
The complexity of approximating the entropy∗

Tuğkan Batu† Sanjoy Dasgupta‡ Ravi Kumar§ Ronitt Rubinfeld¶

April 20, 2005

Abstract

We consider the problem of approximating the entropy of a discrete distribution under
several different models of oracle access to the distribution. In the evaluation oracle model, the
algorithm is given access to the explicit array of probabilities specifying the distribution. In this
model, linear time in the size of the domain is both necessary and sufficient for approximating
the entropy.

In the generation oracle model, the algorithm has access only to independent samples from
the distribution. In this case, we show that a γ-multiplicative approximation to the entropy

can be obtained in O
(

n(1+η)/γ2

log n
)

time for distributions with entropy Ω(γ/η), where n is

the size of the domain of the distribution and η is an arbitrarily small positive constant. We
show that this model does not permit a multiplicative approximation to the entropy in general.
For the class of distributions to which our upper bound applies, we obtain a lower bound of

Ω
(

n1/(2γ2)
)

.

We next consider a combined oracle model in which the algorithm has access to both the
generation and the evaluation oracles of the distribution. In this model, significantly greater
efficiency can be achieved: a γ-multiplicative approximation to the entropy can be obtained in

O
(

γ2 log2 n
h2(γ−1)2

)

time for distributions with entropy Ω(h); for such distributions, we also show a

lower bound of Ω
(

log n
h(γ2

−1)+γ2

)

.

Finally, we consider two special families of distributions: those in which the probabilities of
the elements decrease monotonically with respect to a known ordering of the domain, and those
that are uniform over a subset of the domain. In each case, we give more efficient algorithms
for approximating the entropy.

∗A preliminary version of this paper appeared in the 34th ACM Symposium on Theory of Computing, pages
678–687, 2002.

†School of Computing Science, Simon Fraser University, Burnaby, BC, Canada V5A 1S6. This work was supported
by ONR N00014-97-1-0505, MURI. Phone: (604) 268 7115, Fax: (604) 291 3045, Email: batu@cs.sfu.ca.

‡University of California, San Diego 92093. Phone: (858) 822 5270, Fax: (858) 534 7029, Email:
dasgupta@cs.ucsd.edu.

§IBM Almaden Research Center, San Jose, CA 95120. Phone: (408) 927 1885, Fax: (845) 432 0398, Email:
ravi@almaden.ibm.com.

¶CSAIL, MIT, Cambridge, MA 02139. Phone: (617) 253 0884, Fax: (617) 258 9738, Email:
ronitt@csail.mit.edu.

1 Introduction

The Shannon entropy is a measure of the randomness of a distribution, and plays a central role
in statistics, information theory, and coding theory. The entropy of a random source sheds light
on the inherent compressibility of data produced by such a source. In this paper we consider the
complexity of approximating the entropy under various different assumptions on the way the input
is presented.

Suppose the algorithm has access to an evaluation oracle 1 in which the distribution p is given
as an array whose i-th location contains the probability pi assigned to the i-th element of the
domain. It is clear that an algorithm that reads the entire representation can calculate the exact
entropy. However, it is also easy to see that in this model, time linear in the size of the domain is
required even to approximate the entropy: consider two distributions, one with a singleton support
set (zero entropy) and the other with a two-element support set (positive entropy). Any algorithm
that approximates the entropy to within a multiplicative factor must distinguish between these two
distributions, and a randomized algorithm for distinguishing two such distributions requires linear
time in general.

Next suppose the distribution p = 〈p1, . . . , pn〉 is given as a generation oracle1 that draws sam-
ples from it. This model has been considered in both the statistics and physics communities (c.f.,
[6, 11, 8, 10]), though none of the previous work provides a rigorous analysis of computational
efficiency and sample complexity in terms of approximation quality. To the best of our knowledge,
the only previously known algorithms that do not require superlinear (in the domain size) sample
complexity are those presented in [8, 10]. These algorithms use an estimate of the collision proba-
bility, ‖p‖2, to give a lower bound estimate of the entropy: using Jensen’s inequality, it is shown
[10] that

log ‖p‖2 = log
∑

i

p2
i ≥

∑

i

pi log pi = −H(p).

In fact, when the infinity norm ‖p‖∞ of p is at most n−α, (in other words, when the min-entropy
of p is large) the collision probability can be used to give an upper bound on the entropy of the
distribution: using the relationship between norms,

log ‖p‖2 ≤ log(‖p‖∞) ≤ log n−α = −α log n ≤ −α · H(p).

It is, however, unclear how to use the collision probability to obtain an arbitrary multiplicative
approximation with a better sample complexity than our results (stated below), since approximating
the collision probability itself will require Ω(

√
n) samples. However, the collision probability can

be used to understand much more about certain types of distributions; for instance, it exactly
determines the entropy in the special case of distributions that are known to be uniform over an
unknown subset of arbitrary size (see Section 7).

1.1 Our results

(1) The generation oracle model: When the distribution is given as a generation oracle,
we show that the entropy can be approximated well in sublinear time for a large class of dis-
tributions. Informally, a γ-multiplicative approximation to the entropy can be obtained in time
O(n(1+η)/γ2

log n), where n is the size of the domain of the distribution and η is an arbitrarily small

1We use the terminology from [7].

1

positive constant, provided that the distribution has Ω(γ/η) entropy. Our algorithm is simple—
we partition the elements in the domain into big or small based on their probability masses and
approximate the entropy of the big and small elements separately by different methods. On the
other hand, we show that one cannot get a multiplicative approximation to the entropy in general.
Furthermore, even for the class of distributions to which our upper bound applies, we obtain a
lower bound of Ω(n1/(2γ2)).

It is interesting to consider what these bounds imply for the complexity of achieving a 2-
approximation for distributions with non-constant entropy. Our upper bound yields an algorithm

that runs in Õ
(

n
1+o(1)

4

)

time, while our lower bound demonstrates that a running time of at least

Ω(n1/8) is necessary.
(2) The evaluation oracle model: When the distribution is given as an evaluation oracle,

we show a lower bound of Ω(n2−γ2(h+1)) on the number of oracle accesses needed to γ-approximate
the entropy for the class of distributions with entropy at least h.

(3) The combined oracle model: We then consider a combined oracle model, in which the
algorithm has access to both the generation and the evaluation oracles of the distribution. We
assume that the two oracles are consistent, which is a natural assumption for such a model. In

the combined oracle model, we give a γ-approximation algorithm that runs in time O
(

γ2 log2 n
h2(γ−1)2

)

for distributions with entropy Ω(h); we also show a lower bound of Ω
(

log n
h(γ2−1)+γ2

)

for this class

of distributions. For example, to achieve a constant approximation for distributions with entropy
Ω(h), our algorithm runs in time O((1/h2) log2 n) while our lower bound is Ω((1/h) log n), that is,
quadratically smaller than the upper bound.

(4) Special families of distributions: Finally we consider two families of distributions for
which we show more efficient upper bounds. The first family is that of monotone distributions,
in which the probabilities decrease monotonically over some known ordering of the elements (i.e.,
pi ≥ pi+1). We give an O((1 + log−1 γ) log n)-time (resp., O((log n)6poly(γ))-time) algorithm for
γ-approximating the entropy in the evaluation oracle model (resp., generation oracle model). The
second family is that of subset-uniform distributions, in which the distribution is uniform over some
subset of the domain. In this case we give O(

√
k)-time algorithms for approximating the entropy,

where k is the size of the support set.

Model Lower bound Upper bound

Evaluation General Ω(n) O(n)

oracle: When H(p) ≥ h Ω(n2−γ2(h+1)), Thm. 8 ?

Generation General ∞, Thm. 6 −
oracle: High enough Ω

(

n1/(2γ2)
)

, Õ(n1/γ2
),

entropy H(p) > Ω((log n)/γ2), Thm. 7 H(p) > Ω(γ), Thm. 2

Combined General Ω(n(1−o(1))/γ2
), Thm. 12 ?

oracle: When H(p) ≥ h Ω
(

log n
h(γ2−1)+γ2

)

, Thm. 13 O
(

γ2 log2 n
h2(γ−1)2

)

, Thm. 9

Table 1: Our results for γ-approximation, where γ > 1.

2

1.2 Related work

The work of Goldreich and Vadhan [5] considers the complexity of approximating the entropy in
a different model in which a distribution Y is encoded as a circuit Y = C(X) whose input X is
uniformly distributed; in this model, they show that a version of the problem is complete for statis-
tical zero-knowledge. Their version of the problem could be viewed as an additive approximation
to the entropy.

The work of [2] and [1] considers algorithms for testing other properties of distributions in the
generation oracle model. The properties considered are whether two input distributions are close
or far, and whether a joint distribution is independent, respectively. Both papers give algorithms
whose sample complexity is sublinear in the domain size along with lower bounds showing the
algorithms to be nearly optimal.

1.3 Organization

In Section 2, we introduce the basic definitions used in this paper. In Section 3, we give algorithms
and lower bounds for the generation oracle model. Section 4 describes a lower bound for the
evaluation oracle model, and Section 5 gives algorithms and lower bounds for the combined oracle
case. Finally, in Sections 6 and 7, we give more efficient algorithms for two families of distributions.

2 Preliminaries

We consider discrete distributions over a domain of size n, which we denote by [n]
def
= {1, . . . , n}.

Let p = 〈p1, . . . , pn〉 be such a distribution where pi ≥ 0,
∑n

i=1 pi = 1. An algorithm is said to have
evaluation oracle access to the distribution p if oracle query i is answered by pi. An algorithm is
said to have generation oracle access to p if it is given a source that draws samples independently
from p. An algorithm has combined oracle access to p if it has both evaluation and generation
oracle access to p. We say the algorithm is in model O if it has oracle access of type O to the
distribution.

The entropy of distribution p is defined as

H(p)
def
= −

n
∑

i=1

pi log pi,

where all the logarithms are to the base 2. For a set S ⊆ [n], we define wp(S)
def
=
∑

i∈S pi, and we
define the contribution of S to the entropy as

HS(p)
def
= −

∑

i∈S

pi log pi.

Notice that HS(p) + H[n]\S(p) = H(p).

The L2-norm of distribution p is ‖p‖ def
=
√

∑n
i=1 p2

i and L∞-norm of p is ‖p‖∞
def
= maxn

i=1 pi.

We denote the L1-distance between two distributions p,q by |p − q| def
=
∑n

i=1 |pi − qi|.
The following lemma summarizes some upper and lower bounds on entropy that will turn out

to be useful at many points in the paper.

3

Lemma 1 Pick any S ⊆ [n].

a. The partial entropy HS(p) is maximized when wp(S) is spread uniformly over |S|:

HS(p) ≤ wp(S) · log(|S|/wp(S)) ≤ wp(S) · log |S| + (log e)/e.

b. Suppose there is some β ≤ 1/e such that pi ≤ β for all i ∈ S. Then HS(p) ≤ β|S| log(1/β).

c. Suppose there is some β such β ≤ pi ≤ 1/e for all i ∈ S. Then HS(p) ≥ β|S| log(1/β).

d. Suppose there is some β such that pi ≤ β for all i ∈ S. Then HS(p) ≥ wp(S) log(1/β).

Proof. Statement (a) follows from the concavity of the logarithm function. By Jensen’s inequality,

1

wp(S)
· HS(p) =

∑

i∈S

pi

wp(S)
log

1

pi
≤ log

(

∑

i∈S

pi

wp(S)
· 1

pi

)

= log
|S|

wp(S)
.

Therefore,

HS(p) ≤ wp(S) · log |S|
wp(S)

≤ wp(S) · log |S| + log e

e
.

The last inequality comes from observing that the function x log(1/x) is zero at x = 0, 1 and has a
single local maximum in the interval [0, 1], at x = 1/e.

Statement (b) follows immediately from the previous observation about x log(1/x), which im-
plies that under the given constraint, HS(p) is maximized by setting all the pi to β.

The proof of Statement (c) also follows from the concavity of x log(1/x); under the given
constraints, pi log(1/pi) is minimized when pi = β.

For statement (d), we notice that HS(p) is strictly concave: therefore, over any closed domain,
it is minimized at a boundary point. In particular, when the domain is [0, β]|S|, the minimum point
must have some coordinate with pi = 0 or pi = β. We can now restrict attention to the remaining
coordinates and apply the same argument again. In this way, we find that the minimum is realized
when wp(S)/β of the pi are β, and the rest are zero. �

Let γ > 1 and let D be a family of distributions. We say that A is an algorithm in model O for
γ-approximating the entropy of a distribution in D, if for every p ∈ D, given oracle access of type
O to p, algorithm A outputs a value A(p) such that H(p)/γ ≤ A(p) ≤ γ · H(p) with probability
at least 3/4. (This probability of success can generically be increased to 1 − δ by running the
algorithm log(1/δ) times and returning the median of the values.) The time complexity of A is
specified as a function of γ and n. We will use the notation Dh to denote the family of distributions
with entropy at least h.

3 The generation oracle model

3.1 Upper bounds

In this section we obtain an algorithm for estimating the entropy of a large class of distributions
in the generation oracle model. We prove the following theorem.

4

Theorem 2 For every γ > 1 and every εo such that 0 < εo ≤ 1/2, there exists an algorithm in the

generation oracle model that runs in time O((n
1

γ2 /ε2
o) · log n), and with success probability at least

3/4, returns a (1 + 2εo)γ-approximation to the entropy of any distribution on [n] in D4γ/(εo(1−2εo)).

Given any η > 0 and γ ′ > 1, one can set γ = γ ′/(1 + 2εo) above and choose εo small enough
to yield a γ ′-approximation algorithm with running time O(n(1+η)/γ′2

log n), for distributions of
entropy Ω(γ/η). Note that choosing η to be small affects both the running time and the family of
distributions to which the algorithm can be applied.

The main idea behind the algorithm is the following. We classify elements in [n] as either big
or small, depending on their probability mass. For a fixed α > 0 and a distribution p, the set of
indices with high probabilities (the big elements) is defined as:

Bα(p)
def
= {i ∈ [n] | pi ≥ n−α}.

We then approximate the contributions of the big and small elements to the entropy separately.
Section 3.1.1 shows how to approximate the entropy of the big elements, Section 3.1.2 shows how
to approximate the entropy of the small elements, and Section 3.1.3 combines these approximations
to yield Theorem 2.

3.1.1 Approximating the entropy of the big elements

To estimate the amount by which the big elements contribute to the entropy, we approximate each
of their probabilities by drawing samples from the generation oracle.

Lemma 3 For every α such that 0 < α ≤ 1, every εo such that 0 < εo ≤ 1/2, and sufficiently large
n, there is an algorithm that uses O((nα/ε2

o) · log n) samples from p and outputs a distribution q

over [n] such that with probability at least 1 − n−1, the following hold for all i:

1. if pi ≥ 1−εo
1+εo

n−α (in particular this holds if i ∈ Bα(p)), then |pi − qi| ≤ εopi, and

2. if pi ≤ 1−εo
1+εo

n−α, then qi ≤ (1 − εo)n
−α.

Proof. Let m = (18nα/ε2
o) · log 2n. Fix any i ∈ [n] and define Xj to be the indicator variable that

the j-th sample is i. Let qi =
∑

Xj/m, the average of independent, identically distributed Boolean
random variables. If pi ≥ 1−εo

1+εo
n−α, then by Chernoff bounds

Pr [|pi − qi| > εopi] ≤ 2 exp

(

−ε2
opim

3

)

≤ 1

2n2
.

Moving onto smaller elements, we again can use Chernoff bounds to show that if pi < 1−εo
1+εo

n−α,
then

Pr
[

qi > (1 − εo)n
−α
]

= Pr
[

qi − pi > (1 − εo)n
−α − pi

]

≤ Pr

[

qi − pi >
εo(1 − εo)

1 + εo
n−α

]

≤ exp

(

−
(

εo(1 − εo)n
−α

(1 + εo)pi

)2

· pim

3

)

5

≤ exp

(

−
(

1 − εo

1 + εo

)2

· 6n−α

pi
· log 2n

)

≤ exp(−2 log 2n) ≤ 1/2n2.

Statements (1) and (2) of the lemma follow from a union bound over all i. �

The following lemma shows that the contribution of the big elements Bα(p) to the entropy can
be approximated well using q instead of p.

Lemma 4 Pick any B ⊆ [n]. Let εo ∈ (0, 1) be chosen so that each i ∈ B satisfies |pi − qi| ≤ εopi.
Then,

|HB(q) − HB(p)| ≤ εo · HB(p) + 2εo · wp(B).

Proof. For i ∈ B, write qi = (1 + εi)pi. We know that |εi| ≤ εo.

HB(q) − HB(p) = −
∑

i∈B

(1 + εi)pi log((1 + εi)pi) +
∑

i∈B

pi log pi

= −
∑

i∈B

(1 + εi)pi log pi −
∑

i∈B

(1 + εi)pi log(1 + εi) +
∑

i∈B

pi log pi

= −
∑

i∈B

εipi log pi −
∑

i∈B

(1 + εi)pi log(1 + εi).

By the triangle inequality,

|HB(q) − HB(p)| ≤
∣

∣

∣

∣

∣

−
∑

i∈B

εipi log pi

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

i∈B

(1 + εi)pi log(1 + εi)

∣

∣

∣

∣

∣

≤
∑

i∈B

−|εi|pi log pi +
∑

i∈B

pi |(1 + εi) log(1 + εi)|

≤ εo · HB(p) + 2εo · wp(B).

The last step above uses the fact that for |ε| ≤ εo ≤ 1, |(1 + ε) log(1 + ε)| ≤ 2|ε| ≤ 2εo. �

3.1.2 Approximating the entropy of the small elements

We now estimate the entropy contribution of the small elements. Let S be any subset of small
elements, that is, S ⊆ [n] \ Bα(p).

If wp(S) ≤ n−α, then the contribution of S to the entropy is below any constant and can be
ignored for approximation purposes. So, we may assume without loss of generality that wp(S) ≥
n−α. Let ŵ(S) be the empirical estimate of the probability mass of S, in other words, the number of
samples from S divided by the total number of samples. The following lemma bounds the accuracy
of this estimate.

Lemma 5 If S ⊆ [n] satisfies wp(S) ≥ n−α and if m = O((nα/ε2
o) log n) samples are drawn from

p, then with probability at least 1 − n−1, the empirical estimate ŵ(S) satisfies (1 − εo) · wp(S) ≤
ŵ(S) ≤ (1 + εo) · wp(S). Moreover, if wp(S) < n−α, then ŵ(S) < (1 + εo)n

−α.

6

Proof. Let Xj be the indicator random variable that takes value 1 when the j-th sample lies in S,
and let X =

∑

Xj . Then X is mŵ(S) and it has expected value E [X] = m · wp(S). The lemma
follows by Chernoff bounds, and by the fact that wp(S) ≥ n−α. Similar to the proof of Lemma 3,
we can show that if wp(S) < n−α, then ŵ(S) < (1 + εo)n

−α. �

Since pi < n−α for i ∈ S, by Lemma 1(a,d), we have that

αwp(S) log n ≤ HS(p) ≤ wp(S) log n + (log e)/e.

Hence, using estimate ŵ(S) for wp(S), we get an approximation to HS(p).

3.1.3 Putting it together

In this section we describe our approximation algorithm for H(p) and prove Theorem 2. The
following is our algorithm for obtaining a γ-approximation to the entropy:

Algorithm ApproximateEntropy(γ, εo)

1. Set α = 1/γ2.

2. Get m = O((nα/ε2
o) · log n) samples from p.

3. Let q be the empirical probabilities of the n elements; that is, qi is the frequency of i in the
sample divided by m. Let B = {i | qi > (1 − εo)n

−α}.

4. Output HB(q) +
wq([n]\B) log n

γ .

Notice that the set B is an empirically-determined substitute for Bα(p). We now prove that this
algorithm satisfies Theorem 2.
Proof. (of Theorem 2) First of all, Lemma 3 assures us that with probability at least 1 − 1/n, two
conditions hold: (1) Bα(p) ⊆ B, and (2) every element i ∈ B satisfies |pi − qi| ≤ εopi. For the rest
of the proof, we will assume that these conditions hold.

Let S = [n] \ B. Assume for the moment that wp(S) ≥ n−α. In this case, we know from
Lemma 5 that with high probability, |wq(S) − wp(S)| ≤ εowp(S). Lemma 1(a,d) tells us that

αwp(S) log n ≤ HS(p) ≤ wp(S) log n + (log e)/e.

Then by Lemma 4,

HB(q) +
wq(S) log n

γ
≤ (1 + εo) · HB(p) + 2εo +

1 + εo

γ
· wp(S) log n

≤ (1 + εo)(HB(p) + γ · HS(p)) + 2εo

≤ (1 + εo)γ · H(p) + 2εo

≤ (1 + 2εo)γ · H(p),

if H(p) ≥ 2/γ. Similarly,

HB(q) +
wq(S) log n

γ
≥ (1 − εo) · HB(p) − 2εo +

1 − εo

γ
· wp(S) log n

7

≥ (1 − εo)

(

HB(p) +
(HS(p) − e−1 log e)

γ

)

− 2εo

= (1 − εo)(HB(p) + HS(p)/γ) − 1 − εo

γ
e−1 log e − 2εo

≥ H(p)/((1 + 2εo)γ),

if H(p) ≥ 4γ
εo(1−2εo) ≥ 2/γ.

It remains to handle the case when wp(S) is less than n−α. Lemma 5 tells us that wq(S) is with
high probability at most (1 + εo)n

−α. Therefore, our estimate of the entropy from small elements,
(wq(S) log n)/γ, lies somewhere between zero and ((1 + εo)n

−α log n)/γ. For any γ bounded away
from one, this is only a negligible contribution to H(p), well within the approximation bound. �

3.2 Lower bounds

In this section we prove lower bounds on the number of samples needed to approximate the entropy
of a distribution to within a multiplicative factor of γ > 1. All of our lower bounds are shown by
exhibiting pairs of distributions that have very different entropies, with ratio at least γ 2, and yet
are hard to distinguish given only a few samples.

3.2.1 Impossibility of approximating entropy in general

First we show that there is no algorithm for computing entropy that can guarantee a bounded
approximation factor for all input distributions. The basic problem is that no amount of sampling
can conclusively establish that a distribution has zero entropy.

Theorem 6 For every γ > 1, there is no algorithm that γ-approximates the entropy of every
distribution in the generation oracle model.

Proof. Let A be any algorithm for computing entropy, and let t(n) be an upper bound on its
running time on distributions over [n]. Consider the two distributions p = 〈1, 0, . . . , 0〉 and q =
〈1−1/(100t(n)), 1/(100t(n)), 0, . . . , 0〉. Notice that p has zero entropy while q has positive entropy.

Suppose we run A on either p or q. Since it uses at most t(n) samples, its oracle calls will
almost always (99% of the time) produce a succession of identical elements, regardless of whether
the underlying distribution is p or q. In such cases, if A guesses that the entropy is zero, its approx-
imation factor on q will be unbounded, whereas if it guesses a positive number, its approximation
factor on p will be unbounded. �

3.2.2 Lower bounds on approximating the entropy of high-entropy distributions

The following theorem shows a lower bound on the number of samples required to approximate the
entropy of distributions with high entropy.

Theorem 7 For every γ > 1 and sufficiently large n, any algorithm in the generation oracle model
that γ-approximates the entropy of a distribution in D(log n)/γ2 requires Ω(n1/2γ2

) samples.

Proof. Consider two distributions p and q on n elements where p is uniform on the set [n] and q is
uniform on a randomly chosen subset S ⊆ [n] of size n1/γ2

. It is easy to see that H(p)/H(q) = γ2.

8

By the Birthday Paradox, with probability 1/2, we will not see any repetitions if we take n1/2γ2

samples from either distribution. In such cases, the samples from p and q look identical. Thus at
least Ω(n1/2γ2

) samples are needed to distinguish these distributions. �

Recently, Ron [9] showed a lower bound of Ω̃(n2/(6γ2−3)) for approximating the entropy. This is
better than the above lower bound when γ <

√

3/2. Her proof also exhibits two distributions with

entropy ratio γ2 and shows that the two distributions are indistinguishable unless Ω̃(n2/(6γ2−3))
samples are taken.

4 The evaluation oracle model: a lower bound

In the introduction, we mentioned that for general distributions over [n], a linear number of queries
is necessary to approximate the entropy in the evaluation oracle model. Since there are only n
possible queries, the complexity of entropy approximation in this model is settled. Next, we study
the number of queries needed when a lower bound on the entropy of the distribution can be assumed.

Theorem 8 Let γ > 1, h > 0, and n be sufficiently large. If an algorithm A that operates in the
evaluation oracle model achieves a γ-approximation to the entropy of distributions over [n] in Dh,
then it must make Ω(n2−γ2(h+1)) queries.

Proof. We will define two distributions p and q in Dh that have entropy ratio at least γ2 and yet
require Ω(n2−γ2(h+1)) queries to distinguish.

Let R be a subset of [n] of size 2γ2(h+1), chosen uniformly at random. Distribution p is defined
to be uniform over R. Let S also be a uniform-random subset of [n], but of smaller size β ·2γ2(h+1),
where β = 1/(γ2(h + 1)/h). In addition, pick s randomly from [n] \ S. Distribution q assigns
probability 2−γ2(h+1) to each element in S and assigns the rest of the probability mass, namely
1 − β, to s.

Both these distributions belong to Dh: H(p) = γ2(h + 1) and H(q) is between h and h + 1 (to
see this, notice HS(q) = h). The ratio between their entropies is H(p)/H(q) ≥ γ2.

In the evaluation oracle, any algorithm that distinguishes between p and q must (on at least
one of these two inputs) discover some location i ∈ [n] with nonzero probability. The number of
queries required is therefore at least the reciprocal of the fraction of the elements with nonzero
probabilities, which is Ω(n/2γ2(h+1)). �

5 The combined oracle model

In this section we consider the combined oracle model in which an algorithm is given both evaluation
and generation oracle access to the same distribution.

5.1 Upper bound

The entropy of a distribution p can be viewed as the expected value of − log pi, where i is distributed
according to p. This suggests an algorithm:

1. Draw m samples from the generation oracle (m to be defined later). Call these i1, . . . , im.

2. For each ij , ask the evaluation oracle for pij .

9

3. Return − 1
m

∑m
j=1 log pij .

As we will now see, if H(p) is not too small this algorithm needs only a polylogarithmic number
of queries in order to return a good approximation.

Theorem 9 Pick any γ > 1 and any h > 0. If the above algorithm is run with m = O
(

γ2 log2 n
h2(γ−1)2

)

,

then it returns a γ-approximation to the entropy of any distribution over [n] in Dh, with success
probability at least 3/4.

Proof. Let m
def
= 3γ2 log2 n

h2(γ−1)2 . Define the random variable Xj
def
= − log pij for j = 1, . . . ,m, and let

X = (1/m)
∑

j Xj be the final answer returned. Clearly, E [X] = E [Xj] = H(p). All that needs to
be shown is that the variance of X is not too large. Since the Xj’s are independent, it will suffice
to bound the variance of an individual Xj .

Lemma 10 Var [Xj] ≤ log2 n.

Proof. For n = 2, maximizing Var [Xj] = p log2 p+(1−p) log2(1−p)− (p log p+(1−p) log(1−p))2

subject to 0 ≤ p ≤ 1 yields Var [Xj] < 1 = log2 n. Therefore, let n ≥ 3. Since Var [Xj] ≤ E
[

X2
j

]

,

it suffices to show an upper bound on E
[

X2
j

]

=
∑

i pi log
2 pi.

Note that the function f(x) = x log2 x is concave for 0 < x < e−1. Hence
∑

i f(pi) is a
symmetric concave function when its domain is limited to p ∈ (0, 1/e)n, and, as in Lemma 1, is
maximized (on this domain) when p is uniform. This maximum value is log2 n.

To finish the proof, we need to show that we cannot attain higher values of
∑

i f(pi) by looking
at p 6∈ (0, 1/e)n. To this end, suppose pj ≥ e−1 for some j. Then there exists k such that
pk ≤ (1 − pj)/(n − 1). Consider the derivative f ′(x) = log2 x + 2 log(e) log x, at points pj and pk.
Using simple calculus, and the fact that n ≥ 3, it is easy to check that f ′(pk) > f ′(pj). Hence, we
can increase the sum by simultaneously decreasing pj and increasing pk. By combining with the
argument above, we conclude that

∑

i f(pi) ≤ log2 n.
�

Since the Xj ’s are identical and independent, Var [X] = Var [Xj] /m ≤ (log2 n)/m.
To bound the error probability of our algorithm, we now use Chebyshev’s inequality, which

states that for any ρ > 0,
Pr [|X − E [X] | ≥ ρ] ≤ Var [X] /ρ2.

We get

Pr [A does not γ-approximate H(p)] = Pr [X ≤ H(p)/γ or X ≥ γ · H(p)]

≤ Pr [|X − H(p)| ≥ (γ − 1)H(p)/γ]

≤ γ2 log2 n

m · H(p)2(γ − 1)2
≤ 1

3
,

where the last inequality follows from the choice of m. �

Corollary 11 There exists an algorithm A in the combined oracle model that γ-approximates H(p)
in O((γ

γ−1)2) time, for distributions with H(p) = Ω(log n).

10

5.2 Lower bounds

This next theorem gives a lower bound for the combined oracle model when the entropy of the
distribution is allowed to be very small, so small that for instance the previous upper bound does
not apply.

Theorem 12 Pick any γ > 1 and any sufficiently large n. Then any algorithm in the combined
oracle model that γ-approximates the entropy of distributions over [n] (with non-zero entropy) must
make Ω(n1/γ2

) oracle calls.

Proof. Let α = 1
γ2 − log e

log n < 1. Consider distributions p and q defined as follows:

pi
def
=







1 − n−α i = 1
n−α i = 2
0 otherwise

qi
def
=







1 − n−α i = 1
n−1 2 ≤ i ≤ n1−α + 1
0 otherwise

Note that, by the concavity of f(x) = −x log x for 0 ≤ δ < 1, and that f ′(1) = − log e, we have that
−(1−δ) log(1−δ) ≤ δ log e. Hence, a quick calculation shows that H(p) = −(1−n−α) log(1−n−α)+
n−α log nα ≤ n−α(log e + α log n) and H(q) > n−α log n. By the choice of α, H(q)/H(p) > γ2.

Let P be the family of distributions obtained from p by permuting the labels of the elements.
Define Q similarly for q. It is simple to verify that any algorithm taking o(nα) samples and making
o(nα) probes will fail to distinguish between a randomly chosen member of P and a randomly
chosen member of Q with high probability. To finish, notice that nα = e−1n1/γ2

. �

The next theorem gives a lower bound on the complexity of approximating the entropy in the
combined oracle model for distributions with entropy above some specific threshold. The proof
generalizes the counterexample in Theorem 12.

Theorem 13 Pick any γ > 1, any h > 0, and any sufficiently large n. Then any algorithm in the
combined oracle model that γ-approximates the entropy of distributions over [n] in Dh must make
Ω(log n/(h(γ2 − 1) + 2γ2)) oracle calls.

Proof. Let w = (h(γ2 − 1) + 2γ2)/ log n and k
def
= d2h/(1−w)e. Consider the following distributions

p and q:

pi
def
=







(1 − w)/k 1 ≤ i ≤ k
w i = k + 1
0 otherwise

qi
def
=







(1 − w)/k 1 ≤ i ≤ k
n−1 k + 1 ≤ i ≤ k + wn
0 otherwise

Note that H(p) = (1−w) log k
1−w −w log w = (1−w) log k−(1−w) log(1−w)−w log w. Hence,

h ≤ H(p) ≤ h + 2. Similarly, H(q) > h + w log n.
Let P be the family of distributions obtained from p by permuting the labels of the elements.

Define Q similarly for q. It is simple to verify that any algorithm taking o(1/w) samples and making

11

o(1/w) probes will fail to distinguish between a randomly chosen member of P and a randomly
chosen member of Q with high probability.

Meanwhile, by the choice of w, the entropy ratio is

H(q)

H(p)
>

h + w log n

h + 2
=

hγ2 + 2γ2

h + 2
= γ2.

This concludes the proof. �

6 Monotone distributions

A monotone distribution p = 〈p1, . . . , pn〉 is one for which pi ≥ pi+1 for all i. The structure of a
monotone distribution makes it much easier to approximate the entropy.

6.1 The evaluation oracle model

We show that given evaluation oracle access to a monotone distribution, we can approximate the
entropy in polylogarithmic time.

Theorem 14 For any γ > 1, there is an algorithm in the evaluation oracle model that γ-approximates
the entropy of monotone distributions on [n] in DΩ(γ2/(

√
γ−1)), and runs in O(d1/ log γe log n) time.

Proof. Algorithm A partitions the domain [n] into intervals, and only queries the endpoints of
each interval. The remaining probability values are interpolated from these queries.

The partition of [n] is constructed recursively, starting with a single active interval [1, n]:

While there is some active interval [`, u]:

• Make it inactive.

• If p` > n−2 and p`/pu > γ, then split [`, u] into two equal-sized active subintervals.

Any required probability values (i.e., p`, pu at each iteration) are obtained from the oracle. At
the end of the procedure, the algorithm has probabilities for a particular sequence of elements
1 = io ≤ i1 ≤ · · · ≤ ik = n, such that for each j < k, either pij ≤ n−2 or pij /pij+1 ≤ γ. The
splitting criteria ensure that the total number of queries k +1 is roughly logarithmic in the number
of elements; more precisely, k ≤ 1 + (1 + 4/ log γ) log n.

The algorithm then approximates p by a distribution q that is interpolated from the handful
of pi values that it queries:

• For each ij , set qij = pij .

• For any i ∈ (ij , ij+1): if pij ≤ n−2 then set qi = 0; otherwise set qi =
√

pijpij+1 .

Let B0 denote the elements whose probabilities get set to zero, and let B = [n]\B0 be the remaining
elements. We know that for i ∈ B0, pi ≤ n−2. Thus, wp(B0) ≤ n−1 and so by Lemma 1(b), B0

doesn’t contribute much to the entropy: HB0(p) ≤ 2n−1 log n. We therefore need to focus on B.

12

For each i ∈ B, define ci
def
= qi/pi. Since the endpoints of the interval containing i have

probabilities that are within a multiplicative factor γ of each other, it follows that 1√
γ ≤ ci ≤

√
γ.

This means that HB(q) is not too different from HB(p):

HB(q) = −
∑

i∈B

qi log qi = −
∑

i∈B

cipi log(cipi) = −
∑

i∈B

cipi log pi −
∑

i∈B

cipi log ci

≤ √
γ · HB(p) +

wp(B) log e

e
≤ γ · H(p),

when H(p) ≥ log e/(e(γ − √
γ)). The first inequality follows from the fact (see Lemma 1) that

−x log x ≤ (log e)/e for all x ∈ (0, 1). Similarly,

HB(q) = −
∑

i∈B

qi log qi = −
∑

i∈B

cipi log(cipi) = −
∑

i∈B

cipi log pi −
∑

i∈B

cipi log ci

≥ 1√
γ
· HB(p) − wp(B)

√
γ log

√
γ ≥ 1√

γ

(

H(p) − 2 log n

n

)

− wp(B)
√

γ log
√

γ

≥ H(p)/γ,

when H(p) ≥ (γ2 + (2n−1√γ log n))/(
√

γ − 1). The second-to-last inequality uses HB0(p) ≤
2n−1 log n.

The algorithm outputs H(q) = HB(q), which we’ve shown is a γ-approximation to H(p). �

6.2 The generation oracle model

We show that the entropy of a monotone distribution can also be approximated in polylogarithmic
time in the generation oracle model. Our algorithm rests upon the following observation that is
formally stated in Lemma 15: if a monotone distribution p over [n] is such that wp([n/2]) and
wp([n]\[n/2]) are very close, then the distribution must be close to uniform. In such a case, we can
approximate the entropy of the distribution by the entropy of the uniform distribution.

The main idea behind our algorithm is to recursively partition the domain into half, stopping
the recursion when either (1) the probability masses of two halves are very close or (2) they are
both too small to contribute much to the total entropy. Our algorithm can be viewed as forming
a tree based on the set of samples S, where the root is labeled by the range [1, n], and if the node
labeled by the range [i, j] is partitioned, its children are labeled by the ranges [i, (i + j)/2] and
[(i + j)/2 + 1, j], respectively. Once the partition tree is determined, the algorithm estimates the
entropy by summing the contributions from each leaf, assuming that the conditional distribution
within a leaf (that is, the distribution restricted to the leaf’s range) is uniform. By the choice
of our splitting and stopping criteria, we show that the number of leaves in the tree is at most
polylogarithmic in n. This in turn allows us to bound both the running time and the probability
of error.

More specifically, the procedure BuildTree(S, β) takes as input a parameter β > 1 and a
multiset S of m samples from p, and outputs a rooted binary tree TS as follows: Let v be a node
in the tree that is currently a leaf corresponding to the interval [i, j] for some i < j. For an interval
I, let SI denote the set of samples that fall in I and |I| the length of the interval. We determine
that v will remain a leaf if either of the following two conditions is satisfied:

13

• |S[i,j]| < mβ/ log3 n (call v light), or

• |S[i,b(i+j)/2c]| ≤ β|S[b(i+j)/2c+1,j]| (call v balanced).

Otherwise, we split v’s interval by attaching two children to v, corresponding to the intervals
[i, b(i + j)/2c] (the left child) and [b(i + j)/2c + 1, j] (the right child). Let I(TS) denote the set of
intervals corresponding to the balanced leaves of TS .

For each balanced interval I ∈ I(TS), we estimate the contribution of the interval to the total
entropy of the distribution. Note that if the interval I had uniform conditional distribution, then

HI(p) =
∑

i∈I

wp(I)

|I| log
|I|

wp(I)
= wp(I) (log |I| − log wp(I)) = wp(I) (log(|I|/2) − log(wp(I)/2)) .

Motivated by this, we define a function α(I, β) that approximates the entropy in the balanced
interval I:

α(I, β)
def
=

|SI |
m

(

log
|I|
2

+ log
m

β|SI |

)

.

We now give the top level description of our algorithm:

Algorithm MonotoneApproximateEntropy(γ)

1. β =
√

γ.

2. Get a multiset S of m = O((β5 log4 n)/(β − 1)2) samples from p.

3. TS = BuildTree(S, β).

4. Output
∑

I∈I(TS) α(I, β).

Overview of the proof.
The main steps in the proof are the following. First, we give a key lemma on which the whole

algorithm is based; this lemma implies that for an interval corresponding to a balanced leaf, the
upper and lower bounds on the possible entropy values are fairly close (Lemma 15). The rest of
the proof is devoted to showing that the domain can be split into intervals that are either balanced
or small enough that they do not contribute much (in total) to the entropy of the distribution. In
Lemma 16, we show that sampling can be reliably used to decide whether or not to split an interval.
We then quantify the relationship between α(I, β) and HI(p) for each interval I corresponding to a
balanced leaf, taking the sampling error into account (Lemma 18). Note that if it were possible to
partition the whole domain into balanced intervals of large enough size, then it would be a simple
matter to bound the the number of intervals and thus the error probability and running time of the
algorithm. The most challenging part of the proof is to deal with the light intervals, in particular
to show two properties: (1) the number of such intervals is approximately logarithmic in the size
of the domain (Lemma 19) and (2) their total entropy contribution is negligible and thus can be
ignored. In order to do this, we prove an interesting and non-trivial property of the tree TS : at
any level, it contains at most O(log log n) nodes. Thereafter, (1) and (2) follow easily.

First, we show upper and lower bounds on the entropy contribution of an interval in terms of
the total weight and the weight distribution between two halves of the interval.

14

Lemma 15 Let I be an interval of length 2k in [n], let I1 and I2 be the bisection of I, and let p

be a monotone distribution over [n]. Then,

HI(p) ≤ wp(I) log k − wp(I1) log wp(I1) − wp(I2) log wp(I2),

and
HI(p) ≥ 2wp(I2) log k − wp(I2)

(

log wp(I1) + log wp(I2)
)

.

Notice in particular that the ratio of the upper bound to the lower bound is at most wp(I)/2wp(I2).

Proof. The upper bound follows from Lemma 1(a): the partial entropies HI1(p),HI2(p) are
maximized when their weights are spread uniformly over their constituent elements.

Let w1
def
= wp(I1) and w2

def
= wp(I2). We will prove the lower bound even for functions that

satisfy a relaxation of the monotonicity property: namely, the condition that for i ≤ k, pi ≥ w2/k,
and for i > k, pi ≤ w1/k. It is easy to verify that any monotone distribution will satisfy this new
constraint. A lower bound on HI1(p) is given by Lemma 1(c) (plug in w2/k for as many elements
as possible), and for HI2(p) it follows immediately from pi ≤ w1/k for i ∈ I2. Combining, we get

HI(p) ≥ w2 log
k

w2
+ w2 log

k

w1
.

�

For a balanced leaf corresponding to an interval I with bisection I1, I2, the error in the entropy
estimate depends upon the ratio wp(I)/2wp(I2). This can be made small by choosing the parameter
β appropriately.

The following lemma shows that the samples can be used to decide if an interval should be split.

Lemma 16 Let I be an interval in [1, n] such that wp(I) ≥ log−3 n and I1, I2 a bisection of I. Let
S be a sample set of size m = O((β5 log4 n)/(β − 1)2) drawn from p. For β > 1,

1. with probability at least 1 − n−2, (1/β) · m · wp(I) ≤ |SI | ≤ β · m · wp(I);

2. if wp(I1)/wp(I2) ≥ 2β − 1, then with probability at least 1 − 2n−2, |SI1 | ≥ β · |SI2 |;

3. if wp(I1)/wp(I2) ≤ (1 + β)/2, then with probability at least 1 − 2n−2, |SI1 | ≤ β · |SI2 |.

Proof. Part 1 follows from a straightforward application of multiplicative Chernoff bounds. The
random variable |SI | is the sum of m independent Bernoulli trials, each with success probability
wp(I). Therefore E [|SI |] = mwp(I), and by the choice of m in the algorithm, the probability that
|SI | deviates from its expectation by more than a multiplicative factor of β is at most 1/n2.

From Part 1, we know that with probability at least 1 − n−2, |SI | ≥ mwp(I)/β. Fix any
t ≥ mwp(I)/β. To prove Part 2, consider the ratio of the number of samples from I1 and I2

conditioned on the event that there are exactly t samples from I. Let Yi, for i = 1, . . . , t, be
an indicator random variable that takes the value 1 if the i-th of these t samples is in I2, and
Y =

∑

i Yi. Therefore, we want to show that the probability that (t − Y)/Y < β is at most 2/n2.
The rest of the proof is an application of Chernoff bounds. Note that (t − Y)/Y < β implies

Y > t/(β + 1). Since E [Y] ≤ t/(2β), we get

Pr

[

Y >
t

β + 1

]

≤ Pr

[

Y > E [Y] +
t(β − 1)

2β(β + 1)

]

≤ exp

(−t(β − 1)2

β2(β + 1)2

)

.

15

Conditioned on the event that t ≥ mwp(I)/β, this probability is less than 1/n2. Combining this
with Part 1, we can conclude that with probability at least 1 − 2n−2, we have |SI1 | ≥ β · |SI2 |.

Similarly, the third part of the lemma can be proved. �

There are various events that we would like to count upon: for instance, that for balanced intervals
I, the ratio of the weights of the two halves is at most 2β − 1; and that intervals associated with
two sibling nodes have weight ratio at least (1 + β)/2. Lemma 16 tells us that these events hold
with high probability. We now package all of them into a single assumption.

Assumption 17 (1) For each interval I corresponding to a balanced node of the tree, |SI | lies in
the range [(1/β) ·m ·wp(I), β ·m ·wp(I)]; (2) for each interval I we decide to split, wp(I1)/wp(I2) ≥
(1+β)/2; (3) for each balanced interval I, we have wp(I1)/wp(I2) ≤ 2β − 1; and (4) each light leaf
has weight at most β2/ log3 n.

Now we can show that under the assumption above, the entropy contribution of each balanced
interval is approximated well. Recall that I(TS) is the set of all balanced intervals in TS .

Lemma 18 Under Assumption 17, for every I ∈ I(TS), if wp(I) ≥ log−3 n, then

HI(p)

β
− 2βwp(I) ≤ α(I, β) ≤ β2HI(p).

Proof. Let I1, I2 be the bisection of I. Under Assumption 17, |SI |/(mβ) ≤ wp(I) ≤ |SI |β/m
and wp(I1)/wp(I2) ≤ 2β − 1. These imply that the upper and lower bounds for HI(p) given in
Lemma 15 are within a multiplicative factor β of one another. Therefore our entropy estimate
α(I, β) is not too far from HI(p):

α(I, β) =
|SI |
m

(

log
|I|
2

+ log
m

β|SI |

)

≤ βwp(I) log(|I|/2) − βwp(I) log wp(I)

≤ β · (wp(I) log(|I|/2) − wp(I1) log wp(I1) − wp(I2) log wp(I2))

≤ β2HI(p).

The second inequality above is a simple consequence of wp(I) = wp(I1)+wp(I2), and the expression
on that line is exactly (β times) the upper bound of Lemma 15. Similarly, for the other direction,

α(I, β) =
|SI |
m

(

log
|I|
2

+ log
m

β|SI |

)

≥ wp(I)

β
log

|I|
2

− wp(I)

β
log

wp(I)

2
− wp(I)

β
log 2β2

≥ 1

β

(

wp(I) log
|I|
2

− wp(I1) log wp(I1) − wp(I2) log wp(I2)

)

− 2βwp(I)

≥ HI(p)

β
− 2βwp(I).

The second inequality follows from the concavity of log x. �

Next, we show a bound on the number of nodes in the tree.

16

Lemma 19 Under Assumption 17, given β > 1, the number of nodes in TS is at most

12 log n log log n

log(β + 1) − 1
.

Proof. For any given level of the tree, let v1, . . . , v2k denote the internal (that is, non-leaf) nodes
at that level, ordered by the intervals they define. There is an even number of these nodes because
they each have a sibling at the same level. If vi, vi+1 are siblings, we know from Assumption 17 that
w(vi) ≥ w(vi+1) · (1 + β)/2. And in general, by monotonicity, w(vi) ≥ w(vi+1). Therefore, as one
moves from v1 to v2k, the weight w(vi) drops by a factor of at least (1 + β)/2 for every two nodes.
Moreover these weights never drop below 1/ log3 n, by the split criterion and Assumption 17. It
follows that

k ≤ 3 log log n

log(1 + β) − 1
.

We now have a bound on the number of internal nodes at any level. To finish the lemma, we
observe that there are at most log n levels, that the total number of nodes (internal and leaf) is
twice the number of internal nodes plus one, and that we have overcounted by at least one at the
root level. �

Now, we are ready to complete our proof.

Theorem 20 For every γ > 1, there is an algorithm that approximates the entropy of a mono-
tone distribution on [n] in D(6γ3/2/(log(

√
γ+1)−1)(

√
γ−1)) to within a multiplicative factor of γ with

probability at least 3/4 in

O

(

γ5/2 log6 n

(
√

γ − 1)2(log(
√

γ + 1) − 1)

)

time.

Proof. Suppose Assumption 17 holds; we will come back and address this later. Let’s start by
handling the leaves. By Assumption 17, each light leaf has weight at most β 2/ log3 n, and so by
Lemma 19, the total weight of the intervals associated with light leaves is at most

6β2 log log n

(log(β + 1) − 1) log2 n
.

Therefore, their combined entropy contribution is at most log n times this,

6γ log log n

(log(
√

γ + 1) − 1) log n

(recall β2 = γ), which will turn out to be negligible for our purposes.
Now we move on to the internal nodes. By Lemma 18,

HI(p)

β
− 2βwp(I) ≤ α(I, β) ≤ β2 · HI(p)

for each interval I associated with a balanced leaf. Let B = ∪I∈I(TS)I. The algorithm’s output is:

∑

I∈I(TS)

α(I, β) ≤
∑

I∈I(TS)

β2 · HI(p) = γ · HB(p) ≤ γ · H(p).

17

We can show the other direction as follows.

∑

I∈I(TS)

α(I, β) ≥ HB(p)

β
− 2β ≥

H(p) − 6γ log log n
(log(

√
γ+1)−1) log n

β
− 2β ≥ H(p)

β2

when H(p) ≥ (6γ3/2/(log(
√

γ + 1) − 1)(
√

γ − 1)).
We now proceed to justify Assumption 17. Consider the 2n intervals that correspond to the

nodes of a complete tree T . By Lemma 16, Assumption 17 fails to hold for a particular interval
of T with probability O(1/n2). Hence, Assumption 17 fails to hold for TS with probability O(1/n)
by the union bound over all the intervals. Therefore, the error probability of the algorithm is o(1).
The running time of the algorithm is the sample size times the size of TS . �

Note that the lower bound shown in Theorem 6 applies to monotone distributions. Therefore, a
restriction on the entropy such as the one in the statement of Theorem 20 is necessary.

7 Subset-uniform distributions

Consider the family of distributions Ek that are uniform over some subset K ⊆ [n] with |K| = k.
The entropy of this class of distributions is log k. If we approximate k to within a multiplicative
factor of γ, then we get a very strong additive approximation to log k. Now, given a generation
oracle access to a distribution that is promised to be from Ek for some k, the entropy estimation
problem reduces to approximating k.

Theorem 21 For every γ > 1, there exists an algorithm in the generation oracle model that, for
every k and for any distribution p ∈ Ek, outputs ` such that k/γ ≤ ` ≤ γk with probability at least
3/4 in O(γ

√
k/(γ − 1)) time.

Proof. Our algorithm, inspired by [4], is as follows.

• Let c = 16γ/(γ − 1)2.

• Draw samples until at least c pairwise collisions are observed.

• If M is the number of samples seen, output
(M

2

)

/c.

Note that M is a random variable.
To analyze this algorithm, pick any integer m, and suppose that m samples are drawn from the

distribution. For i < j, let Xij be an indicator random variable denoting a collision between the
ith and jth samples seen. Let Sm =

∑

i<j Xij be the total number of collisions.

For any i < j, E [Xij] = 1/k; therefore E [Sm] =
(

m
2

)

· 1/k. This motivates the algorithm above.
To bound the chance of failure, we also need the variance of Sm. Notice that

E
[

S2
m

]

= E





(

∑

i<j

Xij

)(

∑

a<b

Xab

)



 =
∑

i<j, a<b

E [XijXab] .

In the final summation, the various terms can be segregated according to the cardinality of the
set {i, j, a, b}. If this set has cardinality 3 or 4, then E [XijXab] = 1/k2. If the set has cardinality

18

2, then E [XijXab] = 1/k. This last possibility occurs for exactly
(m

2

)

of the
(m

2

)2
terms in the

summation. Therefore

E
[

S2
m

]

=

(

(

m

2

)2

−
(

m

2

)

)

1

k2
+

(

m

2

)

1

k
,

whereupon Var [Sm] = E
[

S2
m

]

− E [Sm]2 =
(m

2

)

(1/k − 1/k2) ≤ E [Sm].
What is the chance that the algorithm outputs a number less than k/γ? Let m0 be the largest

integer m such that
(m

2

)

< ck/γ.

Pr [Output is < k/γ] = Pr [M ≤ m0] = Pr [Sm0 ≥ c] ≤ Pr [|Sm0 − E [Sm0] | ≥ (c − E [Sm0])]

This last probability can be bounded by Chebyshev’s inequality, giving

Pr [Output is < k/γ] ≤ Var [Sm0]

(c − E [Sm0])
2

≤ E [Sm0]

(c − E [Sm0])
2

≤ γ

c(γ − 1)2
≤ 1

16
,

where the last two inequalities follow from E [Sm0] < c/γ, and from the particular choice of c.
To bound that chance that the output is more than kγ, we proceed similarly, letting m0 denote

the smallest integer m for which
(m+1

2

)

> cγk. Then

Pr [Output is > kγ] = Pr [M > m0] = Pr [Sm0 < c] ≤ Pr [|Sm0 − E [Sm0] | ≥ (E [Sm0] − c)]

Again using Chebyshev’s inequality, we get

Pr [Output is > kγ] ≤ Var [Sm0]

(E [Sm0] − c)2
≤ E [Sm0]

(E [Sm0] − c)2
≤ 3γ

c(γ − 1)2
≤ 3

16
.

The total probability of error is therefore at most 1/4. When the algorithm succeeds,
(

M
2

)

/c ≤ kγ,
and so the number of samples (and the running time) is O(

√
ckγ). �

Acknowledgment

We thank the referee for improving the presentation of the paper.

References

[1] T. Batu, E. Fischer, L. Fortnow, R. Kumar, R. Rubinfeld, and P. White. Testing random
variables for independence and identity. Proc. 42nd Annual Symposium on Foundations of
Computer Science, pages 442–451, 2001.

[2] T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White. Testing that distributions are
close. Proc. 41st Annual Symposium on Foundations of Computer Science, pp. 259–269, 2000.

[3] W. Feller. An Introduction to Probability Theory and Applications, I. John Wiley & Sons
Publishers, 1968.

[4] O. Goldreich and D. Ron. On testing expansion in bounded degree graphs. ECCC, TR00-020,
2000.

19

[5] O. Goldreich and S. Vadhan. Comparing entropies in statistical zero-knowledge with applica-
tions to the structure of SZK. Proc. 14th IEEE Conf. on Computational Complexity, pp. 54–73,
1999.

[6] B. Harris. The statistical estimation of entropy in the non-parametric case. Colloquia Mathe-
matica Societatis János Bolyai, Topics in Information Theory, 16:323–355, 1975.

[7] M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. Schapire, and L. Sellie. On the learnability
of discrete distributions. Proc. 26th Annual ACM Symposium on Theory of Computing, pp.
273–282, 1994.

[8] S.-K. Ma. Calculation of entropy from data of motion. J. of Statistical Physics, 26(2):221–240,
1981.

[9] D. Ron. Unpublished manuscript, 2005.

[10] S. P. Strong, R. Koberle, R. R. de Ruyter van Steveninck, and W. Bialek. Entropy and
information in neural spike trains. Phys. Rev. Lett., 80:197–200, 1998.

[11] D. Wolpert and D. R. Wolf. Estimating functions of probability distributions from a finite set
of samples. Part I. Bayes estimators and the Shannon entropy. Physical Review E, 52(6):6841–
6854, 1995.

20

