
Rochester Institute of Technology
RIT Scholar Works

Articles

12-21-2006

The Complexity of Computing the Size of an
Interval
Lane A. Hemaspaandra
University of Rochester

Christopher M. Homan
Rochester Institute of Technology

Sven Kosub
Technische Universitat Munchen

Klaus W. Wagner
Julius-Maximilians-Universitat Wurzburg

Follow this and additional works at: http://scholarworks.rit.edu/article

This Article is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Articles by an authorized
administrator of RIT Scholar Works. For more information, please contact ritscholarworks@rit.edu.

Recommended Citation
Hemaspaandra Lane A., Homan Christopher M., Sven Kosub, Wagner Klaus W. (2007) The complexity of computing the size of an
interval. SIAM Journal on Computing 36(5): 1264–1300; https://doi.org/10.1137/S0097539705447013

http://scholarworks.rit.edu?utm_source=scholarworks.rit.edu%2Farticle%2F673&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.rit.edu/article?utm_source=scholarworks.rit.edu%2Farticle%2F673&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.rit.edu/article?utm_source=scholarworks.rit.edu%2Farticle%2F673&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ritscholarworks@rit.edu

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 5, pp. 1264–1300

THE COMPLEXITY OF COMPUTING THE SIZE OF AN INTERVAL∗

LANE A. HEMASPAANDRA† , CHRISTOPHER M. HOMAN‡ , SVEN KOSUB§ , AND

KLAUS W. WAGNER¶

Abstract. Given a p-order A over a universe of strings (i.e., a transitive, reflexive, antisymmetric
relation such that if (x, y) ∈ A, then |x| is polynomially bounded by |y|), an interval size function of
A returns, for each string x in the universe, the number of strings in the interval between strings b(x)
and t(x) (with respect to A), where b(x) and t(x) are functions that are polynomial-time computable
in the length of x. By choosing sets of interval size functions based on feasibility requirements for their
underlying p-orders, we obtain new characterizations of complexity classes. We prove that the set
of all interval size functions whose underlying p-orders are polynomial-time decidable is exactly #P.
We show that the interval size functions for orders with polynomial-time adjacency checks are closely
related to the class FPSPACE(poly). Indeed, FPSPACE(poly) is exactly the class of all nonnegative
functions that are an interval size function minus a polynomial-time computable function. We study
two important functions in relation to interval size functions. The function #DIV maps each natural
number n to the number of nontrivial divisors of n. We show that #DIV is an interval size function
of a polynomial-time decidable partial p-order with polynomial-time adjacency checks. The function
#MONSAT maps each monotone boolean formula F to the number of satisfying assignments of F .
We show that #MONSAT is an interval size function of a polynomial-time decidable total p-order
with polynomial-time adjacency checks. Finally, we explore the related notion of cluster computation.

Key words. computational complexity, interval size functions, cluster computing, counting
functions

AMS subject classifications. 03D15, 06A05, 06A06, 68Q05, 68Q10, 68Q15, 68Q17

DOI. 10.1137/S0097539705447013

1. Introduction. The class NP, which is widely believed to contain compu-
tationally intractable problems, captures the complexity of determining for a given
problem instance whether at least one suitable affirmative solution exists within an
exponentially large set of (polynomial-sized) potential solutions. It is certainly not
simpler, and seemingly much harder, to count all affirmative solutions in such solu-
tion sets. The corresponding counting functions constitute Valiant’s widely studied
counting class #P [Val79]. In the theory of counting functions, which is devoted to
the study of counting versions of decision problems, most classes considered try to
capture the pure phenomenon of counting, and in doing so they obscure other factors,
e.g., orders on solution sets.

∗Received by the editors February 13, 2005; accepted for publication (in revised form) April 25,
2006; published electronically December 21, 2006. A preliminary version of some parts of this paper
was presented at the 28th International Colloquium on Automata, Languages and Programming held
in Crete, Greece, in July 2001 [HKW01]. This work was supported in part by grants NSF-CCR-
9322513, NSF-INT-9815095/DAAD-315-PPP-gü-ab, and NSF-CCF-0426761. This work was done
in part while the second author was at the University of Rochester, and in part while the first two
authors were visiting Julius-Maximilians-Universität Würzburg.

http://www.siam.org/journals/sicomp/36-5/44701.html
†Department of Computer Science, University of Rochester, Rochester, NY 14627 (www.cs.

rochester.edu/u/lane).
‡Department of Computer Science, Rochester Institute of Technology, Rochester, NY 14623 (www.

cs.rit.edu/̃ cmh).
§Institut für Informatik, Technische Universität, München, D-85748 Germany (www14.in.tum.

de/personen/kosub).
¶Institut für Informatik, Julius-Maximilians-Universität Würzburg, D-97074 Würzburg, Germany

(www4.informatik.uni-wuerzburg.de/personen/mitarbeiter/wagner).

1264

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1265

Natural counting problems in #P, of course, sometimes exhibit strong relation-
ships between solutions to the problems. As an example, consider the counting
function #DIV, which counts for each natural number the number of its nontriv-
ial divisors. Clearly, #DIV is in #P since division can be done in polynomial
time. A suitable structure in the set of solutions is the partial order of divisibil-
ity, that is, the order defined by n ≤| m if and only if n divides m. Obviously,
#DIV(m) = ‖{k | 1 <| k <| m}‖, i.e., #DIV(m) counts the number of elements in
the open interval (1,m) in the partial order “≤|” on natural numbers.

Is #DIV an exceptional case among #P functions in that it has such an interval
size characterization? Interestingly, “no” is the answer. It turns out that a function
f is in #P if and only if it is an interval size function of a P-decidable partial p-order.
The latter means that there exist a partial p-order A (i.e., A is a partial order and
in addition satisfies the requirement that for some polynomial p and all x and y, it
holds that x ≤A y implies |x| ≤ p(|y|)) that is P-decidable (i.e., x ≤A y is decidable
in polynomial time) and polynomial-time computable functions b and t such that
f(x) = ‖{z | b(x) <A z <A t(x)}‖, where a <A b denotes a ≤A b ∧ a �= b.

However, knowing that a partial p-order is polynomial-time decidable does not
give us as much information as sometimes is needed. For example, the polynomial-
time decidability of a p-order seemingly does not ensure that it has efficient adjacency
checks, i.e., that there is a polynomial-time algorithm checking whether two elements
are adjacent in this partial p-order. Indeed, if every P-decidable partial p-order has
efficient adjacency checks, then P = NP (and vice versa). Hence adding efficient
adjacency checks to the properties listed above seems to be a restriction. Denote by
IFp the class of interval size functions of P-decidable partial p-orders with efficient
adjacency checks. Denote by IFt the class of interval size functions of P-decidable
total p-orders with efficient adjacency checks. We have IFt ⊆ IFp ⊆ #P. Are these
containments proper? On one hand, we prove that IFt - FP = IFp - FP = #P - FP,
where A - B = {a − b | a ∈ A ∧ b ∈ B}. Thus these three classes do not seem to
be very different; indeed, they are identical given the smoothing power of subtracting
polynomial-time computable adjustments. On the other hand, IFp = #P is equivalent
to P = NP, and IFt = IFp only if UP = PH. Thus it is unlikely that any two of IFt,
IFp, and #P coincide. Further, we study relationships between the classes IFt, FP,
and UPSVt.

We already mentioned that it is unlikely that every P-decidable partial p-order
has efficient adjacency checks. What about the converse? This also is not likely; if
every partial p-order with efficient adjacency checks is P-decidable, then P = PSPACE
(and vice versa). Hence, in the presence of efficient adjacency checks, removing the P-
decidability requirement seems to be a relaxation. Denote by IF∗

p the class of interval
size functions of partial p-orders with efficient adjacency checks. Denote by IF∗

t the
class of interval size functions of total p-orders with efficient adjacency checks. We
have IFp ⊆ IF∗

p and IFt ⊆ IF∗
t ⊆ IF∗

p ⊆ FPSPACE(poly). We prove that IF∗
t (and

IF∗
p) are remarkably powerful: IF∗

t - FP = FPSPACE(poly) - FP. Thus IF∗
t (and

IF∗
p) are in a certain sense close to FPSPACE(poly), the class of polynomially length-

bounded, polynomial-space computable functions. Nonetheless, we show that if these
classes coincide, then UP = PSPACE. We clarify further relationships among such
classes and also with respect to other function classes, in order to understand the
power of interval computing.

We study two important natural functions in relation to interval size functions.
We prove that the counting function #DIV is in IFp. Also, we show that the func-

1266 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

tion #MONSAT, which counts for each monotone boolean formula the number of
satisfying assignments that it has, belongs to IFt.

Using order-theoretic notions to approach complexity issues has a rich tradition
and appears in the literature in a variety of settings (e.g., [GHJY91, GS91, VW95,
HVW96, Kos99]). The approaches in the examples just cited differ in intent from our
approach in that they are based on a specific ordering, namely the lexicographical
ordering. In contrast, for our purposes it is essential to consider more general feasible
orderings (see [MP79, Ko83]).

Among earlier studies, perhaps the notion lying nearest to our approach is that
of a cluster machine, which is a nondeterministic Turing machine that satisfies the
promise that, on each input, all accepting computation paths are always neighbors
with respect to the lexicographical ordering, i.e., the accepting paths must form a
“cluster” [Kos99]. Based on this machine type, Kosub [Kos99] defined the counting
class c#P (in a manner analogous to the way that #P is based on standard, non-
deterministic polynomial-time Turing machines). Kosub obtained many interesting
results about c#P, e.g., c#P seems to differ dramatically from #P in its closure prop-
erties (as regards, e.g., integer division, see [OH93, Kos99]), and he showed that c#P
is closely related to a relatively simple unambiguous-nondeterminism-based function
class, “UPSVt.”

Most of the known results about c#P are proven by techniques that are exceed-
ingly dependent on the fact that c#P is defined using adjacency clusters with respect
to lexicographic order. In particular, the fact that in lexicographic order the function
f(a, b) = ‖{c | a ≤lex c ≤lex b}‖ is easy to compute underpins the results.

In the present paper we define the class CL#P, which studies the complexity of
cluster computing in a context of relatively general (though length-respecting and hav-
ing efficient adjacency checks) orders, rather than merely in the extremely special case
of lexicographic order. We study CL#P and show, for example, that it does not equal
c#P unless UP = PP (and thus the polynomial hierarchy collapses). On the other
hand, we also prove that c#P and CL#P coincide on polynomially bounded func-
tions, and that CL#P shows some behaviors quite reminiscent of c#P, e.g., though
#P is closed under increment, we show that CL#P is closed under increment only if
unexpected complexity collapses occur. More generally, we explore the relationship
between CL#P and such classes as IFt, IFp, and #P. Though CL#P is in general
flavor like an interval function (over a total order satisfying appropriate conditions
but freed from the polynomial-time computability constraints of the functions defin-
ing the top and bottom of the interval), our results usually show that CL#P differs
from the these classes unless unexpected complexity class collapses occur.

2. Preliminaries. Fix our finite alphabet to be Σ = {0, 1}, and let Σ∗ denote
the set of all finite strings over Σ. Let ε denote the empty string. The length of a
string x ∈ Σ∗ is denoted by |x|. The set of all strings of length n is denoted by Σn.
The complement of a set L ⊆ Σ∗ is denoted by L, i.e., L = Σ∗ \L. For any class K of
subsets of Σ∗, let coK be the class {L ⊆ Σ∗ | L ∈ K}. The cardinality of a finite set
S is denoted by ‖S‖. The characteristic function of a set L ⊆ Σ∗ is denoted by χL,
i.e., for all x ∈ Σ∗, χL(x) = 1 ⇔ x ∈ L and χL(x) = 0 ⇔ x /∈ L. Let N denote the set
{0, 1, 2, . . . }. Let N

+ denote the set {1, 2, 3, . . . }.
For the basic notions of complexity theory such as P, NP, PSPACE, and so on

see, e.g., the handbook [HO02].
The computation model we use is the standard nondeterministic Turing machine.
We review the definitions of some complexity classes of functions, already existing

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1267

in the literature, that we will use in this paper.

• FP is the class of all (deterministic) polynomial-time computable, total func-
tions from Σ∗ to N. We will at times use FP to mean the class of all
polynomial-time computable, total functions from Σ∗ to Σ∗. Via the nat-
ural, efficient bijection between N and Σ∗, these two notions are essentially
the same.

• [Lad89] FPSPACE(poly) is the class of all polynomial-space computable,
total functions from Σ∗ to N having polynomially length-bounded outputs.
We will at times use FPSPACE(poly) to mean the class of all polynomial-
space computable, total functions from Σ∗ to Σ∗ having polynomially length-
bounded outputs. Via the natural, efficient bijection between N and Σ∗, these
two notions are essentially the same.

• [Val79] #P is the class of all total functions f for which there exists a
nondeterministic polynomial-time Turing machine M such that, for each x,
f(x) is the number of accepting computations of M(x). Equivalently, #P
is the class of all total functions f for which there exist a set B ∈ P and a
polynomial p such that, for all x ∈ Σ∗, f(x) = ‖{z | |z| = p(|x|)∧(x, z) ∈ B}‖.

• [GS88, Kos99] UPSVt is the class of all total functions f for which there
exists a nondeterministic polynomial-time Turing machine M that, on each
input x ∈ Σ∗, has exactly one accepting path, and the output of this unique
accepting path is f(x).

For function classes F and G where each f ∈ F ∪G maps from Σ∗ to N, let F - G
denote the class of all functions {f − g | f ∈ F and g ∈ G}. Note that the codomain
of F - G functions is {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }. For each class K of sets, let FPK

(respectively, PK) be the class of functions (respectively, sets) that can be computed
in polynomial time with an oracle from K.

Next, we review the definitions of some complexity classes (of sets), already ex-
isting in the literature, that we will use in this paper.

• [Val76] UP is the class of all sets L such that χL ∈ #P.
• [Coo71, Lev75] NP is the class of all sets L for which there exists a function
f ∈ #P such that, for all x ∈ Σ∗, x ∈ L ⇔ f(x) > 0.

• [Sim75, Gil77] PP is the class of all sets L for which there exist functions
f ∈ #P and g ∈ FP such that, for all x ∈ Σ∗, x ∈ L ⇔ f(x) ≥ g(x).

• [OH93, FFK94] SPP is the class of all sets L such that χL ∈ #P - FP.
• [CH90] Few is the class of all sets L for which there exist a function f ∈ #P,

a set B ∈ P, and a polynomial p such that, for all x ∈ Σ∗, f(x) ≤ p(|x|) and
x ∈ L ⇔ (x, 1f(x)) ∈ B. In this definition, changing from “f(x) ≤ p(|x|)” to
“0 < f(x) ≤ p(|x|)” can easily be seen to also yield Few.

• [MS72, Sto77] PH = P ∪ NP ∪ NPNP ∪ NPNPNP

∪

The following results are well-known or easy to see.

Proposition 2.1.

1. FP ⊆ UPSVt = FPUP∩coUP ⊆ #P ⊆ FPSPACE(poly).
2. P ⊆ UP ⊆ Few ∩ NP ⊆ Few ∪ NP ⊆ PNP ⊆ PH ⊆ PSPACE.
3. NP ∪ SPP ⊆ PP.
4. [KSTT92] Few ⊆ SPP.

In this paper, we will sometimes for conciseness refer to the jth part of Theorem i
as Theorem i.j, e.g., we may refer to the third part of the above proposition as
Proposition 2.1.3.

We will use the complexity-theoretic function-to-set operator ∃ of Hempel and

1268 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

Wechsung [HW00], which maps function classes to set classes. For a function class F ,
∃ ·F is the class of all sets L for which there exists a function f ∈ F such that, for all
x ∈ Σ∗, x ∈ L ⇔ f(x) > 0.

The following statements are easy to see.

Proposition 2.2.

1. ∃ ·FP = ∃ · (FP - FP) = P.
2. ∃ ·UPSVt = ∃ · (UPSVt - FP) = ∃ · (UPSVt - UPSVt) = UP ∩ coUP.
3. ∃ ·#P = NP.
4. ∃ · (#P - FP) = PP.
5. ∃ ·FPSPACE(poly) = PSPACE.

3. Orders with feasibility constraints. In this section, we define the notions
of ordering that we use for the remainder of this paper (see also [Ko83]).

A binary relation A ⊆ Σ∗ × Σ∗ is a partial order if it is reflexive, antisymmetric
(i.e., (∀x, y ∈ Σ∗)[x �= y =⇒ ((x, y) �∈ A ∨ (y, x) �∈ A)]), and transitive. A partial
order A is a total order if, for all x, y ∈ Σ∗, (x, y) ∈ A or (y, x) ∈ A. A partial order A
is a partial p-order if there exists a polynomial q such that for all (x, y) ∈ A it holds
that |x| ≤ q(|y|).

For any partial p-order A, we employ the following standard notational conven-
tions. We write x ≤A y if (x, y) ∈ A. We write x <A y if x ≤A y and x �= y. We write
x ≺A y if x <A y and there is no z such that x <A z <A y. If x ≺A y, we say that
x precedes y or, equivalently, y succeeds x. We let A≺ =def {(x, y) | x ≺A y}. The
lexicographical order is denoted by ≤lex, and lexicographical adjacency is denoted by
≺lex.

Note that, for every partial p-order A and every string y, there exist at most
exponentially (in the length of y) many strings that are less than y with respect to
A. Thus, the output of an interval size function on a partial p-order is always at
most exponential in the input length. Note that such exponential value bounds are
typically the case with function classes, such as FP and #P, that are based on Turing
machines having polynomial-time running bounds.

Feasibility constraints on orders are essential to our study. A partial p-order A is
P-decidable if A ∈ P. A partial p-order A is said to have efficient adjacency checks if
A≺ ∈ P.

There are complexity-theoretic connections between these two feasibility require-
ments.

Proposition 3.1. Let A be a partial p-order.

1. If A ∈ P, then A≺ ∈ coNP.
2. If A≺ ∈ P, then A ∈ PSPACE.

Proof. The proof of (1) is immediate.

For (2), let A be a partial p-order that has efficient adjacency checks. Let M
be an NPSPACE machine that accepts A by, on input (x, y), accepting immediately
if x = y and otherwise guessing a sequence z1, . . . , zk such that x ≺A z1 ≺A z2 ≺A

· · · ≺A zk ≺A y. Since A is a partial p-order, for each i ∈ {1, . . . , k}, |zi| is poly-
nomially bounded with respect to |y|, so we need only guess such zi’s whose lengths
are polynomially bounded in |y|. So A ∈ NPSPACE. However, as is well-known,
NPSPACE = PSPACE.

Corollary 3.2.

1. If P = NP, then all P-decidable partial p-orders have efficient adjacency
checks.

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1269

2. If P = PSPACE, then all partial p-orders with efficient adjacency checks are
P-decidable.

In what follows we will see that the converse of each of the claims of Corollary 3.2
also holds.

4. Orders without efficient adjacency checks. We say that a function f :
Σ∗ → N is an interval size function if there exist boundary functions b and t mapping
from Σ∗ to Σ∗ and a partial order A ⊆ Σ∗ × Σ∗ such that, for all x ∈ Σ∗, f(x) =
‖{z | b(x) <A z <A t(x)}‖. In this section, we characterize #P in terms of interval size
functions with polynomial-time decidable p-orders and polynomial-time computable
boundary functions. We also note that if we omit all feasibility restrictions on p-
orders, then all polynomially length-bounded functions can be characterized in a
manner analogous to the way that interval size functions of resource-bounded orders
characterize #P.

Theorem 4.1.
1. For any function f , the following statements are equivalent.

(a) f ∈ #P.
(b) There exist a partial p-order A ∈ P and functions b, t ∈ FP such that,

for all x ∈ Σ∗, f(x) = ‖{z | b(x) <A z <A t(x)}‖.
(c) There exist a total p-order A ∈ P and functions b, t ∈ FP such that, for

all x ∈ Σ∗, b(x) ≤A t(x) and f(x) = ‖{z | b(x) <A z <A t(x)}‖.
2. For any function f the following statements are equivalent.

(a) f is polynomially length-bounded.
(b) There exist a partial p-order A and functions b, t ∈ FP such that, for all

x ∈ Σ∗, f(x) = ‖{z | b(x) <A z <A t(x)}‖.
(c) There exist a total p-order A and functions b, t ∈ FP such that, for all

x ∈ Σ∗, b(x) ≤A t(x) and f(x) = ‖{z | b(x) <A z <A t(x)}‖.
Proof. The implications (1c) ⇒ (1b), (1b)⇒ (1a), (2c) ⇒ (2b), and (2b) ⇒ (2a)

are obvious. We prove that (1a) ⇒ (1c) and (2a) ⇒ (2c).
It is easy to see that, for every polynomially length-bounded function f : Σ∗ → N,

there exist a set B ⊆ Σ∗ × Σ∗ and a strictly increasing polynomial p such that
f(x) = ‖{z | |z| = p(|x|) ∧ (x, z) ∈ B}‖. Note that we may choose B so that, for all
x ∈ Σ∗, (x, 0p(|x|)) �∈ B and (x, 1p(|x|)) �∈ B. If, in addition, f ∈ #P, then B can be
chosen from P.

We construct a total p-order A on Σ∗ as follows. Generally, A will coincide with
the lexicographical order on Σ∗ except that, for every x ∈ Σ∗, the interval between
x0p(|x|) and x1p(|x|) (inclusively) is ordered differently in the following way.

• First comes x1p(|x|).
• Next come the elements of {xz | |z| = p(|x|) ∧ (x, z) ∈ B} in lexicographical

order.
• Finally come the elements of {xz | |z| = p(|x|) ∧ (x, z) �∈ B ∧ z �= 1p(|x|)} in

lexicographical order.
Note that f(x) = ‖{w | x1p(|x|) <A w <A x0p(|x|)}‖. If, in addition, B ∈ P, then
A ∈ P.

We pass on a referee’s comment that if one feels that putting x0p(|x|) before x1p(|x|)

results in a more natural order, one could slightly tweak the order used and still have
the proof go through.

5. Polynomial-time orders with efficient adjacency checks. We know
from Theorem 4.1 that counting the size of intervals with respect to P-decidable
partial p-orders that have polynomial-time computable boundaries computes some

1270 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

function in #P. The situation changes if in addition we require each P-decidable
partial p-order to have efficient adjacency checks.

Definition 5.1. IFp (respectively, IFt) is the class of all functions f : Σ∗ → N

for which there exist a partial (respectively, total) p-order A ∈ P having efficient
adjacency checks and functions b, t ∈ FP, such that, for every x ∈ Σ∗, f(x) =
‖{z | b(x) <A z <A t(x)}‖.

The following theorem places the classes IFt and IFp between two well-known
complexity classes.

Theorem 5.2. FP ⊆ IFt ⊆ IFp ⊆ #P.

Proof. The second inclusion follows from the definitions of IFt and IFp, and the
third inclusion follows from Theorem 4.1. Thus, it remains to prove that FP ⊆ IFt.
For each f ∈ FP, there exists a strictly increasing polynomial p such that f(x) <
2p(|x|) − 1. For x ∈ Σ∗ and i < 2p(|x|), let bin(x, i) be the binary description of i
having exactly p(|x|) bits.

We construct a total p-order A on Σ∗ as follows. Generally, A coincides with
the lexicographical order on Σ∗ except that, for every x ∈ Σ∗, the interval between
x0p(|x|) and x1p(|x|) (inclusively) is ordered in the following way.

• First come the elements of {xbin(x, i) | 0 ≤ i ≤ f(x)} in lexicographical
order.

• Next comes x1p(|x|).
• Finally come the elements of {xbin(x, i) | f(x) < i < 2p(|x|) − 1} in lexico-

graphical order.

Note that A is P-decidable, has efficient adjacency checks, and satisfies f(x) = ‖{w |
x0p(|x|) <A w <A x1p(|x|)}‖.

What else can we say about the relationships between FP, IFt, IFp, and #P? We
start by providing a characterization of IFp based on an important subset of #P. Let
supp(f) denote the support of f , i.e., supp(f) = {x | f(x) �= 0}.

Theorem 5.3. IFp = {f ∈ #P | supp(f) ∈ P}.
Proof. Suppose that f ∈ IFp, via p-order A ∈ P having polynomial-time adja-

cency checks and boundary functions b, t ∈ FP. Note that supp(f) = {x | b(x) ≺A

t(x) ∨ b(x) �≤A t(x)}. Thus, since A ∈ P and A≺ ∈ P, it follows that supp(f) ∈ P
and thus that supp(f) ∈ P. By Theorem 5.2, f ∈ #P. Therefore IFp ⊆ {f ∈
#P | supp(f) ∈ P}.

We now show that {f ∈ #P | supp(f) ∈ P} ⊆ IFp. Suppose f ∈ #P and
supp(f) ∈ P. Since f ∈ #P, there exist a set B ⊆ Σ∗ × Σ∗ from P and a strictly
increasing polynomial p such that f(x) = ‖{z | |z| = p(|x|) ∧ (x, z) ∈ B}‖.

We construct a partial p-order A on Σ∗ as follows. Generally, A coincides with
the lexicographical order on Σ∗ except that, for every x ∈ Σ∗, the interval between
x0p(|x|)00 and x1p(|x|)11 (inclusively) is ordered according to the following rules.

1. x0p(|x|)00 <A x0p(|x|)01 <A x0p(|x|)11.
2. The elements from {xz10 | |z| = p(|x|)∧ (x, z) ∈ B} are pairwise incompara-

ble, and all are between x0p(|x|)01 and x0p(|x|)11.
3. The elements from {xz10 | |z| = p(|x|) ∧ (x, z) �∈ B} ∪ {xzσ | |z| = p(|x|) ∧

z �= 0p(|x|) ∧ σ ∈ {00, 01, 11}} are pairwise incomparable, and all are between
x0p(|x|)00 and x0p(|x|)01.

Note that A is P-decidable and satisfies f(x) = ‖{w | x0p(|x|)01 <A w <A

x0p(|x|)11}‖. Define b(x) =def x0p(|x|)01 and t(x) =def x0p(|x|)11. For each x, we
have by the construction of A that b(x) ≺A t(x) if and only if f(x) = 0. Since by
assumption {x | f(x) > 0} ∈ P the set {x | b(x) ≺A t(x)} belongs to P. By our

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1271

construction, all other adjacency questions are very easily answered by the obvious,
efficient test. So A≺ ∈ P.

From this it follows that IFp and #P coincide on Nonzero, defined as the set
{f | (∀x ∈ Σ∗)[f(x) > 0]}.

Corollary 5.4. IFp ∩ Nonzero = #P ∩ Nonzero.

In what follows, we will sometimes write 1 for the function class consisting of
precisely the constant function λx.1, and we will sometimes write O(1) for the function
class consisting of precisely the functions λx.0, λx.1, λx.2,

Corollary 5.5.

1. #P ⊆ IFp - 1.
2. #P - O(1) = IFp - O(1).

From Theorem 5.2 and Corollary 5.5 we can conclude that IFp ⊆ IFp - 1, which
is equivalent to saying that IFp is closed under increment, i.e., for every f ∈ IFp, the
function f ′ is also in IFp, where, for all x ∈ Σ∗, f ′(x) =def f(x) + 1.

Corollary 5.6. The class IFp is closed under increment.

Regarding IFt, we have the following theorem. Note that this theorem’s second
part says that the three function classes IFt, IFp, and #P are so closely related that
in the presence of easy-to-compute subtractive postcomputation adjustments they
become the same. Though it is not concerned with interval functions, we commend
to the attention of the interested reader a beautiful paper by Ogihara et al. [OTTW96]
that studies whether for #P postcomputation adjustments can annihilate even the
effects of various operators.

Theorem 5.7.

1. #P ⊆ IFt - FP.
2. IFt - FP = IFp - FP = #P - FP.

Proof. (1) For f : Σ∗ → N in #P, there exist a set B ⊆ Σ∗ × Σ∗ from P and a
strictly increasing polynomial p such that f(x) = ‖{z | |z| = p(|x|) ∧ (x, z) ∈ B}‖.

We construct a total p-order A on Σ∗ as follows. Generally, A coincides with the
lexicographical order on Σ∗ except that, for every x, the interval between x0p(|x|)+2

and x1p(|x|)+2 (inclusively) is ordered differently in the following way.

• First come the elements of {xz00 | |z| = p(|x|)} in lexicographical order.
• Next come the elements of {xz11 | |z| = p(|x|) ∧ (x, z) ∈ B} ∪ {xz01 | |z| =

p(|x|)} in lexicographical order.
• Finally come the elements of {xz11 | |z| = p(|x|)∧ (x, z) �∈ B}∪{xz10 | |z| =

p(|x|)} in lexicographical order.

Note that A is in P, has efficient adjacency checks, and satisfies ‖{w | x1p(|x|)00 <A

w <A x0p(|x|)10}‖ = f(x) + 2p(|x|).

(2) This follows from Theorem 5.2 and part 1 of the present theorem.

Corollary 5.8. FPIFt = FPIFp = FP#P.

The previous results indicate that the computational power of IFp and IFt are not
far from the computational power of #P. Nonetheless, Theorem 5.10 shows that these
classes cannot coincide unless P = NP. In the proof of Theorem 5.10 we will draw
on the following lemma regarding the application of the ∃ operator to IFp and IFt.
Comparing Lemma 5.9 with Corollary 5.4 and taking into account that ∃·#P = NP,
it turns out that it is precisely the possibility that f(x) = 0 that makes the classes
#P and IFp potentially differ.

Lemma 5.9. ∃· IFp = ∃· IFt = P.

Proof. For L ∈ ∃·IFp there exist a p-order A ∈ P having efficient adjacency checks
and b, t ∈ FP such that, for all x, it holds that x ∈ L ⇔ ‖{z | b(x) <A z <A t(x)}‖ > 0.

1272 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

Thus, for all x ∈ Σ∗, x ∈ L ⇔ [b(x) ≤A t(x) and b(x) �≺A t(x)], so x ∈ L can be
checked in polynomial time.

Choose L ∈ P. Thus χL ∈ FP. By Theorem 5.2, χL ∈ IFt, thus L ∈ ∃· IFt.

Theorem 5.10. The following statements are equivalent.

1. P = NP.
2. IFp = #P.
3. IFt = #P.
4. Every P-decidable partial p-order has efficient adjacency checks.
5. Every P-decidable total p-order has efficient adjacency checks.

Proof. (1) ⇒ (4) follows from Corollary 3.2.1. (4) ⇒ (5) is immediate from
the definitions. (5) ⇒ (3) follows from Theorem 4.1.1. (3) ⇒ (2) follows from
Theorem 5.2. To see that (2) ⇒ (1), if IFp = #P then ∃·IFp = ∃·#P. By Lemma 5.9
and Proposition 2.2.3 we have P = NP.

We know from Theorem 5.2 that FP ⊆ IFt. However, if IFt ⊆ FP or even
IFt ⊆ UPSVt, then severe consequences follow.

Theorem 5.11.

1. FP = IFt if and only if P = PP.
2. IFt ⊆ UPSVt if and only if UP = PP.
3. UPSVt ⊆ IFp if and only if P = UP ∩ coUP.

Proof. For items (1) and (2) we consider the left-to-right direction first. From
Theorem 5.7 and Proposition 2.2, we can conclude under the assumption FP = IFt

that PP = ∃ · (#P - FP) = ∃ · (IFt − FP) = ∃ · (FP - FP) = P and we can
conclude under the assumption IFp ⊆ UPSVt that PP = ∃ · (#P - FP) = ∃ · (IFt -
FP) ⊆ ∃ · (UPSVt - FP) = UP ∩ coUP. For the right-to-left directions, if P = PP,
then IFt ⊆ #P ⊆ FP#P = FPPP = FP. Thus, IFt = FP. If UP = PP, then
IFt ⊆ #P ⊆ FP#P = FPPP = FPUP∩coUP = UPSVt.

For item (3), from UPSVt ⊆ IFp, Proposition 2.2, and Lemma 5.9 it follows
that UP ∩ coUP = ∃ · UPSVt ⊆ ∃ · IFp = P. For the right-to-left direction, by
Proposition 2.1.1, P = UP ∩ coUP implies UPSVt = FP. So, by Theorem 5.2,
P = UP ∩ coUP implies UPSVt ⊆ IFp (and even UPSVt ⊆ IFt).

In contrast to Theorem 5.11.3, when restricted to strictly positive functions the
class UPSVt is even included in IFt.

Theorem 5.12. UPSVt ∩ Nonzero ⊆ IFt ∩ Nonzero.

A proof of Theorem 5.12 is in the technical report version [HHKW05] of this
paper. Since UPSVt is closed under increment, Theorem 5.12 yields the following
corollary.

Corollary 5.13. UPSVt ⊆ IFt - 1.

Corollary 5.6 showed that the class IFp is closed under increment. This is also
true for the class IFt.

Theorem 5.14. The class IFt is closed under increment.

Proof. For f ∈ IFt there exist a P-decidable p-order A on Σ∗ with efficient adja-
cency checks and functions b, t ∈ FP such that, for all x ∈ Σ∗, f(x) = ‖{w | b(x) <A

w <A t(x)}‖. Without loss of generality we may require that b(x) ≤A t(x), since on
inputs not satisfying that we may modify t(x) to output b(x). Let p be a strictly
increasing polynomial such that, for all y ∈ Σ∗ satisfying y ≤A t(x), |y| < p(|x|).

We construct a total p-order A′ on Σ∗ as follows. Generally, A′ coincides with
the lexicographical order on Σ∗ except that, for every x ∈ Σ∗, the interval between
x0p(|x|)+2 and x1p(|x|)+2 (inclusively) is ordered in the following way.

• First comes x0p(|x|)+2.

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1273

• Next come the elements of Dx =def {x0p(|x|)−|z|1z0 | b(x) ≤A z ≤A t(x)}, for
which we set x0p(|x|)−|y|1y0 ≤A′ x0p(|x|)−|z|1z0 if and only if y ≤A z.

• Finally come the elements of {xu | |u| = p(|x|) + 2} − (Dx ∪ {0p(|x|)+2}) in
lexicographical order.

Note that A′ is P-decidable, that it has efficient adjacency checks, and that f(x)+1 =
‖{w | x0p(|x|)+2 <A′ w <A′ x0p(|x|)−|t(x)|1t(x)0}‖.

Corollary 5.15. IFt ⊆ IFt - 1.

Although the statement “UPSVt = IFt” is not likely to be true (see Theo-
rem 5.11), for the case of strictly positive, polynomially bounded functions the analo-
gous statement holds. We define PolyBounded =def {f | (∃ polynomial p)(∀x)[f(x) ≤
p(|x|)]}.

Theorem 5.16.

1. IFt ∩ PolyBounded ⊆ UPSVt ∩ PolyBounded.
2. IFt ∩ PolyBounded ∩ Nonzero = UPSVt ∩ PolyBounded ∩ Nonzero.
3. UPSVt ∩ PolyBounded ⊆ IFp ∩ PolyBounded if and only if P = UP ∩ coUP.

A proof of Theorem 5.16 is in the technical report version [HHKW05] of this
paper.

From Theorem 4.1 we know that total p-orders that are efficiently decidable and
partial p-orders that are efficiently decidable describe the same class of functions in
our setting (namely #P). If we consider p-orders that additionally have efficient
adjacency checks, then the analogous confluence of total and partial does not hold
unless an unexpected complexity class collapse occurs.

Theorem 5.17. If IFt = IFp, then UP = PH.

Proof. Assume that IFt = IFp. We show that coNP ⊆ UP (which is equivalent to
the statement UP = PH). Let L ∈ coNP, i.e., there is a function f ∈ #P such that, for
all x ∈ Σ∗, x ∈ L ⇔ f(x) = 0. Consider the function f ′, where f ′(x) =def f(x) + 1.
Thus x ∈ L ⇔ f ′(x) = 1 and, since #P is closed under increment, we conclude
that f ′ ∈ #P ∩ Nonzero = IFp ∩ Nonzero = IFt ∩ Nonzero. Thus, there exist a
total p-order A ∈ P with efficient adjacency checks and functions b, t ∈ FP such that
f ′(x) = ‖{z | b(x) <A z <A t(x)}‖. Let q be a polynomial such that (x, y) ∈ A implies
|x| ≤ q(|y|). Define M to be a machine that, on input x ∈ Σ∗, nondeterministically
guesses z such that |z| ≤ q(|t(x)|) and checks whether b(x) ≺A z ≺A t(x). Clearly,
M runs in polynomial time (since A has efficient adjacency checks) and always has
at most one accepting path (since A is a total p-ordering and we are doing two
adjacency checks in our test). Moreover, x ∈ L if and only if M on x has an accepting
computation path. Thus, L ∈ UP.

6. Arbitrary orders with efficient adjacency checks. In the previous sec-
tion, we studied polynomial-time-decidable p-orders having efficient adjacency checks.
We showed that the classes defined by interval size functions over such orders, IFp

and IFt, are very close to #P. In the present section, we consider what happens when
we do not insist on polynomial-time decidability for the order but still require efficient
adjacency checks. Section 6.1 presents our results on this. Due to its complexity and
length, the proof of one key claim of that section, Lemma 6.5, is presented separately
as section 6.2.

6.1. Results on arbitrary orders with efficient adjacency checks. In this
section, we study p-orders that have efficient adjacency checks but that are not re-
quired to be polynomial-time decidable. We define two classes to capture this behav-
ior.

1274 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

Definition 6.1. The class IF∗
p (respectively, IF∗

t) is the set of all functions
f : Σ∗ → N for which there exist a partial (respectively, total) p-order A having
efficient adjacency checks and functions b, t ∈ FP such that, for every x ∈ Σ∗, f(x) =
‖{z | b(x) <A z <A t(x)}‖.

We have the following inclusions between classes of interval size functions and
other complexity classes of functions.

Proposition 6.2. IFt ⊆ IF∗
t ⊆ IF∗

p ⊆ FPSPACE(poly) and IFt ⊆ IFp ⊆
IF∗

p ∩ #P ⊆ #P ⊆ FPSPACE(poly).
Proof. The only inclusion that is nontrivial is IF∗

p ⊆ FPSPACE(poly). Let f be in
IF∗

p via a partial p-order A having efficient adjacency checks and functions b, t ∈ FP.
Let p be a polynomial such that, for all x, y ∈ Σ∗, (x, y) ∈ A implies |x| ≤ p(|y|).
From Proposition 3.1 we know that A is in PSPACE. Thus, there is a polynomial-
space Turing machine M that, for any input x ∈ Σ∗, counts by brute force how many
strings z of length at most p(|t(x)|) satisfy b(x) <A z <A t(x). We may thus conclude
that f is in FPSPACE(poly).

The main results of this section show that the computational powers of IF∗
p and

IF∗
t are close to the computational power of FPSPACE(poly). In fact, within the

flexibility of the simple postcomputation adjustment of subtracting polynomial-time
computable functions, these three classes become the same.

Theorem 6.3. IF∗
t - FP = IF∗

p - FP = FPSPACE(poly) - FP.
Theorem 6.4. ∃ · IF∗

t = ∃ · IF∗
p = PSPACE.

Theorem 6.4 can be interpreted to say something a bit surprising about the com-
plexity of reachability, namely, that in a certain sense reachability checking in suc-
cinctly specified chains is PSPACE-complete. To see this, we reason as follows. There
exist PSPACE-complete problems. So from that and Theorem 6.4, in light of Defini-
tion 6.1, we have that there are a total p-order A and functions b, t ∈ FP such that the
set {x | f(x) > 0} is PSPACE-complete, where f(x) = ‖{z | b(x) <A z <A t(x)}‖. To
interpret this all in terms of reachability in a succinctly specified chain, we can view
A as specifying an infinite chain such that a has an edge to b precisely if b is right-
adjacent to a. Testing whether f(x) > 0 is asking “Is it the case that both (a) t(x) is
not right-adjacent to b(x), and (b) there is a path from b(x) to t(x) within the chain?”
Note that the “(a)” part of this test is a polynomial-time test, so the complexity is
coming from the “(b)” part. Thus, in the sense just mentioned, Theorem 6.4 shows
the unexpected result that even for succinctly, simply specified chains, reachability
testing where the “to” and “from” elements are indirectly polynomial-time specified
by the input is PSPACE-complete. However, the problem just discussed, where the
“to” and “from” elements are determined by polynomial-time computable functions
of the input, can easily be seen—being careful of course about condition “(a)” from
above—to polynomial-time many-one reduce to the more flexible case in which the
“to” and “from” elements are the input. And so we have that there exists a set
A ⊆ N

2, A ∈ P, such that the directed graph (N, A) is a chain and its reachability
problem,

{(x, y) | x, y ∈ N and y is reachable from x in (N, A)},

is PSPACE-complete. Even in light of the existing results showing that many problems
about succinctly specified graphs are hard, and often PSPACE-complete (see [Wag84,
Wag86, PY86, GW83], but for contrast see also [HHW05, NT05]), this result, which
speaks to succinctly specified chains, seems surprising. (These comments all regard
the “total” part of Theorem 6.4. The “partial” part of Theorem 6.4 implies the

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1275

analogous but far less surprising claim for succinctly specified graphs (as opposed to
succinctly specified chains), and in fact would give one an alternate way of seeing
the known (see [Wag84, Wag86, PY86, GW83]) result that the graph reachability
problem in succinctly specified graphs is PSPACE-complete. By the way, PSPACE-
completeness is known from those earlier works to still hold even when the graphs are
restricted to outdegree one (see [Wag84, Wag86, PY86, GW83], and the discussion in
[Tan01]), which brings one somewhat closer to the chains cases mentioned above.)

Theorems 6.3 and 6.4 follow immediately from Proposition 6.2 and the following
lemma, whose proof is deferred to section 6.2.

Lemma 6.5. For each f ∈ FPSPACE(poly), there exist a total p-order A having
efficient adjacency checks and polynomial-time computable functions s : N → N, b :
Σ∗ → Σ∗, b′ : Σ∗ → Σ∗, and t : Σ∗ → Σ∗ such that, for all x ∈ Σ∗,

1. s is polynomially bounded,
2. ‖{z | b(x) <A z <A t(x)}‖ = 22s(|x|)+1 + f(x) − 2, and
3. ‖{z | b′(x) <A z <A t(x)}‖ > 0 if and only if f(x) = 1.

As a consequence of Theorems 6.3 and 6.4, we obtain characterizations for the
class FPSPACE(poly) in terms of IF∗

t . For classes F and G of functions from Σ∗ to
N, let F ⊖ G denote the class of all total, nonnegative functions in F - G, i.e., the
class of all total functions h for which there exist total functions f ∈ F and g ∈ G
such that, for all x ∈ Σ∗, f(x) ≥ g(x) and h(x) = f(x) − g(x).

Corollary 6.6.

1. FPSPACE(poly) = IF∗
t ⊖ FP = FPIF∗

t = FP∃·IF∗
t .

2. FPSPACE(poly) = IF∗
p ⊖ FP = FPIF∗

p = FP∃·IF∗
p .

Proof. Regarding part 1, by Theorem 6.3, Proposition 6.2, and Theorem 6.4
we have FPSPACE(poly) ⊆ IF∗

t ⊖ FP ⊆ FPIF∗
t ⊆ FPFPSPACE(poly) ⊆ FPPSPACE

⊆ FP∃·IF∗
t ⊆ FPPSPACE ⊆ FPSPACE(poly). Part 2 holds by the same inclusion

chain applied to IF∗
p.

Though Theorem 6.3 shows that IF∗
t is almost as powerful as FPSPACE(poly),

the following theorem shows that it is unlikely that IF∗
t actually coincides with

FPSPACE(poly).

Theorem 6.7. If FPSPACE(poly) ⊆ IF∗
p, then UP = PSPACE.

Proof. Suppose that FPSPACE(poly) ⊆ IF∗
p. Let L ∈ PSPACE. Then its

characteristic function χL is in FPSPACE(poly), and by hypothesis χL ∈ IF∗
p via

some partial p-order A having efficient adjacency checks, some polynomial p such that
(x, y) ∈ A implies |x| ≤ p(|y|), and functions b, t ∈ FP such that χL(x) = ‖{z | b(x) <A

z <A t(x)}‖. Note that L = {x | (∃z)[|z| ≤ p(|t(x)|) ∧ b(x) ≺A z ≺A t(x)]}. Thus,
keeping in mind that (∀x)[χL(x) ≤ 1], we have L ∈ UP.

From Theorems 6.3 and 6.4, if IF∗
t = IFt or IF∗

t ⊆ #P - FP, then strong conse-
quences follow, as the following two corollaries show.

Corollary 6.8. The following statements are equivalent.

1. P = PSPACE.
2. IFp = IF∗

p.
3. IFt = IF∗

t .
4. Every partial p-order with efficient adjacency checks is P-decidable.
5. Every total p-order with efficient adjacency checks is P-decidable.

Proof. (1) ⇒ (4) is just Corollary 3.2.2. (4) ⇒ (5) is trivial. (4) ⇒ (2) and (5)
⇒ (3) follow from the definitions of IFp, IF∗

p, IFt, and IF∗
t . By Theorem 6.4 and

Lemma 5.9, (2) implies PSPACE = ∃·IF∗
p = ∃·IFp = P and so implies (1). Similarly,

(3) implies PSPACE = ∃· IF∗
t = ∃· IFt = P and so implies (1).

1276 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

Corollary 6.9.
1. If IF∗

t ⊆ #P - FP, then SPP = PSPACE.
2. If IF∗

t ⊆ #P, then NP = SPP = PSPACE.
Proof. (1): For L ∈ PSPACE, χL ∈ FPSPACE(poly). By Proposition 6.2, Theo-

rem 6.3, and our assumption, χL ∈ #P - FP. Thus, L ∈ SPP.
(2): From Theorem 6.4 and our hypothesis, we obtain PSPACE ⊆ ∃ · #P =

NP. Combining this with the first part of this theorem we have SPP = NP =
PSPACE.

The next result is analogous to results regarding the potential equality of IFt and
IFp.

Theorem 6.10. If IF∗
t = IF∗

p, then UP = PH.
Proof. The proof follows the proof of Theorem 5.17, except that, for the function

there called f ′, we now conclude that f ′ ∈ #P ∩ Nonzero = IFp ∩ Nonzero ⊆ IF∗
p ∩

Nonzero = IF∗
t ∩ Nonzero. This approach works because the hypothesis f ′ ∈ IF∗

t can
be exploited in the same way as the hypothesis f ′ ∈ IFt was exploited in the proof of
Theorem 5.17. This is because in the proof of Theorem 5.17 the P-decidability of the
total p-order underlying f ′ ∈ IFt was not even used.

Figure 1 summarizes the results we have obtained regarding the inclusion struc-
ture of our classes. Although we have not proven consequences of collapses other than
those drawn in the figure, we conjecture that the inclusions in the figure are all one
can prove without assuming unexpected collapses of complexity classes.

6.2. Proof of Lemma 6.5. The goal of this section is to prove Lemma 6.5. For
convenience, we repeat its statement here.

Lemma 6.5. For each f ∈ FPSPACE(poly), there exist a total p-order A having
efficient adjacency checks and polynomial-time computable functions s : N → N, b :
Σ∗ → Σ∗, b′ : Σ∗ → Σ∗, and t : Σ∗ → Σ∗ such that, for all x ∈ Σ∗,

1. s is polynomially bounded,
2. ‖{z | b(x) <A z <A t(x)}‖ = 22s(|x|)+1 + f(x) − 2, and
3. ‖{z | b′(x) <A z <A t(x)}‖ > 0 if and only if f(x) = 1.

Constructing the p-order A mentioned in Lemma 6.5 is, compared to the other p-
orders described in this paper, more technically involved. Before we prove Lemma 6.5,
we will show, for any f ∈ FPSPACE(poly), how to construct A based on the behavior
of a Turing machine that computes f . We will then prove Lemma 6.5 by showing
that A has all the properties claimed by the lemma.

Our approach is based on the fact that, for any deterministic Turing machine M
and any halting configuration c of M , the set of all configurations of M that lead to
c form a tree having c as its root and as its edges every pair of configurations where
in one time step M moves from one configuration to the other. We base the order
of A on a traversal of these trees. Each argument to A encodes either nonsense or
an input to M , a configuration of M whose length is bounded in the space bound on
M(x), a direction relative to the traversal of the tree to which the given configuration
belongs, a guess as to what the eventual halting configuration of M will be when
run from the given configuration, and some additional information we describe later.
These arguments effectively yield multiple copies of each tree. The order A organizes
the arguments in such a way that, in the case of Lemma 6.5.2 (Lemma 6.5.3 uses
basically the same approach) b(x) and t(x) delimit an interval that has two elements
for every configuration within the space bound imposed by M(x), and f(x) additional
elements.

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1277

UPSVt

IFp ⊖ 1

U
P

=
P
SP

A
C
E

P
=

P
SP

A
C
E

SP
P

=
P
SPA

C
E

UP
=

PP

P
=

UP
∩

co
UP

UP = PH

NP = PP

P = NP

UP = PH

P = PP

U
P

=
S
P
P

IFt ⊖ 1

IF∗
p

IFp

#P

FP

#P ⊖ FP = IFp ⊖ FP = IFt ⊖ FP

IF∗
t

FPSPACE(poly) = IF∗
p ⊖ FP = IF∗

t ⊖ FP = FPIF∗
p = FPIF∗

t = FP∃·IF∗
p = FP∃·IF∗

t

P
=

UP
∩

co
UP

UP = PH

IFt

P
=

P
SP

A
C
E

UP = PP

Fig. 1. The landscape of interval size function classes and related function classes. An equation
E on the edge between the function classes F1 and F2 means that F1 = F2 implies E. The edge
equations that are not immediate consequences of the results of this paper are well-known or easy to
see. Since FP, which forms the base of this containment tower, is of type Σ∗ → N, the fact that in
the above figure we use “⊖” rather than “-” is of no consequence.

The key “trick” in this construction is the sequence of “guess bits” each argument
to A has, which allow us to send along each tree “messages” that link each config-
uration to its actual halting configuration. We “pad” A, near arguments containing
initial configurations, with as many additional arguments as the guess bits predict.
We of course do not know at this point (i.e., “near” an initial configuration) if the
guess is correct. However, by the end of the computation we do know. So we simply
place together in A all trees corresponding to correct guesses and set, in the case of
Lemma 6.5.2, b(x) and t(x) to the boundaries of this interval (which “squeezes out”
from the desired interval all incorrect guesses). This yields the claimed results.

We will construct A in five phases, described as follows.

1. Fixing the computational model. We will base A on a Turing machine
M that computes f in a natural but somewhat nonstandard way. The benefit
of using M rather than an arbitrary FPSPACE(poly) Turing machine for f
is that it will be easier to work with binary encodings of the configurations

1278 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

of M and the actions of M than with those of an arbitrary FPSPACE(poly)
Turing machine for f .

2. Fixing the encoding. We will base A on binary encodings of the con-
figurations of M , which we call enhanced instantaneous descriptions. Our
encodings are like standard instantaneous descriptions (IDs) [HMU01] but
differ in three crucial ways. First, our encodings are actual binary strings
rather than sequences of abstract symbols. Second, we use different syntax
(which we describe below). Finally, our descriptions contain more informa-
tion than is actually needed to describe a configuration of M at an instant in
time. This additional information is never accessed by M , so its presence in
the encodings does not affect the performance of M . At the same time, its
presence will greatly aid us in constructing A.

3. Building trees. For some appropriate polynomial s, we will, for each x ∈ Σ∗,
define a tree whose nodes are enhanced instantaneous descriptions of M and
whose edges are based on the next move function of M . This tree will have
a subtree Tx having exactly 22s(|x|) nodes.

4. Traversing the trees. We will associate multiple strings with each node
in the tree described above (by padding the labels of the nodes) in such a
way that f(x) + 2 strings are associated with one of the nodes in Tx and
two strings are associated with each of the remaining 22s(|x|) − 1 nodes in Tx.
We will then define a total, one-to-one, polynomial-time computable function
DM over these strings in such a way that DM , applied repeatedly to some
appropriate starting point, represents a traversal of the tree such that the
traversal visits each of these strings once, i.e., from a particular one of the
strings z associated with the root of the tree, for each string y associated

with some node of the tree there is an integer i ∈ N such that D
(i)
M (z) = y,

where D
(0)
M (z) = z, and, for each i ∈ {1, 2, 3, . . . }, D

(i)
M (z) = DM (D

(i−1)
M (z)).

Moreover, for strings w and y, DM (w) = y only if the nodes associated with
w and y are related (i.e., parent/child, sibling, or identical nodes).

5. Constructing A. We will base A on DM . For example, A crucially will
have the property that if w and z are two of the strings described in Phase 4,
then w ≺A z if and only if z = DM (w). Note there will also be many strings
on which DM is not defined that will nonetheless have to be accounted for.
Through careful encoding at each phase in the construction, it will be easy
to account for these strings in such a way that A has all the properties we
desire.

After we handle these five phases, we will prove Lemma 6.5. We now proceed with
the construction. Please note that, due to the length of this construction, we overload
certain variables. For instance, the variable t denotes both a function over strings and
over natural numbers, and has distinct semantics in each case. Over strings it is the
function that determines the “bottom” of an interval (i.e., it is used as it typically is
throughout this paper), and over the natural numbers it bounds the amount of space
needed for part of the encodings we use.

Phase 1: Fixing the computational model. Let M = (Q,Σ,Γ, δ, B, q0, F)
be a Turing machine that computes f , where

• Q is the set of state symbols,
• Σ = {0, 1} is the set of input symbols,
• B is the blank symbol,
• Γ ⊇ {0, 1, B} is the set of allowable tape symbols,

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1279

• δ is the next move function, i.e., a mapping from Q× Γ to Q× Γ × {−1, 1},
• q0 is the start state, and
• F ⊆ Q is the set of final states.

We assume that M has the following properties.
• For some m ∈ N, ‖Q‖ = ‖Γ‖ = 2m (any Turing machine not having this prop-

erty can be turned into one having this property by adding extra “dummy”
states and symbols to its current sets of state and tape symbols, respectively).
Since Γ ⊇ {0, 1, B}, m ≥ 2.

• F contains a single element, qf , and q0 �= qf .
• M has a single, one-way infinite tape (a standard PSPACE(poly) Turing

machine would have distinct input, output, and work tapes). On no input x
does a true run of M move off the left end of the tape. (One way to ensure
that M has this latter property is to include the symbols, 0e, 1e, and Be

in Γ. These symbols will be used, exactly on the leftmost cell of the tape,
as replacements for 0, 1, and B. We can then construct M so that it is in
its start state just once, namely at the beginning of the run, and that, from
its start state, it always replaces the then-current symbol (which, in a true
run, will always be located in the leftmost tape cell and will be either 0, 1,
or B) not with whatever symbol it would normally write during that step
but rather with the appropriate analogue among 0e, 1e, and Be. Similarly,
our machines can be forced to be such that they attempt to ensure that at
all future times this left-marking is preserved, i.e., a 0e/1e/Be-marker square
may be changed during the run but just among 0e, 1e, and Be, as appropriate.
A Turing machine constructed in this way can, on any true run, determine
when it is about to (were it to mindlessly perform the simulation of the
underlying machine) move off the left end, and can indeed handle—without
itself running off the left end and in a fashion that is consistent in effect with
whatever standard behavior (typically either rejection or “bouncing off” the
left end) we in our notion of Turing machines associate with attempting to
go off the left end—the left-end move-off that was about to happen.)

• δ on input (q, r) ∈ Q× Γ is defined if and only if (q, r) �∈ {qf} × Γ.
• For all r ∈ Γ and all i ∈ {−1, 1}, (q0, r, i) is not in the image of δ. (That is,

nothing moves to the start state.)
• For all x ∈ Σ∗, M on input x halts with y ∈ Σ∗ written on its |y| leftmost tape

cells, where y is the shortest binary representation of f(x) (i.e., no leading
zeros, unless f(x) = 0), and with every other tape cell containing the blank
symbol.

• There is a strictly increasing polynomial p such that, on each input x ∈ Σ∗,
M uses, at most, p(|x|) tape cells and p(|x|) > 0.

Phase 2: Fixing the encoding. We now describe the binary encoding we use
to describe the configurations of M . Figure 2 provides an overview of this phase of
the construction. Let ϕ : Q → {0, 1}m be a total bijection (recall that ‖Q‖ = 2m

and m ≥ 2) such that ϕ(q0) = 0m and ϕ(qf) = 1m. The function ϕ−1 denotes the
unique total bijection from {0, 1}m to Q that inverts ϕ. Let θ : Γ → {0, 1}m be a
total bijection (recall that ‖Γ‖ = 2m and m ≥ 2) such that θ(B) = 0m, θ(0) = 1m−10,

and θ(1) = 1m. Define θ̂ : Γ∗ → ({0, 1}m)∗ recursively as θ̂(ǫ) = ǫ, and, for all y ∈ Γ

and w ∈ Γ∗, θ̂(wy) = θ̂(w)θ(y). Since θ̂ is also a bijection, we use θ̂−1 to denote the

unique total bijection from ({0, 1}m)∗ to Γ∗ that inverts θ̂.
We define the “partially encoded” next move function δ′ : {0, 1}m × {0, 1}m →

1280 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

enhanced ID

standard ID X0X1 · · ·XbqXb+1Xb+2 · · ·Xa−1

X0X1 · · ·Xb−1q
′XbX

′
b+1Xb+2 · · ·Xa−1

µ

xq′c′w′X0X1 · · ·XbX
′
b+1Xb+2Xb+3 · · ·Xa−1

xqcwX0X1 · · ·Xa−1

µ

Fig. 2. A brief comparison between standard instantaneous descriptions (IDs) and the enhanced
IDs we use. Before the computation step illustrated above, the tape head is at cell b + 1 and the
machine is in state q. Afterwards, the head is at cell b and the machine is in state q′. The symbol
µ represents the next move function. In standard IDs, the state q appears immediately before the
tape cell that the head is currently visiting (e.g., in the case illustrated above, cell b + 1 before the
move and b afterwards). Our enhanced IDs contain additional strings: x, c, and w. The string
x encodes the input to the Turing machine, c encodes the number of computation steps the Turing
machine has performed so far, and w is the position of the tape head. The state string remains in
the same place throughout the computation, and instead w is updated with the position of the tape
head. Thus, w encodes the number b + 1 (i.e., the position of the tape head before the computation
step), and w′ encodes b (i.e., the position of the tape head after the computation step). The strings
c and c′ also represent numbers, where the number encoded by c′ is one greater than the number
encoded by c. For more details on eIDs and encodings, see the text.

{0, 1}m × {0, 1}m × {−1, 1} on input (q, r) ∈ {0, 1}m × {0, 1}m as δ′(q, r) = (ϕ(q′),
θ(r′), i), where q′, r′, and i are specified by δ(ϕ−1(q), θ−1(r)) = (q′, r′, i).

Recall that Σ = {0, 1}. Define ν : Γ∗ → N recursively as ν(ǫ) = 0 and, for each
y ∈ Γ and w ∈ Γ∗,

ν(wy) =

1 + 2ν(w) if y = 1 ∧ w ∈ Σ∗

2ν(w) if y = 0 ∧ w ∈ Σ∗

ν(w) if y = B
0 otherwise.

This has the property that if z ∈ Σ∗B∗, then ν(z) is the natural number that z
represents in binary. And if z ∈ Γ∗ − Σ∗B∗, then ν(z) = 0.

We also need the following notation. For any domain S, any (possibly partial)

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1281

function h : S → S, any i ∈ N, and any s ∈ S, we define h(i)(s) as

h(i)(s) =def

s if i = 0
h(h(i−1)(s)) if i > 0 ∧ (h(i−1)(s) is defined)∧

(h(i−1)(s) ∈ domain(h))
undefined otherwise.

Note that if h(a) is undefined, then so, for example, will be h(1)(a) and h(2)(a).
All logarithms in this paper are base two, i.e., logm means log2 m. Define func-

tions r, s, and t on input n ∈ N as r(n) =def ⌈log p(n)⌉ (recall that, by assumption, on
any input of length n, M uses at most p(n) tape cells and p(n) > 0), t(n) =def m2r(n),
and s(n) =def m + r(n) + t(n).

Let eID =def

⋃∞
n=0{0, 1}

n+2s(n) be the set of enhanced instantaneous descriptions
of M . Informally speaking, for each n ∈ N and x ∈ Σn, q ∈ {0, 1}m, c ∈ Σs(n),
w ∈ Σr(n), and X0, X1, . . . , X2r(n)−1 ∈ Σm, the string xqcwX0X1 · · ·X2r(n)−1 ∈ eID is
interpreted as follows.

• The string x represents the input to f .
• The string q represents the instantaneous state of M .
• The string c will be used as an external clock (“external” because it is not

maintained by M itself but rather by an “outside observer”) to count the
number of computational steps M has made so far. The presence of the
external clock will allow us to adapt the next move function of M to the
enhanced instantaneous descriptions of M in such a way that cycles never
occur, even if M from a particular configuration may cycle. Note that, since
the number of tape cells M uses is polynomially bounded in the length of its
input, we need only a polynomial amount of bits for the clock. Intuitively
speaking, if the clock “runs out of time” by running out of bits, then (assuming
we chose a large enough polynomial to control the number of clock bits) we
know that a cycle has occurred.

• The string w encodes the instantaneous position of the tape head, i.e., a
position of 0 or 1 or . . . or 2r(|x|) − 1 is encoded (respectively) by the string
0r(x) or 0r(x)−11 or . . . or 1r(x).

• The strings X0, X1, . . . , X2r(n)−1 represent the instantaneous contents of the

leftmost 2r(n) tape cells of M .
Note that the second, fourth, and fifth sections of the string described above (i.e., q,
w, and X0, X1, . . . , X2r(n)−1) are already sufficient to describe M at any instant. Note
also that, because s, r, and t are all polynomial-time computable and nondecreasing,
we can, in polynomial time, for each n ∈ N and each z ∈ Σn+2s(n), compute from
z the value n and the locations of the five above-described sections of z, and these
locations are well-defined.

For each x ∈ Σ∗, we call x0m0s(|x|)0r(|x|)ϕ(x)0t(|x|)−|ϕ(x)| = x02s(|x|)−t(|x|)ϕ(x)
0t(|x|)−|ϕ(x)| ∈ eID the initial configuration of M on x, denoted iM,x. The string iM,x

represents a configuration on which M would be started under “normal usage.” Note
that eID contains strings that represent configurations of M that are never reached
under “normal usage.” From these “unreachable” configurations, M may run forever
or attempt to move off the left end of the tape. (Note that the true run of M on
input x certainly does not run forever, since M is computing an FPSPACE(poly)
function and FPSPACE(poly) is a class of total functions, and our model of function
computing requires M to halt in order for it to compute a value. Recall that we
assume that on no true run of M on input x will M attempt to move off the left end

1282 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

of the tape. We did not explicitly discuss the semantics of attempting to move off the
left end of the tape, but the point of the comment above is that even if our model of
computing FPSPACE(poly) functions is such that moving off the left end of the tape
is considered like running forever and makes a function be undefined on the input,
and so never happens on a true run of a machine computing an FPSPACE(poly)
function, it nonetheless may be the case that such a machine when started at some
“unreachable” configuration might attempt to run off the left end of the tape.)

We define a move over eID via a function µ : Σ∗ → Σ∗ that we will define now.
An important consideration in the design of µ is to exploit the additional information
present in the enhanced IDs to guarantee that µ never loops and that it always “ends”
(i.e., returns the value undefined) “gracefully” (in a sense that will soon become clear,
including, for example, that it does not blindly try to move off the left end of the tape).

For each x ∈ Σ∗, c ∈ {0, 1}s(|x|), w ∈ {0, 1}r(|x|), X0, X1, . . . , X2r(|x|)−1 ∈ {0, 1}m,
and q ∈ {0, 1}m − {1m},

µ(xqcwX0X1 · · ·X2r(|x|)−1) =def(1)

xq′c′w′X0X1 · · ·Xν(w)−1Y Xν(w)+1Xν(w)+2 · · ·X2r(|x|)−1

if

δ′(q,Xν(w)) is defined ∧ c �= 1s(|x|) ∧ 0 ≤ ν(w) + i < 2r(|x|),(2)

where

δ′(q,Xν(w)) = (q′, Y, i), c′ ∈ {0, 1}s(|x|), w′ ∈ {0, 1}r(|x|),

ν(c′) = ν(c) + 1, and ν(w′) = ν(w) + i,

and

µ(xqcwX0X1 · · ·X2r(|x|)−1) =def x1mcwX0X1 · · ·X2r(|x|)−1(3)

otherwise. If q = 1m, µ(xqcwX0X1 · · ·X2r(|x|)−1) is undefined. For all y �∈ eID, µ(y)
is undefined. It is easy to see that the behavior of µ described by (1) is roughly
analogous to the behavior of δ. Indeed, for all x ∈ Σ∗, there exists a number j ∈ N

such that µ(j)(iM,x) = x1mcwz, where c ∈ {0, 1}s(|x|), w ∈ {0, 1}r(|x|), z ∈ {0, 1}t(|x|),

ν(c) = j, and ν(θ̂−1(z)) = f(x). Equation (3) enforces “gracefulness” by detecting
when the configuration encoded by the input string is about to move off the left end of
the tape or is about to use too much tape or has a “c” value that has already reached
2s(|x|) (note that no actual run can ever run more than 2s(n) steps without running
forever, but running forever can never happen on actual runs since all functions in
FPSPACE(poly) are total). In such cases, µ simply changes the state bits to represent
the final state (i.e., 1m).

Proposition 6.11 collects several easy-to-see properties of µ.
Proposition 6.11.
1. The function µ is polynomial-time computable.
2. The function µ is length-preserving, i.e., for all w ∈ Σ∗, if µ(w) is defined,

then |w| = |µ(w)|.
3. For all x ∈ Σ∗, all w ∈ {0, 1}2s(|x|)−m, and all q ∈ {0, 1}m, µ(xqw) is defined

if and only if q �= 1m.
4. For all w ∈ Σ∗, there exists a number j such that µ(j)(w) is undefined.

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1283

x1mcy

iM,x

(eIDx, Ex)

Fig. 3. The directed forest (eIDx, Ex). Note that precisely one tree in the digraph (eIDx, Ex)
has iM,x as a node, and note that in that tree iM,x will be a leaf node. For some c and y satisfying

c ∈ {0, 1}2s(|x|)−t(|x|)−m, y ∈ {0, 1}t(|x|), and ν(θ̂−1(y)) = f(x), that tree will have as its root node
x1mcy.

5. In polynomial time we can, for each z ∈ Σ∗, enumerate all y such that µ(y) =
z.

6. For each w ∈ eID and each j ∈ N
+, if µ(j)(w) is defined, then µ(j)(w) �= w.

Proof. All items are easy to see. However, item 5 deserves some additional
explanation. To perform this enumeration, if z �∈ eID, then there is no y such that
µ(y) = z. If z ∈ eID, then examine the next move function of M to determine the
configurations from which M in one step will move into the configuration encoded
by z. There are only a constant number of such configurations. Output the strings
of length |z| that encode these configurations. This takes care of all preimages of z
that satisfy equation (2). If, for some x ∈ Σ∗, c ∈ {0, 1}s(|x|), w ∈ {0, 1}r(|x|), and
X0, X1, . . . , X2r(|x|)−1 ∈ {0, 1}m it holds that z = x1mcwX0X1 · · ·X2r(|x|)−1 (i.e., if z
satisfies the conditions of equation (3)) then, for each q ∈ {0, 1}m − {1m} such that
xqcwX0X1 · · ·X2r(|x|)−1 does not satisfy equation (2), output xqcwX0X1 · · ·X2r(|x|)−1.
This takes care of all preimages of z that do not satisfy equation (2).

Phase 3: Building trees. For each x ∈ Σ∗, let

eIDx = {xw | w ∈ {0, 1}2s(|x|)}

and

Ex = {(xw, xz) | xw, xz ∈ eIDx ∧ µ(xw) = xz}.

A directed forest is an acyclic digraph in which all nodes have outdegree at most one.
Note that the digraph (eIDx, Ex) has outdegree at most one. By Proposition 6.11.6,
(eIDx, Ex) is acyclic. Thus, (eIDx, Ex) is a directed forest (see Figure 3).

1284 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

For each x ∈ Σ∗, let (keep in mind that given the string xw ∈ eID, it is easy to
identify x and w)

eID
′
x = {xwy | xw ∈ eIDx ∧ y ∈ {0, 1}t(|x|)}

and

E′
x = {(xwy, xzy) | w ∈ {0, 1}2s(|x|) ∧ y ∈ {0, 1}t(|x|) ∧ xwy ∈ eID

′
x ∧ µ(xw) = xz}.

Note that the digraph (eID′x, E
′
x) is a directed forest, and that, for each tree in

(eIDx, Ex), there are exactly 2t(|x|) corresponding trees in (eID′x, E
′
x) (see Figure 4

for a pictorial preview of this part of the construction).
Let Rx =def {xwy ∈ eID

′
x | w ∈ {0, 1}2s(|x|)∧y ∈ {0, 1}t(|x|)∧(µ(xw) is undefined)}.

Note that, by Proposition 6.11.3, Rx = {xwy ∈ eID
′
x | w ∈ {0, 1}2s(|x|) ∧ y ∈

{0, 1}t(|x|) ∧ (xw is the root of a tree in (eIDx, Ex))} = {x1mwy ∈ eID
′
x | w ∈

{0, 1}2s(|x|)−m ∧ y ∈ {0, 1}t(|x|)}. Let ≤Rx
denote the order (with <Rx

and ≺Rx

denoting the corresponding “less than” and “predecessor” relations, respectively) de-
fined over Rx that is determined by the following sequence. (The reader is cautioned
that in what follows “w” is used as a variable to catch substrings of various lengths
other than the 2s(|x|)-length strings it has been primarily used for so far.)

• First come the elements of {xwyy ∈ Rx | w ∈ {0, 1}2s(|x|)−t(|x|) ∧ y ∈
{0, 1}t(|x|)} in lexicographic order. Note that the last element in this sequence
is x12s(|x|)+t(|x|).

• Next come the elements of {xwdy ∈ Rx | w ∈ {0, 1}2s(|x|)−t(|x|) ∧ d, y ∈
{0, 1}t(|x|) ∧ d �= y} in lexicographic order. Note that the last element in this
sequence is x12s(|x|)+t(|x|)−10.

For each x ∈ Σ∗, w ∈ {0, 1}2s(|x|), and y ∈ {0, 1}t(|x|), we define µ1 : Σ∗ → Σ∗, on
input xwy, as

µ1(xwy) =

{

µ(xw)y if xwy �∈ Rx

xz if xwy ∈ Rx ∧ xwy �= x12s(|x|)+t(|x|)−10, where xwy ≺Rx
xz.

In all other cases, µ1 is undefined. Informally speaking, µ1 is an “augmented next
move” function based on µ but with the difference that µ1 in effect strings together
all the trees in (eID′x, E

′
x) into one giant tree TM,x (see Figure 4 again).

Proposition 6.12. For each x ∈ Σ∗, let E′′
x =def {(w, z) | w ∈ eID

′
x∧µ1(w) = z},

and define TM,x to be the digraph (eID′x, E
′′
x).

1. The function µ1 is polynomial-time computable.
2. The function µ1 is length-preserving (i.e., on inputs a for which it is not

undefined, |µ1(a)| = |a|).
3. In polynomial time we can, for any z ∈ Σ∗, enumerate all y ∈ Σ∗ such that

µ1(y) = z.
4. For every x ∈ Σ∗ and every w ∈ {0, 1}2s(|x|)+t(|x|), there exists a number

j ∈ N such that µ
(j)
1 (xw) = x12s(|x|)+t(|x|)−10. (See also Figure 4.)

5. For every x ∈ Σ∗ and every w ∈ {0, 1}2s(|x|)+t(|x|), µ1(xw) is undefined if and
only if w = 12s(|x|)+t(|x|)−10.

6. For each x ∈ Σ∗ and each w ∈ {0, 1}2s(|x|), there is a unique y ∈ {0, 1}t(|x|)

such that, for some k ∈ N, µ
(k)
1 (xwy) = x12s(|x|)+t(|x|). (Again, viewing

Figure 4—paying particular attention to the black trees—will help make this
clear).

7. For each x ∈ Σ∗, ‖{w | (∃j ∈ N)[µ
(j)
1 (w) = x12s(|x|)+t(|x|)]}‖ = 22s(|x|).

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1285

(eIDx, Ex)

(eID′x, E
′
x)

TM,x

iM,xy, where f(x) = ν(θ̂−1(y))

x12s(|x|)+t(|x|)

x12s(|x|)+t(|x|)−10

y1 = 0t(|x|) ∈ {0, 1}t(|x|)
each node name ends in each node name ends in

y2t(|x|) = 1t(|x|) ∈ {0, 1}t(|x|)
each node name ends in

y2 = 0t(|x|)−11 ∈ {0, 1}t(|x|)

Fig. 4. Transforming the directed forest (eIDx, Ex) into TM,x. First, 2t(|x|) copies of each tree
in (eIDx, Ex) are made by appending t(|x|) “guess” bits to each node in each original tree, creating
the directed forest (eID′x, E

′
x). Next, the trees in (eID′x, E

′
x) are strung together into a single tree

TM,x in such a way that a subtree of TM,x is formed by the trees in (eID′x, E
′
x) having (note: Rx

will be defined in the main text) roots in {xwyy ∈ Rx | w ∈ {0, 1}2(|s|)−t(|x|) ∧ y ∈ {0, 1}t(|x|)}
(represented in the figure by the black trees), i.e., the trees whose “guess” bits equal the contents of
the machine tape at the end of the computation. This subtree has exactly one node for each string
in eIDx, including iM,x, and the node associated with iM,x has as its “guess” bits the true output of
M on input x. We will later exploit this information when we define a traversal of this tree.

8. For each x ∈ Σ∗, the unique (by item 6) y ∈ {0, 1}t(|x|), and each k ∈ N such

that µ
(k)
1 (iM,xy) = x12s(|x|)+t(|x|), it holds that f(x) = ν(θ̂−1(y)).

9. For each x ∈ Σ∗, the digraph TM,x is a tree.
10. The subtree of TM,x rooted at x12s(|x|)+t(|x|) has exactly 22s(|x|) nodes.

Proof. Items 1–5 follow from the definition of µ1.

For item 6, choose an arbitrary x ∈ Σ∗, w ∈ {0, 1}2s(|x|), and y ∈ {0, 1}t(|x|), and
let j ∈ N, v ∈ {0, 1}2s(|x|)−t(|x|), and d ∈ {0, 1}t(|x|) be such that µ(j)(xw) = xvd and
µ(xvd) is undefined (such j, v, and d exist by Propositions 6.11.4 and 6.11.2). By the
definition of Rx, xvdy ∈ Rx. By the definition of ≤Rx

, µ(j)(xw)d ≤Rx
x12s(|x|)+t(|x|)

and so, by the definition of µ1, there exists a number k ≥ j such that µ
(k)
1 (xwd) =

x12s(|x|)+t(|x|). On the other hand, for all y ∈ {0, 1}t(|x|) such that y �= d, by the
definition of ≤Rx

, x12s(|x|)+t(|x|) <Rx
µ(j)(xw)y, and so, by items 4 and 5 (which

guarantee that µ1 does not cycle), there is no k such that µ
(k)
1 (xwy) = x12s(|x|)+t(|x|).

Item 7 follows from item 6.

For item 8, choose an arbitrary x ∈ Σ∗, and by item 6 let y be the unique

member of {0, 1}t(|x|) such that, for some k ∈ N, µ
(k)
1 (iM,xy) = x12s(|x|)+t(|x|). Choose

1286 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

j ∈ N such that µ(j)(iM,x)y ∈ Rx. By the definition of µ1, there exists a number
v ∈ {0, 1}2s(|x|)−t(|x|) such that µ(j)(iM,x) = xvy and, by the definition of µ, M on

input x halts with y on its tape. Thus, f(x) = ν(θ̂−1(y)).
Item 9 follows from items 4 and 5.
Item 10 follows from item 7 and the observation that, for any x ∈ Σ∗ and any

w, y ∈ eID
′, w is in the subtree of TM,x rooted at y if and only if y is a node of TM,x

and there exists a number k ∈ N such that µ
(k)
1 (w) = y.

Phase 4: Defining a traversal. We define dwn : Σ∗ → Σ∗ ∪ {⊥}, on input w,
as

dwn(w) =

{

maxlex µ
−1
1 (w) if µ−1

1 (w) �= ∅
⊥ otherwise,

where maxlex returns the maximal element (with respect to the lexicographical order)
of a set of strings and we define acr : Σ∗ → Σ∗ ∪ {⊥} on input w as

acr(w) =

maxlex{w
′ | w′ ∈ µ−1

1 (µ1(w)) ∧ w′ <lex w} if µ1(w) is defined
∧ w �= minlex µ

−1
1 (µ1(w))

⊥ otherwise,

where minlex returns the minimal element (with respect to the lexicographical order)
of a set of strings. Clearly, both dwn and acr are polynomial-time computable. The
function dwn is named “dwn” because it describes a descent down the tree TM,x, and
acr is named “acr” because it describes movement across the tree (i.e., from one
sibling node to another). Note that, for all x ∈ Σ∗ and all w ∈ {0, 1}2s(|x|)+t(|x|)

satisfying xw ∈ Rx − {x1m02s(|x|)+t(|x|)−m}, it holds that dwn(xw) ∈ Rx.
Now, for each x ∈ Σ∗, w ∈ {0, 1}2s(|x|), a ∈ {0, 1}, and y, z ∈ {0, 1}t(|x|), we define

DM : Σ∗ → Σ∗, a “depth-first”-like traversal of TM,x, on input xwyza, as

DM (xwyza) =

dwn(xwy)z0 if a = 0 ∧ dwn(xwy) �= ⊥ ∧ ν(z) = 0
xwyz1 if a = 0 ∧ dwn(xwy) = ⊥ ∧ xw �= iM,x ∧ ν(z) = 0
xwyz′0 if a = 0 ∧ dwn(xwy) = ⊥ ∧ xw = iM,x∧

ν(z) < ν(θ̂−1(y)), where z ≺lex z′

xwy0t(|x|)1 if a = 0 ∧ dwn(xwy) = ⊥ ∧ xw = iM,x∧

ν(z) = ν(θ̂−1(y))
acr(xwy)z0 if a = 1 ∧ acr(xwy) �= ⊥ ∧ ν(z) = 0
µ1(xwy)z1 if a = 1 ∧ acr(xwy) = ⊥ ∧ ν(z) = 0.

On all other inputs, DM is undefined. Figure 5 illustrates the action of DM and
Proposition 6.13 formally establishes the most important aspects of DM ’s action,
most of which we will draw on soon.

Proposition 6.13.
1. The function DM is polynomial-time computable.
2. The function DM is length-preserving (i.e., for each v, either DM (v) is un-

defined or |DM (v)| = |v|).
3. For each x ∈ Σ∗, each subtree (and here we really mean each subtree, i.e.,

not just those corresponding to the trees in digraph (eID′x, E
′
x)—the purpose

of this item is to provide insight into how DM describes a traversal of TM,x)
T of TM,x, each w ∈ {0, 1}2s(|x|), and each y ∈ {0, 1}t(|x|), xwy is a node of
T if and only if there exist i, j, and k such that |v| = |xwy| (where v is the

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1287

iM,xy

z
2 0

0
t(
|x
|)
+
1

0
t(
|x
|) 1

0
t(
|x
|) 1

0
t(|x

|)10 t(|x|)+
1

0
t(|x

|)+
1

z
ν(θ̂ −

1
(y)) 0

z ν
(θ̂

(y
))
−

1
0

z 1
0

0 t(|x|)1

0 t(|x|)1
0 t(|x|)+

1

0
t(
|x
|)
+
1

0
t(|x

|)+
1

0
t(|x

|)1

Fig. 5. The traversal described by DM . Pictured is a portion of TM,x that contains a node in
the initial configuration. The arrows represent the strings associated with the node below them (in
the case of the initial configuration node, the arrows below are also associated with it) by padding.
The string that is the actual padding appears next to each arrow. DM is defined over these padded
strings. The last bit of each padding string can be seen as controlling the “direction” in which DM

“moves.” Note that y ∈ {0, 1}t(|x|) and z1 = 0t(|x|)−11, z2 = 0t(|x|)−210,

root of T), D
(i)
M (v0t(|x|)+1) = xwy0t(|x|)+1, D

(j)
M (xwy0t(|x|)+1) = xwy0t(|x|)1,

and D
(k)
M (xwy0t(|x|)1) = v0t(|x|)1.

4. For every x ∈ Σ∗, w ∈ {0, 1}2s(|x|), a ∈ {0, 1}, and y, z ∈ {0, 1}t(|x|),
DM (xwyza) is defined if and only if xwyza = x12s(|x|)+t(|x|)−10t(|x|)+2∨(wy ∈
{0, 1}2s(|x|)+t(|x|) − {12s(|x|)+t(|x|)−10} ∧ z = 0t(|x|)) ∨ (xw = iM,x ∧ ν(z) ≤

ν(θ̂−1(y)) ∧ a = 0).
5. For every x ∈ Σ∗ and every w ∈ {0, 1}2(s(|x|)+t(|x|))+1, if DM (xw) is defined,

then there exists an i ∈ N such that D
(i)
M (x12s(|x|)+t(|x|)−10t(|x|)+2) = xw.

6. For all x ∈ Σ∗, all w ∈ {0, 1}2s(|x|)+t(|x|), all z ∈ {0, 1}t(|x|)+1, and all i ∈ N,

if D
(i)
M (xwz) = x12s(|x|)+t(|x|)0t(|x|)+1, then xw ∈ Rx.

7. The function λy.minlex{w | y <lex w∧ (DM (w) is undefined)} is polynomial-
time computable.

1288 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

Proof. Items 1 and 2 follow from the definition of DM .

For item 3, choose an arbitrary x ∈ Σ∗. We prove item 3 by induction over the
depth of the subtrees of TM,x.

For the base case, choose an arbitrary subtree T of TM,x having depth 1. Let
v be the (only) node of T . Thus, dwn(v) = ⊥. If, for all y ∈ {0, 1}t(|x|), v �=

iM,xy, then, by the definition of DM , D
(0)
M (v0t(|x|)+1) = v0t(|x|)+1, DM (v0t(|x|)+1) =

v0t(|x|)1, and D
(0)
M (v0t(|x|)1) = v0t(|x|)1. Otherwise, let y ∈ {0, 1}t(|x|) be such that

v = iM,xy. Then D
(0)
M (v0t(|x|)+1) = v0t(|x|)+1, D

(ν(θ̂−1(y))+1)
M (v0t(|x|)+1) = v0t(|x|)1,

and D
(0)
M (v0t(|x|)1) = v0t(|x|)1.

For the induction case, suppose, for some n that is less than the depth of TM,x

and all subtrees T of TM,x having depth at most n, that the induction hypothe-
sis holds. Let S be a subtree of TM,x of depth n + 1, and let v be the root of
S. Let {a1, . . . , ab} = µ−1

1 (v), where ab <lex · · · <lex a1. It follows that each
a1, . . . , ab is the root of a subtree of S of depth at most n. By the definition of DM ,
DM (v0t(|x|)+1) = a10

t(|x|)+1, DM (a10
t(|x|)1) = a20

t(|x|)+1, . . . , DM (ab−10
t(|x|)1) =

ab0
t(|x|)+1, and DM (ab0

t(|x|)1) = v0t(|x|)1. By applying the induction hypothesis to
the subtrees of S rooted at a1, . . . , ab, we conclude that z is a node of S if and only

if there exist i, j, k such that D
(i)
M (v0t(|x|)+1) = z0t(|x|)1, D

(j)
M (z0t(|x|)+1) = z0t(|x|)1,

and D
(k)
M (z0t(|x|)1) = v0t(|x|)1.

Item 4 follows from the definition of DM (to see the case where xwyza =
x12s(|x|)+t(|x|)−10t(|x|)+2, it helps to note that µ1 is undefined on x12s(|x|)+t(|x|)−10
and thus DM (x12s(|x|)+t(|x|)−10t(|x|)+2) is defined but DM (x12s(|x|)+t(|x|)−10t(|x|)+11)
is not).

For item 5, choose arbitrary x ∈ Σ∗, w ∈ {0, 1}2s(|x|), a ∈ {0, 1}, and y, z ∈
{0, 1}t(|x|). If xwyza = x12s(|x|)+t(|x|)−10t(|x|)+2 ∨ (wy ∈ {0, 1}2s(|x|)+t(|x|) −
{12s(|x|)+t(|x|)−10} ∧ z = 0t(|x|)), then, by item 3, there exists an i ∈ N such that

D
(i)
M (x12s(|x|)+t(|x|)−10t(|x|)+2) = xwyza. If xw = iM,x ∧ ν(z) ≤ ν(θ̂−1(y)) ∧ a = 0,

then, by the definition of DM , D
(ν(z))
M (xwy0t(|x|)+1) = xwyza. Since, by item 3, there

exists an i ∈ N such that D
(i)
M (x12s(|x|)+t(|x|)−10t(|x|)+2) = xwy0t(|x|)+1, it holds that

D
(i+ν(z))
M (x12s(|x|)+t(|x|)−10t(|x|)+2) = xwyza.

For item 6, choose an arbitrary x ∈ Σ∗. Recall that, for all xw ∈ Rx −
{x1m02s(|x|)+t(|x|)−m}, dwn(xw) ∈ Rx. Thus, since x12s(|x|)+t(|x|) ∈ Rx and
x12s(|x|)+t(|x|)−10 ∈ Rx, it follows from the definitions of dwn and ≤Rx

that, for
some i ∈ N, dwn(i)(x12s(|x|)+t(|x|)−10) = x12s(|x|)+t(|x|), and for all j ∈ N such that
0 ≤ j ≤ i, it holds that dwn

(j)(x12s(|x|)+t(|x|)−10) ∈ Rx. Thus, by the definition

of DM , D
(i)
M (x12s(|x|)+t(|x|)−10t(|x|)+2) = x12s(|x|)+t(|x|)0t(|x|)+1, and for all j ∈ N

such that 0 ≤ j ≤ i, it holds that D
(j)
M (x12s(|x|)+t(|x|)−10t(|x|)+2) = w0t(|x|)+1, where

w ∈ Rx.

For item 7, note that, by item 4, for all w, y, z ∈ Σ∗ such that w ≺lex y ≺lex z,
either DM (y) is undefined or DM (z) is undefined.

Phase 5: Creating A. We are now ready to define A. A is the same as
the lexicographical ordering except that the strings between x02(s(|x|)+t(|x|))+1 and
x12(s(|x|)+t(|x|))+1 are ordered as follows (let z = x12s(|x|)+t(|x|)−10t(|x|)+1).

• First come the strings D
(0)
M (z0) = z0, D

(1)
M (z0) = DM (z0), D

(2)
M (z0), . . . , z1,

in the order just stated.
• Next come the strings {xw | w ∈ {0, 1}2(s(|x|)+t(|x|))+1∧DM (xw) is undefined

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1289

∧xw �= z1}, in lexicographical order.
By Proposition 6.13.2, A is a p-order. By Proposition 6.13.4, A is total. By Proposi-
tions 6.13.1 and 6.13.7, A has efficient adjacency checks.

End of Construction
We are now ready to prove Lemma 6.5.

Proof of Lemma 6.5. For each f ∈ FPSPACE(poly), we define A as above.
We define b : Σ∗ → Σ∗, t : Σ∗ → Σ∗, and b′ : Σ∗ → Σ∗ on input x ∈ Σ∗

as, respectively, b(x) =def x12s(|x|)+t(|x|)0t(|x|)+1, t(x) =def x12s(|x|)+t(|x|)0t(|x|)1, and

b′(x) =def iM,xy0
t(|x|)+1, where y = θ(1)0t(|x|)−|θ(1)| (thus ν(θ̂−1(y)) = 1). Note that

each of these functions is in FP.
For item 1, note that s is polynomially bounded.
For item 2, we prove that, for all x ∈ Σ∗, ‖{z | b(x) <A z <A t(x)}‖ =

22s(|x|)+1 + f(x) − 2. Choose an arbitrary x ∈ Σ∗. By Proposition 6.13.4, both
DM (x12s(|x|)+t(|x|)0t(|x|)+1) and DM (x12s(|x|)+t(|x|)0t(|x|)1) are defined. Thus, by the

definition of A, {z | b(x) <A z <A t(x)} = {z | (∃i, k ∈ N : i > 0∧k > 0)[D
(i)
M (b(x)) =

z ∧D
(k)
M (z) = t(x)]}. By Proposition 6.12.10, there are exactly 22s(|x|) strings in the

subtree of TM,x rooted at x12s(|x|)+t(|x|). Let S = {xwy0t(|x|)a | w ∈ {0, 1}2s(|x|) ∧a ∈
{0, 1} ∧ y ∈ {0, 1}t(|x|) ∧ b(x) <A xwy0t(|x|)a <A t(x)}. By Proposition 6.13.3, ‖S‖ =
22s(|x|)+1 − 2. By Propositions 6.12.6 and 6.13.3, there is a unique y′ ∈ {0, 1}t(|x|)

such that iM,xy
′0t(|x|)+1 ∈ {z | b(x) <A z <A t(x)}. Moreover, by Proposition 6.12.8,

ν(θ̂−1(y′)) = f(x). By the definition of DM , D
(ν(θ̂−1(y′))+1)
M (iM,xy

′0t(|x|)+1) ∈ S, and

for each i ∈ N such that 0 < i ≤ ν(θ̂−1(y′)), it holds that D
(i)
M (iM,xy

′0t(|x|)+1) �∈ S.
For each of the remaining 22s(|x|)+1 − 3 strings w in S, DM (w) ∈ S ∪ {t(x)}. Thus
‖{z | b(x) <A z <A t(x)}‖ = 22s(|x|)+1 + f(x) − 2.

For item 3, we prove that ‖{z | b′(x) <A z <A t(x)}‖ > 0 if and only if f(x) = 1.
Choose x ∈ Σ∗ and let y = θ(1)0t(|x|)−|θ(1)|. Suppose that f(x) = 1. Then, by
Proposition 6.12.8, xiM,xy is in the subtree of TM,x rooted at x12s(|x|)+t(|x|). Thus,

by Proposition 6.13.3, there exists a k such that D
(k)
M (b′(x)) = t(x). By the definitions

of DM , b′, and t, DM (b′(x)) �= t(x), thus k > 1. By the definition of A, ‖{z | b′(x) <A

z <A t(x)}‖ > 0. Now, suppose f(x) �= 1. Since f(x) �= ν(θ̂−1(y)), it follows from
Proposition 6.12.8 that iM,xy is not in the subtree of TM,x rooted at x12s(|x|)+t(|x|).

Thus, by Proposition 6.13.3, for all k ∈ N, D
(k)
M (b′(x)) �= t(x). Thus b′(x) �<A t(x),

and so ‖{z | b′(x) <A z <A t(x)}‖ = 0.

7. The complexity of counting divisors. Consider the function #DIV : N →
N, defined on input m ∈ N as

#DIV(m) =def

{

‖{n ∈ N | n �= 1, n �= m, and n divides m}‖ if m ≥ 1
0 otherwise.

What can we say about its complexity? We claim that #DIV belongs to the
interval size function class IFp.

Theorem 7.1. #DIV is in IFp.
Proof. Let PRIMES be the set of all prime numbers. Observe that #DIV ∈ #P

and PRIMES = {x | #DIV(x) = 0}. PRIMES ∈ P [AKS04]. Thus Theorem 7.1
follows from Theorem 5.3.

8. The complexity of counting satisfying assignments of monotone for-
mulas. In this section, we show that the #MONSAT function fits into our collection
of function classes. A monotone boolean function is any boolean function such that

1290 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

changing an input from 0 to 1 (while keeping all other inputs fixed) never changes
the value of the function from 1 to 0. A positive boolean formula is a boolean formula
that computes a monotone boolean formula. A monotone boolean formula is a formula
that is built from propositional variables and the connectives ∧ and ∨. Note that the
class of functions computed by monotone boolean formulas is exactly the monotone
boolean functions. Monotone computing models have long been studied (see, e.g.,
Grigni and Sipser [GS92] and the references therein).

Define

#MONSAT(F) =def

‖{(a1, . . . , an) |
(∀i : 1 ≤ i ≤ n)[ai ∈ {0, 1}] ∧ F (a1, . . . , an) = 1}‖

if F is a monotone boolean formula
0 otherwise,

i.e., #MONSAT(F) counts the number of satisfying assignments of monotone boolean
formulas. For the remainder of this section, we identify each assignment (a1, . . . , an)
to the n variables of F with the n-bit string a1 . . . an ∈ {0, 1}n. Theorem 8.5 states
that #MONSAT belongs to the class IFt. To prove this theorem, we will use the
following proposition.

Proposition 8.1. Let ϕ be the function that is defined for every boolean formula
F (x1, . . . , xn), a ∈ {0, 1}n, and r ∈ {0, 1} as ϕ(F, a, r) =def min

{

b
∣

∣ b ∈ {0, 1}n ∧

a ≤lex b ∧ F (b) = r
}

if
{

b
∣

∣ b ∈ {0, 1}n ∧ a ≤lex b ∧ F (b) = r
}

is nonempty and F
is a monotone boolean formula, and ϕ(F, a, r) =def ⊥ otherwise, where the min in the
above definition is taken with respect to the lexicographical order. The function ϕ is
polynomial-time computable.

Proof. To prove this proposition we use two natural properties of monotone
boolean formulas. First, note that, for each monotone boolean formula F of arity n
and for each a = a1 . . . an ∈ {0, 1}n and b = b1 . . . bn ∈ {0, 1}n, it holds that F (a) ≤
F (b) whenever (∀i ≤ n)[ai ≤ bi]. Second, there is an assignment making F true
(respectively, false) if and only if F (1n) = 1 (respectively, F (0n) = 0). Consider the
algorithm of Figure 6 running on an n-ary monotone boolean formula F , a ∈ {0, 1}n,
and r ∈ {0, 1}.

The algorithm works as follows. If none of the boundary conditions in lines [1]
through [6] are met, then assume that the assignments to the variables of F are just
the labels of the leaves of a complete binary tree having 2n leaves, i.e., the leftmost
leaf is 0n, and the rightmost leaf 1n. The algorithm starts in the leaf numbered a,
and searches the next node u on the path from a to the root such that the path
comes into u from the left, and the right subtree below u contains an assignment b
with F (b) = r (lines [6] to [9]). The least b of the subtree having this property is
determined via binary search (lines [10] to [18]). Thus, the algorithm is correct and
runs in polynomial time with respect to the input length.

We state as Proposition 8.2 some subcases of Proposition 8.1. (A “part 2 of
Proposition 8.2” parallel to the first sentence of part 1 of Proposition 8.2 is not
included since that trivially holds (test the all-0 assignment).) Though we could not
find Proposition 8.2 in the literature, it is sufficiently fundamental that we believe it
may well be known or a folk theorem.

Proposition 8.2.
1. The problem of finding the least satisfying assignment for monotone boolean

formulas has a polynomial-time algorithm. Indeed, the problem of finding the
least satisfying assignment lexicographically greater than or equal to a given
assignment has, for monotone boolean formulas, a polynomial-time algorithm.

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1291

[1] b ← a
[2] if (b = 1n and F (b) �= r) or F (rn) �= r
[3] then
[4] return ⊥
[5] else
[6] while b �= ε and F (brn−|b|) �= r do
[7] b ← the string which succeeds b in lexicographical order
[8] b ← longest prefix of b which ends with 1
[9] endwhile
[10] m ← |b| + 1
[11] for j ← m to n do
[12] if F (b0rn−|b|−1) = r
[13] then
[14] b ← b0
[15] else
[16] b ← b1
[17] endif
[18] endfor
[19] return b
[20] endif

Fig. 6. An algorithm used in the proof of Proposition 8.1.

2. The problem of finding the least unsatisfying assignment lexicographically
greater than or equal to a given assignment has, for monotone boolean for-
mulas, a polynomial-time algorithm.

This section has, so far, spoken of monotone boolean formulas. However, note that
if we view the algorithm from Figure 6 as accessing a black-box boolean function, the
algorithm in fact shows that the query complexity of the task is polynomial—indeed
linear—if the black-box function is a monotone boolean function. Thus we have the
following results.

Proposition 8.3. Let ϕ be the function that is defined for every n ≥ 1, every
boolean formula f(x1, . . . , xn), every a ∈ {0, 1}n, and every r ∈ {0, 1} as

ϕf (a, r) =def

min{b | b ∈ {0, 1}n ∧ a ≤lex b ∧ f(b) = r}
if {b | b ∈ {0, 1}n ∧ a ≤lex b ∧ f(b) = r} �= ∅

⊥ otherwise,

where the min in the above definition is taken with respect to the lexicographical order.
When restricted to monotone boolean functions, the function ϕ is of linear (in the
number of variables) query complexity (and polynomial, in the number of variables,
time complexity). That is, there exist a Turing machine M and a linear function
q and a polynomial s such that for each n ≥ 1, each monotone boolean n-variable
function f , each a ∈ {0, 1}n, and each r ∈ {0, 1} it holds that

1. Mf (a, r) makes at most q(n) queries to f , and
2. Mf (a, r) halts within s(n) steps with ϕf (a, r) on its output tape.

Similarly to Proposition 8.2, we have the following (where the time and query
complexities are relative to the number of variables or, equivalently, relative to the
size of the “input,” i.e., |a| + |r|).

1292 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

Proposition 8.4.
1. The problem of finding the least satisfying assignment when restricted to

monotone boolean functions has a linear-query-complexity algorithm (that
in addition is of polynomial-time complexity). Indeed, the problem of find-
ing the least satisfying assignment lexicographically greater than or equal to
a given assignment has, when restricted to monotone boolean functions, a
linear-query-complexity algorithm (that in addition is of polynomial-time com-
plexity).

2. The problem of finding the least unsatisfying assignment lexicographically
greater than or equal to a given assignment has, when restricted to mono-
tone boolean functions, a polynomial-time algorithm.

Note that in neither Proposition 8.3 nor Proposition 8.4 do we make any claims
about what the procedure will compute if the black-box function is not a monotone
boolean formula.

We now relate #MONSAT to interval functions.
Theorem 8.5. #MONSAT ∈ IFt.
Proof. We assume that F is given as a string over the alphabet Σ. We construct a

total p-order A ∈ P having efficient adjacency checks as follows. Generally, A coincides
with the lexicographical order on Σ∗ except that, for each monotone boolean formula
F of arity n, the interval between 1|F |0F0000n and 1|F |0F1001n is ordered in the
following way.

• First comes {1|F |0F000y | |y| = n} in lexicographical order (we always use
n = nF to denote the arity of F).

• Next comes the set {1|F |0F001a | a is a satisfying assignment of F} in lexi-
cographical order.

• Next comes {1|F |0F010y | |y| = n} in lexicographical order.
• Next comes the set {1|F |0F011a | a is not a satisfying assignment of F} in

lexicographical order.
• Finally comes the set {1|F |0F100y | |y| = n} in lexicographical order.

Clearly, A is a total p-order that is decidable in polynomial time. In light of the func-
tion ϕ from Proposition 8.1 it is not hard to see that A has efficient adjacency checks.
Also, for any monotone boolean formula F (x1, . . . , xn), let b(F) =def 1|F |0F0001n

and t(F) =def 1|F |0F0100n. Obviously, b, t ∈ FP, and we obtain #MONSAT(F) =
‖{z | b(F) <A z <A t(F)}‖. Thus, #MONSAT ∈ IFt.

Valiant [Val79] showed that counting the number of satisfying assignments of
2CNF monotone formulas is Turing complete for #P. Since #2CNFMONSAT metri-
cally reduces to #MONSAT, we immediately obtain from this theorem that
#MONSAT is complete for IFt under Turing reductions, and we get an alternate
proof for Corollary 5.8.

9. Cluster computations. Finally, we discuss the complexity of computing
the size of intervals for which the boundaries are not required to be polynomial-time
computable. This leads to the notion of cluster computation, as introduced in [Kos99]
for the case of the lexicographical order. We first review the formal definitions related
to cluster computation, but here we present a more general version of the definitions
than what previously appeared in [Kos99].

Let M be any nondeterministic Turing machine that is “balanced” in the sense
that, on every input, the graph of the nondeterministic choices M makes is a complete,
balanced, binary tree. Let y and z encode computation paths of M on x. By the
above assumption that M is “balanced,” |y| = |z|. Fix a total order A on Σ∗. We say

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1293

that y ∼A,M,x z if and only if (a) y ≺A z or z ≺A y, and (b) M on x accepts on path
y if and only if M on x accepts on path z. Let ≡A,M,x be the equivalence closure (i.e.,
the reflexive-symmetric-transitive closure) of ∼A,M,x. Then the relation ≡A,M,x is an
equivalence relation and thus induces a partitioning of the computation tree of M on
x. An A-cluster is an equivalence class whose representatives are accepting paths.
Additionally, we consider ∅ to be a valid A-cluster.

For a nondeterministic Turing machine M , let accM (x) ⊆ Σ∗ denote the set
of all accepting paths of M on input x. Let #accM : Σ∗ → N be the function
defined as #accM (x) =def ‖accM (x)‖. Let outM (x) ⊆ Σ∗ denote the set of all distinct
outputs of accepting paths of M on input x. A nondeterministic Turing machine M
is a lexicographical cluster machine if and only if M is balanced in the sense defined
earlier and, for every x, there is a computation path y of M on x such that

accM (x) = {z | z ≡lex,M,x y and y ∈ accM (x)}.

The intuition here is simple: Such machines on each input in the set have a single,
nonempty, contiguous stretch of accepting paths.

Definition 9.1 (Kosub [Kos99]).
c#P =def {#accM | M is a polynomial-time lexicographical cluster machine}.
We mention some basic properties of the class c#P.
Definition 9.2. A nondeterministic Turing machine computes a function f

almost-uniquely if and only if, for each x,
1. f(x) > 0 implies outM (x) = {f(x)} and #accM (x) = 1, and
2. f(x) = 0 implies outM (x) = ∅.

Recalling from section 6.1 the definition of ⊖, we have the following.
Proposition 9.3 (Kosub [Kos99]).
1. A function f lies in c#P if and only if there exists a nondeterministic

polynomial-time Turing machine that computes f almost-uniquely.
2. UPSVt ⊆ c#P = c#P ⊖ FP ⊆ #P.
3. UPSVt ∩ Nonzero = c#P ∩ Nonzero.
4. c#P = #P if and only if UP = PP.

Proposition 9.4.
1. ∃ · c#P = ∃ · (c#P - FP) = UP.
2. If IFt ⊆ c#P, then UP = PP.
3. If c#P ⊆ IFt, then P = UP.

Proof. (1): It is easy to see that UP ⊆ ∃ · c#P, since any balanced machine
for a given UP language already implicitly shows that that language is in ∃ · c#P
due to the unique paths being each a size-one equivalence class. It follows from the
definitions that ∃ · (c#P ⊖ FP) ⊆ ∃ · (c#P - FP) and from Proposition 9.3.2 we have
∃ · c#P = ∃ · (c#P ⊖ FP). However, in light of Proposition 9.3.1, we can see that
each set in ∃ · (c#P - FP) is in fact in UP.

(2): By Theorem 5.7, IFt ⊆ c#P implies #P - FP ⊆ c#P - FP. From this,
Proposition 2.2.4, and the first part of the present result we have PP = ∃ · (#P -
FP) ⊆ ∃ · (c#P - FP) = UP.

(3): Apply the operator ∃ to both sides of the inclusion, and apply Lemma 5.9
and the first part of the present result.

Proposition 9.3, which in essence says that c#P functions are relatively simple,
is extremely dependent on the fact that c#P is built based on lexicographical order.
In particular, the results reflect the fact that it is easy, given two strings, a and b, to
compute ‖{c | a ≤lex c ≤lex b}‖. Proposition 9.3.1 for example is driven in large part

1294 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

by the fact that one can, for inputs where the function is not zero, guess (and check
the guess of) the rightmost and leftmost accepting paths, and then, since one knows
that the complete set of accepting paths is simply the contiguous block between and
including these, one can easily compute the number of accepting paths.

It is natural to wish to remove the focus here on lexicographic order, and to
instead study machines whose set of accepting paths is always a contiguous block—
with respect to some total order that has efficient adjacency checks like lexicographic
order, but that perhaps does not satisfy the extremely restrictive “interval sizes are
always trivial to compute” property of lexicographic order. We introduce the class
CL#P, which captures exactly this more flexible, natural notion of cluster computing.
(The work of this paper led to further study of CL#P in [HHK06], which studies the
closure properties of, alternate definitions of, and classes related to CL#P.)

An order A on Σ∗ is said to be length-respecting if and only if, for all x, y, |x| < |y|
implies x <A y. Note that a length-respecting order is always a p-order.

Definition 9.5. A function f belongs to the class CL#P if and only if there
exist a nondeterministic polynomial-time Turing machine M , a polynomial p, and a
length-respecting total order A with efficient adjacency checks such that, for all x, the
following conditions hold.

1. All computation paths of M on x have length exactly p(|x|).1

2. The set of all accepting paths of M on x is an A-cluster.
3. f(x) = #accM (x).

As might be expected, the class IFt is included in CL#P. Indeed, the following
inclusions hold.

Theorem 9.6. c#P ∪ IFt ⊆ CL#P ⊆ #P.
Proof. The inclusions c#P ⊆ CL#P and CL#P ⊆ #P are trivial. It remains

to prove the inclusion IFt ⊆ CL#P. Choose f ∈ IFt via a total p-order A ∈ P
having polynomial-time adjacency checks, functions b, t ∈ FP, and a polynomial p
that witnesses that A is a p-order. We may without loss of generality assume that
p is monotonic. For each x ∈ Σ∗, let Sx = {x0p(|x|)−|y|1y0 | y ≤A x}. Define A′ as
follows. Generally, A′ corresponds to the lexicographical order on Σ∗, except that,
for every x ∈ Σ∗, the interval between x0p(|x|)+2 and x1p(|x|)+2 is defined as follows.

• First come all strings in Sx, such that, for any strings x0p(|x|)−|y1|1y10,
x0p(|x|)−|y2|1y20 ∈ Sx, let x0p(|x|)−|y1|1y10 ≤A′ x0p(|x|)−|y2|1y20 if and only if
y1 ≤A y2.

• Next come all the strings not in Sx, in lexicographical order.
We claim that A′ is a total, polynomial-time computable p-order having efficient
adjacency checks. Clearly, A′ is total. Also, it is clear that, for any s ∈ Σ∗, it is
possible to determine in polynomial time whether there is an x ∈ Σ∗ such that s ∈ Sx.
It follows by this and by the definition of A that A′ is polynomial-time computable.
We claim that A′ has efficient adjacency checks. For any x ∈ Σ∗, the lexicographically
smallest element in Sx is x0p(|x|)−|sA|1sA0, where sA ∈ Σ∗ is the smallest element in
the ordering imposed by A, and the lexicographically largest element is x0p(|x|)−|x|1x0.
If x0p(|x|)−|y1|1y10, x0p(|x|)−|y2|1y20 ∈ Sx, then x0p(|x|)−|y1|1y10 ≺A′ x0p(|x|)−|y2|1y20
if and only if y1 ≺A y2 (this is true because, for every y ∈ Σ∗ such that y ≤A x, it holds

1As we do in many places, we take it here as tacitly clear that the length of a path is its number
of nondeterministic guesses, all of which in this model must be binary guesses. Note also that in the
context of our model “All computation paths of M on x have length exactly p(|x|)” certainly implies
that M is balanced in the sense defined at the start of this section: It will have every (and only) path
corresponding to a guess sequence from {0, 1}p(|x|). We mention, however, that we do not require a
machine to make nondeterministic guesses at each step.

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1295

that x0p(|x|)−|y|1y0 ∈ Sx; and thus, for such y1 and y2, it is impossible for some string
longer than p(|x0|) to be “wedged between” them). The lexicographically smallest
element not in Sx is x0p(|x|)+2 and the largest is x1p(|x|)+2. For any w1, w2 ∈ Σ∗ and
b1, b2 ∈ {0, 1} such that both w1b1 and w2b2 are lexicographically between x0p(|x|)+2

and x1p(|x|)+2 but neither is in Sx, w1b1 ≺A w2b2 if and only if (w1b1 ≺lex w2b2)
or (w1b1 �≺lex w2b2 and b1 = b2 = 1 and w1 ≺lex w2 and w20 ∈ Sx). All other
cases are handled in the way obvious from the above, e.g., for any w1, w2 ∈ Σ∗ and
b1, b2 ∈ {0, 1} such that both of w1b1 and w2b2 are lexicographically between x0p(|x|)+2

and x1p(|x|)+2, and exactly one of them—say w1b1—is in Sx, the above makes it clear
that w1b1 ≺A′ w2b2 exactly if w1b1 = x0p(|x|)−|x|1x0 and w2b2 = x0p(|x|)+2.

Define M to be a Turing machine that, on input x ∈ Σ∗, guesses a string w ∈
Σp(|t(x)|)+2. If t(x)w �∈ St(x), then M rejects. Otherwise, M accepts if and only if

t(x)0p(|t(x)|)−|b(x)|1b(x)0 <A′ t(x)w <A′ t(x)0p(|t(x)|)−|t(x)|1t(x)0. Clearly, M runs in
polynomial time and has computation paths of length exactly p(t(|x|)) + 2. Also,
the number of accepting paths of M on x equals f(x). By construction, the set of
accepting computation paths of M on x is an A′-cluster. Thus, f ∈ CL#P.

From Proposition 9.4 and Theorem 9.6, it is clear that CL#P is different from
both c#P and IFt unless some surprising complexity class collapses occur. In partic-
ular, the following holds.

Corollary 9.7.

1. If c#P = CL#P, then UP = PP.
2. If IFt = CL#P, then P = UP.

Nonetheless, when considering only polynomially bounded functions, c#P and
CL#P do coincide.

Theorem 9.8. c#P ∩ PolyBounded = CL#P ∩ PolyBounded.

Proof. The inclusion “⊆” is immediate. For the inclusion “⊇,” choose f ∈ CL#P
via a nondeterministic polynomial-time Turing machine M , a polynomial p, and a
length-respecting total order A having efficient adjacency checks, all three of which
have the properties and behaviors described in Definition 9.5. Recall that all accepting
paths of M on any input x will be of length p(|x|). Let q be a polynomial such that,
for all x ∈ Σ∗, f(x) ≤ q(|x|). We now will define a nondeterministic polynomial-time
Turing machine N that almost-uniquely computes f in the sense of Definition 9.2.
Define N to be a Turing machine that, on input x ∈ Σ∗, does the following.

1. If ǫ is an accepting path of M(x), then accept and output 1.
2. N nondeterministically guesses strings y, z ∈ Σp(|x|), y′ ∈ Σp(|x|)−1 ∪ Σp(|x|),

and z′ ∈ Σp(|x|) ∪ Σp(|x|)+1.
3. N checks whether all of the following hold.

(a) y′ ≺A y and z ≺A z′.
(b) y′ /∈ accM (x).
(c) z′ /∈ accM (x).
(d) y ∈ accM (x) and z ∈ accM (x).

4. If (3) does not hold, then N rejects, otherwise if y = z, N accepts and outputs
1.

5. If (3) does hold and y �= z, then N proceeds as follows.
(a) N nondeterministically guesses an integer r with 0 ≤ r ≤ q(|x|) − 2.
(b) N nondeterministically guesses r strings v1, . . . , vr ∈ Σp(|x|).
(c) N checks whether y ≺A v1 ≺A v2 ≺A · · · ≺A vr ≺A z.
(d) If (5c) does not hold, then N rejects. Otherwise, N accepts and outputs

r + 2.

1296 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

N is a nondeterministic polynomial-time Turing machine that, on each input, has one
accepting path if f(x) > 0 and no accepting paths if f(x) = 0. If f(x) > 0, then N
on x outputs f(x) on its accepting path. Thus, N almost-uniquely computes f , and
so by Proposition 9.3.1 f ∈ c#P.

For a class F of functions, let ∃! ·F be the class of all sets L for which there exists
a function f ∈ F such that, for all x, x ∈ L ⇔ f(x) = 1.

Theorem 9.9.

1. ∃! · IFp = coNP.
2. ∃! · c#P = ∃! · CL#P = UP.

Proof. For (1), coNP ⊆ ∃! · IFp follows from Corollary 5.4 and the observation
that any language in coNP is also (via considering the NP machine for the language’s
complement but with one extra accepting path added on each input) in ∃! · (#P ∩
Nonzero). To see ∃! · IFp ⊆ coNP, choose L ∈ ∃! · IFp, via f ∈ IFp. Let boundary
functions b, t ∈ FP and partial, polynomial-time computable p-order A having efficient
adjacency checks witness that f ∈ IFp. Let M be a nondeterministic polynomial-time
Turing machine that, on input x, (i) guesses y, z ∈ Σ∗ such that y �= z and (ii) accepts
if b(x) ≺A t(x) ∨ (b(x) <A y <A t(x) ∧ b(x) <A z <A t(x)). It is easy to see that M
accepts L, thus L ∈ NP.

For (2), UP ⊆ ∃! · c#P is obvious. To see that ∃! · CL#P ⊆ UP, choose L ∈ ∃! ·
CL#P. Thus there exists a function f ∈ CL#P such that, for all x, x ∈ L ⇔ f(x) = 1.
Let M be a machine that computes f via total order A having efficient adjacency
checks and polynomial p (where M , A, and p are in the sense of Definition 9.5). Recall
that all accepting paths of M(x) are of length p(x). Let N be a nondeterministic
polynomial-time Turing machine that, on input x, guesses strings y ∈ Σp(|x|) and
x, z ∈ Σp(|x|)−1 ∪ Σp(|x|) ∪ Σp(|x|)+1, and accepts if and only if all the following hold.

1. y ≺A z ∧ y ∈ accM (x) ∧ (w ≺A y ∨ w = y = ǫ).
2. w /∈ accM (x) ∨ w = y = ǫ.
3. z /∈ accM (x).

Clearly, N has on any input at most one accepting path and N accepts L.

The next result shows that CL#P is probably not powerful enough to capture
#P.

Theorem 9.10. If CL#P = #P, then UP = PH.

Proof. Using Theorem 5.2 and both parts of Theorem 9.9, we have coNP ⊆
∃! · #P = ∃! · CL#P = UP.

On the other hand, proving CL#P to be different from #P is at least as hard as
proving that P �= NP and UP �= PP.

Proposition 9.11. If P = NP or UP = PP, then CL#P = #P.

Proof. Suppose UP = PP. Then by Proposition 9.3.4 c#P = #P, and so (see
Theorem 9.6) CL#P = #P. Suppose that P = NP. Then by Theorem 5.10 it holds
that IFt = #P, and so (see Theorem 9.6) CL#P = #P.

Unfortunately, the necessary and sufficient conditions we have obtained for the
equality of #P and CL#P differ, i.e., they do not yield a complete characteriza-
tion. However, if we consider polynomially bounded functions, then such a com-
plete characterization can be established in terms of the classes UP [Val76] and
Few [CH90] (see section 2 for a review of their definitions). Note that UP = Few ⇔
UP = coUP = FewP = Few and so in light of Theorem 9.12 we easily have that
CL#P ∩ PolyBounded = #P ∩ PolyBounded implies UP = coUP = FewP.

Theorem 9.12. CL#P ∩ PolyBounded = #P ∩ PolyBounded if and only if
UP = Few.

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1297

Proof. [⇒]: Suppose that L ∈ Few via a function f ∈ #P, a set B ∈ P, and a
polynomial p such that, for all x, f(x) ≤ p(|x|), and x ∈ L ⇔ (x, 1f(x)) ∈ B. Let
g(x) =def 1+f(x). Then g ∈ #P, and g is polynomially bounded. From our hypothesis
and Theorem 9.8, we obtain g ∈ c#P. Since g(x) > 0, by Proposition 9.3.3 we have
that g ∈ UPSVt via some nondeterministic polynomial-time (function-computing)
Turing machine M whose behavior is UPSVt-like. Define N to be a Turing machine
that, on input x, nondeterministically guesses a computation path y of M on input x,
simulates M on input x along computation path y, and accepts (on its current path)
if and only if y is an accepting path with output z satisfying (x, 1z−1) ∈ B. Clearly,
N is a nondeterministic polynomial-time Turing machine with at most one accepting
path on each input. Furthermore, it holds that N on x has an accepting computation
path if and only if (x, 1f(x)) ∈ B. This gives L ∈ UP.

[⇐]: Let f be any polynomially bounded #P function. Define A =def {(x, 1
y) |

y ≤ f(x)}. Note that A ∈ Few. So by our hypothesis A ∈ UP. Indeed, since Few
is closed under complementation and Few = UP by hypothesis, A ∈ UP ∩ coUP.
Via binary search using A as an oracle, we can compute f in polynomial time. That
is, f is in FPUP∩coUP = UPSVt ⊆ c#P. Thus, CL#P ∩ PolyBounded = #P ∩
PolyBounded.

From Corollary 9.7, we know that CL#P and c#P probably are different classes.
However, under the ∃ operator the difference disappears, since both are mapped to
UP. (Recall that Proposition 9.4.1 established ∃ · c#P = UP.)

Theorem 9.13. ∃ · CL#P = UP.

Proof. The inclusion UP ⊆ ∃·CL#P is immediate from Proposition 9.4.1 and the
fact that c#P ⊆ CL#P. To show the inclusion ∃ · CL#P ⊆ UP, choose an arbitrary
L ∈ ∃·CL#P. Let L ∈ ∃·CL#P via some function f ∈ CL#P with x ∈ L ⇔ f(x) > 0.
Let f ∈ CL#P be witnessed (in the sense of the M , p, and A of Definition 9.5) by
some Turing machine M , polynomial p, and total order A with efficient adjacency
checks. Define N to be a Turing machine that, on input x ∈ Σ∗, does the following.

1. N nondeterministically guesses z ∈ Σp(|x|) and z′ ∈ Σp(|x|) ∪ Σp(|x|)+1.
2. N checks whether each of the following conditions holds.

(a) z ≺A z′.
(b) z ∈ accM (x).
(c) z′ /∈ accM (x).

3. N accepts if and only if 2 holds.

Clearly, N runs in polynomial time and always has at most one accepting path. Also,
it holds that #accN (x) = 1 ⇔ x ∈ L. Thus, L ∈ UP.

It is known that c#P is not closed under increment unless UP = coUP [Kos99].
We note that CL#P displays the same behavior.

Theorem 9.14. If CL#P is closed under increment, then UP = coUP.

Proof. Observe that co(∃ · F) ⊆ ∃! · (F + 1) is true for every class F of total
functions, where F + 1 denotes {g | (∃f ∈ F)(∀x)[g(x) = f(x) + 1]}. Thus by our
hypothesis and Theorem 9.13 we have coUP = co(∃ · CL#P) ⊆ ∃! · (CL#P + 1) ⊆
∃! · CL#P = UP.

As a corollary, we obtain that CL#P is incomparable to IFp unless some unex-
pected complexity class collapse occurs.

Corollary 9.15.

1. If CL#P ⊆ IFp, then P = UP.
2. If IFp ⊆ CL#P, then UP = PH.

Proof. Regarding (1), from our hypothesis and Theorem 9.13 we have UP =

1298 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

∃·CL#P ⊆ ∃·IFp = P. To verify (2), observe that from our hypothesis, Theorem 9.9.1,
and Theorem 9.13 we obtain coNP ⊆ ∃! · IFp ⊆ ∃! · CL#P = UP.

10. Conclusion and open problems. We introduced interval size functions
over p-orders and used them to provide an alternate definition of #P as the set of all
interval size functions over polynomial-time decidable p-orders. We also introduced
the classes IFp and IFt, the interval size functions over partial and total polynomial-
time computable p-orders with efficient adjacency checks. We proved that IFp is the
class of all functions in #P whose support is in P. We also proved that IFt - FP =
#P - FP and IFp - O(1) = #P - O(1), but that IFp = #P if and only if P = NP,
and that IFt = IFp only if UP = PH.

We also introduced the classes IF∗
p and IF∗

t , the interval size functions over partial
and total p-orders with efficient adjacency checks. We proved that ∃ · IF∗

t = ∃ · IF∗
t =

PSPACE.
Finally, we introduced CL#P, the set of all functions that count the number

of accepting paths of polynomial-time cluster machines whose underlying orders are
total and have efficient adjacency checks, and we studied the relationship between
CL#P and the previously studied cluster computing class c#P.

Reviewing all the results on the interval size function classes IFp, IF∗
p, IFt, and

IF∗
t , it seems that we have a good understanding of the computational power of the

classes IFp, IF∗
p, and IF∗

t . Regarding the class IFt, we commend as an open issue
obtaining an understanding of the class IFt - O(1), which can be loosely considered
to be a kind of “total order” #P.

In section 8, we showed that #MONSAT is complete for IFt under Turing re-
ductions. Valiant showed that #2CNFMONSAT is complete for #P under Turing
reductions (and thus of course #MONSAT is complete for #P under Turing reduc-
tions). In light of this, a referee suggested as interesting open issues such questions as
the following: Can one more broadly determine which #P-complete problems fall in
IFt and which fall in IFp? And what can one say about the downward closure, under
various reductions, of #MONSAT, of IFt, and of IFp? In particular, what reduc-
tions are sufficiently restrictive as to leave IFt and/or IFp closed downward under the
reductions, and relatedly, which reductions are sufficiently restrictive as to have the
class of sets reducing to #MONSAT under the reductions be a subset of IFt and/or
IFp?

Acknowledgments. We are grateful to J. Rothe, H. Spakowski, and M. Thakur
for proofreading an earlier draft of this paper, and to E. Hemaspaandra and K.-
J. Lange for helpful discussions. We also thank the anonymous referees for their
careful, helpful reviews and for comments that improved the presentation of the paper.

REFERENCES

[AKS04] M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, Ann. of Math. (2), 160
(2004), pp. 781–793.

[CH90] J.-Y. Cai and L. Hemachandra, On the power of parity polynomial time, Math.
Systems Theory, 23 (1990), pp. 95–106.

[Coo71] S. Cook, The complexity of theorem-proving procedures, in Proceedings of the 3rd
Annual ACM Symposium on Theory of Computing, ACM, New York, 1971, pp.
151–158.

[FFK94] S. Fenner, L. Fortnow, and S. Kurtz, Gap-definable counting classes, J. Comput.
System Sci., 48 (1994), pp. 116–148.

[GHJY91] J. Goldsmith, L. A. Hemachandra, D. Joseph, and P. Young, Near-testable sets,
SIAM J. Comput., 20 (1991), pp. 506–523.

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1299

[Gil77] J. Gill, Computational complexity of probabilistic Turing machines, SIAM J. Com-
put., 6 (1977), pp. 675–695.

[GS88] J. Grollmann and A. L. Selman, Complexity measures for public-key cryptosystems,
SIAM J. Comput., 17 (1988), pp. 309–335.

[GS91] A. V. Goldberg and M. Sipser, Compression and ranking, SIAM J. Comput., 20
(1991), pp. 524–536.

[GS92] M. Grigni and M. Sipser, Monotone complexity, in Boolean Function Complexity,
London Math. Soc. Lecture Note Ser. 169, M. Paterson, ed., Cambridge University
Press, Cambridge, UK, 1992, pp. 57–75.

[GW83] H. Galperin and A. Wigderson, Succinct representations of graphs, Inform. and
Control, 56 (1983), pp. 183–198.

[HHK06] L. Hemaspaandra, C. Homan, and S. Kosub, Cluster computing and the power of
edge recognition, in Proceedings of the Third Annual Conference on Theory and
Applications of Models of Computation, Lecture Notes in Computer Sci. 3959,
Springer-Verlag, Berlin, 2006, pp. 283–294.

[HHKW05] L. Hemaspaandra, C. Homan, S. Kosub, and K. Wagner, The Complexity of Com-
puting the Size of an Interval, Technical report TR-856, University of Rochester,
Department of Computer Science, Rochester, NY, February 2005, revised March
2005.

[HHW05] E. Hemaspaandra, L. Hemaspaandra, and O. Watanabe, The Complexity of Kings,
Technical report TR-870, University of Rochester, Department of Computer Sci-
ence, Rochester, NY, 2005.

[HKW01] L. Hemaspaandra, S. Kosub, and K. Wagner, The complexity of computing the size
of an interval, in Proceedings of 28th International Colloquium on Algorithms,
Languages and Programming, Lecture Notes in Computer Sci. 2076, Springer-
Verlag, Berlin, 2001, pp. 1040–1051.

[HMU01] J. Hopcroft, R. Motwani, and J. Ullman, Introduction to Automata Theory, Lan-
guages, and Computation, 2nd ed., Addison-Wesley, Boston, 2001.

[HO02] L. Hemaspaandra and M. Ogihara, The Complexity Theory Companion, Springer-
Verlag, Berlin, 2002.

[HVW96] U. Hertrampf, H. Vollmer, and K. Wagner, On balanced versus unbalanced com-
putation trees, Math. Systems Theory, 29 (1996), pp. 411–421.

[HW00] H. Hempel and G. Wechsung, The operators min and max on the polynomial hier-
archy, Internat. J. Found. Comput. Sci., 11 (2000), pp. 315–342.

[Ko83] K. Ko, On self-reducibility and weak P-selectivity, J. Comput. System Sci., 26 (1983),
pp. 209–221.

[Kos99] S. Kosub, A note on unambiguous function classes, Inform. Process. Lett., 72 (1999),
pp. 197–203.

[KSTT92] J. Köbler, U. Schöning, S. Toda, and J. Torán, Turing machines with few ac-
cepting computations and low sets for PP, J. Comput. System Sci., 44 (1992), pp.
272–286.

[Lad89] R. E. Ladner, Polynomial space counting problems, SIAM J. Comput., 18 (1989), pp.
1087–1097.

[Lev75] L. Levin, Universal sequential search problems, Probl. Inf. Transm., 9 (1975), pp.
265–266.

[MP79] A. Meyer and M. Paterson, With What Frequency are Apparently Intractable Prob-
lems Difficult?, Technical report MIT/LCS/TM-126, MIT, Laboratory for Com-
puter Science, Cambridge, MA, 1979.

[MS72] A. Meyer and L. Stockmeyer, The equivalence problem for regular expressions
with squaring requires exponential time, in Proceedings of the 13th Symposium
on Switching and Automata Theory, IEEE Press, Los Alamitos, CA, 1972, pp.
125–129.

[NT05] A. Nickelsen and T. Tantau, The complexity of finding paths in graphs with bounded
independence number, SIAM J. Comput., 34 (2005), pp. 1176–1195.

[OH93] M. Ogiwara and L. Hemachandra, A complexity theory of feasible closure properties,
J. Comput. System Sci., 46 (1993), pp. 295–325.

[OTTW96] M. Ogihara, T. Thierauf, S. Toda, and O. Watanabe, On closure properties of
#P in the context of PF ◦ #P, J. Comput. System Sci., 53 (1996), pp. 171–179.

[PY86] C. Papadimitriou and M. Yannakakis, A note on succinct representations of graphs,
Inform. and Control, 71 (1986), pp. 181–185.

[Sim75] J. Simon, On Some Central Problems in Computational Complexity, Ph.D. thesis,
Cornell University, Ithaca, NY, 1975.

1300 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

[Sto77] L. Stockmeyer, The polynomial-time hierarchy, Theoret. Comput. Sci., 3 (1977), pp.
1–22.

[Tan01] T. Tantau, A Note on the Complexity of the Reachability Problem for Tournaments,
Technical report TR01-092, Electronic Colloquium on Computational Complexity,
http://www.eccc.uni-trier.de/eccc/ (2001).

[Val76] L. Valiant, Relative complexity of checking and evaluation, Inform. Process. Lett., 5
(1976), pp. 20–23.

[Val79] L. G. Valiant, The complexity of enumeration and reliability problems, SIAM J.
Comput., 8 (1979), pp. 410–421.

[VW95] H. Vollmer and K. Wagner, Complexity classes of optimization functions, Inform.
and Comput., 120 (1995), pp. 198–219.

[Wag84] K. Wagner, The complexity of problems concerning graphs with regularities, in Pro-
ceedings of the 11th Symposium on Mathematical Foundations of Computer Sci-
ence, Lecture Notes in Computer Sci. 176, Springer-Verlag, Berlin, 1984, pp. 544–
552.

[Wag86] K. Wagner, The complexity of combinatorial problems with succinct input represen-
tations, Acta Inform., 23 (1986), pp. 325–356.

	Rochester Institute of Technology
	RIT Scholar Works
	12-21-2006

	The Complexity of Computing the Size of an Interval
	Lane A. Hemaspaandra
	Christopher M. Homan
	Sven Kosub
	Klaus W. Wagner
	Recommended Citation

	tmp.1392582965.pdf.8NoCa

