
B
R

IC
S

R
S

-96-42
B

rodal&
S

kyum
:

C
om

puting
k

-ary
C

om
positions

BRICS
Basic Research in Computer Science

The Complexity of
Computing the k-ary Composition of
a Binary Associative Operator

Gerth Stølting Brodal
Sven Skyum

BRICS Report Series RS-96-42

ISSN 0909-0878 November 1996

Copyright c© 1996, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through World Wide
Web and anonymous FTP:

http://www.brics.dk/
ftp://ftp.brics.dk/pub/BRICS
This document in subdirectoryRS/96/42/

The Complexity of Computing the k-ary
Composition of a Binary Associative

Operator∗

Gerth Stølting Brodal† and Sven Skyum

BRICS‡

Department of Computer Science, University of Aarhus
Ny Munkegade, DK-8000 Århus C, Denmark

{gerth,sskyum}@brics.dk

November 27, 1996

Abstract

We show that the problem of computing all contiguous k-ary com-
positions of a sequence of n values under an associative and commu-
tative operator requires 3 k−1

k+1n−O(k) operations.
For the operator max we show in contrast that in the decision

tree model the complexity is
(
1 + Θ(1/

√
k)
)
n − O(k). Finally we

show that the complexity of the corresponding on-line problem for
the operator max is

(
2− 1

k−1

)
n−O(k).

∗This work was partially supported by the ESPRIT Long Term Research Program of
the EU under contract #20244 (ALCOM-IT).
†Supported by the Danish Natural Science Research Council (Grant No. 9400044).
‡Basic Research in Computer Science, Centre of the Danish National Research

Foundation.

1

Introduction

Given a sequence of values (x1, x2, . . . , xn) from a universe U and an asso-
ciative binary operator ⊕, we consider the problem of computing all k-ary
compositions of contiguous subsequences of length k. More formally, the
problem of computing xi ⊕ xi+1 ⊕ · · · ⊕ xi+k−1 for i = 1, 2, . . . , n − k + 1.
Cooper and Kitchen presented a solution to the problem in [3], which requires
3k−1
k+1n ⊕-operations. We show in Section 1 that this is optimal even if ⊕ is

commutative as well.
The solution has applications to e.g. the computer vision task of region di-
lation where a run-length encoding of a region can be grown vertically by
or-ring together k-tuples of rows of the region (see [3]).
For special operators the k-ary composition problem is simple cases of general
problems. For instance, if the universe is the booleans and the operator is
disjunction, the general problem is the boolean sum problem [1, 7, 8]. This
is the problem of computing n outputs from n inputs where each output is
a disjunction of a subset of the inputs. For the general problem the number
of operations might be Ω(n2/log n) [8].
In Section 2 we examine how many comparisons are required to solve the
problem for the operator max in the decision tree model. We show that
the complexity is

(
1 + Θ(1/

√
k)
)
n − O(k). The problem is a special case

of the set-maxima problem [2, 4] where the problem is to compute maxima
for n arbitrary subsets of the input. It is open whether subsets exist such
that the complexity of the problem is Ω(n logn). Efficient solutions to other
special cases than the one dealt with in this paper have been given. In [2]
an O(n) algorithm is given for the case where the sets are the hyperplanes
in a projective geometry. For the general set-maxima problem an optimal
(within a constant factor) randomised algorithm with expected complexity
O(n) was presented in [4].
Finally, the corresponding on-line problem of computing maxima is consid-
ered in Section 3. For the on-line problem it is required that the set maxima
are computed from left to right. That is, all maxima of k consecutive ele-
ments in {x1, x2, . . . , xi−1} are computed before reading xi. We show that
the on-line complexity is

(
2− 1

k−1

)
n−O(k).

2

1 The general problem

In this section we consider how many ⊕-operations are required to compute
the k-ary compositions. An upper bound was given in [3]. We prove that
the bound achieved in [3] is optimal even if ⊕ is commutative as well as
associative.
Let ⊕ be commutative as well as associative and let (x1, x2, . . . , xn) be a
sequence of n values from a universe U . For a subset M ⊆ {1, 2, . . . , n}, let
SM be the composition

⊕
i∈M xi. The problem is to compute

S{1,2,...,k}, S{2,3,...,k+1}, . . . , S{n−k+1,n−k+2,...,n}.

We denote the number of ⊕-operations required by A(n, k).
We need the following notion of a computation graph and a combinatorial
lemma about them.

Definition 1.1 A directed acyclic graph G = (V,E) is a computation graph
if V consists of three kinds of nodes: input, computation and output nodes.
Input nodes have indegree 0 while computation and output nodes have indegree
2. Output nodes have outdegree 0.

Lemma 1.1 Let G = (V,E) be a computation graph with r + 1 input nodes
{v0, v1, . . . , vr} and t output nodes such that

• From any input node there is a path to some output node and

• to any output node there is a path from v0.

Then |V | ≥ 2r + 1.

Proof: Let M ⊆ V be the set of nodes on paths from v0 to output nodes.
To connect the remaining input nodes to output nodes there must be at
least max{r − (|M | − 1), 0} non-input nodes outside M since each node in
M , except v0, has at least one of its predecessors from M . In total we get
that |V | ≥ r + |M | + max{r − |M | + 1, 0} ≥ 2r + 1. 2

Definition 1.2 Let A be an algorithm computing

S{1,2,...,k}, S{2,3,...,k+1}, . . . , S{n−k+1,n−k+2,...,n}.

3

t

t

6I

t

t

6I

t

t

6I

t

t

6I

t

t

6I

t

t

6I

t

t

6I

t

t

6I

t

t

6I

t

t

6I

t

t

6I

t

t

6I

t

t

6I

t

t

6I

t

t

6I

t

t

6I

t

t

6I

t

t

6I

t

t

6I

t

t

6I

t

t

6I

t

t

6I

t

6I

t

6I

t

6I

t

6I

t

6I

t

6I

t

6I

t

6I

t

6I

t

6I

t

6I

t

6I
t

6I
t

6I
t

6I

t

6I
t

6I
t

6I

t

6I
t

6I
t

6I

t

6I

· · · xixi+1· · ·
@

@
@

@
@

@@

@
@

@
@

@
@@

@
@

@
@

@
@@

@
@
@

@
@

@@

@
@

@
@

@
@@

@
@

@
@

@
@@

@
@
@

@
@

@@

@
@

@
@

@
@@

@
@

@
@

@
@@

@
@
@

@
@

@@

@
@

@
@

@
@@

@
@

@
@

@
@@

@
@
@

@
@

@@

@
@

@
@

@
@@

@
@

@
@

@
@@

@
@
@

@
@

@@

@
@

@
@

@
@@

@
@

@
@

@
@@

@@ @
@

@@

@
@
@
@
@@

@
@
@@

@
@@

Figure 1: The computation graph for the algorithm by Cooper and
Kitchen [3].

The computation graph for A is the graph GA = (VA, EA) such that for each
SM computed by A there is a corresponding node vM . If A computes SM as
SM1 ⊕ SM2 then there are directed edges from vM1 and vM2 to vM .

If the algorithm is optimal, the output nodes are exactly

v{1,2,...,k}, v{2,3,...,k+1}, . . . , v{n−k+1,n−k+2,...,n}

corresponding to the values which are to be computed.
The computation graph for the algorithm in [3] is shown in Figure 1.

Theorem 1.2 3k−1
k+1n−O(k) ≤ A(n, k) ≤ 3k−1

k+1n.

Proof: The upper bound was proved in [3].
Now let A be an optimal algorithm computing

S{1,2,...,k}, S{2,3,...,k+1}, . . . , S{n−k+1,n−k+2,...,n}

and GA its computation graph.
Let 1 ≤ b ≤ n+ 1− 2k and consider a block B of nodes in VA:

B = {vM ∈ VA | b ≤ minM ≤ b+ k}.

We will show that |B| ≥ 4k − 2. The theorem follows since VA can be split
into b n

k+1c disjoint blocks and at least 3k − 3 of the nodes in each block are
computation nodes.

4

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

rr

r

r

r

r

r

r

r

r

r

@
@
@
@
@
@
@
@

xb xb+k

Figure 2: The division of a block of the computation graph in Figure 1 into
“triangles”.

Notice that if (vM , vM ′) ∈ EA then

minM ′ ≤ minM ≤ maxM ≤ maxM ′. (1)

The block B is divided into two “triangles” L and R (see Figure 2 for an
example).

L = {vM ∈ VA | b ≤ minM ≤ maxM < b+ k},
R = {vM ∈ VA | b < minM ≤ b+ k ≤ maxM}. (2)

In L there is a path from each of the k input nodes to the output node in L.
Because of (1) above, all those paths lie inside L. Consequently |L| ≥ 2k−1.
It remains to be proven that |R| ≥ 2k − 1 as well. Let GR = (VR, ER) be a
computation graph with VR = R ∪ R′ where

R′ = {vM ∈ VA \R | ∃vM ′ ∈ R : (vM , vM ′) ∈ EA}
and ER = EA ∩ (VR × VR).
R′ contains at least k−1 nodes from L since for each i in {b+1, b+2, . . . , b+
k − 1} there is a path from v{i} (in L) to the output node v{i,i+1,...,i+k−1} (in
R) through nodes vM with minM = i. R′ also contains at least k − 1 nodes
outside L since for each j in {b+ 2, b+ 3, . . . , b+ k} there is a path from v{j}
to the output node v{j,j+1,...,j+k−1} (in R) through nodes vM (outside L) with
maxM = j + k− 1 > b+ k. By identifying v0 in Lemma 1.1 with v{b+k} and
v1, v2, . . . , vr with R′ it follows that |VR| ≥ 2|R′| + 1. Now |R′| ≥ 2(k − 1)
implies that |R| = |VR| − |R′| ≥ |R′|+ 1 ≥ 2k − 1 as was to be proven. 2

5

2 Set-maxima

In this section we examine the complexity of the problem for a constant k
and a sequence (x1, x2, . . . , xn) to compute the set-maxima

max{xi, xi+1, . . . , xi+k−1}

for i = 1, 2, . . . , n− k + 1 [2, 4].
If the complexity is measured as the number of max operations required we
already know the complexity from the previous section. We will use the model
commonly used when measuring maxima problems, namely the decision tree
model. That is, we count the number of comparisons needed to solve the
problem at hand. Let C(n, k) be the number of comparisons needed to solve
the set-maxima problem in the worst case.
For simplicity, we assume throughout this section that no two elements in the
sequence (x1, x2, . . . , xn) are equal. Otherwise the ordering ≺ can be used
where ≺ is defined by (xi ≺ xj) ⇔ [(xi < xj) ∨ ((xi = xj) ∧ (i < j))]. We
also assume (x1, x2, . . . , xn) to be given and fixed, so we will not continuously
refer to it.
We will repeatedly build lists of maxima for prefixes and suffixes for the
various subsequences of the given sequence. The following notions turn out
to be helpful, expressing what is going on.

Definition 2.1 Pref is the function that maps an interval [l, u] to the sorted
list of indices (i1, i2, . . . , im) for maxima for prefixes of (xl, xl+1, . . . , xu). For-
mally Pref is defined as:

Pref([l, u]) = (i1, i2, . . . , im) where l = i1 < i2 < · · · < im ≤ u and

i ∈ {i1, i2, . . . , im} ⇔ xi = max{xl, xl+1, . . . , xi}.

In analogy Suff is the function that maps an interval to the list of maxima
for suffixes.

We call the problem of computing both Pref and Suff for an interval for the
hump problem. Let H(n) be the number of comparisons needed to compute
Pref([1, n]) and Suff([1, n]).

6

Another problem related to the set-maxima problem is the augmented stair-
case problem. This is the problem of computing Pref([1, n]) and in addition
the second largest element. Let S(n) be the number of comparisons needed
to solve the augmented staircase problem.
The motivation for examining the hump and augmented staircase problem is
Lemmas 2.1 and 2.2 to follow.

Lemma 2.1 S(n) ≤ H(n) + 1.

Proof: Assume Pref([1, n]) = (`1, . . . , `p) and Suff([1, n]) = (rq, . . . , r1) are
known. Notice that `p = rq. To solve the augmented staircase problem
we only have to compute the second largest element. In general it is either
x`p−1 or xrq−1 . Which one is determined by one additional comparison. The
special cases where p = 1 or q = 1 are easily dealt with and require no extra
comparison. 2

Lemma 2.2 For any 1 ≤ h ≤ k

H(h) + k − 1
h+ k − 2

n−O(k) ≤ C(n, k) ≤ H(k + 1) + dlog(k − 1)e
k + 1

n+ O(k).

Proof: We first show the upper bound for C(n, k).
We partition the sequence (x1, x2, . . . , xn) into blocks of size k + 1 and solve
the hump problem for each block. This requires at most d n

k+1eH(k + 1)
comparisons. Then the set-maxima for the two subsequences of length k
inside each block are known. The remaining set-maxima are maxima for
subsequences intersecting two consecutive blocks. Let sk−1 ≥ sk−2 ≥ · · · ≥ s1

be the maxima of the suffixes of length k − 1, k − 2, . . . , 1 of a block and let
p1 ≤ p2 ≤ · · · ≤ pk−1 be the maxima of the prefixes of the next block.
These values are known since the hump problem has been solved for each
block. We have to compute max{sk−1, p1}, . . . ,max{s1, pk−1} in order to
compute the maxima for subsequences of length k intersecting the two blocks
in question. Because the two sequences are monotone the outcome will be
sk−1, . . . , si, pk+1−i, . . . , pk−1 for some i. We can determine i by binary search
and therefore the k − 1 maxima by dlog(k − 1)e additional comparisons for
each pair of consecutive blocks. The upper bound follows.

7

6

q q q q q q q q q q q q q q q q q q q q

x1 · · · xn

︷︸︸︷ ︷ ︸︸ ︷k − 2 h

H1

H2

H3

H4

Figure 3: The ordering of the elements used by the off-line adversary strategy.

To show the lower bound we reduce a number of independent instances of
the hump problem to the set-maxima problem.
The idea is that if a subsequence of length h ≤ k is surrounded on both sides
by subsequences of length k − 2 containing “small” elements, an algorithm
solving the set-maxima problem will reveal which comparisons to make to
solve the hump problem for the middle subsequence of length h.
We partition the sequence (x1, x2, . . . , xn) into blocks of size h+ k − 2. The
k − 2 leftmost elements in each block are “small” (think of them as being
−∞). The rightmost h elements are “large”. By scaling, the “large” elements
in each block are made greater than the elements in the blocks to the left of
it. Figure 3 illustrates the set up.
Besides solving all the hump problems any algorithm for the set-maxima
problem has to verify that all the “small” elements are indeed small. Thus
the number of comparisons made is at least (k−2)+H(h) per block except for
the last one. We accounted for the k−2 and H(h). In addition, comparisons
have to be made between the leftmost “large” element in a block and the the
last (“large”) element in the preceeding block to determine the maximum for
the subsequence of length k containing the two elements referred to and the
“small” elements between them. All in all, at least H(h)+k−1 comparisons
per block except for the last one have to be made. 2

The optimal choice of h to maximise H(h)+k−1
h+k−2 depends on H.

8

6

s��
��
��*

s@@I sHH
HY

sPP
PPi

s��
��
��
�*

s@@I sHH
HY

sPP
PPi

sXXX
XXXy

s���
���

���
��:

s@@I sHH
HY

sPP
PPi

sXXX
XXXy

s

s�
���

s�
���

s�
�
��3

sA
A
A
A
AAK

s���

sHH
HH

HH
HY�

s���s��
�*

s��
��1

s���
���:

x1 xl xi xj xr xn

Figure 4: A snapshot of the known ordering for the hump algorithm.

We finally prove two lemmas which lead to the main theorem of the paper,
namely Theorem 2.5.

Lemma 2.3 H(n) ≤ n+ 2
√
n − 2.

Proof: A simple way to solve the hump problem is to compute Pref([1, i])
from left to right and Suff([j, n]) from right to left by increasing i and de-
creasing j one by one and test whether a new maximum for a prefix or a
suffix is met, until i and j meet (i = j − 1). In the extreme case only x1 and
xn are maxima and the situation when i and j meet after n− 2 comparisons
would be that x1 and xn had to be compared and the smaller of the two
should be compared with up to n

2 elements (those tested smaller than the
larger one). This would altogether require 3n

2 − 1 comparisons. We can do
much better by preventing this situation to happen.
Let b be a constant to be fixed later. We augment the simple method by
interrupting the propagation of i (and j) if no new maximum has been en-
countered for b steps. Let xl be the last element in Pref([1, i]) and xr the
first element in Suff([j, n]) upon interruption. xl and xr are compared and if
xl is the smaller one, i is propagated until i and j meet or a new maximum
is met. If xr is the smaller one, j is propagated similarly. See Figure 4.
Now when i and j meet at most b comparisons have to be made. To en-
sure this we did at most bn−1

b+1 c interruptions and therefore at most bn−1
b+1 c

comparisons. We conclude that H(n) ≤ n− 2 + b+ bn−1
b+1 c.

9

If we let b = b
√
nc−1 we get H(n) ≤ n+ b

√
nc+

⌊
n−1
b√nc

⌋
−3 ≤ n+ 2

√
n−2,

and the lemma follows. 2

Lemma 2.4 n+
⌊√

2n + 1
4 −

1
2

⌋
− 3 ≤ S(n).

Proof: The bound is proved through an adversary argument. Divide
(x1, x2, . . . , xn) into b+ 1 blocks of size a, b, b− 1, . . . , 2, 1 where a ≤ b. Then
n = a + b(b+1)

2 and b =
⌊√

2n + 1
4 −

1
2

⌋
. The blocks are named b + 1, b, b −

1, . . . , 2, 1. Notice that block b+ 1 might be empty.
Let `i denote the index of the leftmost element in block i for i = b, b −
1, . . . , 2, 1.
The adversary strategy maintains b+1 parameters cb, cb−1, . . . , c1 and m such
that the following invariant holds true during the computation.

• For b+ 1 ≥ i > m, i > j, all elements in block i can be made smaller
than all elements in block j.

• For m > i ≥ 1, all elements in block i can be made smaller than all
elements in block m.

• For b ≥ i ≥ 1, the element xci (the candidate in block i) can be made
the maximal element within block i and if ci 6= `i, x`i can be made
the second largest element in block i.

• cm = `m.

The invariant is depicted in Figure 5. The parameters are initialised such
that each ci is the leftmost element in block i, i.e.

(cb, cb−1, . . . , c1;m) = (`b, `b−1, . . . , `1; 1).

It is quite involved to write down in detail the strategy to maintain the
invariant. We describe the answers for the three cases where parameters
change. For the remaining cases the answer follows from the invariant to be
maintained.
When xs and xt (s < t) from block i and j (i ≥ j) are compared, we call
the comparison internal if i = j and external otherwise. The three cases
described concern all situations where xs is an element from a block to the
left of block m (b ≥ i > m):

10

6

· · ·

x1 xn· · ·
a b b − 1 m+ 1 m (m − 1) + · · ·+ 1
︸︷︷︸ ︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸

r

r

r

r

Figure 5: The ordering of elements for the augmented staircase problem.
The black points indicate the xci ’s.

A. b ≥ i > m and the comparison is internal (i = j), ci = `i < s and at
least one of xs or xt has not been compared to xci . If xt has not been
compared to xci then the answer given is xs < xt and ci is changed to
t. Otherwise the answer given is xs > xt and ci is changed to s.

B. b ≥ i > m and the comparison is external (i > j), ci = `i = s and some
element xu in block i has not lost any internal comparison. Then the
answer given is xs < xt and ci is changed to u.

C. b ≥ i > m and the comparison is external (i > j), ci = `i and xci has
been compared to all the other elements in the block (and won), and
no elements in the block have lost an external comparison. Then m is
increased to i and the answer given is xs > xt.

Let L be the set of elements having lost at least twice during a computation.
Then at least n+ |L| − 1 comparisons have been made. It is known [6] that
the second largest element has to be found among those elements which have
only lost to the maximal one and that all but one of those have lost twice
during any computation of the second largest (and largest) element. Let
cb, cb−1, . . . , c1 and m be the parameters for the invariant at termination. It
follows from the invariant that L contains max{0,m−2} from block m since
that many elements have lost to the maximal element.

11

In addition we will for each block to the left of block m identify an element
in L. There are three cases:

1. Block i to the left of block m has been in situation A. Then the element
in block i which lost when situation A occured is in L because it will
eventually have lost twice.

2. Block i to the left of block m has been in situation B. Then at least two
elements in block i have lost external comparisons. This is x`i and xci.
Since i−1 internal comparisons in block i have been made, elements in
block i have lost i+ 1 times in total. Consequently one of the elements
must belong to L.

3. Block i to the left of block m has not been in situation A or B (or
equivalently ci = `i). Consider the element x in block i which took
part in an external comparison with an element to the right for the
first time. x cannot be xci since block i has not been in situation B
or C (no block to the left of block m has been in situation C). So
x 6= xci and x have lost both an internal and an external comparison.
Thus x is in L.

It follows that |L| ≥ max{0,m− 2}+ (b−m) and n+ b− 3 comparisons are
required. 2

Combining Lemmas 2.2 (with h = k), 2.3, and 2.4 leads to rather involved
expressions for the upper and lower bound for the set-maxima problem. We
choose to give a simpler result. It is not optimal, and for small values of k it
is far from being optimal.

Theorem 2.5(
1 +
√

2k − 5
2(k − 1)

)
n−O(k) ≤ C(n, k) ≤

(
1 +

2
√
k + 1 + log(k − 1)

k + 1

)
n+O(k).

3 The on-line set-maxima problem

We define the on-line comparison complexity Con-line(n, k) to be the number
of comparisons needed for an on-line algorithm to solve the set-maxima prob-
lem. An on-line algorithm is required to read the sequence (x1, x2, . . . , xn)

12

from left to right and to know all set-maxima in (x1, x2, . . . , xi−1) before
reading xi.

Lemma 3.1 Con-line(n, k) ≤
⌊(

2− 1
k−1

)
n− 1

⌋
.

Proof: We are going to compute max{xi−k+1, xi−k+2, . . . , xi} for i = k, k +
1, . . . , n (in that order). We do this by computing

Suff([1, 1]), Suff([1, 2]), . . . , Suff([1, k − 1])

and then Suff([i− k + 1, i]). The leftmost element in Suff([l, u]) is the maxi-
mal element in the interval [l, u]. Hence all set-maxima have been computed
if we compute the Suff’s as described.
Suff([l, u]) is represented by a double ended queue Q (this it what Knuth
calls a deque [5]).
When xi is read and we go from interval [i − k, i − 1] to [i − k + 1, i],
we first remove the leftmost index of Q if it is i − k. Now Q represents
Suff([i− k + 1, i− 1]). Then we insert i into Q from the right. Before i is
inserted, all indices are removed (from the right) which refer to values less
than xi. Now Q represents Suff([i− k + 1, i]) and the leftmost index refers
to max{xi−k+1, xi−k+2, . . . , xi} which is the new output.
To count the number of comparisons involved we focus on how many com-
parisons any xi can lose. It might lose one comparison when i is inserted into
Q and again when i is removed. This immediately gives an upper bound 2n.
During a computation Q represents interchangeably intervals of length k and
k− 1. If we view a step as going from one interval [i− k+ 1, i− 1] of length
k − 1 to the next interval [i − k + 2, i] of length k − 1 by first inserting
i from the right and then removing the leftmost index from Q if it equals
i− k+ 1. We can observe that each time the leftmost index in Q changes, it
is either because xi does not lose any comparisons during the insertion of i
and i becomes the new leftmost index or it is because the index i− k + 1 is
removed without xi−k+1 losing a comparison. In both cases one comparison
is saved. Since Q cannot have the same leftmost index for k consecutive
intervals of length k − 1, at least d n

k−1e − 1 comparisons are saved. Also x1

is inserted without losing and xn is never removed. So

Con-line(n, k) ≤ 2n− 2−
(
d n
k−1e − 1

)
and the lemma follows. 2

13

6

q q q q
q q q q

q q q q
q q q q

q q q q
q q q q

q q q q
q q q q

q
q

q
q

q
q

q

x1· · ·xk · · · xn

Figure 6: The ordering enforced by the adversary strategy.

Lemma 3.2
(
2− 1

k−1

)
n−O(k) ≤ Con-line(n, k).

Proof: We use an adversary strategy which on xi?xj for i < j answers:

xi > xj if k − 1 divides i, and xi < xj otherwise.

The ordering that we enforce on (x1, x2, . . . , xn) can be seen in Figure 6.
Let 1 < p and (p+ 2)(k − 1) ≤ n. We argue that k − 1 elements

xp(k−1)+1, xp(k−1)+2, . . . , x(p+1)(k−1)

will lose at least 2k − 3 comparisons altogether. Having argued that, the
lemma follows.
Since xp(k−1) = max{x(p−1)(k−1)+i, . . . , xp(k−1)+i} for i = 1, 2, . . . , k − 1 any
on-line algorithm has to compare xp(k−1)+i to xp(k−1) where xp(k−1)+i loses.
Since x(p+1)(k−1) = max{xp(k−1)+1, . . . , x(p+1)(k−1)+1} it has to be verified that
xp(k−1)+i < x(p+1)(k−1) for i = 1, 2, . . . , k− 2. This cannot follow by transitiv-
ity from the comparisons involving xp(k−1) above. Thus xp(k−1)+i has to lose
at least once more (for 1 ≤ i < k − 1) and the statement follows. 2

The following theorem is a direct corollary of Lemmas 3.1 and 3.2.

Theorem 3.3 Con-line(n, k) =
(
2− 1

k−1

)
n−O(k).

14

References

[1] A. E. Andreev. On a family of boolean matrices. Moscow Univ. Math.
Bull., 41(2):97–100, 1986.

[2] Amotz Bar-Noy, Rajeev Motwani, and Joseph Naor. A linear time ap-
proach to the set maxima problem. SIAM Journal on Discrete Mathe-
matics, 5(1):1–9, 1992.

[3] James Cooper and Leslie Kitchen. CASOP: A fast algorithm for comput-
ing the n-ary composition of a binary associative operator. Information
Processing Letters, 34:209–213, 1990.

[4] Wayne Goddard, Claire Kenyon, Valerie King, and Leonard J. Schulman.
Optimal randomized algorithms for local sorting and set-maxima. SIAM
Journal of Computing, 22(2):272–283, 1993.

[5] Donald E. Knuth. The Art of Computer Programming, Volume I: Fun-
damental Algorithms. Addison-Wesley, Reading, MA, 1968.

[6] Donald E. Knuth. The Art of Computer Programming, Volume III: Sort-
ing and Searching. Addison-Wesley, Reading, MA, 1973.

[7] Kurt Mehlhorn. Some remarks on boolean sums. ACTA Informatica,
12:371–375, 1979.

[8] Ingo Wegener. Boolean functions whose monotone complexity is of size
n2/logn. Theoretical Computer Science, 21:213–224, 1982.

15

Recent Publications in the BRICS Report Series

RS-96-42 Gerth Stølting Brodal and Sven Skyum.The Complexity
of Computing thek-ary Composition of a Binary Associa-
tive Operator. November 1996. 15 pp.

RS-96-41 Stefan Dziembowski. The Fixpoint Bounded-Variable
Queries are PSPACE-Complete. November 1996. 16 pp.
Presented at the10th Annual International Conference
of the European Association for Computer Science Logic,
CSL '96.

RS-96-40 Gerth Stølting Brodal, Shiva Chaudhuri, and Jaikumar
Radhakrishnan. The Randomized Complexity of Main-
taining the Minimum. November 1996. 20 pp. To appear
in a special issue ofNordic Journal of Computing de-
voted to the proceedings of SWAT '96. Appears in Karl-
son and Lingas, editors,Algorithm Theory: 5th Scandi-
navian Workshop, SWAT '96 Proceedings, LNCS 1097,
1996, pages 4–15.

RS-96-39 Hans Ḧuttel and Sandeep Shukla. On the Complexity
of Deciding Behavioural Equivalences and Preorders – A
Survey. October 1996. 36 pp.

RS-96-38 Hans Ḧuttel and Josva Kleist. Objects as Mobile Pro-
cesses. October 1996. 23 pp.

RS-96-37 Gerth Stølting Brodal and Chris Okasaki.Optimal Purely
Functional Priority Queues. October 1996. 27 pp. To ap-
pear in Journal of Functional Programming, 6(6), Decem-
ber 1996.

RS-96-36 Luca Aceto, Willem Jan Fokkink, and Anna Inǵolfsdóttir.
On a Question of A. Salomaa: The Equational Theory
of Regular Expressions over a Singleton Alphabet is not
Finitely Based. October 1996. 16 pp.

RS-96-35 Gian Luca Cattani and Glynn Winskel.Presheaf Models
for Concurrency. October 1996. 16 pp. Presented at the
10th Annual International Conference of the European
Association for Computer Science Logic, CSL '96.

