
The Complexity of Approximating a Nonlinear Program

Mihir Bellare∗ Phillip Rogaway†

October 1993

Abstract

We consider the problem of finding the maximum of a multivariate polynomial inside a
convex polytope. We show that there is no polynomial time approximation algorithm for this
problem, even one with a very poor guarantee, unless P = NP. We show that even when the
polynomial is quadratic (i.e. quadratic programming) there is no polynomial time approximation
unless NP is contained in quasi-polynomial time.

Our results rely on recent advances in the theory of interactive proof systems. They exem-
plify an interesting interplay of discrete and continuous mathematics—using a combinatorial
argument to get a hardness result for a continuous optimization problem.

Key words: approximation, optimization, probabilistically checkable proofs, quadratic program-
ming.

Abbreviated title: Approximate Nonlinear Programming

1 Introduction

Many nonlinear optimization problems are not known to admit polynomial time algorithms. In
fact, most are NP-hard, so that finding a polynomial time solution is unlikely. Despite this, we
often need to solve these “intractable” computational problems. As with NP-hard problems in
combinatorial optimization, interest is turning to the development of (efficient) approximation
algorithms—algorithms which run in polynomial time and find a solution not too far from an
optimal one.

Will approximation succeed? While approximation algorithms for some nonlinear optimization
problems do exist, we have no indication of the complexity of approximation in many important
cases. Yet in this fledgling field, this seems an important thing to gauge. In particular, for those
problems of significant practical interest, it is desirable to find “hardness of approximation” results

∗ High Performance Computing and Communications, IBM T.J. Watson Research Center, P.O. Box 704, Yorktown
Heights, NY 10598 USA. e-mail: mihir@watson.ibm.com.

† Department of Computer Science, University of California, Davis, Davis, CA 95616 USA. e-mail:
rogaway@cs.ucdavis.edu.

1

which indicate when it is not worthwhile to seek an approximation algorithm—just as NP-hardness
results indicate when it is not worthwhile to seek a polynomial time algorithm.

In general, obtaining “hardness of approximation” results has not been easy. In combinatorial
optimization, many important problems defied such efforts for years. Recently, however, power-
ful techniques to indicate hardness of approximation have emerged; using interactive proofs, this
exciting work has been able to settle the approximation complexity of a host of combinatorial opti-
mization problems about which little was known before [15, 1, 2]. Typically, these results indicate
hardness of approximation by showing that the existence of an approximation algorithm would
imply an unbelievably efficient deterministic algorithm for NP.

Here we apply these techniques to nonlinear optimization. We will show that several important
nonlinear optimization problems don’t possess (efficient) approximation algorithms unless NP has
efficient deterministic solutions. The results are strong in that the conclusions hold even for approx-
imation algorithms with very poor guarantees. Yet our constructions and proofs are simple; the
strength of our conclusions derives from the powerful results about interactive proofs that underlie
this work. We will begin by looking at polynomial programming, and then turn to the special case
of most interest: quadratic programming.

1.1 The Complexity of Polynomial Programming

polynomial programming is the problem of finding the maximum of a multivariate polynomial
f(x1, . . . , xn) inside S = { x ∈ [0, 1]n : Ax ≤ b }, a “feasible region” specified by a set of linear
constraints. This problem is known to be solvable in polynomial space [10] but is not known to be
in NP. Denote by f∗ and f∗ the maximum and minimum of f inside S, respectively. Following [23,
3, 27, 26], we say an algorithm is a μ-approximation, for μ: N → [0, 1], if it computes f̃ satisfying
|f̃ − f∗| ≤ μ(n)[f∗ − f∗]. It was pointed out by Vavasis [27, 26] that it is important, in the context
of continuous optimization, to use this definition, as opposed to ones (more frequently used in
combinatorial optimization) which measure the quality of an approximation compared only to f∗.
The reasons for this are outside the scope of this paper, but Section 2 contains a brief discussion and
the reader is referred to [27, 26] for more information. Notice that a 0-approximation is optimal,
while the value of f at any feasible point is a 1-approximation. A 1-approximation is therefore
easy to find. Our result says that efficiently computing an approximation which is even marginally
better is as hard as deciding NP in polynomial time.

Theorem 1.1 There is a constant δ > 0 such that the following is true. Suppose polynomial
programming has a polynomial time, μ-approximation, where μ(n) = 1 − n−δ. Then P = NP.

Problem instances in our results include only integers for their numbers, and the results hold even
when these integers are encoded in unary. Since the results are negative, this makes them stronger.

1.2 The Complexity of Quadratic Programming

quadratic programming is the special case of polynomial programming in which the poly-
nomial f is of total degree 2; that is, maximize f(x1, . . . , xn) =

∑
i≥j cijxixj inside S = { x ∈

[0, 1]n : Ax ≤ b }. It is probably the most important of the nonlinear optimization problems, with
applications including economics, planning and genetics.

On the positive side, quadratic programming is known to be in NP [25]. The convex case
admits a polynomial time solution [19]. The concave and indefinite cases admit μ-approximation

2

algorithms which, for any constant μ ∈ (0, 1), are polynomial time under certain conditions on
the objective function [26, 27]. The general case admits a weak polynomial time approximation
algorithm; specifically, one which achieves a (1 − Θ(n−2))-approximation [28].

On the negative side, quadratic programming is NP-hard [24]. In fact, the existence of a
polynomial time .75n−1-approximation algorithm for this problem already implies P = NP [27]. In
other words, finding an excellent approximation algorithm is unlikely. We improve this result to
show that even finding a terrible approximation algorithm is unlikely. We say that a function of n
is quasi-polynomial if it is bounded above by nlogc n for some constant c > 0.

Theorem 1.2 There is a constant δ > 0 such that the following is true. Suppose quadratic
programming has a polynomial time, μ-approximation, where μ(n) = 1 − 2− logδ n. Then any
problem in NP can be solved in quasi-polynomial time.

The conclusion can be strengthened to P = NP at the cost of raising the quality of approximation
shown hard.

Theorem 1.3 There is a constant μ ∈ (0, 1) such that the following is true. Suppose quadratic
programming has a polynomial time μ-approximation. Then P = NP.

The value of μ that can be achieved in the above depends on the “error probability” achievable
by a two prover, one round proof for NP. Combining results of [2] and [14] with our proof, it is
possible to achieve any constant μ < 1/3.

1.3 Background, Techniques and Related Work

Our results rely on recent advances in the theory of interactive proof systems and the connection
of these to approximation problems. We give a brief summary of relevant work in this area.

Interactive proofs were introduced by Goldwasser, Micali and Rackoff [18] and Babai [4]. Ben-
Or, Goldwasser, Kilian and Wigderson [9] extended these ideas to define a notion of multi-prover
interactive proofs. Applications of interactive proof based ideas to the derivation of hardness of
approximation results emerged in the work of Condon [11] and Feige, Goldwasser, Lovász, Safra
and Szegedy [15]. The latter showed that the size of a maximum independent set in a graph is
hard to approximate. Their proof exploited a powerful result of Babai, Fortnow and Lund [5]
which equates the class MIP of languages possessing multi-prover interactive proofs of membership
with the class NEXP of languages recognizable in non-deterministic exponential time. Subsequent
constructions of proof systems of lower complexity has lead to better results on the hardness of
approximation [15, 1, 2].

To prove Theorem 1.1 we reduce the problem of computing the size of a maximal independent
set in a graph to polynomial programming in an approximation-preserving way and then apply
the maximum independent set approximation hardness results of [15, 1, 2]. The reduction underlies
a simple special case of a theorem of Ebenegger, Hammer and de Werra [12], who show that the
maximal size of an independent set in a graph is the maximum of some multivariate polynomial
associated to it.

Two prover, one round proofs are multi-prover proofs in which there are only two provers and
the interaction is restricted to one round. Using techniques of Lapidot and Shamir [20], it was shown
by Feige [13] that two provers and one round of interaction suffice to recognize any NEXP language
with exponentially small error probability. This result, “scaled down” to NP (cf. Theorem 2.4)

3

is the basis for our proof of Theorem 1.2. A different result about two prover, one round proofs
(cf. Theorem 2.5) is the basis of the proof of Theorem 1.3.

The particular association of a quadratic program to a two-prover, one-round interactive proof
that we use was independently discovered by Feige and Lovász [16]. Meanwhile the original work
of Feige [13] on which some of our results were based has also been incorporated into this same
joint paper with Lovász [16].

The present work and [16, 6] were the first to use two prover, one round proofs to show hardness
of approximation results. Later these proofs systems were also used by [21].

quartic programming is the special case of polynomial programming in which the ob-
jective function is a polynomial of degree four. Since quadratic programming is a special case
of quartic programming, the results of Theorems 1.2 and 1.3 apply. For the quartic case, how-
ever, a stronger result than Theorem 1.3 was recently obtained in [7]; the authors show that for
any constant μ ∈ (0, 1), if quartic programming has a polynomial time, μ-approximation, then
P = NP.

A preliminary version of this paper appeared as [8].

2 Preliminaries

The notation | · | will be used to denote the absolute value of a number, the length of a string,
or the size of a set; the context will disambiguate. An optimization problem is specified by a
pair (S, g). Here S is a map assigning to each instance w a set S(w) called the solution space or
feasible region, and g(w, y) is the utility of a solution y ∈ S(w). An instance w is degenerate if
S(w) = ∅. The problem is to maximize the utility of a non-degenarate instance over the feasible
region. (Minimization problems can be accommodated by modifying these definitions in the obvious
ways.)

Let R = R∪{∞,−∞}. For non-degenerate w define g∗(w), g∗(w) ∈ R by g∗(w) = supy∈S(w) g(w, y)
and g∗(x) = infy∈S(w) g(w, y). A non-degenerate instance w is bounded if g∗(w) and g∗(w) are finite.
Following [23, 3, 27, 26] we measure the quality of an approximation g̃ by seeing how much it differs
from g∗, as measured in units of |g∗ − g∗|. For simplicity we will only talk of approximation when
the instance is (non-degenerate and) bounded, so that the unit of measurement |g∗ − g∗| is finite.

Definition 2.1 Let (S, g) be an optimization problem, ‖ · ‖ a map from strings to N, and μ a
map from N to [0, 1]. A μ-approximation for (S, g) and norm ‖ · ‖ is a function g̃ which, on any
non-degenerate, bounded instance w gives a number g̃(w) ∈ R for which

|g∗(w) − g̃(w)| ≤ μ(‖w‖) · |g∗(w) − g∗(w)| .

The norm is that aspect of the input in terms of which the quality of approximation μ is measured.
For graph problems the norm is the number of nodes in the graph. For programming problems it is
the number of variables in the program. An attribute of this definition which renders it preferable,
in this context, to other definitions is the invariance under scaling: if g̃ is a μ-approximation to
(S, g), then ag̃ + b is a μ-approximation to (S, ag + b), for any constants a and b; this corresponds,
for example, to the fact that measuring utility in different units should not affect the quality of
an approximation. Another such attribute is the invariance under affine linear transformations of
the feasible region and the objective function. For more information on the definition we refer the
reader to [27, 26].

4

It is not required that an approximation algorithm “find” the point with the specified utility;
it is not even required that there exist a point ỹ ∈ S(w) such that g̃ = g(w, ỹ). This is therefore a
weak notion of approximation. Since our results are negative, this serves only to strengthen them.

We will be interested in polynomial time approximation algorithms. To avoid confusion, we
emphasize that while the quality of the approximation is measured in terms of the norm, the
running time of the approximation algorithm is measured, as usual, as a function of the length of
the encoding of the instance. Approximation algorithms will return rationals, encoded as pairs of
integers, each integer itself encoded as usual in binary.

A list of optimization problems we will consider follows. All numbers in problem instances are
integers; this eliminate issues concerning computational complexity over the reals. Furthermore,
the integers in problem instances are specified in unary ; since our results are negative, this makes
them stronger. In all the programming problems the feasible region is restricted to a subset of
[0, 1]n and the utility functions are continuous, so all (non-degenerate) instances are bounded.

independent set

Instance: A graph G = (V, E).
Solutions: W ⊆ V is a solution if it is an independent set: for each u, v ∈ W , {u, v}
∈ E.
Utility of Solutions: A solution W for the instance G has utility |W |.

polynomial programming

Instance: Number n and t, and for each k ∈ [1..t], an integer ck and a subset Ak of {1, . . . , n}.
Together this encodes a polynomial f(x1, . . . , xn) =

∑t
k=1 ck

[
(
∏

i∈Ak
xi)

]
. Also an m × n integer

matrix A and an integer m-vector b.
Solutions: A vector x ∈ [0, 1]n is a solution if Ax ≤ b.
Utility of Solutions: A solution x has utility f(x).

polynomial programming–restricted case

Instance: Numbers n and t, and for each k ∈ [1..t], a pair Ak, Bk of disjoint subsets of {1, . . . , n}.
Together, this encodes the polynomial f(x1, . . . , xn) =

∑t
k=1

[
(
∏

i∈Ak
xi) · (∏j∈Bk

(1 − xj))
]
.

Solutions: Any vector x ∈ [0, 1]n is a solution.
Utility of Solutions: A solution x has utility f(x).

quadratic programming

Instance: A number n and, for each i, j ∈ {1, . . . , n} with i ≤ j, an integer cij . Together this
encodes the quadratic polynomial f(x) =

∑
i≤j cijxixj . Also an m × n integer matrix A and an

integer m-vector b.
Solutions: A vector x ∈ [0, 1]n is a solution if Ax ≤ b.
Utility of Solutions: A solution x has utility f(x).

independent set was shown hard to approximate by [15, 1, 2]. Stating the last of these results
in terms of our definition we get the result we will use.

Theorem 2.2 There is a constant δ > 0 such that the following is true. Suppose independent
set has a polynomial time, μ-approximation, where μ(n) = 1 − n−δ. Then P = NP.

A two-prover, one-round interactive proof system involves a probabilistic, polynomial time veri-
fier, V , and a pair of (computationally unbounded, deterministic) provers, A and B. Formally, a

5

verifier is a pair of functions (π, ρ), each computable in time polynomial in the length of its first
argument; π takes two string arguments and returns a string, and ρ takes five string arguments
and returns a bit. A prover is a function which takes two string arguments and returns a string.
Each prover can communicate with the verifier, but they can neither talk to one another once the
protocol begins, nor can either prover see the communication between the verifier and the other
prover. The parties share a common input w, and it is the provers (joint) goal to convince V to
accept this string. To this end, the parties engage in a simple interaction, which is begun by the
verifier. The latter applies π to the common input w and a string R (the verifier’s random tape) to
get a pair of “questions” p, q. He then sends p to A and q to B. The provers then provide answers, A
sending the answer a = A(w, p), and B sending b = B(w, q). After the verifier receives his answers,
he computes ρ(w, p, q, a, b). If this value is 1 he is considered to “accept” else to “reject.”

The number of coins flipped by the verifier and the size of answers sufficient to convince him
are the attributes of the verifier which are important in our construction. We say that a verifier V
has complexity l: N → N if, when the common input has length n, a random tape of length l(n)
suffices to produce the questions p, q, and ρ(w, p, q, a, b) = 0 if either a or b have length different
from l(n). It is convenient, although not necessary, to also assume that the lengths of the questions
p, q are equal to l(n). We denote by πi(w, R) the question to the i-th prover, i = 1, 2.

Definition 2.3 Let V = (π, ρ) be a verifier of complexity l. Let (A, B) be a pair of provers. For
each w, let ACCV,(A,B)(w) denote the probability that

ρ(w, π1(w, R), π2(w, R), A(w, π1(w, R)), B(w, π2(w, R))) = 1

when R is chosen at random from {0, 1}l(|w|). The accepting probability of the verifier V at w is the
maximum of ACCV,(A,B)(w) over all possible pairs (A, B) of provers. We denote it by ACCV (w). If
L is a language and ε a function of N to [0, 1], we say that V has error probability ε with respect
to L if the following two conditions hold: first, w ∈ L implies ACCV (w) = 1; second, w
∈ L implies
ACCV (w) < ε(|w|).

We say that a language L has a two-prover, one-round proof with complexity l and error probability
ε if there exists a verifier having complexity l and error probability ε with respect to L. Important
to our results is the fact that NP-complete languages have two prover one round proofs of very low
complexity. As usual, sat denotes the decision problem for satisfiability of Boolean formulas.

Theorem 2.4 [13, 20] There is a constant c > 0 such that sat has a two prover, one round proof
with complexity O(logc n) and error probability 1/n.

If constant error probability suffices, the complexity can be reduced to logarithmic. The following
result is derived by applying a transformation of [17] to the main result of [2].

Theorem 2.5 There is a constant ε < 1 such that sat has a two prover, one round proof with
complexity O(log n) and error probability ε.

The current best value for the constant c in the first theorem is c = 3 [13, 20]. For the second it is
possible to achieve any constant ε > 1/2 (cf. [2, 14]).

6

3 The Complexity of Polynomial Programming

We prove Theorem 1.1. Let G = (V, E) be an instance of independent set. We will construct
from G an instance f of polynomial programming–restricted case where f∗ = G∗ and ‖f‖
is polynomially bounded in ‖G‖. We will then explain why our reduction is enough to establish
the theorem.

Without loss of generality, assume G has no isolated nodes. The program f is constructed as
follows. Introduce a formal variable xe for each edge e ∈ E. To each edge e = {u, v}, arbitrarily
order its endpoints (u, v) and associate the polynomial xe with endpoint u and the polynomial
1 − xe with endpoint v, defining xuv = xe and xvu = 1 − xe. The polynomial f is defined as
the sum, over all vertices, of the product of the polynomials associated to that vertex: f(x) =∑

u∈V

∏
v∈N(u) xuv, where N(u) is the set of all vertices adjacent to u. This is a degree Δ =

maxu deg(u) polynomial in m = |E| variables. An algorithm which reduces independent set
to polynomial programming–restricted case constructs from graph G the polynomial f
described above, obtains an estimate of its maximum in [0, 1]m, and then returns this as its own
estimate for the size of the maximal independent set in G. Note that f is easily constructed from G
in polynomial time, and f has norm (number of variables) which is at most the square of the norm
of G (the number of nodes).

Let f∗ = max0≤xe≤1 f(x) denote f ’s maximum inside the m-dimensional unit hypercube, and
let G∗ denote the size of a maximum independent set of G. We show that G∗ = f∗.

First, we claim that f∗ ≥ G∗. For given an independent set W of cardinality ω, one constructs
an assignment x = {xe} of utility at least ω by setting xe = 1 if u ∈ W and e is ordered (u, v);
by setting xe = 0 if u ∈ W and e is ordered (v, u); and by setting xe arbitrarily otherwise. The
assignment is well defined by W being an independent set. We have f∗ ≥ G∗ because f(x) ≥∑

u∈W

∏
v∈N(u) xuv = ω.

Conversely, G∗ ≥ f∗. For given an assignment x = {xe}, construct an independent set W of
cardinality at least �f(x) as follows: Choose an edge e = {u, v} and set πu =

∏
r∈N(u)−{v} xur,

and πv =
∏

r∈N(v)−{u} xvr. Now if πu ≤ πv, then adjust the assignment by “pushing” all xuv units
from u to v and obtain an assignment x′ of at least as great a value as that of x; that is, letting
x′

e = xe apart from setting xe = 0 if e = (u, v) and xe = 1 if e = (v, u), we have g(x′) ≥ g(x), as
g(x′) − g(x) = xuv(πv − πu) ≥ 0. If, instead, πu > πv, then let x′ = x except xe = 1 if e = (u, v)
and xe = 0 if e = (v, u); this again ensures that g(x′) ≥ g(x). Repeating this process for each
edge of G gives an assignment x′′ with g(x′′) ≥ g(x) and each x′′

e ∈ {0, 1}. Consider the set of
vertices W = {u ∈ V : x′′

uv = 1 for all v ∈ N(u)}. Then W is an independent set of vertices and
|W | = g(x′′) ≥ g(x).

We have shown how to efficiently map G to f and f̃ to G̃. Now suppose we had a (1−‖f‖−2δ)-
approximation for polynomial programming–restricted case. Since f∗ = G∗, f∗ = G∗ (both
are 0), and ‖f‖ ≤ ‖G‖2, we immediately get a (1 − n−4δ)-approximation for independent set.
Likewise, the straightforward reduction from polynomial programming–restricted case to
polynomial programming, in which each expression 1−xj is replaced by a formal variable x′

j and
constraints are added to enforce that x′

j = 1−xj , also preserves the optimal value, the worst value,
is efficient, and at most doubles the norm. Thus a (1− n−δ)-approximation for polynomial pro-
gramming easily gives a (1− n−2δ)-approximation for polynomial programming–restricted
case. Putting this all together and using Theorem 2.2, with the constant δ of the present theorem
being 4 times the constant of Theorem 2.2, we conclude our result.

7

4 The Complexity of Quadratic Programming

We prove Theorem 1.2. Let V = (π, ρ) be the verifier and c the constant of the two prover one
round proof of Theorem 2.4, and let l be the complexity of this verifier as specified by the theorem.
Let g̃ be a quasi-polynomial time, μ-approximation algorithm for quadratic programming. To
prove the theorem, we specify a quasi-polynomial time decision procedure M for sat. We let w
denote the input to M , with N denoting its length. We write l for l(N). If ρ(w, p, q, a, b) = 1
then let ρ̂(p, q, a, b) be the number of strings R ∈ {0, 1}l satisfying π(w, R) = (p, q). Otherwise, let
ρ̂(p, q, a, b) = 0. For each p, a ∈ {0, 1}l we introduce a variable xp,a, and for each q, b ∈ {0, 1}l we
introduce a variable yq,b. On input w, algorithm M constructs the n = 22l+1 variable quadratic
program

maximize: f(xy) =
∑

p,a,q,b∈{0,1}l ρ̂(p, q, a, b) · xp,a · yq,b

subject to:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
a∈{0,1}l xp,a = 1 for each p ∈ {0, 1}l,

∑
b∈{0,1}l yq,b = 1 for each q ∈ {0, 1}l, and

0 ≤ xp,a, yq,b ≤ 1 for all p, q, a, b ∈ {0, 1}l.

We denote by (f, A, b) this quadratic programming instance, where A and b are defined so that
A(xy) ≤ b captures the above set of constraints. M now applies the approximation algorithm g̃
to this program, and lets f̃ denote the output. If f̃ ≥ 2l(1 − μ(n)) then M accepts; otherwise, it
rejects. To see that M runs in quasi-polynomial time, first note that the length of an encoding of
(f, A, b) is 2lgO(1) N , even with the encoding in unary as we assume. And this program can easily
be computed in 2lgO(1) N time. M will run the quasi-polynomial time algorithm g̃ on an input
of quasi-polynomial size in N , so the total running time is quasi-polynomial in N . To argue the
correctness of M , let f∗ = maxxy:A(xy)≤b f(xy) denote the maximum value of f over its feasible
region. A boolean point is one all of whose coordinates are 0 or 1. Standard arguments show that
the maximum of f occurs at a boolean point:

Lemma 4.1 There exists a boolean point x∗y∗ in the feasible region of (f, A, b) such that f∗ =
f(x∗y∗).

This enable us to see that the maximum value of f equals, apart from a scaling factor, the value
of the interaction defined by V .

Lemma 4.2 ACCV (w) = 2−l · f∗.

Proof: Let (A, B) be a pair of provers. Set xp,a = 1 if a = A(w, p) and 0 otherwise, and
yq,b = 1 if b = B(w, q) and 0 otherwise. Then xy is a (boolean) point in the feasible region, and
2−l · f(xy) = ACCV,(A,B)(w). Since (A, B) was arbitrary it follows that 2−l · f∗ ≥ ACCV (w).

Conversely, by Lemma 4.1 we know that there is a boolean point xy in the feasible region such that
f∗ = f(xy). Since xy is both boolean and feasible it must be that for each p there is a unique ā
such that xp,a = 1 if a = ā and xp,a = 0 otherwise. Set A(w, p) = ā. Construct B correspondingly
from y. Then note that ACCV,(A,B)(w) = 2−l · f(xy). So ACCV (w) ≥ 2−l · f∗.

We note that the minimum f∗ of f over the feasible region is nonnegative. The approximation
thus guarantees |f∗ − f̃ | ≤ μ(n)f∗. Now if w ∈ sat, then the program constructed has maximum

8

f∗ = 2l, while if w
∈ sat, then it has maximum f∗ < ε2l where ε = 1/N is the error probability of
V with respect to sat. (cf. Theorem 2.4 and Lemma 4.2). So

(1) if w ∈ sat then f̃ ≥ 2l(1 − μ(n)), and
(2) if w
∈ sat then f̃ < ε2l(1 + μ(n)).

Thus our decision procedure for sat is correct as long as ε2l(1 + μ(n)) ≤ 2l(1− μ(n)). Simplifying
this expression yields that μ(n) must be at most (1− ε)/(1+ ε) = (N − 1)/(N +1). Since l = lgc N
and n = 2Θ(l) we may certainly find a positive δ so that defining μ as in the theorem statement
does indeed guarantee μ(n) ≤ (N − 1)/(N + 1).

An analogous proof with Theorem 2.5 substituted for Theorem 2.4 yields Theorem 1.3.
We believe these results could be improved to show that there is a constant δ > 0 such that the

following is true: if quadratic programming has a polynomial time, μ-approximation, where
μ(n) = 1−n−δ, then P = NP. One way to do this would be to construct two prover, one round proof
systems for sat which have appropriate complexity and error probability. Specifically, it suffices
that the verifier use logarithmic randomness and answer sizes to achieve error probability 1/n. (The
length of the questions p, q is not important; our construction is easily modified so that the size of
the quadratic program associated to the verifier and a string w depends only on the randomness
and answer sizes.)

Acknowledgments

We are grateful to Peter Hammer, who, during a visit to Dartmouth College, described the work
in [12] which inspired our initial results. We thank Stephen Vavasis for much helpful information on
the subject of nonlinear optimization, and especially for explaining to us the importance of using
the right definition of a μ-approximation. We thank Rajeev Motwani for drawing our attention
to [3]. We thank an anonymous referee for comments.

References

[1] S. Arora and S. Safra, “Probabilistic checking of proofs; a new characterization of NP,”
Proceedings of the 33rd Annual IEEE Symposium on the Foundations of Computer Science
(IEEE Computer Society Press, 1992) 2–13.

[2] S. Arora, C. Lund, M. Motwani, M. Sudan and M. Szegedy, “Proof verification and hard-
ness of approximation problems,” Proceedings of the 33rd Annual IEEE Symposium on the
Foundations of Computer Science (IEEE Computer Society Press, 1992) 14–23.

[3] G. Ausiello, A. D’Atri and M. Protasi, “Structure preserving reductions among convex opti-
mization problems,” Journal of Computer and System Sciences 21 (1980) 136–153.

[4] L. Babai, “Trading group theory for randomness,” Proceedings of the 17th Annual ACM
Symposium on the Theory of Computing (ACM Press, 1985).

[5] L. Babai, L. Fortnow and C. Lund, “Non-deterministic exponential time has two-prover in-
teractive protocols,” Computational Complexity 1 (1991) 3–40.

9

[6] M. Bellare, “Interactive proofs and approximation,” IBM Research Report RC 17969 (New
York, 1992). Also Proceedings of the Second Israel Symposium on Theory of Computing and
Systems (1993).

[7] M. Bellare, S. Goldwasser, C. Lund and A. Russell, “Efficient probabilistically checkable proofs
and applications to approximation,” Proceedings of the 25th Annual ACM Symposium on the
Theory of Computing (ACM Press, 1993) 294–304.

[8] M. Bellare and P. Rogaway, “The complexity of approximating a nonlinear program,” IBM
Research Report RC 17831 (New York, 1992).

[9] M. Ben-Or, S. Goldwasser, J. Kilian and A. Wigderson, “Multi-prover interactive proofs: how
to remove intractability assumptions,” Proceedings of the 20th Annual ACM Symposium on
the Theory of Computing (ACM Press, 1988) 113–131.

[10] J. Canny, “Some algebraic and geometric computations in PSPACE,” Proceedings of the 20th
Annual ACM Symposium on the Theory of Computing (ACM Press, 1988).

[11] A. Condon “The complexity of the max word problem and the power of one-way interactive
proof systems,” Computational Complexity 3 (1993) 295–305.

[12] C. Ebenegger, P. Hammer and D. de Werra, “Pseudo-boolean functions and stability of
graphs,” in Algebraic and Combinatorial Methods in Operations Research, Annals of Dis-
crete Mathematics 19 (North Holland Mathematics Studies, 95, 1984) 83–97.

[13] U. Feige, “NEXPTIME has two-provers one-round proof systems with exponentially small
error probability” (1991). Manuscript.

[14] U. Feige, “On the success probability of the two provers in one round proof systems,” Pro-
ceedings of the Sixth Annual Structure in Complexity Theory Conference (IEEE Computer
Society Press, 1991) 116–123.

[15] U. Feige, S. Goldwasser, L. Lovász, S. Safra and M. Szegedy, “Approximating clique is almost
NP-complete,” Proceedings of the 32nd Annual IEEE Symposium on the Foundations of
Computer Science (IEEE Computer Society Press, 1991) 2–12.

[16] U. Feige and L. Lovász, L. (1992), “Two-prover one round proof systems: their power and their
problems,” Proceedings of the 24th Annual ACM Symposium on the Theory of Computing
(ACM Press, 1992) 733–744.

[17] L. Fortnow, L., J. Rompel and M. Sipser “On the power of multiprover interactive proto-
cols,” Proceedings of the Third Annual Structure in Complexity Theory Conference (IEEE
Computer Society Press, 1988).

[18] S. Goldwasser, S. Micali and C. Rackoff, (1989), “The knowledge complexity of interactive
proofs,” SIAM J. Computing 18 (1989) 186–208.

[19] M. Kozlov, S. Tarasov and L. Hac̆ijan, “Polynomial solvability of convex quadratic program-
ming,” Dokl. Akad. Nauk SSSR 248 (1979) 1049–1051. [Translated as Soviet Math Dokl. 20,
1108–1111.]

[20] D. Lapidot and A. Shamir, “Fully parallelized multi-prover protocols for NEXP-time,” Pro-
ceedings of the 32nd Annual IEEE Symposium on the Foundations of Computer Science (IEEE
Computer Society Press, 1991) 13–18.

10

[21] C. Lund and M. Yannakakis, “On the hardness of approximating minimization problems,”
Proceedings of the 25th Annual ACM Symposium on the Theory of Computing (ACM Press,
1993) 286–293.

[22] T. Motzkin and E. Straus, “Maxima for graphs and a new proof of a theorem by Tuán,”
Notices of the American Mathematical Society 11 (1964) 533–540.

[23] A. Nemirovsky, and D. Yudin, Slozhnost’ Zadach i Effektivnost’ Metodov Optimizatsii (1979).
[Translated by E. Dawson as Problem Complexity and Method Efficiency in Optimization,
(John Wiley and Sons, 1983).]

[24] S. Sahni, (1974), “Computationally related problems,” SIAM J. of Computing 3 (1974) 262–
279.

[25] S. Vavasis, “Quadratic programming is in NP,” Information Processing Letters 36 (1990)
73–77.

[26] S. Vavasis, “Approximation algorithms for indefinite quadratic programming,” TR 91-1228,
Department of Computer Science, Cornell University (New York, 1991). To appear in Math-
ematical Programming.

[27] S. Vavasis, “On approximation algorithms for concave programming,” in: C.A. Floudas and
P.M. Pardalos, ed., Recent Advances in Global Optimization (Princeton University Press, 1992)
3–18.

[28] S. Vavasis, “Polynomial time weak approximation algorithms for quadratic programming,” in:
P. Pardalos, ed., Complexity in Numerical Optimization (World Scientific, 1992) 490–500.

11

