterize the Bandwidth problem by the
pathwidth of the input, then this is also hard for W [t] for all t.

In this section we show that the following problem is FPT:
Bandwidth parameterized by max leaf number (BW-ml)
Instance: A graph G for which ml(G) ≤ k, and a positive integer r.
Parameter: k
Question: Is bw(G) ≤ r?

Theorem 7. BW-ml is fixed-parameter tractable.

Proof. As formal details would be arduous, and the algorithm is anyway imprac-
tical, we provide only a sketch of a proof.

The overall structure of our algorithm is that we branch on an exhaustive
set of solution plans that has size bounded by a function of k, and that is sure
to capture at least one solution, if any exists. Then, to determine whether a
particular solution plan can be realized, we employ a subroutine that consists of
solving (in polynomial time) a system of linear equations.

We use the fact that if G has ml(G) ≤ k then G is a subdivision of a graph
H on at most 4k − 2 vertices [KW91]. We also use the fact that if ml(G) ≤ k,
then bw(G) ≤ k′ = O(k2), established in the proof of Theorem 6. In particular,
we have the initial step:

If r > k′ then output YES.

A solution plan consists of two layers of specification: (A) a topological and
local specification of the general shape of a solution, and how it might be car-
ried out in key local areas, and (B) in the remaining gaps between these local
specifications, a local plan / formula for negotiation, that contributes to a global
calculation of whether the solution plan can be achieved. Part A of a solution
plan consists of the following items of information:
(A.1) A permutation of the vertices of H representing the intended order of these
vertices in a layout of G. (Note that all the other vertices of G are vertices of
degree 2 on paths that replace the edges of H in order to create G.) We consider
the vertices of H to be reference points of the plan.
(A.2) A description of the topological routing of the paths that the edges of H
are replaced by in producing G from H. (For an example, see the upper part of

19

Figure 10. The vertical lines indicate an injective mapping of the vertices into
integer positions on the real line. The square vertices represent “points of change
of direction” of the topological routing.)

b a
e

d

c

w w’

z’z

x

y

w z w’ x y z’

2r2r 2r
...

...

r r

b

b a
e

d

c

w w’

z’z

x

y

w z w’ x y z’

2r2r2r2r 2r2r
...

...

r r

b

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

c

b

a e

d

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

c

b

a e

d

c

b

a e

d

Fig. 10. Part A of a Solution Plan.

In such a plan, we are only interested in the zones that the routes of the
paths cross or enter, and we allow that the route of the path between vertices u
and v of H may make up to two changes of direction. (We argue below that if
there is any solution, then there is a solution in which each path-route makes at
most two changes of direction. This issue is illustrated in Figure 11.)

...

...

... more stretch

... less stretch

...

...

...

...

...

...

... more stretch

... less stretch

Fig. 11. No wiggle-waggle necessary.

20

(A.3) If a plan calls for a path to make a change of direction, then this creates
a new reference point. The information for a plan includes a permutation of all
of the reference points (the vertices of H, together with all of the points that
represent changes of direction of the routes of the paths).
(A.4) A plan also completely specifies the layout (we will use the phrase: reference-
point locally) within a distance of r of any reference point, allowing that these
neighborhoods of adjacent reference points may be coalesced, in the case that
the reference points are planned to be close together. This reference-point lo-
cal specification for a particular reference point, details how various degree 2
vertices of the edge-paths present in that region of the topological plan are or-
dered among the 2r layout positions in the (relative) local neighborhood of the
reference point. (Note that this reference-point local specification requires that
the numbers of degree two vertices on the various paths that build G from H
are sufficient to meet the specification, else the plan can be discarded from our
search of the possibilities for a solution.) See the lower part of Figure 10.

We claim that the number of solution plans (part A) is bounded by a function
of k. Let us start with the number of possible reference-point local specifications
that might be given a specific reference point. Since r ≤ k′ by Step 1 of the
algorithm, there are at most 2k′ positions to be assigned to the edge-paths
routed in the neighborhood of the reference point by the topological part of the
solution plan, so we have a bound of m2k′

, where m is the number of edges
in H, which gives a crude bound of O(kO(k2)). Since there are O(k2) reference

points, this gives a bound of O(kO(k4)) for the number of possible reference-point
local specifications to be explored for any given permutation of the reference
points. The number of such permutations (which implicitly bounds the number

of topological plans) is bounded by O(O(k2)!) = O(kO(k2)). So the total number

of solution plans (part A) is bounded by O(kO(k4)). We will use k′′ to designate
this bound.

Crucial to the correctness of our algorithm is the following claim.

Lemma 5. If G has any layout of bandwidth at most r, then it has one where
each edge-path makes at most two turns.

Proof. Let f : V → N denote a layout function, mapping the vertices of G to
integer positions on the real line, witnessing that the bandwidth of G is at most
r. As discussed above, we view G as a subdivision of a graph H on at most 4k−2
vertices. Suppose x and y are adjacent vertices of H, and denote the chain of
degree 2 vertices in G between x and y by vi. Thus is G we have the “edge-path”
P (x, y) : x, v1, v2, ..., vm, y. We will use S to denote the set of vertices vi.

We describe how to modify f to obtain a different solution f ′ that lays out
the edge-path in a way that involves at most two turns. Let P denote the set
of positions f(S). Since f is injective, |P | = m. Our modification of f consists
in mapping S to P in a different way that involves at most two turns. Making
a similar modification for each edge-path of G, since these modifications can be
made independently, yields the lemma.

21

For convenience, suppose f(x) < f(y). We can consider that P is partitioned
into three sets

P = P0 ∪ P1 ∪ P2

where P0 is the set of positions in P that are less than f(x), P1 is the set of
positions in P that are between f(x) and f(y), and P2 is the set of positions in
P that are greater than f(y). Let mi = |Pi|, for i = 0, 1, 2.

Let p(0, i) for i = 1, ..., m0 denote the positions in P0, sorted according to
increasing distance (“to the left”) from f(x). Similarly, let p(1, i) for i = 1, ..., m1

denote the positions in P1 sorted by increasing distance (“to the right”) from
f(x), and let p(2, i) for i = 1, ..., m2 denote the positions in P2 sorted by increas-
ing distance (“to the right”) from f(y).

For simplicity, we will assume that all of the sets of positions Pi are nonempty
and have size at least 2. (It is easy to modify the argument to handle the other
cases.) Our description of f ′ is summarized: we assign the vertices of S “out and
back” in an interleaved manner to the positions in P0, then progressively to the
positions in P1, and then “out and back” in an interleaved manner to the posi-
tions in P2. In particular, we make f ′(v1) = p(0, 2), f ′(v2) = p(0, 4),...,f ′(vi) =
p(0, 2i),... until we reach the leftmost position of P0, and then progressively back
through the alternately skipped positions, and similarly with regards the posi-
tions in P2. We say that positions p(0, i) and p(0, j) are nearly consecutive if
|i − j| = 2. We argue that the distance between nearly consecutive positions
in P0 is at most r (and similarly, that the distance between nearly consecutive
positions in P2 is at most r). This is true, because otherwise, f would fail to be
a bandwidth r layout function.

Before we discuss what constitutes Part B of a solution plan, we need to take
account of what remains to be determined if a solution plan (Part A) is to be
realized. What Part A specifies is an ordering of the reference vertices together
with a description of what a solution layout should look like in the vicinity of
the reference vertices. This implicitly involves a commitment to some numbers
of subdivisions on the edges of G, and the commitment is feasible only if the
number of subdivisions of each edge of H (in the description of G) is greater than
or equal to the commitment implicit in Part A of a solution plan. Fix attention
on solution plan P, partially specified by the Part A information. For each edge
e of H, let P(e) denote the number of “further” subdivisions (i.e., beyond those
already implied in Part A) needed on edge e in order to reach the number in
the description of G as a subdivision of H. What remains to be determined is
schematically illustrated in Figure 12.

In the figure, the boxes represent the local solution information specified in
Part A (that is, local to the reference vertices). Between these boxes are tracks
representing the edge-paths that go between these areas. Each track is part of
the routing of a edge-path in the topological specification of Part A. Note that
the situation between two consecutive boxes has a simple structure: there is just
a set of edge-paths between the two boxes. We refer to the situation between
two boxes as a gap. Let Gi, i = 1, ..., t denote the set of gaps of the Part A,

22

gap

Some subdivisions within

a box specified in Part A

Fig. 12. The situation at a gap.

partial solution specification. Abusing notation in harmless way, we will treat Gi

as denoting the set of edge-paths in the gap.
What remains to be determined is whether subdivisions can be introduced to

the edge-paths in the gaps, in a way that is locally consistent with a bandwidth
r layout, and so the the total number of subdivisions introduced for each edge
e of H, sums to P(e), summing over the gaps that include e. Let m(i, e) denote
the number of subdivisions introduced to the track representing e in the gap Gi.

What we require, then, is that

∀e
∑

i:e∈Gi

m(i, e) = P(e) (1)

subject to local consistency with bandwidth at most r.
We make this determination, algorithmically, as follows. First of all, for each

edge e of H, P(e) is a constant that we calculate for G according to Part A of
the solution plan specification. The m(i, e) are treated as integer variables, and
we assemble a system of linear equations that has a feasible solution if and only
if the solution plan partially specified by Part A, can be carried out. Clearly, for
each gap Gi, local consistency with a bandwidth at most r layout depends on a
suitable relationship between the values of the variables

M (i) = {m(i, e) : e ∈ Gi}

The local consistency constraints are expressed as a set of linear equations,
using variables special to Part B of a solution plan specification. We next study
the situation for a specific gap Gi. Refer to Figure 13. We may consider that
we “build” the part of the solution in the gap from left to right. Each step
consists of either terminating the process, or introducing a subdivision on one
of the tracks. Our local consistency concern is that no edge of G is stretched
more than a distance r. Because of the Part A specification, we begin with a

23

state based on how much each track is “already stretched” (to the left) due
to the specification by Part A of the box on the left of the gap. Each step
changes the state. There are at most r|Gi| states that are consistent with a
bandwidth (at most) r layout. When we terminate, we have to consider whether
the state information concerning “stretch to the left” is compatible with the
stretch imposed by the specification of Part A concerning the box on the right
of the gap.

We can model the situation with a finite-state machine Mi. The alphabet
corresponds to the tracks of the layout. Processing a letter corresponds to in-
troducing a subdivision (the “next vertex to be laid out in the gap”) to one of
the tracks, the accept states correspond to the states (based on left-stretch) that
are compatible with the box on the right of the gap (and hence are acceptable
for terminating the local construction of a partial solution). Local consistency of
the values of the integer variables of M (i) corresponds to Mi accepting a word
whose letter content is the same as the values of the variables of M (i). Figure
14 shows an example of a gap automaton.

1

4

3

1

3

4

2

1

3

3

1

2

4

1

3

1

2

3

3

1

4

1

2

4

2

1

4

3

2

1

4

1

2

2

3

1

4

3

1

1

4

2

3

4

1

4

2

1

1

4

2

2

4

1

1

3

2

a b

a

a

a

a

a

a

a

a

a

b

b

b

b
b

b

b

b

b

b

c

c

c

c

c

c

c

c

c

c1

4

3

1

3

4

2

1

3

3

1

2

4

1

3

1

2

3

3

1

4

1

2

4

2

1

4

3

2

1

4

1

2

2

3

1

4

3

1

1

4

2

3

4

1

4

2

1

1

4

2

2

4

1

1

3

2

1

4

3

1

3

4

2

1

3

3

1

2

4

1

3

1

2

3

3

1

4

1

2

4

2

1

4

3

2

1

4

1

2

2

3

1

4

3

1

1

4

2

3

4

1

4

2

1

1

4

2

2

4

1

1

3

2

a b

a

a

a

a

a

a

a

a

a

b

b

b

b
b

b

b

b

b

b

c

c

c

c

c

c

c

c

c

cStart

a

b

c

r = 4 accept

state

b

Fig. 13. Example of a Gap Automaton.

In a digraph D, define two directed paths ∆ and ∆′ from a vertex s to a
vertex t to be arc-equivalent, if for every arc a of D, ∆ and ∆′ pass through the
arc a the same number of times. We need the following lemma.

Lemma 6. Any directed path ∆ through a finite digraph D on n vertices from
a vertex s to a vertex t of D is arc-equivalent to a directed path ∆′ from s to t,
where ∆′ has the form:
(1) ∆′ consists of an underlying directed path ρ from s to t of length at most

24

O(n2), together with,
(2) Some numbers of short loops, where each such short loop l begins and ends
at a vertex v of ρ, and has length at most n.

Proof. We give an algorithmic proof. Consider the sequence σ of vertices visited
by ∆ from s to t in D. If σ has length greater than n, then σ contains a short
loop relative to a vertex u (i.e., u is repeated in σ). Let σ′ denote σ reduced by
this short loop. Repeating this, one obtains some numbers of short loops rooted
at various vertices, together with a final reduced sequence σ∗ of length at most
n. Loops are either rooted at a vertex x of σ∗ (in which case we are done) or
not. If not, then an augmentation of σ∗ by a short loop that includes the root x
(for each such x) is sufficient to conclude the lemma. ✷

We are now in a position to describe Part B of a solution plan. Part B
specifies, for each gap Gi, a transition path ρi from the start state, to an accept
state of the gap automaton Mi, of length at most the square of the number of
states of Mi.

The number of solution plans (Part A + Part B) is bounded by O(kO(kO(k2))).

For each fully-articulated solution plan, the only thing yet undetermined is
the number of times any possible (short) loop might be executed, in each gap.
We express our feasibility constraints in terms of one variable for each such
possible loop, for each gap, with a linear equation summing appropriately, the
variables of M (i), and we adjust the global linear constraints of the equations
of (1) appropriately, according to the subdivisions of the various edge-paths
implicit in Part B of a solution plan specification (not already accounted for
by the calculations relative to Part A). The number of variables involved in the
system of linear equations for a fully articulated solution plan is crudely bounded
by the number of short loops that are possible; for an n state gap automaton
this is bounded by nn. The number of variables is thus also crudely bounded by

O(kO(kO(k2))).

We must argue that if there is any solution, then one of our branches will
succeed. This follows from Lemma 5, and the fact that what a solution f “does”
in a gap corresponds directly to a path ρ from the start state to an accept state
in the automaton for that gap, where the numbers of subdivisions introduced
add up to P(e) for each edge e of G. Lemma 6 shows that ρ can be replaced
by a different path ρ′ that has the same letter-content as ρ, where ρ′ has the
form specified by Part B. Corresponding to ρ′ is a different solution f ′ that is
described by a specification of the form (Part A + Part B), together with the
numbers of times various short loops are traversed (which implicitly describes
the solution f ′ in the various gaps).

In this way we are able to solve the problem in FPT time by branching on

at most O(kO(kO(k2))) solution plans, and in each case checking feasibility by the
solvability of a system of linear equations.

25

7 Summary

What we show in this paper is an example of how to systematically explore a
“row” of the parameterized complexity ecology matrix, through the example of
bounded max leaf number.

This is mostly an idea paper, that raises many more questions than it answers.
There are clearly many more rows of the matrix to be explored. One would like
to see further development of systematic approaches as well as improved concrete
results.

Acknowledgements. We thank Fedor Fomin and Anil Nerode for useful
conversations about this project. The research of M. Fellows and F. Rosamond
has been supported by the Australian Research Council through the Australian
Centre for Bioinformatics, by the University of Newcastle Parameterized Com-
plexity Research Unit under the auspices of the Deputy Vice-Chancellor for
Research, and by a Fellowship to the Durham University Institute for Advanced
Studies. Fellows and Rosamond gratefully acknowledge the hospitality provided
by a William Best Fellowship at Grey College, Durham, while the paper was
in preparation, and thank the Alexander von Humboldt Foundation for support
while the paper was revised and completed. The research of S. Saurabh was
supported in part by the Norwegian Research Council. Preliminary versions of
some of the results in this paper have previously appeared in the conference
publications: “FPT is P-Time Extremal Structure I,” Proc. ACiD 2005 by V.
Estivill-Castro, M. Fellows, M. Langston and F. Rosamond, and “The Complex-
ity Ecology of Parameters: An Illustration Using Bounded Max Leaf Number,”
Proc. CiE 2007 by M. Fellows, F. Rosamond and S. Saurabh. We thank an
anonymous referee for substantially improving our presentation of these ideas
and results.

References

[ACFLSS04] F. N. Abu-Khzam, R. L. Collins, M. R. Fellows, M. A. Langston, W. H.
Suters and C. T. Symons. Kernelization algorithms for the vertex cover problem:
theory and experiments. Proceedings of the 6th Workshop on Algorithm Engineer-
ing and Experiments (ALENEX), New Orleans, January, 2004, ACM/SIAM, Proc.
Applied Mathematics 115, L. Arge, G. Italiano and R. Sedgewick, eds.

[AD08] Y. Aumann and Y. Dombb. Fixed structure complexity. Proc. IWPEC 2008,
Springer-Verlag, Lecture Notes in Computer Science 5018 (2008), 30–42.

[AFN04] J. Alber, M. Fellows and R. Niedermeier. Polynomial time data reduction for
dominating set. Journal of the ACM 51 (2004), 363–384.

[AN02] J. Alber and R. Niedermeier. “Improved Tree Decomposition Based Algorithms
for Domination-Like Problems,” Proceedings of the 5th Latin American Theoretical
IN-formatics (LATIN 2002), Springer-Verlag LNCS 2286 (2002), 613–627.

[ALS91] S. Arnborg, J. Lagergren and D. Seese. Easy problems for tree-decomposable
graphs. J. Algorithms 12 (1991), 308–340.

26

[BEF+06] K. Burrage, V. Estivill-Castro, M. Fellows, M. Langston, S. Mac and F.
Rosamond. The undirected feedback vertex set problem has polynomial kernel size.
Proceedings IWPEC 2006, Springer-Verlag, Lecture Notes in Computer Science
4169 (2006), 192–202.

[BFH94] H. Bodlaender, M. Fellows and M. Hallett. Beyond NP-completeness for prob-
lems of bounded width: hardness for the W hierarchy. Proceedings of the ACM
Symposium on the Theory of Computing (STOC) (1994), 449–458.

[BK07] H. L. Bodlaender and A. M. Koster. Combinatorial optimisation on graphs of
bounded treewidth. The Computer Journal 51 (2007), 255–269.

[Bod96] H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of
small width. SIAM J. Computing 25 (1996), 1305–1317.

[Bod07] H. L. Bodlaender. A cubic kernel for feedback vertex set. Proceedings STACS
2007, Springer-Verlag, Lecture Notes in Computer Science 4393 (2007), 320–331.

[BRST91] D. Bienstock, N. Robertson, P. Seymour and R. Thomas. Quickly excluding
a forest. J. Combinatorial Theory B 52 (1991), 274–283.

[CCDF97] L. Cai, J. Chen, R. Downey and M. Fellows. The parameterized complexity
of short computation and factorization. Proceedings of the Sacks Symposium, in
Archive for Mathematical Logic 36 (1997), 321–338.

[CCF+06] J. Chen, B. Chor, M. Fellows, X. Huang, D. Juedes, I. Kanj, and G. Xia.
Tight lower bounds for certain parameterized NP-hard problems. Information and
Computation 201 (2005), 216–231.

[CFJ04] B. Chor, M. Fellows and D. Juedes. Linear kernels in linear time, or how to
save k colors in O(n2) steps. Proceedings WG 2004, Springer-Verlag, Lecture Notes
in Computer Science 3353 (2004), 257–269.

[CJ08] The Computer Journal: Two special issues of surveys of various aspects of
parameterized complexity and algorithmics. (Guest editors: M. Fellows, R. Downey
and M. Langston.) The Computer Journal Volume 51: Numbers 1,3 (2008).

[CKX05] J. Chen, I. Kanj and G. Xia. Improved Parameterized Upper Bounds for Ver-
tex Cover. Proceedings MFCS 2006, Springer-Verlag, Lecture Notes in Computer
Science 4162 (2006), 238–249.

[Cou90] B. Courcelle. The monadic second order logic of graphs I: Recognizable sets
of finite graphs. Information and Computation 85 (1990), 12–75.

[DEF+03] R. Downey, V. Estivill-Castro, M. Fellows, E. Prieto-Rodriguez and F.
Rosamond. Cutting up is hard to do: the parameterized complexity of k-cut and
related problems. Electron. Notes Theor. Comp. Sci. 78 (2003), 205–218.

[DF95a] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and complete-
ness I: basic results. SIAM J. Computing 24 (1995), 873–921.

[DF95b] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and com-
pleteness II: on completeness for W[1]. Theoretical Computer Science 141 (1995),
109–131.

[DF99] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag,
1999.

[DFHKW94] R. Downey, M. Fellows, M. Hallett, B. Kapron and H. T. Wareham. The
parameterized complexity of some problems in logic and linguistics. Proceedings
Symposium on Logical Foundations of Computer Science (LFCS), Springer-Verlag,
Lecture Notes in Computer Science vol. 813 (1994), 89–100.

[DFHT05] E. D. Demaine, F. V. Fomin, M. Hajiaghayi and D. M. Thilikos. Subexpo-
nential parameterized algorithms on graphs of bounded genus and H-minor-free
graphs. Journal of the ACM 52 (2005), 866–893.

27

[DFS99] R. Downey, M. Fellows and U. Stege. Parameterized complexity: a frame-
work for systematically confronting computational intractability. In: Contempo-
rary Trends in Discrete Mathematics (R. Graham, J. Kratochvil, J. Nesetril and
F. Roberts, eds.), Proceedings of the DIMACS-DIMATIA Workshop on the Future
of Discrete Mathematics, Prague, 1997, AMS-DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science, vol. 49 (1999), 49–99.

[DH05] E. D. Demaine and M. Hajiaghayi. Bidimensionality: New connections be-
tween FPT algorithms and PTASs. Proceedings of the 16th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2005), Vancouver, January 2005, pp.
590–601.

[DH07] E. D. Demaine and M. Hajiaghayi. The bidimensionality theory and its algo-
rithmic applications. The Computer Journal 51 (2008), 292–302.

[EFLR05] V. Estivill-Castro, M. Fellows, M. Langston and F. Rosamond. Fixed-
parameter tractability is P-time extremal structure theory I: The case of max
leaf. Proceedings of ACiD 2005: Algorithms and Complexity in Durham (2005),
1–41.

[Fe02] M. Fellows. Parameterized complexity: the main ideas and connections to prac-
tical computing. In: Experimental Algorithmics, Springer-Verlag, Lecture Notes in
Computer Science 2547 (2002), 51–77.

[Fe03] M.R. Fellows. Blow-ups, win/win’s and crown rules: Some new directions in
FPT. Proceedings WG 2003, Springer-Verlag, Lecture Notes in Computer Science
2880 (2003), 1–12.

[FFG01] J. Flum, M. Frick and M. Grohe. Query evaluation via tree-decompositions.
Proc. ICDT, Springer-Verlag, Lecture Notes in Computer Science 1973 (2001), 22–
32.

[FFL+07] M. Fellows, F. Fomin, D. Lokshtanov, F. Rosamond, S. Saurabh, S. Szeider
and C. Thomassen. On the complexity of some colorful problems parameterized by
treewidth. Proceedings of COCOA 2007, Springer-Verlag, Lecture Notes in Com-
puter Science 4616 (2007), 366–377.

[FG06] Parameterized Complexity Theory, J. Flum and M. Grohe, Springer-Verlag,
2006.

[FKW04] F. Fomin, D. Kratsch and G. Woeginger. Exact (exponential) algorithms
for the dominating set problem. Proceedings of WG 2004, Springer-Verlag, Lecture
Notes in Computer Science 3353 (2004), 245–256.

[FL89a] M. Fellows and M. A. Langston. An analogue of the Myhill-Nerode theorem
and its use in computing finite-basis characterizations. Proceedings Thirtieth IEEE
Symposium on the Foundations of Computer Science (FOCS) (1989), 520–525.

[FL89b] M. Fellows and M. A. Langston. On search, decision and the efficiency of
polynomial-time algorithms. In: Proc. Symp. on Theory of Computing (STOC),
1989, 501–512.

[FLMRS08] M. Fellows, D. Lokshtanov, N. Misra, F. Rosamond and S. Saurabh. Graph
layout problems parameterized by Vertex Cover. To appear, Proceedings ISAAC
2008.

[GM99] M. Grohe and J. Marino. Definability and descriptive complexity on databases
with bounded treewidth. Proceedings of the 7th International Conference on
Database Theory, Springer-Verlag, Lecture Notes in Computer Science 1540 (1999),
70–82.

[GN07] J. Guo and R. Niedermeier. Invitation to data reduction and problem kernel-
ization. SIGACT News, March 2007, 31–45.

[Gr01] M. Grohe. The parameterized complexity of database queries. Proc. PODS
2001, ACM Press (2001), 82–92.

28

[HK70] M. Held and R. Karp. The traveling-salesman problem and minimum spanning
trees. Operations Research 18 (1970), 1138–1162.

[HM91] F. Henglein and H. G. Mairson. The complexity of type inference for higher-
order typed lambda calculi. Proc. Symp. on Principles of Programming Languages
(POPL), ACM Press (1991), 119–130.

[IP01] R. Impagliazzo and R. Paturi. Which problems have strongly exponential com-
plexity? J. Computer and Systems Sciences 63 (2001), 512–530.

[KTU94] A. J. Kfoury, J. Tiuryn and P. Urzyczyn. An analysis of ML typability. J.
ACM 41 (1994), 368–398.

[KW91] D. J. Kleitman and D. B. West. Spanning trees with many leaves. SIAM J.
Discrete Mathematics 4 (1991), 99–106.

[Nie04] R. Niedermeier. Ubiquitous parameterization — invitation to fixed-parameter
algorithms. In: Mathematical Foundations of Computer Science MFCS 2004,
Springer-Verlag, Lecture Notes in Computer Science 3153 (2004), 84–103.

[Nie06] R. Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford University
Press, 2006.

[NP85] J. Nesetril and S. Poljak. On the complexity of the subgraph problem. Com-
mun. Math. Univ. Carol. 26 (1985), 415–419.

[NT75] G. L. Nemhauser and L. E. Trotter. Vertex packings: structural properties and
algorithms. Mathematical Programming 8 (1975), 232–248.

[Pr05] E. Prieto-Rodriguez. Systematic kernelization in FPT algorithm design. Ph.D.
Thesis, School of EE&CS, University of Newcastle, Australia, 2005.

[PS03] E. Prieto and C. Sloper. Either/Or: using vertex cover structure in designing
FPT algorithms — the case of k-internal spanning tree. Proc. WADS’03, Springer-
Verlag, Lecture Notes in Computer Science 2748 (2003), 474–483.

[Ra97] V. Raman, “Parameterized Complexity,” in: Proceedings of the 7th National
Seminar on Theoretical Computer Science, Chennai, India (1997), 1–18.

[RS85] N. Robertson and P. Seymour. Graph minors: a survey. In: J. Anderson, ed.,
Surveys in Combinatorics, Cambridge University Press (1985), 153–171.

[RS04] N. Robertson and P. Seymour. Graph minors XX. Wagner’s conjecture. J.
Comb. Th. Series B 92 (2004), 325–357.

[Sz08a] S. Szeider. Monadic second order logic on graphs with local cardinality con-
straints. Proc. MFCS 2008, Springer-Verlag, 601-612.

[Sz08b] S. Szeider. Not so easy problems for tree decomposable graphs. Proc. ICDM
2008, to appear.

[TP93] J.A. Telle and A. Proskurowski. “Practical Algorithms on Partial k-Trees with
an Application to Domination-Like Problems.” Proceedings WADS’93 – The Third
Workshop on Algorithms and Data Structures, Springer-Verlag LNCS 709 (1993),
610–621.

[Wei98] K. Weihe. Covering trains by stations, or the power of data reduction. Proc.
ALEX’98 (1998), 1–8.

29

