
The Complexity of Approximate Pattern
Matching on De Bruijn Graphs?

Daniel Gibney1, Sharma V. Thankachan2, and Srinivas Aluru1

1 School of Computational Science and Engineering, Georgia Institute of Technology,
Atlanta, USA

2 Department of Computer Science, University of Central Florida, Orlando, USA
Email: {daniel.j.gibney,sharma.thankachan}@gmail.com, aluru@cc.gatech.edu

Abstract. Aligning a sequence to a walk in a labeled graph is a prob-
lem of fundamental importance to Computational Biology. For finding a
walk in an arbitrary graph with |E| edges that exactly matches a pattern
of length m, a lower bound based on the Strong Exponential Time Hy-
pothesis (SETH) implies an algorithm significantly faster than O(|E|m)
time is unlikely [Equi et al., ICALP 2019]. However, for many special
graphs, such as de Bruijn graphs, the problem can be solved in linear
time [Bowe et al., WABI 2012]. For approximate matching, the picture is
more complex. When edits (substitutions, insertions, and deletions) are
only allowed to the pattern, or when the graph is acyclic, the problem
is again solvable in O(|E|m) time. When edits are allowed to arbitrary
cyclic graphs, the problem becomes NP-complete, even on binary alpha-
bets [Jain et al., RECOMB 2019]. These results hold even when edits
are restricted to only substitutions. Despite the popularity of de Bruijn
graphs in Computational Biology, the complexity of approximate pattern
matching on de Bruijn graphs remained open. We investigate this prob-
lem and show that the properties that make de Bruijn graphs amenable
to efficient exact pattern matching do not extend to approximate match-
ing, even when restricted to the substitutions only case with alphabet size
four. Specifically, we prove that determining the existence of a matching
walk in a de Bruijn graph is NP-complete when substitutions are allowed
to the graph. In addition, we demonstrate that an algorithm significantly
faster than O(|E|m) is unlikely for de Bruijn graphs in the case where
only substitutions are allowed to the pattern. This stands in contrast to
pattern-to-text matching where exact matching is solvable in linear time,
like on de Bruijn graphs, but approximate matching under substitutions
is solvable in subquadratic Õ(n

√
m) time, where n is the text’s length

[Abrahamson, SIAM J. Computing 1987].

1 Introduction

De Bruijn graphs are an essential tool in Computational Biology. Their role
in de novo assembly spans back to the 1980s [39], and their application in as-
sembly has been researched extensively since then [9,10,17,32,37,38,42,45]. More

? This research is supported in part by the U.S. National Science Foundation (NSF)
grants CCF-1704552, CCF-1816027, and CCF-2112643.

ar
X

iv
:2

20
1.

12
45

4v
1

 [
cs

.D
S]

 2
8

Ja
n

20
22

2 Daniel Gibney1, Sharma V. Thankachan2, and Srinivas Aluru1

recently, de Bruijn graphs have been applied in metagenomics and in the rep-
resentation of large collections of genomes [14,26,29,36,44] and for solving other
problems such as read-error correction [31,34] and compression [8,23]. Due to
the popularity of de Bruijn graphs in the modeling of sequencing data, an algo-
rithm to efficiently find walks in a de Bruijn graph matching (or approximately
matching) a given query pattern would be a significant advancement. For ex-
ample, in metagenomics, such an algorithm could quickly detect the presence
of a particular species within genetic material obtained from an environmen-
tal sample. Or, in the case of read-error correction, such an algorithm could be
used to efficiently find the best mapping of reads onto a ‘cleaned’ reference de
Bruijn graph with low-frequency k-mers removed [31]. To facilitate such tasks,
several algorithms (often seed-and-extend type heuristics) and software tools
have been developed that perform pattern matching on de Bruijn (and general)
graphs [5,21,22,28,30,33,35,41].

The importance of pattern matching on labeled graphs in Computational
Biology and other fields has caused a recent surge of interest in the theoretical
aspects of this problem. In turn, this has led to many new fascinating algorithmic
and computational complexity results. However, even with this improved under-
standing of the theory of pattern matching on labeled graphs, our knowledge is
still lacking in many respects concerning specific, yet extremely relevant, graph
classes. An overview of the current state of knowledge is provided in Table 1.

Exact Matching Approximate Matching

Solvable in Linear Time Solvable in O(|E|m) time

• Wheeler Graphs [16] • DAGs: Substitutions/Edits to graph [28]
Easy (e.g. de Bruijn graphs, • General graphs:

NFAs for multiple strings) Substitutions/Edits to pattern [6]
• de Bruijn Graphs: Substitutions to pattern

-No strongly Sub-O(|E|m) alg. (this paper)

NO Strongly Sub-O(|E|m) Alg. NP-Complete

• General graphs [13,19] • General graphs:
(including DAGs with Substitutions/Edits to vertex labels [6,25]

Hard total degree ≤ 3) • de Bruijn Graphs:
Substitutions to vertex labels (this paper)

Table 1. The computational complexity of pattern matching on labeled graphs

For general graphs, we can consider exact and approximate matching. For
exact matching, conditional lower-bounds based on the Strong Exponential Time
Hypothesis (SETH), and other conjectures in circuit complexity, indicate that
an O(|E|m1−ε + |E|1−εm) time algorithm with any constant ε > 0, for a graph
with |E| edges and a pattern of length m, is highly unlikely (as is the ability to
shave more than a constant number of logarithmic factors from theO(|E|m) time
complexity) [13,19]. These results hold for even very restricted types of graphs,
for example, DAGs with maximum total degree three and binary alphabets. For
approximate matching, when edits are only allowed in the pattern, the problem
is solvable in O(|E|m) time [6]. If edits are also permitted in the graph, but

The Complexity of Approximate Pattern Matching on De Bruijn Graphs 3

the graph is a DAG, matching can be done in the same time complexity [28].
However, the problem becomes NP-complete when edits are allowed in arbitrary
cyclic graphs. This was originally proven in [6] for large alphabets and more
recently proven for binary alphabets in [25]. These results hold even when edits
are restricted to only substitutions. The distinction between modifications to
the graph and modifications to the pattern is important as these two problems
are fundamentally different. When changes are made to cyclic graphs the same
modification can be encountered multiple times while matching a pattern with
no additional cost (see Section 3.1 in [25] for a detailed discussion). Furthermore,
algorithmic solutions appearing in [28,35,41] are for the case where modifications
are performed only to the pattern.

De Bruijn graphs are interesting from a theoretical perspective. Many graphs
allow for extending Burrows-Wheeler Transformation (BWT) based techniques
for efficient pattern matching. Sufficient conditions for doing this are captured
by the definition of Wheeler graphs, introduced in [16], and further studied
in [3,4,12,15,20]. De Bruijn graphs are themselves Wheeler graphs, hence on
a de Bruijn graph exact pattern matching is solvable in linear time. However,
the complexity of approximate matching in de Bruijn graphs when permitting
modifications to the graph or modifications to the pattern remained open [25].

We make two important contributions (see Table 1). First, we prove that
for de Bruijn graphs, despite exact matching being solvable in linear time, the
approximate matching problem with vertex label substitutions is NP-complete.
Second, we prove that a strongly subquadratic time algorithm for the approx-
imate pattern matching problem on de Bruijn graphs, where substitutions are
only allowed in the pattern, is not possible under SETH. This confirms the op-
timality of the known quadratic time algorithms when considering polynomial
factors. To the best of our knowledge, these are the first such results for any type
of Wheeler graph. Note that pattern-to-text matching (under substitutions) can
be solved in sub-quadratic Õ(n

√
m) time, where n is the text’s length [2].

1.1 Technical Background and Our Results

Notation for edges: For a directed edge from a vertex u to a vertex v we will
use the notation (u, v). Additionally, we will refer to u as the tail of (u, v), and
v as the head of (u, v).

Walks versus paths: A distinction must be made between the concept of
a walk and a path in a graph. A walk is a sequence of vertices v1, v2, ..., vt
such that for each i ∈ [1, t − 1], (vi, vi+1) ∈ E. Vertices can be repeated in a
walk. A path is a walk where vertices are not repeated. The length of a walk is
defined as the number of edges in the walk, t− 1, or equivalently one less than
the number of vertices in the sequence (counted with multiplicity). This work
will be concerning the existence of walks.

Induced subgraphs: An induced subgraph of a graph G = (V,E) consists
of a subset of vertices V ′ ⊆ V , and all edges (u, v) ∈ E such that u, v ∈ V ′. This
is in contrast to an arbitrary subgraph of G, where an edge can be omitted from
the subgraph, even if both of its incident vertices are included.

4 Daniel Gibney1, Sharma V. Thankachan2, and Srinivas Aluru1

De Bruijn graphs: An order-k full de Bruijn graph is a compact repre-
sentation of all k-mers (strings of length k) from an alphabet Σ of size σ. It
consists of σk vertices, each corresponding to a unique k-mer (which we call as
its implicit label) in Σk. There is a directed edge from each vertex with implicit
label s1s2...sk ∈ Σk to the σ vertices with implicit labels s2s3...skα, α ∈ Σ.
We will work with induced subgraphs of full de Bruijn graphs in this paper.
We assign to every vertex v a label L(v) ∈ Σ, such that the implicit label of
v is L(u1)L(u2)...L(uk−1)L(v) where u1, u2, ..., uk−1, v is any length k − 1 walk
ending at v. This is equivalent to the notion of a de Bruijn graph constructed
from k-mers commonly used in Computational Biology.

Strings and Matching: For a string S of length n indexed from 1 to n, we
use S[i] to denote the ith symbol in S. We use S[i, j] to denote the substring
S[i]S[i+1]...S[j]. If j < i, then we take S[i, j] as the empty string. As mentioned
above, we will consider every vertex v as labeled with a single symbol L(v) ∈ Σ. A
pattern P [1,m] matches a walk v1, v2, ..., vm iff P [i] = L(vi) for every i ∈ [1,m].

With these definitions in hand, we can formally define our first problem.

Problem 1 (Approximate matching with vertex label substitutions). Given a ver-
tex labeled graph D = (V,E) with alphabet Σ of size σ, pattern P [1,m], and
integer δ ≥ 0, determine if there exists a walk in D matching P after at most δ
substitutions to the vertex labels.

Theorem 1. Problem 1 is NP-complete on de Bruijn graphs with σ = 4.

Theorem 1 is proven in Section 2. Intuitively, our reduction transforms a gen-
eral directed graph into a de Bruijn that maintains key topological properties
related to the existence of walks. The distinct problem of approximately match-
ing a pattern to a path in a de Bruijn graph was shown to be NP-complete in
[30]. As mentioned by the authors of that work, the techniques used there do not
appear to be easily adaptable to the problem for walks. Our approach uses edge
transformations more closely inspired by those used in [27] for proving hardness
on the paired de Bruijn sound cycle problem.

Problem 2 (Approximate matching with substitutions within the pattern). Given
a vertex labeled graph D = (V,E) with alphabet Σ of size σ, pattern P [1,m],
and integer δ ≥ 0, determine if there exists a walk in D matching P after at
most δ substitutions to the symbols in P .

For Problem 2 we provide a hardness result based on SETH, which is fre-
quently used for establishing conditional optimality of polynomial time algo-
rithms [1,7,13,18,19,24]. We refer the reader to [43] for the definition of SETH
and for the reduction to the Orthogonal Vectors problem (OV), which is utilized
to prove Theorem 2.

Theorem 2. Conditioned on SETH, for all constants ε > 0, there does not exist
an O(|E|m1−ε + |E|1−εm) time algorithm for Problem 2 on de Bruijn graphs
with σ = 4.

Note that the order of the de Bruijn graphs used in ours proofs are Θ(log2 |V |)
for Theorem 1 and Θ(log |V |) for Theorem 2.

The Complexity of Approximate Pattern Matching on De Bruijn Graphs 5

2 NP-Completeness of Problem 1 on De Bruijn Graphs

Our proof of NP-completeness uses a reduction from the Hamiltonian Cycle
Problem on directed graphs, which is the problem of deciding if there exists
a cycle through a directed graph that visits every vertex exactly once. It was
proven NP-complete even when restricted to directed graphs where the number
of edges is linear in the number of vertices [40]. To present the reduction, we
introduce the concept of merging two vertices. To merge vertices u and v, we
create a new vertex w. We then take all edges with either u or v as their head
and make w their new head. Next, we take all edges with either u or v as their
tail and make w their new tail. This makes the edges (u, v) and (v, u) (if they
existed) into self-loops for w. If two self-loops are formed, we delete one of them.
Finally, we delete the original vertices u and v.

Fig. 1. Gadget to remove cycles of length
2 from the initial input graph.

Fig. 2. The transformation from edges to
paths used in our reduction.

Fig. 3. Vertices with the same implicit label are merged while transforming D to D′,
causing edges with shared vertices to become paths with shared vertices.

2.1 Reduction

We start with an instance of the Hamiltonian cycle problem on a directed graph
where the number of edges is linear in the number of vertices. We can assume
there are no self-loops or vertices with in-degree or out-degree zero. To simplify
the proof, we first eliminate any cycles of length 2 using the gadget in Figure
1. We denote the resulting graph as D = (V,E) and let n = |V |.We assign
each vertex v ∈ V a unique integer L(v) ∈ [0, n − 1]. Let ` = dlog ne, bin(i)
be the standard binary encoding of i using ` bits and Σ = {$,#, 0, 1}. Define
enc(i) = (02`1)2` bin(i), W = | enc(i)|, and k = 3W .

6 Daniel Gibney1, Sharma V. Thankachan2, and Srinivas Aluru1

We construct a new (de Bruijn) graph D′ = (V ′, E′) as follows: Initially D′ is
the empty graph. For i = 0, 1, . . . , n−1, for each edge (u, v) ∈ E where L(v) = i,
create a new path whose concatenation of vertex labels is #W enc(i)$W enc(i).
The vertex u will correspond with a new vertex φ(u) at the start of this path,
and the vertex v will correspond with a new vertex φ(v) at the end of this path.
The vertex φ(v) has the implicit label enc(L(v))$W enc(L(v)). The vertex φ(u)
is temporarily assigned the implicit label enc(L(u))$W enc(L(u)). See Figure 2.
We call vertices with implicit labels of the form enc(L(·))$W enc(L(·)) marked
vertices. We use the notation φ((u, v)) to denote the path created when applying
this transformation to (u, v) ∈ E. After the path φ((u, v)) is created, vertices
in V ′ having the same implicit label are merged, and parallel edges are deleted
(Figure 3). See Figure 4 for a complete example. Finally, let δ = 2`(n− 1) and

P =#W enc(0)$W enc(0)#W enc(1)$W enc(1)#W . . .

#W enc(n− 1)$W enc(n− 1)#W enc(0)$W enc(0).

We will show that there exists a walk in D′ matching P with at most δ vertex
label substitutions iff D contains a Hamiltonian cycle.

Fig. 4. (Left) A graph before the reduction is applied to it. (Right) The transformed
graph. A subset of the implicit labels are shown, and the path directions are annotated
by arrows beside each path. Note that enc(·) has been modified to have the prefix
(0`1)`+1 so that it fits in the figure. Also, unlike in the figure, we assume in our
reduction that there are no vertices with in-degree or out-degree zero.

Proof of Correctness

Lemma 1. The graph D′ constructed as above is a de Bruijn graph.

The Complexity of Approximate Pattern Matching on De Bruijn Graphs 7

Proof. (Overview) Three properties must be proven: (i) Implicit labels are unique,
meaning for every implicit label at most one vertex is assigned that label; (ii)
No edges are missing, i.e., if the implicit label of y ∈ V ′ is Sα for some string
S[1, k − 1] and symbol α ∈ Σ, and there exists a vertex x ∈ V ′ with implicit
label βS[1, k − 1] for some symbol β ∈ Σ, then (x, y) ∈ E′; (iii) Implicit labels
are well-defined, in that every walk of length k − 1 ending at a vertex x ∈ V ′
matches the same string (the implicit label of x); The most involved of these is
proving property (ii), which requires analyzing several cases. The full proof is
given in Appendix 1.

The correctness of the reduction remains to be shown. Lemmas 2-4 estab-
lish useful structural properties of D′, Lemma 5 proves that the existence of a
Hamiltonian Cycle in D implies an approximate matching in D′, and Lemmas
6-9 demonstrate the converse.

Lemma 2. Any walk between two marked vertices φ(u) and φ(v) containing no
additional marked vertices has length 4W . Hence, we can conclude any such walk
is a path.

Proof. (Overview) This is proven using induction on the number of edges trans-
formed. It is shown that for every vertex, a key property regarding the distances
to its closest marked vertices continues to hold after vertices on any newly cre-
ated path are merged. See Appendix 1 for the full proof.

Lemma 3. For (u1, v1), (u2, v2) ∈ E, unless u1 = u2 or v1 = v2, φ((u1, v1))
and φ((u2, v2)) share no vertices.

Proof. In the case where {u1, v1} ∩ {u2, v2} = ∅ (Figure 5 left), every implicit
vertex label in φ((u1, v1)) contains enc(L(u1)) or enc(L(v1)) (or both), and con-
tains neither enc(L(u2)) nor enc(L(v2)). Similarly, every implicit vertex label
in φ((u2, v2)) contains enc(L(u2)) or enc(L(v2)) (or both) and contains neither
enc(L(u1)) nor enc(L(v1)). This implies that none of the implicit labels match
between the two paths, thus no vertices are merged. In the case where v1 = u2
and u1 6= v2 (Figure 5, right), the implicit labels of vertices φ((u1, v1)) not con-
taining enc(L(u1)) have # symbols in different positions than implicit labels
of vertices in φ((u2, v2)) not containing enc(L(v2)), and, since v1 6= v2, cannot
match the implicit labels of vertices in φ((u2, v2)) containing enc(L(v2)). Ver-
tices in φ((u1, v1)) with implicit labels containing enc(L(u1)) have # symbols in
different positions than implicit labels of vertices in φ((u2, v2)) not containing
enc(L(u2)), and, since u1 6= u2, cannot match the implicit labels of vertices in
φ((u2, v2)) containing enc(L(u2)). The case u1 = v2 and u2 6= v1 is symmetric.
The case u1 = v2 and v1 = u2 cannot happen since, by the use of our gadget in
Figure 1, D cannot contain the edges (u1, v1) and (v1, u1).

Lemma 4. There exists a path from a marked vertex φ(u) ∈ V ′ to a marked
vertex φ(v) ∈ V ′ containing no other marked vertices iff there is an edge (u, v) ∈
E.

8 Daniel Gibney1, Sharma V. Thankachan2, and Srinivas Aluru1

Fig. 5. Examples where paths between marked vertex cannot share any vertex: (Left)
The case where {u1, v1} ∩ {u2, v2} = ∅. (Right) The case where v1 = u2 and u1 6= v2.

Proof. (Overview) It is clear from construction that if (u, v) ∈ D, then such a
path exists in D′. In the other direction, we utilize Lemmas 2 and 3 to show that
such a path existing without a corresponding edge would create a contradiction.
The full proof is provided in Appendix 1.

Lemma 5. If D has a Hamiltonian cycle, then P can be matched in D′ with at
most δ substitutions to vertex labels of D′.

Proof. To obtain a matching walk, follow the cycle corresponding to a solution
in D starting with the marked vertex in V ′ corresponding to the vertex in V
with label 0. By Lemma 4, each edge traversed in D corresponds to a path in
D′. While traversing these paths, modify the vertex labels in D′ corresponding
to the substrings bin(i) to match P . Assuming no conflicting substitutions are
needed, this requires at most 2`(n− 1) substitutions.

It remains to be shown that no conflicting label substitutions will be nec-
essary. Consider the edges (u1, v1), (u2, v2) ∈ E used in the Hamiltonian cycle
in D. We will never have u1 = u2 or v1 = v2. Hence, by Lemma 3, the sets of
vertices on the paths φ((u1, v1)) and φ((u2, v2)) are disjoint.

Lemma 6. If P can be matched in D′ with at most δ substitutions to vertex
labels of D′, then all $’s in P are matched with non-substituted $’s in D′ and
all #’s in P are matched with non-substituted #’s in D′. Consequently, we can
assume the only substitutions are to the vertex labels corresponding to bin(i)’s
within enc(i)’s.

Proof. (Overview) We establish the existence of a long, non-branching path for
every marked vertex that can be traversed at most once when matching P . This,
combined with maximal paths of, $, #, and 0/1-symbols, all being of length W ,
makes it so that ‘shifting’ P to match a portion of D forces the shift to occur
throughout the walk traversed while matching P . Utilizing the large Hamming
distance between shifted instances of two encodings, we can then show that not
matching all non-0/1 symbols requires more than δ substitutions. The full proof
is provided in Appendix 1.

The Complexity of Approximate Pattern Matching on De Bruijn Graphs 9

Post-substitution to vertex labels, we will refer to a vertex as marked if there
exists a walk ending at it that matches a string of the form enc(L(u))$W enc(L(u)),
u ∈ V . Note that this definition does not require all length k − 1 walks ending
at such a vertex to match the same string.

Lemma 7. If P can be matched in D′ with at most δ substitutions to vertex
labels of D′, then no additional marked vertices are created due to vertex substi-
tutions.

Proof. Pre-substitution, only marked vertices have implicit labels of the form
S1$WS2 where S1 and S2 contain no $ symbols. Hence, the only way that a
vertex could have a walk ending at it that matches a pattern of that form post-
substitution is if either it was originally a marked vertex, or some non-0/1-
symbols were substituted in D′. However, by Lemma 6 the latter case cannot
happen, and only originally marked vertices have walks ending at them matching
strings of the form S1$WS2 post-substitution.

Lemma 8. If P can be matched in D′ with at most δ substitutions to vertex la-
bels of D′, then each originally marked vertex in D′ is visited exactly once, except
for an originally marked vertex at the end of a path matching enc(0)$W enc(0)
that is visited twice.

Proof. First, we show that all marked vertices, except the one with implicit label
enc(0)$W enc(0), are visited at most once. Pre-substitution, a marked vertex
with implicit label enc(i)$W enc(i) is at the end of a unique, branchless path
of length W matching enc(i). By Lemma 6, the only substitutions to this path
made while matching P are substitutions making it match enc(i′), i′ 6= i. If this
path were modified to match enc(i′), i′ > 0, then the only way the marked vertex
could be visited twice while matching P is if after traversing the path, another
path matching $W is taken back to the start of this enc(i′) path. However, any
edges leaving this marked vertex are labeled with #, making this impossible.
By similar reasoning, the path matching enc(0) ending at a marked vertex is
visited at most twice. We now show that each marked vertex is visited at least
once. Suppose some marked vertex is not visited. By Lemma 7, no additional
marked vertices are created. Hence, a marked vertex ending a path matching
enc(i), i > 0 is visited at least twice, or a marked vertex ending a path matching
enc(0) is visited at least three times, a contradiction.

Lemma 9. If P can be matched in D′ with at most δ substitutions to vertex
labels of D′, then D has a Hamiltonian cycle.

Proof. By Lemma 4, the paths between marked vertices traversed while match-
ing with P correspond to edges between vertices in D. Combined with marked
vertices being visited exactly once from Lemma 8 (except the marked vertex
ending a path matching enc(0)), the walk matched by P in D′ corresponds to a
Hamiltonian cycle through D beginning and ending at the vertex labeled 0.

10 Daniel Gibney1, Sharma V. Thankachan2, and Srinivas Aluru1

This completes the proof of Theorem 1. To see that k = Θ(log2 |V ′|), first
recall that |V | is the number of vertices in the original graph, where we assumed
|E| = O(|V |). At most 4W |E| = O(k|V |) vertices are created in the reduction.
Also, the proof of Lemma 6 establishes that there is a unique set of at least
Θ(k) vertices for every marked vertex, each one corresponding to a vertex in
the original graph. Combining, we have that |V ′| = Θ(k|V |). By construction,
k = Θ(log2 |V |), and since |V ′| = Θ(k|V |), k = Θ(log2 |V ′|) as well.

3 Hardness for Problem 2 on De Bruijn Graphs

Reduction The Orthogonal Vectors Problem is defined as follows: given two
sets of binary vectors A,B ⊆ {0, 1}d where |A| = |B| = N , determine whether
there exists vectors a ∈ A and b ∈ B such that their inner product is zero.
Conditioned on SETH, a standard reduction shows that this cannot be solved
in time dΘ(1)N2−ε for any constant ε > 0 [43].

Fig. 6. An illustration of the reduction from OV to Problem 2.

Let the given instance of OV consist of A,B ⊆ {0, 1}d where |A| = |B| = N =
2m for some natural number m. Hence, we have dlog(N + 1)e = logN + 1. This
will ease computation later. We also assume that d > logN . This is reasonable,
as if d ≤ logN , then |A| and |B| would contain either all vectors of length d or
repetitions.

We will next provide a formal description of the graph D our reduction
creates from the set A = {a1, a2, ..., aN} and the pattern P it creates from
the set B = {b1, b2, ..., bN}. The reader may find Figure 6 helpful. The graph
will consist of four sections. We name these according to their function in the
reduction: the Selection fan-in, the Selection section, the Post-Selection merge
section, and the Synchronization loop.

The Complexity of Approximate Pattern Matching on De Bruijn Graphs 11

We start with the Selection fan-in. Let 2c be the smallest power of 2 such
that 2c ≥ N + 1. The Selection fan-in consists of a complete binary tree with
2c leaves where all paths are directed away from the root. The root is labeled 0
and the children of every node are labeled 0 and 1, respectively.

The Selection section consists of N + 1 paths. We first define the map-
pings fA and fB from {0, 1} to sequences of length four as fA(0) = 1100,
fA(1) = 1111, fB(0) = 0110, fB(1) = 0000. These mappings have the prop-
erty that dH(fA(0), fB(0)) = dH(fA(0), fB(1)) = dH(fA(1), fB(0)) = 2 and
dH(fA(1), fB(1)) = 4. We make the ith path for 1 ≤ i ≤ N a path of 4(d + 1)
vertices with labels matching the string fA(ai[1])fA(ai[2])...fA(ai[d])fA(0). We
make the (N+1)th path have 4(d+1) vertices and match the string fA(0)dfA(1).
Let si denoted the start vertex of path i. We arbitrarily choose N + 1 leaves, l1,
l2,..., lN+1, from the Selection fan-in and add the edges (li, si) for 1 ≤ i ≤ N+1.

We define the implicit label size as k = dlog(N +1)e+4(d+1) and ` = k−1.
To construct the Post-selection merge section, we start with N + 1 length `− 1
paths, each matching the string 2`. For every path in the Selection section, we
add an edge from the last vertex in the path to one of the paths matching 2`.
This is done so that every path matching 2` in the Post-selection merge section
is connected to exactly one path from the Selection section. Next, we merge two
vertices if they have the same implicit label. This is repeated until all vertices
in the Post-selection merge section have a unique implicit label.

To construct the Synchronization loop we create a directed cycle with `+1 =
k vertices. One of these is labeled with the symbol 3, and the rest with the
symbol 2. Edges from each ending vertex in the Post-selection Merge section to
the vertex labeled 3 are then added. A final edge from the vertex labeled 3 to
the root of the binary tree in the Selection fan-in completes the graph, which we
denote as D.

Let t = 5d+ dlog(N + 1)e. To complete the reduction, we make the pattern

P =(2`3)t 2dlog(N+1)efB(b1[1])fB(b1[2]) . . . fB(b1[d])fB(1)

(2`3)t 2dlog(N+1)e fB(b2[1])fB(b2[2]) . . . fB(b2[d])fB(1)

. . .

(2`3)t 2dlog(N+1)efB(bN [1])fB(bN [2]) . . . fB(bN [d])fB(1)

and the maximum number of allowed substitutions δ = Ndlog2(N + 1)e+ 2(d+
1) + (2d+ 4)(N − 1).

We call substrings in P of the form fB(bi[1])fB(bi[2]) . . . fB(bi[d])fB(1) and
paths inD matching strings of the form fA(ai[1])fA(ai[2])...fA(ai[d])fA(0) vector
gadgets. Note that |E| = O(dN) and m = |P | = O(d2N). Hence, an algorithm
for approximate matching running in time O(m|E|1−ε+m1−ε|E|) for some ε > 0
would imply an algorithm for OV running in time dΘ(1)N2−ε. This implies that
once the correctness of the reduction has been established, Theorem 2 follows.

3.1 Proof of Correctness

Proofs of Lemma 10 and Lemma 11 are given in Appendix 2.

12 Daniel Gibney1, Sharma V. Thankachan2, and Srinivas Aluru1

Lemma 10. The graph D is a de Bruijn graph.

Lemma 11. In an optimal solution, 3’s in P are matched with 3’s in D.

Lemma 12. In an optimal solution, vector gadgets in P are matched with vector
gadgets in D.

Proof. Suppose otherwise. By Lemma 11, this can only occur if some vector
gadget in P is matched against the Synchronization loop. This requires at least
4(d + 1) substitutions. We can instead match the dlog(N + 1)e 2’s preceding
the vector gadget in P with the Selection fan-in and the vector gadget in P
with the (N + 1)th path in the Selection section. Due to dH(fA(0), fB(0)) =
dH(fA(0), fB(1)) = 2 and d(fA(1), fB(1)) = 4, this requires dlog(N+1)e+2d+4
substitutions in P . Since, logN < d < 2d we have logN < 2d− 1. Using that N
is some power of 2, dlog(N + 1)e+ 2d+ 4 = logN + 1 + 2d+ 4 < 4d+ 4. Hence,
the cost decreases by matching the vector gadget in P to a vector gadget in D
instead.

Lemma 13. If there exists a vector a ∈ A and b ∈ B such that a · b = 0, then
P can be matched to D with at most δ substitutions.

Proof. Match the vector gadget for b in P with the vector gadget for a in the
Selection section of D. This costs 2(d + 1) substitutions. Match the remaining
N − 1 vector gadgets in P with the (N + 1)th path in the Selection section,
requiring (2d+4)(N−1) substitutions in total. The total number of substitutions
of 2’s in P to match the Selection fan-in is Ndlog(N + 1)e. Adding these, the
total number of substitutions is exactly δ. The synchronization loop can be used
for matching all additional symbols in P without any further substitutions.

Lemma 14. If P can be matched in D with at most δ substitutions, then there
exists vectors a ∈ A and b ∈ B such a · b = 0.

Proof. By Lemma 12, we can assume vector gadgets in P are only matched
against vector gadgets in D. Suppose that there does not exist a pair of orthog-
onal vectors a ∈ A and b ∈ B. Then, which ever vector gadget in D we choose to
match a vector gadget in P to, matching the vector gadget requires at least 2d+4
substitutions. Hence, the total cost is at least (2d+ 4)N +Ndlog(N + 1)e > δ,
proving the contrapositive of Lemma 14.

4 Discussion

We leave open several interesting problems. An NP-completeness proof for Prob-
lem 1 on de Bruijn graphs when k = O(log n) and the alphabet size is constant is
still needed. Additionally, we need to extend these hardness results to when sub-
stitutions are allowed in both the graph and the pattern, and when insertions and
deletions in some form are allowed in the graph and (or) the pattern. It seems
unlikely that adding more types of edit operations would make the problems

The Complexity of Approximate Pattern Matching on De Bruijn Graphs 13

computationally easier, and we conjecture these variants are NP-complete on de
Bruijn graphs as well. It also needs to be determined whether Problem 1 is NP-
complete on de Bruijn graphs with binary alphabets, or whether the SETH-based
hardness results hold for Problem 2 on binary alphabets. A practical question
is whether these problems are hard for small δ values on de Bruijn graphs (the
problem for general graphs was proven to W [2] hard in terms of δ in [11]). In
applications, the allowed error thresholds are quite small. Clearly, the problems
are slice-wise-polynomial with respect to δ, i.e., for a constant δ it is solvable
in polynomial time via brute force, but are they fixed-parameter-tractable in δ?
The reduction presented here (as well as the reductions in [6,25]) is based on
the Hamiltonian cycle problem, where a large δ value is used. This makes the
existence of such a fixed-parameter-tractable algorithm a distinct possibility.

References

1. Abboud, A., Backurs, A., Hansen, T.D., Williams, V.V., Zamir, O.: Subtree iso-
morphism revisited. ACM Trans. Algorithms 14(3), 27:1–27:23 (2018), https:

//doi.org/10.1145/3093239

2. Abrahamson, K.R.: Generalized string matching. SIAM J. Comput. 16(6), 1039–
1051 (1987), https://doi.org/10.1137/0216067

3. Alanko, J., D’Agostino, G., Policriti, A., Prezza, N.: Wheeler languages. CoRR
abs/2002.10303 (2020), https://arxiv.org/abs/2002.10303

4. Alanko, J.N., Gagie, T., Navarro, G., Benkner, L.S.: Tunneling on wheeler graphs.
In: Data Compression Conference, DCC 2019, Snowbird, UT, USA, March 26-29,
2019. pp. 122–131 (2019), https://doi.org/10.1109/DCC.2019.00020

5. Almodaresi, F., Sarkar, H., Srivastava, A., Patro, R.: A space and time-efficient
index for the compacted colored de bruijn graph. Bioinform. 34(13), i169–i177
(2018), https://doi.org/10.1093/bioinformatics/bty292

6. Amir, A., Lewenstein, M., Lewenstein, N.: Pattern matching in hypertext. J. Al-
gorithms 35(1), 82–99 (2000), https://doi.org/10.1006/jagm.1999.1063

7. Backurs, A., Indyk, P.: Which regular expression patterns are hard to match? In:
IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016,
9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA. pp. 457–466
(2016), https://doi.org/10.1109/FOCS.2016.56

8. Benoit, G., Lemaitre, C., Lavenier, D., Drezen, E., Dayris, T., Uricaru, R., Rizk, G.:
Reference-free compression of high throughput sequencing data with a probabilistic
de bruijn graph. BMC Bioinform. 16, 288:1–288:14 (2015), https://doi.org/10.
1186/s12859-015-0709-7

9. Chikhi, R., Limasset, A., Jackman, S., Simpson, J.T., Medvedev, P.: On the rep-
resentation of de bruijn graphs. J. Comput. Biol. 22(5), 336–352 (2015), https:
//doi.org/10.1089/cmb.2014.0160

10. Chikhi, R., Rizk, G.: Space-efficient and exact de bruijn graph representation based
on a bloom filter. Algorithms Mol. Biol. 8, 22 (2013), https://doi.org/10.1186/
1748-7188-8-22

11. Dondi, R., Mauri, G., Zoppis, I.: Complexity issues of string to graph approxi-
mate matching. In: Leporati, A., Mart́ın-Vide, C., Shapira, D., Zandron, C. (eds.)
Language and Automata Theory and Applications - 14th International Confer-
ence, LATA 2020, Milan, Italy, March 4-6, 2020, Proceedings. Lecture Notes in

https://doi.org/10.1145/3093239
https://doi.org/10.1145/3093239
https://doi.org/10.1137/0216067
https://arxiv.org/abs/2002.10303
https://doi.org/10.1109/DCC.2019.00020
https://doi.org/10.1093/bioinformatics/bty292
https://doi.org/10.1006/jagm.1999.1063
https://doi.org/10.1109/FOCS.2016.56
https://doi.org/10.1186/s12859-015-0709-7
https://doi.org/10.1186/s12859-015-0709-7
https://doi.org/10.1089/cmb.2014.0160
https://doi.org/10.1089/cmb.2014.0160
https://doi.org/10.1186/1748-7188-8-22
https://doi.org/10.1186/1748-7188-8-22

14 Daniel Gibney1, Sharma V. Thankachan2, and Srinivas Aluru1

Computer Science, vol. 12038, pp. 248–259. Springer (2020), https://doi.org/

10.1007/978-3-030-40608-0_17
12. Egidi, L., Louza, F.A., Manzini, G.: Space efficient merging of de bruijn graphs

and wheeler graphs. CoRR abs/2009.03675 (2020), https://arxiv.org/abs/2009.
03675

13. Equi, M., Grossi, R., Mäkinen, V., Tomescu, A.I.: On the complexity of string
matching for graphs. In: 46th International Colloquium on Automata, Languages,
and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece. pp. 55:1–55:15
(2019), https://doi.org/10.4230/LIPIcs.ICALP.2019.55

14. Flick, P., Jain, C., Pan, T., Aluru, S.: Reprint of ”a parallel connectivity algorithm
for de bruijn graphs in metagenomic applications”. Parallel Comput. 70, 54–65
(2017), https://doi.org/10.1016/j.parco.2017.09.002

15. Gagie, T.: r-indexing wheeler graphs. CoRR abs/2101.12341 (2021), https://
arxiv.org/abs/2101.12341

16. Gagie, T., Manzini, G., Sirén, J.: Wheeler graphs: A framework for bwt-based data
structures. Theor. Comput. Sci. 698, 67–78 (2017), https://doi.org/10.1016/j.
tcs.2017.06.016

17. Georganas, E., Buluç, A., Chapman, J., Oliker, L., Rokhsar, D., Yelick, K.A.:
Parallel de bruijn graph construction and traversal for de novo genome assembly. In:
International Conference for High Performance Computing, Networking, Storage
and Analysis, SC 2014, New Orleans, LA, USA, November 16-21, 2014. pp. 437–448
(2014), https://doi.org/10.1109/SC.2014.41

18. Gibney, D.: An efficient elastic-degenerate text index? not likely. In: String Pro-
cessing and Information Retrieval - 27th International Symposium, SPIRE 2020,
Orlando, FL, USA, October 13-15, 2020, Proceedings. pp. 76–88 (2020), https:
//doi.org/10.1007/978-3-030-59212-7_6

19. Gibney, D., Hoppenworth, G., Thankachan, S.V.: Simple reductions from formula-
sat to pattern matching on labeled graphs and subtree isomorphism. In: 4th Sympo-
sium on Simplicity in Algorithms, SOSA 2021, Virtual Conference, January 11-12,
2021. pp. 232–242 (2021), https://doi.org/10.1137/1.9781611976496.26

20. Gibney, D., Thankachan, S.V.: On the hardness and inapproximability of recog-
nizing wheeler graphs. In: 27th Annual European Symposium on Algorithms, ESA
2019, September 9-11, 2019, Munich/Garching, Germany. pp. 51:1–51:16 (2019),
https://doi.org/10.4230/LIPIcs.ESA.2019.51

21. Heydari, M., Miclotte, G., de Peer, Y.V., Fostier, J.: Browniealigner: accurate
alignment of illumina sequencing data to de bruijn graphs. BMC Bioinform. 19(1),
311:1–311:10 (2018), https://doi.org/10.1186/s12859-018-2319-7

22. Holley, G., Peterlongo, P.: Blastgraph: intensive approximate pattern matching in
string graphs and de-bruijn graphs. In: PSC 2012 (2012)

23. Holley, G., Wittler, R., Stoye, J., Hach, F.: Dynamic alignment-free and reference-
free read compression. J. Comput. Biol. 25(7), 825–836 (2018), https://doi.org/
10.1089/cmb.2018.0068

24. Hoppenworth, G., Bentley, J.W., Gibney, D., Thankachan, S.V.: The fine-grained
complexity of median and center string problems under edit distance. In: 28th
Annual European Symposium on Algorithms, ESA 2020, September 7-9, 2020,
Pisa, Italy (Virtual Conference). pp. 61:1–61:19 (2020), https://doi.org/10.

4230/LIPIcs.ESA.2020.61
25. Jain, C., Zhang, H., Gao, Y., Aluru, S.: On the complexity of sequence to graph

alignment. In: Research in Computational Molecular Biology - 23rd Annual Inter-
national Conference, RECOMB 2019, Washington, DC, USA, May 5-8, 2019, Pro-
ceedings. pp. 85–100 (2019), https://doi.org/10.1007/978-3-030-17083-7_6

https://doi.org/10.1007/978-3-030-40608-0_17
https://doi.org/10.1007/978-3-030-40608-0_17
https://arxiv.org/abs/2009.03675
https://arxiv.org/abs/2009.03675
https://doi.org/10.4230/LIPIcs.ICALP.2019.55
https://doi.org/10.1016/j.parco.2017.09.002
https://arxiv.org/abs/2101.12341
https://arxiv.org/abs/2101.12341
https://doi.org/10.1016/j.tcs.2017.06.016
https://doi.org/10.1016/j.tcs.2017.06.016
https://doi.org/10.1109/SC.2014.41
https://doi.org/10.1007/978-3-030-59212-7_6
https://doi.org/10.1007/978-3-030-59212-7_6
https://doi.org/10.1137/1.9781611976496.26
https://doi.org/10.4230/LIPIcs.ESA.2019.51
https://doi.org/10.1186/s12859-018-2319-7
https://doi.org/10.1089/cmb.2018.0068
https://doi.org/10.1089/cmb.2018.0068
https://doi.org/10.4230/LIPIcs.ESA.2020.61
https://doi.org/10.4230/LIPIcs.ESA.2020.61
https://doi.org/10.1007/978-3-030-17083-7_6

The Complexity of Approximate Pattern Matching on De Bruijn Graphs 15

26. Kamal, M.S., Parvin, S., Ashour, A.S., Shi, F., Dey, N.: De-bruijn graph with
mapreduce framework towards metagenomic data classification. International Jour-
nal of Information Technology 9(1), 59–75 (2017)

27. Kapun, E., Tsarev, F.: On np-hardness of the paired de bruijn sound cycle prob-
lem. In: Algorithms in Bioinformatics - 13th International Workshop, WABI 2013,
Sophia Antipolis, France, September 2-4, 2013. Proceedings. pp. 59–69 (2013),
https://doi.org/10.1007/978-3-642-40453-5_6

28. Kavya, V.N.S., Tayal, K., Srinivasan, R., Sivadasan, N.: Sequence alignment on
directed graphs. J. Comput. Biol. 26(1), 53–67 (2019), https://doi.org/10.1089/
cmb.2017.0264

29. Li, D., Liu, C., Luo, R., Sadakane, K., Lam, T.W.: MEGAHIT: an ultra-fast
single-node solution for large and complex metagenomics assembly via succinct de
Bruijn graph. Bioinform. 31(10), 1674–1676 (2015), https://doi.org/10.1093/
bioinformatics/btv033

30. Limasset, A., Cazaux, B., Rivals, E., Peterlongo, P.: Read mapping on de
bruijn graphs. BMC Bioinform. 17, 237 (2016), https://doi.org/10.1186/

s12859-016-1103-9

31. Limasset, A., Flot, J., Peterlongo, P.: Toward perfect reads: self-correction of short
reads via mapping on de bruijn graphs. Bioinform. 36(2), 651 (2020), https://
doi.org/10.1093/bioinformatics/btz548

32. Lin, Y., Shen, M.W., Yuan, J., Chaisson, M., Pevzner, P.A.: Assembly of long
error-prone reads using de bruijn graphs. In: Research in Computational Molecular
Biology - 20th Annual Conference, RECOMB 2016, Santa Monica, CA, USA, April
17-21, 2016, Proceedings. p. 265 (2016), https://link.springer.com/content/
pdf/bbm%3A978-3-319-31957-5%2F1.pdf

33. Liu, B., Guo, H., Brudno, M., Wang, Y.: debga: read alignment with de bruijn
graph-based seed and extension. Bioinform. 32(21), 3224–3232 (2016), https://
doi.org/10.1093/bioinformatics/btw371

34. Morisse, P., Lecroq, T., Lefebvre, A.: Hybrid correction of highly noisy long
reads using a variable-order de bruijn graph. Bioinform. 34(24), 4213–4222 (2018),
https://doi.org/10.1093/bioinformatics/bty521

35. Navarro, G.: Improved approximate pattern matching on hypertext. Theor. Com-
put. Sci. 237(1-2), 455–463 (2000), https://doi.org/10.1016/S0304-3975(99)

00333-3

36. Pell, J., Hintze, A., Canino-Koning, R., Howe, A., Tiedje, J.M., Brown, C.T.:
Scaling metagenome sequence assembly with probabilistic de bruijn graphs. Proc.
Natl. Acad. Sci. USA 109(33), 13272–13277 (2012), https://doi.org/10.1073/
pnas.1121464109

37. Peng, Y., Leung, H.C.M., Yiu, S., Chin, F.Y.L.: IDBA - A practical iterative de
bruijn graph de novo assembler. In: Research in Computational Molecular Bi-
ology, 14th Annual International Conference, RECOMB 2010, Lisbon, Portugal,
April 25-28, 2010. Proceedings. pp. 426–440 (2010), https://doi.org/10.1007/
978-3-642-12683-3_28

38. Peng, Y., Leung, H.C.M., Yiu, S., Lv, M., Zhu, X., Chin, F.Y.L.: Idba-tran: a
more robust de novo de bruijn graph assembler for transcriptomes with uneven
expression levels. Bioinform. 29(13), 326–334 (2013), https://doi.org/10.1093/
bioinformatics/btt219

39. Pevzner, P.A.: 1-tuple dna sequencing: computer analysis. Journal of Biomolecular
structure and dynamics 7(1), 63–73 (1989)

https://doi.org/10.1007/978-3-642-40453-5_6
https://doi.org/10.1089/cmb.2017.0264
https://doi.org/10.1089/cmb.2017.0264
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1186/s12859-016-1103-9
https://doi.org/10.1186/s12859-016-1103-9
https://doi.org/10.1093/bioinformatics/btz548
https://doi.org/10.1093/bioinformatics/btz548
https://link.springer.com/content/pdf/bbm%3A978-3-319-31957-5%2F1.pdf
https://link.springer.com/content/pdf/bbm%3A978-3-319-31957-5%2F1.pdf
https://doi.org/10.1093/bioinformatics/btw371
https://doi.org/10.1093/bioinformatics/btw371
https://doi.org/10.1093/bioinformatics/bty521
https://doi.org/10.1016/S0304-3975(99)00333-3
https://doi.org/10.1016/S0304-3975(99)00333-3
https://doi.org/10.1073/pnas.1121464109
https://doi.org/10.1073/pnas.1121464109
https://doi.org/10.1007/978-3-642-12683-3_28
https://doi.org/10.1007/978-3-642-12683-3_28
https://doi.org/10.1093/bioinformatics/btt219
https://doi.org/10.1093/bioinformatics/btt219

16 Daniel Gibney1, Sharma V. Thankachan2, and Srinivas Aluru1

40. Plesńık, J.: The np-completeness of the hamiltonian cycle problem in planar di-
graphs with degree bound two. Inf. Process. Lett. 8(4), 199–201 (1979), https:
//doi.org/10.1016/0020-0190(79)90023-1

41. Rautiainen, M., Marschall, T.: Aligning sequences to general graphs in o (v+ me)
time. bioRxiv p. 216127 (2017)

42. Ren, X., Liu, T., Dong, J., Sun, L., Yang, J., Zhu, Y., Jin, Q.: Evaluating de bruijn
graph assemblers on 454 transcriptomic data. PloS one 7(12), e51188 (2012)

43. Williams, V.V.: Hardness of easy problems: Basing hardness on popular conjectures
such as the strong exponential time hypothesis (invited talk). In: 10th International
Symposium on Parameterized and Exact Computation, IPEC 2015, September 16-
18, 2015, Patras, Greece. pp. 17–29 (2015), https://doi.org/10.4230/LIPIcs.

IPEC.2015.17

44. Ye, Y., Tang, H.: Utilizing de bruijn graph of metagenome assembly for meta-
transcriptome analysis. Bioinform. 32(7), 1001–1008 (2016), https://doi.org/10.
1093/bioinformatics/btv510

45. Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using
de bruijn graphs. Genome research 18(5), 821–829 (2008)

Appendix
1 Missing Proofs in Section 2.1

Lemma 1. The graph D′ constructed as above is a de Bruijn graph.

Proof. There are three properties that must be proven: (i) Implicit labels are
unique, meaning for every implicit label at most one vertex is assigned that
label; (ii) There are no edges missing, i.e., if the implicit label of y ∈ V ′ is Sα
for some string S[1, k − 1] and symbol α ∈ Σ, and there exists a vertex x ∈ V ′
with implicit label βS[1, k − 1] for some symbol β ∈ Σ, then (x, y) ∈ E′; (iii)
Implicit labels are well-defined, in that every walk of length k − 1 ending at
a vertex x ∈ V ′ matches the same string (the implicit label of x). Property
(i) holds since after every edge transformation, vertices with the same implicit
label are merged, making every implicit label occur at most once. For property
(ii), consider the completed D′ and an arbitrary vertex y on an arbitrary path
φ((u, v)). Regarding a possible edge (x, y) ∈ E′, we have the following cases:

– Case: the implicit label of y is Sα = enc(L(u))$W enc(L(u)). Then, any po-
tential x ∈ V ′ must have an implicit label βS = β enc(L(u))$W enc(L(u))[1,W−
1]. However, the only implicit labels created that have a suffix of the form
enc(L(u))$W enc(L(u))[1,W − i] have a prefix #W−i. This implies that
β = #, and the edge (x, y) already exists in E′ (under the assumption
that there are no vertices with in-degree zero in V).

https://doi.org/10.1016/0020-0190(79)90023-1
https://doi.org/10.1016/0020-0190(79)90023-1
https://doi.org/10.4230/LIPIcs.IPEC.2015.17
https://doi.org/10.4230/LIPIcs.IPEC.2015.17
https://doi.org/10.1093/bioinformatics/btv510
https://doi.org/10.1093/bioinformatics/btv510

The Complexity of Approximate Pattern Matching on De Bruijn Graphs 17

– Case: the implicit label of y is Sα = enc(L(u))[i,W]$W enc(L(u))#i−1,
1 < i ≤ W + 1. Then, any potential x must have an implicit label βS =
β enc(L(u))[i,W]$W enc(L(u))#i−2. Because the only implicit labels with
the substring $W enc(L(u)) have a prefix consisting of some suffix of enc(L(u)),
this implies β = enc(L(u))[i− 1], and (x, y) already exists in E′.

– Case: the implicit label of y is Sα = $W−i enc(L(u))#W enc(L(v))[1, i],
1 ≤ i ≤ W. Then, any potential x must have an implicit label βS =
β$W−i enc(L(u))#W enc(L(v))[1, i − 1]. In the case i < W , β = $ and the
edge (x, y) already exists in E′. In the case where i = W , the only implicit
label with a suffix of the form enc(L(u))#W enc(L(v))[1,W −1], has a prefix
$, and the edge (x, y) already exists in E′.

– Case: the implicit label of y is Sα = enc(L(u))[i,W]#W enc(L(v))$i−1,
1 < i ≤ W + 1. Then, any potential x must have an implicit label βS =
β enc(L(u))[i,W]#W enc(L(v))$i−2. Because the only implicit labels with
the substring #W enc(L(v)) have a prefix consisting of some suffix of enc(L(u′))
where the edge (u′, v) is in D, the edge (x, y) already exists in E′. This is an
interesting case, as merges can happen, i.e., β enc(L(u))[i,W] = enc(L(u′))[i−
1,W], u′ 6= u.

– Case: the implicit label of y is Sα = #W−i enc(L(v))$W enc(L(v))[1, i],
1 ≤ i ≤ W. Then, any potential x must have an implicit label βS =
β#W−i enc(L(v))$W enc(L(v))[1, i − 1]. For i < W , β = # and the edge
(x, y) already exists in E′. For i = W , this is equivalent to the first case.

We prove (iii) using induction on the number of edges transformed into paths.
Our inductive hypothesis (IH) is that prior to an edge being replaced by a path,
property (iii) holds for every vertex added to V ′ thus far. Let i denote the number
of edges transformed. For i = 1, all vertices where there exists such a walk ending
at them are on the newly created path, and implicit labels are well-defined.

For i > 1, we assume the IH holds for all vertices created in the previous
i − 1 steps of transforming edges and merging. First consider a new vertex x
that is created by transforming the ith edge (ui, vi). Starting with x = φ(ui), if
x is merged with another transformed vertex x′ having the same implicit label,
then all length k − 1 walks ending at x′ match this implicit label, and thus the
IH holds for x after merging. Using a secondary induction step, we assume the
IH holds post-merging for all vertices between φ(ui) and x (not including x)
on φ((ui, vi)). Let xprev be the vertex on φ((ui, vi)) before x. Since all length
k − 1 walks ending at xprev match xprev’s implicit label, the length k − 1 walks
obtained by disregarding the vertex at the start of these walks, and adding the
vertex x at the end, all match the implicit label of x. At the same time, any
vertices merged with x, by the IH also have the same implicit label and hence
the walks ending at them match the implicit label of x. Hence, the IH holds for x
after merging it with all vertices having the same implicit label. After processing
all vertices on φ((ui, vi)), we next consider a previously created vertex x′′ ∈ V ′
not in φ((ui, vi)). Consider a newly created walk W of length k − 1 ending at
x′′ that is due to a vertex merging with vertices in φ((ui, vi)). Since all length
k − 1 walks ending at a vertex z in φ((ui, vi)) match the same implicit label,

18 Daniel Gibney1, Sharma V. Thankachan2, and Srinivas Aluru1

when disregarding some number of vertices at the start of a walk that ends at
z and appending new vertices, the resulting walk W matches the implicit label
for x′′, and the IH continues to hold for x′′ as well.

Lemma 2. Any walk between two marked vertices φ(u) and φ(v) containing no
additional marked vertices has length 4W . Hence, we can conclude any such walk
is a path.

Proof. We first define forward distance and backward distance. Let x, y ∈ V ′.
The forward distance from x to y is defined as the minimum number of edges
on any path from x to y (the usual distance in a directed graph). The backward
distance from x to y is defined as the minimum number of edges on any path
from y to x. We say a marked vertex φ(u) is backward adjacent to x if there
exists a walk from φ(u) to x not containing any other marked vertices, and φ(v)
is forward adjacent to x if there exists a walk from x to φ(v) not containing any
other marked vertices.

We use induction on the number of edges transformed. Our inductive hy-
pothesis (IH) will be that the length of all walks that end at and contain only
two marked vertices is 4W . We add to our IH that a vertex x created from an
edge transformation having an implicit label of the form:

1. enc(L(u))[j,W]$W enc(L(u))#j−1, 1 ≤ j ≤W , has backward distance j − 1
from φ(u), which is its only backward adjacent marked vertex, and forward
distance 4W − j + 1 from all of its forward adjacent marked vertices;

2. $W−j enc(L(u))#W enc(L(v)))[1, j], 0 ≤ j ≤W , has backward distance W+
j from φ(u), which is its only backward adjacent marked vertex, and forward
distance 3W − j from all of its forward adjacent marked vertices;

3. enc(L(u))[j,W]#W enc(L(v)))$j−1, 1 ≤ j ≤ W , has backward distance
2W + j − 1 from all of its backward adjacent marked vertices, and forward
distance 2W − j + 1 from φ(v), which is its only forward adjacent marked
vertex;

4. #W−j enc(L(v)))$W enc(L(v))[1, j], 0 ≤ j ≤ W , has backward distance
3W + j from all of its backward adjacent marked vertices, and forward dis-
tance W − j from φ(v), which is its only forward adjacent marked vertex.

The base case, i = 1, is satisfied since there exists only one such path and all
stated properties hold. Now, for i > 1, let (ui, vi) be the ith edge transformed.
We assume the IH holds for all vertices and walks created in the first i − 1
edge transformations. First, observe that for any walk ending at, and containing
only two previously created marked vertices, for all vertices on this walk the
distances from their forward adjacent marked vertices and backward adjacent
marked vertices will not be altered unless one of the vertices on this walk is
merged with a vertex on φ((ui, vi)). Also, all of the stated properties in the IH
also hold for φ((ui, vi)) prior to merging any vertices. Now, let y be a vertex
on φ((ui, vi)). Starting with y = φ(ui), and continuing from φ(ui) to φ(vi), we
merge y with existing vertices when their implicit labels match. Because the
stated distance properties hold for x and y prior to merging, they continue to

The Complexity of Approximate Pattern Matching on De Bruijn Graphs 19

hold for the vertex created from merging x and y as well. Moreover, for all of the
vertices on any walk containing this now merged vertex the distances from its
forward adjacent and backward adjacent marked vertices are unaltered. Because
for every vertex in the new graph, these distances are unaltered, the IH regarding
the length of 4W for walks containing only two marked vertices continues to hold
as well.

Fig. 7. In the proof of Lemma 4, we
consider whether the path φ((ui, vi))
being added could potentially cause
a path between φ(u) and φ(v). The
white circles connected by the thin
dashed curve represent merged ver-
tices.

Fig. 8. In the proof of Lemma 4, the case where
u = ui and v′ 6= vi.

Fig. 9. In the proof of Lemma 4, the case
where u 6= ui, v

′ = vi, and ui 6= u′.
Fig. 10. In the proof of Lemma 4, the case
where u 6= ui, v

′ = vi, and ui = u′.

Lemma 4. There exists a path from a marked vertex φ(u) ∈ V ′ to a marked
vertex φ(v) ∈ V ′ containing no other marked vertices iff there is an edge (u, v) ∈
E.

Proof. It is clear from construction that if there is an edge (u, v) ∈ E, then such
a walk is in D′.

In the other direction, suppose for the sake of contradiction that there exists
such a walk starting at φ(u) and ending at φ(v) with no other marked vertices
between φ(u) and φ(v) on the walk, and (u, v) /∈ E. Let the first such walk be
created when transforming the ith edge (ui, vi). The only way such a walk could

20 Daniel Gibney1, Sharma V. Thankachan2, and Srinivas Aluru1

exists is if some vertex in φ((ui, vi)) is merged with a vertex on a walk φ((u, v′))
for some v′ 6= v, and some vertex in φ((ui, vi)) merged with a vertex in a walk
φ((u′, v)) for some u′ 6= u. This is since, prior to creating φ((ui, vi)) all walks
starting at φ(u) encountered some other marked vertex, say φ(v′), before φ(v).
Similarly, there existed some set of marked vertices not including φ(u) such that
every walk containing a marked vertex and ending at φ(v) must include at least
one vertex in this set, say φ(u′). See Figure 7. Consider cases:

– u = ui and v′ = vi: This contradicts the assumption that (ui, vi) is trans-
formed on the ith step.

– u = ui and v′ 6= vi (Figure 8): By Lemma 3, since ui = u 6= u′, φ((ui, vi))
and φ((u′, v)) can only share a vertex if vi = v. However, this implies the
edge (ui, vi) = (u, v) ∈ E, a contradiction.

– u 6= ui and v′ 6= vi: We can directly use Lemma 3 to say no such merged
vertices exists between φ((u, v′)) and φ((ui, vi)).

– u 6= ui and v′ = vi (Figure 9): By Lemma 3, if ui 6= u′, then φ((ui, vi)) and
φ((u′, v)) can only share a vertex v = vi. However, this would imply v = v′,
a contradiction.
The more interesting case is if ui = u′ (Figure 10). Any vertex y having an
implicit label containing enc(L(u′)) and occuring in φ((ui, vi)) and φ((u′, v))
occurs before (has smaller backward distance to φ(u′)) any vertex with im-
plicit label containing enc(L(v′)). At the same time, any vertex x occuring
in φ((u, v′)) and φ((ui, vi)) has an implicit label containing enc(L(v′)). Since
the vertex x occurs later in φ((ui, vi)) than any shared vertex y in φ((ui, vi))
and φ((u′, v)), the only way any vertices in φ((ui, vi)) are in a walk from
φ(u) to φ(v) not containing any other marked vertices is if there is walk
from x to y not containing marked vertices, however, the cycle this creates
contradicts Lemma 2.

Lemma 6. If P can be matched in D′ with at most δ substitutions to vertex
labels of D′, then all $’s in P are matched with non-substituted $’s in D′ and
all #’s in P are matched with non-substituted #’s in D′. Consequently, we can
assume the only substitutions are to the vertex labels corresponding to bin(i)’s
within enc(i)’s.

Proof. We first make the following observations: pre-substitution of any of the
vertex labels in D′,

– (1) For all u ∈ V , there is exactly one path inD′ that matches enc(L(u))#W enc(L(u))[1,W−
`], and all vertices on this path have in-degree and out-degree one. This fol-
lows from the only vertices with in-degree greater than one having implicit
labels enc(L(u))[i,W]#W enc(L(v))$i−1 where W−` < i ≤W+1 (these ver-
tices have vertex label $). And the vertices with out-degree greater than one
having implicit labels of the form $W−i enc(L(u))#W enc(L(v))[1, i] where
W − ` ≤ i ≤ W (the last ` symbols in #W enc(L(v)). This path contains
the marked vertex φ(u). Furthermore, all marked vertices are included on
exactly one such path.

The Complexity of Approximate Pattern Matching on De Bruijn Graphs 21

– (2) Every maximal walk containing only $ or # symbols is of length W , and
the distance from the end of any maximal walk consisting of only $ symbols
(or # symbols) to the start of a maximal walk consisting of only # (or $
symbols resp.) is W . This follows from the construction of D′: every vertex
added in the construction has an implicit label where all maximal substrings
consisting of non-$ or non-# are of length W , and maximal substrings con-
sisting of $ or # are of length W .

To see the ‘local’ number of substitutions caused by matching a #/$-symbol
in D′ to a 0/1 symbol in P , suppose the matching of enc(L(u)) in P is ‘shifted
left’ by 1 ≤ s < W so that the first s symbols of some enc(L(u)) in P are
matched against the last s symbols in some walk of $/#-symbols in D′. These
last s symbols require s substitutions. In addition, assuming s < 2`, due to the
prefix (02`1)2`, at least 2`− 1 substitutions that do not involve a # or $ symbol
are needed as well.

We now look at the number of substitutions needed on a ‘global’ level. Using
Lemma 2, it can be inferred that every walk of length 4W contains an originally
marked vertex. Hence, while matching P ′ at least b|P ′|/4W c = 4Wn/4W = n
times an originally marked vertex is visited. Because every substring of P ′ =
P [1, |P | − 4W] of length 3W − ` is distinct, every path described in Observation
1 is traversed at most once while matching P ′. Since each originally marked
vertex is on a unique path that can be traversed at most once, and we traverse
at least n such paths, we traverse n distinct paths described in Observation 1.
We can now use Observation 2 to infer that the substitutions needed to match
the shifted patterns in P ′ must be repeated n times. Hence, to match P ′ the
total number of substitutions involving $/# symbols is at least sn. When s < 2`,
the total number of substitutions is at least (s+ 2`− 1)n > 2`(n− 1) = δ. When
2` ≤ s < W , then 2` substitutions to match the substring (02`1)2` in P may not
be needed, but the total number of substitutions required is still greater than δ
since sn ≥ 2`n > δ. A symmetric argument can be used for when the matching
of P to D′ is ‘shifted right’ by s so that the last s symbols in enc(L(u)) in P are
matched against the first s symbols in some walk of $/#-symbols in D′.

For W < s < 4W , it still holds that all paths described in Observation
1 are traversed exactly once. Combined with Observation 2, we can infer that
the substitution cost incurred when making one path of length W originally
matching #W ’s match a substring of P without #’s is incurred at least n times.
This results in the total number of needed substitutions being at least nW >
δ.

2 Missing Proofs in Section 3.1

Lemma 10. The graph D is a de Bruijn graph.

Proof. For each of the four graph sections discussed above, we will prove for
each vertex in that section that Conditions (i)-(iii) from the proof of Lemma 1

22 Daniel Gibney1, Sharma V. Thankachan2, and Srinivas Aluru1

hold. That is, every vertex v, v’s implicit label well-defined, unique, and there
are no additional edges that should have v as their head.

– Selection fan-in:

• (well-defined) For any vertex v in the Selection fan-in, there are two
paths of length k − 1 leading to v (one containing vertices labeled with
2’s from the Post-selection merge section and one containing vertices
labeled with 2’s from the Synchronization loop). Both match the same
string 2`

′
3B where `′ < ` and B is a binary string of length at most

dlogN + 1e.
• (unique) The binary string B could only possibly occur again as a suffix

the Selection section. However, all implicit labels occurring in that sec-
tion contain longer binary strings. Hence the implicit label occurs only
once in D.

• (no missing inbound edges) Let u be any vertex such that (u, v) is in
D. A vertex v in the Selection fan-in has an implicit label of the form
Sα = 2`

′
3Bi′ [1, i], `

′ < `, 1 ≤ i < dlogNe, 0 ≤ i′ ≤ N + 1. This implies
that u has the implicit label βS = β2`

′
3Bi′ [1, i−1]. Based on the limited

number of implicit labels present in D, it must be that β = 2, and there
exists only one such u. Hence, the edge (u, v) already exists.

– Selection section:

• (well-defined) For a vertex v in the Selection section, there are two length
k − 1 paths leading to v (one with 2’s from the Post-selection merge
section and one with 2’s from the Synchronization loop). Both match
a string of the form 2`

′
3Bi′fA(ai[1])fA(ai[2])...fA(ai[j])[1, h] where 0 ≤

`′ < ` and 1 ≤ h ≤ 4.
• (unique) If v has a path of length k−1 matching 2`

′
3Bi′fA(ai[1])fA(ai[2])

...(fA(ai[j])[1, i], then it must be in the Selection section. The substring
Bi′ following the prefix 2`

′
3 is distinct, hence this implicit label only

occurs once in the Selection section.
• (no missing inbound edges) Taking u and v as above, if the vertex v has

an implicit label of the form Sα = 2`
′
3Bi′fA(ai[1])fA(ai[2])...fA(ai[j])[1, h],

1 ≤ h ≤ 4, this implies that the any potential u has an implicit label
βS = β2`

′
3Bi′ [1, h − 1]fA(ai[1])fA(ai[2])...fA(ai[j])[1, h − 1] or βS =

β2`
′
3Bi′ [1, h− 1]fA(ai[1])fA(ai[2])...fA(ai[j − 1]). In either case, β = 2,

and the edge (u, v) already exists. If the vertex v has an implicit label of
the form Sα = Bi′fA(ai[1])fA(ai[2])...fA(ai[d]), then any potential ver-
tex u has an implicit label βS = βBi′fA(ai[1])fA(ai[2])...fA(ai[d])[1, 3]
where β must be 3, and the edge (u, v) already exists.

– Post-selection merge section:

• (well-defined) For a vertex v in this section, all length k−1 paths ending
at v match a string of the form B2`

′
where B is a binary string. By

construction, the paths ending at v match the same string (they were
merged based on this condition).

The Complexity of Approximate Pattern Matching on De Bruijn Graphs 23

• (unique) Again by construction, if another vertex v′ in the Post-selection
merging section has a length k − 1 path ending at it that matches v’s
implicit label v′ will be merged with v. At the same time, vertices in the
other sections of D will not have an implicit label of the form B2`.

• (no missing inbound edges) Taking u and v as above, vertex v has an
implicit label of the form Sα = B2`

′
, `′ ≥ 1, this implies that any

potential vertex u has an implicit label βS = βB2`
′−1. Such a vertex u

is already in the Post-selection merge section or is a vertex at the end
of a path in the Selection section (if `′ = 1). Since appending a 2 and
removing β will make the implicit label of u equal to the implicit label of
v, the vertex at the head of the edge with tail u must have been merged
with v. Hence, the edge (u, v) already exists.

– Synchronization loop:

• (well-defined) There are two length k − 1 paths to a vertex v in the
synchronization loop. Both match the string 2`

′
32`

′′
where `′ + `′′ =

k − 1 = `, and `′ depends on v’s position within the Synchronization
loop.

• (unique) An implicit label for a vertex in any other section contains a
symbol that is not a 2 or a 3. Within the synchronization loop, each
implicit label clearly occurs exactly once.

• (no missing inbound edges) Taking u and v as above, vertex v has an
implicit label of the form Sα = 2`

′
32`

′′
. This implies that any potential

vertex u has an implicit label βS = β2`
′
32`

′′−1. If `′ < ` it must be that
β = 2 and the edge (u, v) already exists. If instead `′ = `, then for both
βS = 02`3 and βS = 12`3 there already exists an edge (u, v) as well.

Lemma 11. In an optimal solution, 3’s in P are matched with 3’s in D.

Proof. Suppose that some 3 in P is not matched with 3 in D or with the final
vertex in a path in the Selection section. Since any walk between 3’s in D has a
length that is a multiple of k and 3 in P are k−1 symbols apart, all 3’s must then
not be matched with 3 in D. This requires at least tN substitutions within P . On
the other hand, when 3’s in P are matched with 3’s in D, there exists a solution
requiring at most 4d(N + 1) + Ndlog(N + 1)e. Specifically, this is obtained by
matching each vector gadget in P , fB(bi[1])...fB(bi[d]) to the N+1th path in the
Selection section. Since t = 5d+dlog(N+1)e > 4d+ 4d

N +dlog(N+1)e for d = o(N)
and N large enough, we can assume that tN > 4d(N+1)+Ndlog(N+1)e. Hence,
all 3’s in P are matched with the 3 in D or with some final vertex in a path in
the Selection section

Next, suppose some 3 in P is matched with the last vertex in a path in the
Selection section. We consider the first such occurrence. In the case where this oc-
currence of 3 in P is followed in P by a substring 2dlog(N+1)efB(ai[1])...fB(ai[d])fB(1),
a cost of at least 8(d+1) is incurred, first at least 4(d+1) from matching the sub-
string 2`3 in P to a path through Selection fan-in and the Selection section, then
an additional 4(d+1) from matching a vector gadget in P to a path of 2’s in the

24 Daniel Gibney1, Sharma V. Thankachan2, and Srinivas Aluru1

Post-selection merge section. We could have instead matched the Synchroniza-
tion loop twice with a cost of only 4(d+ 1) substitutions, and started and ended
at the same vertex while still matching 2`32dlog(N+1)efB(ai[1])...fB(ai[d])fB(1).
Hence, in this case, matching 3 in P with the last vertex in a path in the Selec-
tion section is suboptimal. In the case where the occurrence of 3 in P is followed
in P by 2`3, then the cost incurred is only 4(d + 1). However, we could have
instead matched 2`32`3 with the Synchronization loop twice with a substitution
cost of 0, and again started and ended at the same vertex. Hence, matching 3 in
P with the last vertex in a path in the Selection section is again suboptimal.

	The Complexity of Approximate Pattern Matching on De Bruijn Graphs

