
The Complexity of Constructing Evolutionary

Trees Using Experiments

Gerth Stlting Brodal1,⋆, Rolf Fagerberg1,⋆,
Christian N. S. Pedersen1,⋆, and Anna Östlin2,⋆⋆

1 BRICS†, Department of Computer Science, University of Aarhus, Ny Munkegade,
DK-8000 Århus C, Denmark. E-mail: {gerth,rolf,cstorm}@brics.dk

2 Department of Computer Science, Lund University, Box 118, S-221 00 Lund,
Sweden. E-mail: Anna.Ostlin@cs.lth.se

Abstract We present tight upper and lower bounds for the problem of
constructing evolutionary trees in the experiment model. We describe
an algorithm which constructs an evolutionary tree of n species in time
O(nd logd n) using at most n⌈d/2⌉(log

2⌈d/2⌉−1
n+O(1)) experiments for

d > 2, and at most n(log n+O(1)) experiments for d = 2, where d is the
degree of the tree. This improves the previous best upper bound by a fac-
tor Θ(log d). For d = 2 the previously best algorithm with running time
O(n log n) had a bound of 4n log n on the number of experiments. By
an explicit adversary argument, we show an Ω(nd logd n) lower bound,
matching our upper bounds and improving the previous best lower bound
by a factor Θ(logd n). Central to our algorithm is the construction and
maintenance of separator trees of small height, which may be of inde-
pendent interest.

1 Introduction

The evolutionary relationship for a set of species is commonly described by an
evolutionary tree, where the leaves correspond to the species, the root corre-
sponds to the most recent common ancestor for the species, and the internal
nodes correspond to the points in time where the evolution has diverged in dif-
ferent directions. The evolutionary history for a set of species is rarely known,
hence estimating the true evolutionary tree for a set of species from obtainable
information about the species is of great interest. Estimating the true evolu-
tionary tree computationally requires a model describing how to use available
information about species to estimate aspects of the true evolutionary tree. Given
a model, the problem of estimating the true evolutionary tree is often referred
to as constructing the evolutionary tree in that model.

⋆ Partially supported by the IST Programme of the EU under contract number IST-
1999-14186 (ALCOM-FT).

⋆⋆ Partially supported by TFR grant 1999-344.
† Basic Research in Computer Science, www.brics.dk, funded by the Danish National

Research Foundation.

a b c

(a, b, c)

a b

c

((a, b), c)

a c

b

((a, c), b)

b c

a

((b, c), a)

Figure 1. The four possible outcomes of an experiment for three species a, b and c

In this paper we study the problem of constructing evolutionary trees in
the experiment model proposed by Kannan, Lawler and Warnow in [6]. In this
model the information about the species is obtained by experiments which can
yield the evolutionary tree for any triplet of species, cf. Fig. 1. The problem of
constructing an evolutionary tree for a set of n species in the experiment model
is to construct a rooted tree with no unary internal nodes and n leaves labeled
with the species such that the topology of the constructed tree is consistent
with all possible experiments involving the species. Hence, the topology of the
constructed tree should be such that the induced tree for any three species is
equal to the tree returned by an experiment on those three species.

The relevance of the experiment model depends on the possibility of per-
forming experiments. A standard way to express phylogenetic information is by
a distance matrix. A distance matrix for a set of species is a matrix where en-
try Mij represents the evolutionary distance between species i and j, measured
by some biological method (see [6] for further details). For three species a, b
and c where Mab < min{Mac, Mbc} it is natural to conclude that the least com-
mon ancestor of a and b is below the least common ancestor of a and c, i.e. the
outcome of an experiment on a, b and c can be decided by inspecting Mab, Mac

and Mbc. The consistency of experiments performed by inspecting a distance
matrix depends entirely on the distance matrix. Kannan et al. in [6] define a
distance matrix as noisy-ultrametric if there exists a rooted evolutionary tree
such that for all triplets of species a, b and c it holds that Mab < min{Mac, Mbc}
if and only if the least common ancestor of a and b is below the least common
ancestor of a and c in the rooted evolutionary tree. Hence, if a noisy-ultrametric
distance matrix for the set of species can be obtained, it can be used to per-
form experiments consistently. Another and more direct method for performing
experiments is DNA-DNA hybridization as described by Sibley and Ahlquist
in [9]. In this experimental technique one measures the temperature at which
single stranded DNA from two different species bind together. The binding tem-
perature is correlated to the evolutionary distance, i.e. by measuring the binding
temperatures between DNA strands from three species one can decide the out-
come of the experiment by deciding which pair of the three species bind together
at the highest temperature.

Kannan et al. introduce and study the experiment model in [6] under the as-
sumption that experiments are flawless in the sense that they do not contradict

each other, i.e. it is always possible to construct an evolutionary tree for a set
of species that is consistent with all possible experiments involving the species.
They present algorithms for constructing evolutionary trees with bounded as
well as unbounded degree, where the degree of a tree is the maximum number
of children for an internal node. For constructing binary evolutionary trees they
present three different algorithms with running times O(n log n), O(n log2 n)
and O(n2) respectively, using 4n logn, n log3/2 n and n logn experiments re-
spectively, where log n denotes log2 n. For constructing an evolutionary tree of
degree d they present an algorithm with running time O(n2) using O(dn log n)
experiments. Finally, for the general case they present an algorithm with run-
ning time O(n2) using O(n2) experiments together with a matching lower bound.
Kao, Lingas, and Östlin in [7] present a randomized algorithm for constructing
evolutionary trees of degree d with expected running time O(nd log n log log n).
They also prove a lower bound Ω(n log n + nd) on the number of experiments.
The best algorithm so far for constructing evolutionary trees of degree d is due
to Lingas, Olsson, and Östlin, who in [8] present an algorithm with running time
O(nd log n) using the same number of experiments.

In this paper we present the first tight upper and lower bounds for the prob-
lem of constructing evolutionary trees of degree d in the experiment model.
We present an algorithm which constructs an evolutionary tree for n species
in time O(nd logd n) using at most n⌈d/2⌉(log2⌈d/2⌉−1 n + O(1)) experiments
for d > 2, and at most n(log n + O(1)) experiments for d = 2, where d is the
degree of the constructed tree. The algorithm is a further development of an
algorithm from [8]. Our construction improves the previous best upper bound
by a factor Θ(log d). For d = 2 the previously best algorithm with running time
O(n log n) had a bound of 4n logn on the number of experiments. The improved
constant factors on the number of experiments are important because experi-
ments are likely to be expensive in practice, cf. Kannan et al. [6]. By an explicit
adversary argument, we show an Ω(nd logd n) lower bound, matching our upper
bounds and improving the previous best lower bound by a factor Θ(logd n).

Our algorithm also supports the insertion of new species with a running
time of O(md logd(n + m)) using at most m⌈d/2⌉(log2⌈d/2⌉−1(n + m) + O(1))
experiments for d > 2, and at most m(log(n+m)+O(1)) experiments for d = 2,
where n is the number of species in the tree to begin with, m is the number
of insertions, and d is the maximum degree of the tree during the sequence
of insertions. Central to our algorithm is the construction and maintenance of
separator trees of small height. These algorithms may be of independent interest.
However, due to lack of space we have omitted the details on separator trees.
For further details we refer the reader to the full version of the paper [5].

The rest of this paper is organized as follows. In Sect. 2 we define separator
trees and state results on the construction and efficiently maintenance of sepa-
rator trees of small height. In Sect. 3 we present our algorithm for constructing
and maintaining evolutionary trees. In Sect. 4 and 5 the lower bound is proved
using an explicit adversary argument. The adversary strategy used is an exten-
sion of an adversary used by Borodin, Guibas, Lynch, and Yao [3] for proving

a trade-off between the preprocessing time of a set of elements and membership
queries, and Brodal, Chaudhuri, and Radhakrishnan [4] for proving a trade-off
between the update time of a set of elements and the time for reporting the
minimum of the set.

2 Separator Trees

In this section we define separator trees and state results about efficient algo-
rithms for their constructing and maintenance. For further details see [5].

Definition 1. Let T be an unrooted tree with n nodes. A separator tree ST

for T is a rooted tree on the same set of nodes, defined recursively as follows:

The root of ST is a node u in T , called the separator node. The removal of u
from T disconnects T into disjoint trees T1, . . . , Tk, where k is the number of

edges incident to u in T . The children of u in ST are the roots of separator trees

for T1, . . . , Tk.

Clearly, there are many possible separator trees ST for a given tree T . An
example is shown in Fig. 2.

d

c

a

e f

b

g

i

h

e

c

a b d

f

g

h i

Figure 2. A tree T (left) and a separator tree ST for T (right)

For later use, we note the following facts for separator trees:

Fact 1 Let ST be a separator tree for T , and let v be a node in T . If Sv denotes

the subtree of ST rooted at v, then:

1. The subgraph Tv induced by the nodes in Sv is a tree, and Sv is a separator

tree for Tv.

2. For any edge from T with exactly one endpoint in Tv, the other endpoint is

an ancestor of v in ST , and each ancestor of v can be the endpoint of at

most one such edge.

The main point of a separator tree ST is that it may be balanced, even
when the underlying tree T is not balanced for any choice of root. The notion
of balanced separator trees is contained in the following definition, where the
size |T | of a tree T denotes the number of nodes in T , and where Ti refers to the
trees T1, . . . , Tk from Definition 1.

Definition 2. A separator tree is a t-separator tree, for a threshold t ∈ [1/2, 1],
if |Ti| ≤ t|T | for each Ti and the separator tree for each Ti is also a t-separator
tree.

In [5] we first give a simple algorithm for constructing 1/2-separator trees
in time O(n log n). We then improve the running time of the algorithm to O(n)
by adopting additional data structures. We note that a 1/2-separator tree has
height at most ⌊log n⌋.

We also consider dynamic separator trees under the insertion of new nodes
into a tree T and its corresponding separator tree ST , and show how to maintain
separators trees with small height in logarithmic time per insertion. Our methods
for maintaining balance and height in separator trees during insertions of new
nodes are based on rebuilding of subtrees, and are inspired by methods of An-
dersson and Lai described in [1,2] for maintaining small height in binary search
trees. We first show how the linear time construction algorithm for 1/2-separator
trees leads to a simple algorithm for keeping separator trees well balanced. The
height bound achieved by this algorithm is O(log n), using O(log n) amortized
time per update. We then use a two-layered structure to improve the height
bound to log n + O(1) without sacrificing the time bound. The improved con-
stant factor in the height bound is significant for our use of separator trees for
maintaining evolutionary trees in the experiment model, since the number of
experiments for an insertion of a new species will turn out to be proportional
to the height of the separator tree. Furthermore, this height bound is within an
additive constant of the best bound possible, as trees exist where any separator
tree must have height at least ⌊log n⌋, e.g. a tree which is a single path.

Finally, we extend the separator trees with a specific ordering of the children,
facilitating our use of separator trees in Sect. 3 for finding insertion points for
new species in evolutionary trees. The basic idea is to speed up the search in the
separator tree by considering the children of the nodes in decreasing size-order.
This ensures a larger reduction of subtree size in the case that many children
have to be considered before the subtree to proceed the search in is found. Our
main result about separator trees is summarized in the following theorem.

Theorem 1. Let T be an unrooted tree initially containing n nodes. After O(n)
time preprocessing, an ordered separator tree for T can in time O(m log(n+m))
be maintained during m insertions in a way such that the height is bounded by

log(n + m) + 5 and such that for any path (v1, v2, . . . , vℓ) from the root v1 to a

node vℓ in the separator tree, the followings holds

∏

di≤2

2 ·
∏

di>2

di < 16d(n + m) , (1)

where di is the number which vi+1 has in the ordering of the children of vi,

for 1 ≤ i < ℓ, and d is max{d1, . . . , dℓ−1}.

3 Algorithm for Constructing and Maintaining

Evolutionary Trees

In this section we describe an algorithm for constructing an evolutionary tree T
in the experiment model for a set of n species in time O(nd logd n), where d
is the degree of the tree. Note that d is not known by the algorithm in ad-
vance. The algorithm is a further development of an algorithm by Lingas et al.

in [8]. Our algorithm also supports the insertion of new species with running
time O(md logd(n + m)) using at most m⌈d/2⌉(log2⌈d/2⌉−1(n + m) + O(1)) ex-
periments for d > 2, and at most m(log(n + m) + O(1)) experiments for d = 2,
where n is the number of species in the tree to begin with, m is the number
of insertions, and d is the maximum degree of the tree during the sequence of
insertions.

The construction algorithm inserts one species at the time into the tree in
time O(d logd n) until all n species have been inserted. The search for the inser-
tion point of a new species a is guided by a separator tree ST for the internal
nodes of the evolutionary tree T for the species inserted so far. The search starts
at the root of ST . In a manner to be described below, we decide by experiments
which subtree, rooted at a child of the root in ST , the search should continue
in. This is repeated recursively until the correct insertion point in T for a is
found. We keep links between corresponding nodes in ST and T for switching
between the two trees. To facilitate the experiments, we for each internal node
in T maintain a pointer to an arbitrary leaf in its subtree. When inserting a new
internal node in T this pointer is set to point to the new leaf which caused the
insertion of the node.

We say that the insertion point of a is incident to a node v, if

1. a should be inserted directly below v, or
2. a should split an edge which is incident to v by creating a new internal node

on the edge and make a a leaf below the new node, or
3. if v is the root of T , a new root of T should be created with a and v as its

two children.

The invariant for the search is the following. Assume we have reached node v
in the separator tree for the internal nodes in T , and let Sv be the internal nodes
of T which are contained in the subtree of ST rooted at v (including v). Then
the insertion point of the new species a is incident to a node in Sv.

Let v be the node in ST for which we want to decide if the insertion point
for the new species a is in the subtree above v in T ; if it is in a subtree rooted
at a child of v in T ; or if a should be inserted as a new child of v. We denote by
u1, . . . , uk the children of v in T , where u1, . . . , uk′ are nodes in distinct subtrees
T1, . . . , Tk′ below v in ST , whereas uk′+1, . . . , uk are leaves in T or are nodes
above v in ST . The order of the subtrees T1, . . . , Tk′ below v in ST is given
by the ordered separator tree ST and determines the order of u1, . . . , uk′ . The
remaining children uk′+1, . . . , uk of v may appear in any order.

We perform at most ⌈k/2⌉ experiments at v. The i’th experiment is on the
species a, b and c, where b and c are leaves in T below u2i−1 and u2i respectively.

The leaves b and c can be located using the pointers stored at u2i−1 and u2i.
Note that the least common ancestor of b and c in T is v. If k is odd then the
species b and c in the ⌈k/2⌉’th experiment is chosen as leaves in T below uk

and u1 respectively, and note that the two leaves are distinct because k ≥ 2 by
definition. There are four possible outcomes of the i’th experiment corresponding
to Fig. 1:

1. (a, b, c) implies that the insertion point for a is incident to adescendent of uj ,
where b and c are not descendents of uj, or a is a new leaf below v.

2. ((a, b), c) implies that the insertion point for a is incident to a descendent of
u2i−1, since the least common ancestor of a and b is below v in T .

3. ((a, c), b) is symmetric to the above case and the insertion point of a is
incident to a descendent of u2i (u1 for the ⌈k/2⌉’th experiment if k odd).

4. ((b, c), a) implies that the insertion point of a is in the subtree above v, since
the least common ancestor of a and b is above v. If v is the present root of T ,
a new root should be created with children a and v.

We perform experiments for increasing i until we get an outcome difference
from Case 1, or until we have performed all ⌈k/2⌉ experiments all with outcome
cf. Case 1. In the latter case species a should be inserted directly below v in T as
a new child. In the former case, when the outcome of an experiment is different
from Case 1, we know in which subtree adjacent to v in T the insertion point
for species a is located. If there is no corresponding subtree below v in ST , then
we have identified the edge incident to v in T which the insertion of species a
should split. Otherwise we continue recursively searching for the insertion point
for species a at the child of v in ST which roots the separator tree for the
subtree adjacent to v which has been identified to contain the insertion point
for a. When the insertion point for species a is found, we insert one leaf and at
most one internal node into T , and ST is updated according to Theorem 1.

Lemma 1. Given an evolutionary tree T for n species with degree d, and a sep-

arator tree ST for T according to Theorem 1, then a new species a can be inserted

into T and ST in amortized time O(d logd n) using at most ⌈d/2⌉(log2⌈d/2⌉−1 n+
O(1)) experiments for d > 2, and at most log n + O(1) experiments for d = 2.

Proof. Let v1, . . . , vℓ be the nodes in ST (and T) visited by the algorithm while
inserting species a, where v1 is the root of ST and vj+1 is a child of vj in ST .
Define di by vi+1 being the di’th child of vi in ST , for 1 ≤ i < ℓ.

For d = 2 we perform exactly one experiment at each vi. The total number of
experiments is thus bounded by the height of the separator tree. By Theorem 1
it follows that the number of experiments is bounded by log n + O(1). In the
following we consider the case where d ≥ 3.

For i < ℓ, let xi denote the number of experiments performed at node vi. We
have xi ≤ ⌈d/2⌉ and di ≥ 2xi − 1, since each experiment considers two children
of vi in T and the first experiment also identifies if a should be inserted into the
subtree above vi. At vℓ we perform at most ⌈d/2⌉ experiments.

For d1, . . . , dℓ−1 we from Theorem 1 have the constraint
∏

di≤2
2 ·

∏
di>2

di ≤
16dn, since |ST | ≤ n−1. To prove the stated bound on the worst case number of

experiments we must maximize
∑ℓ

i=0
xi under the above constraints. We have

log(16dn) ≥
∑

di≤2

1 +
∑

di>2

log di

≥
∑

xi=1

1 +
∑

xi>1

log di

≥
∑

xi=1

xi +
∑

xi>1

xi
1

xi
log(2xi − 1)

≥
1

⌈d/2⌉
log(2⌈d/2⌉ − 1)

ℓ−1∑

i=1

xi ,

where the second inequality holds since xi > 1 implies di ≥ 3. The last inequality
holds since for f(x) = 1

x log(2x − 1) we have 1 > f(2) > f(3) and f(x) is
decreasing for x ≥ 3, i.e. f(x) is minimized when x is maximized.

We conclude that
∑ℓ−1

i=1
xi ≤ ⌈d/2⌉ log2⌈d/2⌉−1(16dn), i.e. for the total num-

ber of experiments we have
∑ℓ

i=1
xi ≤ ⌈d/2⌉(log2⌈d/2⌉−1(16dn) + 1).

The time needed for the insertion is proportional to the number of experi-
ments performed plus the time to update ST . By Theorem 1 the total time is
thus O(d logd n). ⊓⊔

From Lemma 1 and Theorem 1 we get the following bounds for constructing
and maintaining an evolutionary tree under the insertion of new species in the
experiment model.

Theorem 2. After O(n) preprocessing time an evolutionary tree T for n species

can be maintained under m insertions in time O(dm logd(n + m)) using at most

m⌈d/2⌉(log2⌈d/2⌉−1(n+m)+O(1)) experiments for d > 2, and at most m(log(n+
m) + O(1)) experiments for d = 2, where d is the maximum degree of the tree

during the sequence of insertions.

4 Adversary for Constructing Evolutionary Trees

To prove a lower bound on the number of experiments required for construct-
ing an evolutionary tree of n species with degree at most d, we describe an
adversary strategy for deciding the outcome of experiments. The adversary is
required to give consistent answers, i.e. the reported outcome of an experiment
is not allowed to contradict the outcome of previously performed experiments.
A construction algorithm is able to construct an unambiguous evolutionary tree
based on the performed experiments when the adversary is not able to answer
any additional experiments in such a way that it contradicts the constructed evo-
lutionary tree. The role of the adversary is to force any construction algorithm

to perform provably many experiments in order to construct an unambiguous
evolutionary tree.

To implement the adversary strategy for deciding the outcome of experiments
in a consistent way, the adversary maintains a rooted infinite d-ary tree, D, where
each of the n species are stored at one of the nodes, allowing nodes to store sev-
eral species. Initially all n species are stored at the root. For each experiment
performed, the adversary can move the species downwards by performing a se-
quence of moves, where each move shifts a species from the node it is currently
stored at to a child of the node.

By deciding the outcome of experiments, the adversary reveals information
about the evolutionary relationships between the species to the construction al-
gorithm performing the experiments. The distribution of the n species on D
represents the information revealed by the adversary (together with the for-
bidden and conflicting lists introduced below). The evolutionary tree T to be
established by the construction algorithm will be a connected subset of nodes
of D including the root. Initially, when all species are stored at the root, the
construction algorithm has no information about the evolutionary relationships.
The evolutionary relationships revealed to the construction algorithm by the
current distribution of the species on D corresponds to the tree formed by the
paths from the root of D to the nodes storing at least one species. More pre-
cisely, the correspondence between the final evolutionary tree T and the current
distribution of the species on D is that if v is a leaf of T labeled a then species a
is stored at some node on the path in D from the root to the node v.

Our objective is to prove that if an algorithm computes T , then the n species
on average must have been moved Ω(logd n) levels down by the adversary, and
that the number of moves by the adversary is a fraction O(1/d) of the number
of experiments performed. These two facts imply the Ω(nd logd n) lower bound
on the number of experiments required.

To control its strategy for moving species on D, the adversary maintains
for each species a a forbidden list F(a) of nodes and a conflicting list C(a) of
species. If a is stored at node v, then F(a) is a subset of the children c1, . . . , cd

of v, and C(a) is a subset of the other species stored at v. If ci ∈ F(a), then a is
not allowed to be moved to child ci, and if b ∈ C(a) then a and b must be moved
to two distinct children of v. It will be an invariant that b ∈ C(a) if and only if
a ∈ C(b). Initially all forbidden and conflicting lists are empty. The adversary
maintains the forbidden and conflicting lists such that the size of the forbidden
and conflicting lists of a species a is bounded by the invariant

|F(a)| + |C(a)| ≤ d − 2 . (2)

The adversary uses the sum |F(a)|+|C(a)| to decide when to move a species a
one level down in D. Whenever the invariant (2) becomes violated because
|F(a)|+ |C(a)| = d− 1, for a species a stored at a node v, the adversary moves a
to a child ci /∈ F(a) of v. Since |F(a)| ≤ d − 1, such a ci /∈ F(a) is guaranteed
to exist. When moving a from v to ci, the adversary updates the forbidden and
conflicting lists as follows: For all b ∈ C(a), a is deleted from C(b) and ci is

inserted into F(b). If ci was already in F(b), the sum |F(b)|+ |C(b)| decreases by
one, if ci was not in F(b) the sum remains unchanged. Finally, F(a) and C(a)
are assigned the empty set.

For two species a and b, we define their least common ancestor, LCA(a, b),
to be the least common ancestor of the two nodes storing a and b in D. We
denote LCA(a, b) as fixed if it cannot be changed by future moves of a and b
by the adversary. If LCA(a, b) is fixed then the least common ancestor of the
two species a and b in T is the node LCA(a, b). If a is stored at node va and b
is stored at node vb, it follows that LCA(a, b) is fixed if and only if one of the
following four conditions is satisfied.

1. va = LCA(a, b) = vb and a ∈ C(b) (and b ∈ C(a)).
2. va 6= LCA(a, b) = vb and ci ∈ F(b), where ci is the child of vb such that the

subtree rooted at ci contains va.
3. va = LCA(a, b) 6= vb and ci ∈ F(a), where ci is the child of va such that the

subtree rooted at ci contains vb.
4. va 6= LCA(a, b) 6= vb.

In Case 1, species a and b are stored at the same node and cannot be moved
to the same child because a ∈ C(b), i.e. LCA(a, b) is fixed as the node which
currently stores a and b. Cases 2 and 3 are symmetric. In Case 2, species a is
stored at a descendant of a child ci of the node storing b, and b cannot be moved
to ci because ci ∈ F(b), i.e. LCA(a, b) is fixed as the node which currently stores b.
Finally, in Case 4, species a and b are stored at nodes in disjoint subtrees, i.e.
LCA(a, b) is already fixed.

The operation Fix(a, b) ensures that LCA(a, b) is fixed as follows:

1. If va = LCA(a, b) = vb and a /∈ C(b) then insert a into C(b) and insert b
into C(a).

2. If va 6= LCA(a, b) = vb and ci /∈ F(b), where ci is the child of vb such that
the subtree rooted at ci contains va, then insert ci into F(b).

3. If va = LCA(a, b) 6= vb and ci /∈ F(a), where ci is the child of va such that
the subtree rooted at ci contains vb, then insert ci into F(a).

Otherwise Fix(a, b) does nothing. If performing Fix(a, b) increases |F(a)| such
that |F(a)|+ |C(a)| = d− 1, then a is moved one level down as described above.
Similarly, if |F(b)|+ |C(b)| = d−1 then b is moved one level down. After perform-
ing Fix(a, b) we thus have that |F(a)|+ |C(a)| ≤ d−2 and |F(b)|+ |C(b)| ≤ d−2,
which ensures that the invariant (2) is not violated.

When the construction algorithm performs an experiment on three species
a, b and c, the adversary decides the outcome of the experiment based on the
current distribution of the species on D and the content of the conflicting and
forbidden lists. To ensure the consistency of future answers, the adversary first
fix the least common ancestors of a, b and c by applying the operation Fix three
times: Fix(a, b), Fix(a, c) and Fix(b, c). After having fixed LCA(a, b), LCA(a, c),
and LCA(b, c), the adversary decides the outcome of the experiment by examin-
ing LCA(a, b), LCA(a, c), and LCA(b, c) in D as described below. The four cases
correspond to the four possible outcomes of an experiment cf. Fig. 1.

1. If LCA(a, b) = LCA(b, c) = LCA(a, c) then return (a, b, c).
2. If LCA(a, b) 6= LCA(b, c) = LCA(a, c) then return ((a, b), c).
3. If LCA(a, c) 6= LCA(a, b) = LCA(b, c) then return ((a, c), b).
4. If LCA(b, c) 6= LCA(a, b) = LCA(a, c) then return ((b, c), a).

5 Lower Bound Analysis

We will argue that the above adversary strategy forces any construction algo-
rithm to perform at least Ω(nd logd n) experiments before being able to conclude
unambiguously the evolutionary relationships between the n species.

Theorem 3. The construction of an evolutionary tree for n species requires

Ω(nd logd n) experiments, where d is the degree of the constructed tree.

Proof. We first observe that an application of Fix(a, b) at most increases the
size of the two conflicting lists, C(a) and C(b), by one, or the size of one of the
forbidden list, F(a) or F(b), by one. If performing Fix(a, b) increases the sum
|F(a)| + |C(a)| to d − 1, then species a is moved one level down in D and F(a)
and C(a) are emptied, which causes the overall sum of the sizes of forbidden and
conflicting lists to decrease by d−1. This implies that a total of k Fix operations,
starting with the initial configuration where all conflicting and forbidden lists are
empty, can cause at most 2k/(d− 1) moves. Since an experiment involves three
Fix operations, we can bound the total number of moves during m experiments
by 6m/(d − 1).

Now consider the configuration, i.e. the distribution of species and the content
of conflicting and forbidden lists, when the construction algorithm computing
the evolutionary tree terminates. Some species may have nonempty forbidden
lists or conflicting lists. By forcing one additional move on each of these species
as described in Sect. 4, we can guarantee that all forbidden and conflicting lists
are empty. At most n additional moves must be performed.

Let T ′ be the tree formed by the paths in D from the root to the nodes
storing at least one species. We first argue that all internal nodes of T ′ have at
least two children. If a species has been moved to a child of a node, then the
forbidden list or conflicting list of the species was nonempty. If the forbidden list
was nonempty, then each of the forbidden subtrees already contained at least one
species, and if the conflicting list was nonempty there was at least one species on
the same node that was required to be moved to another subtree, at the latest
by the n additional moves. It follows that if a species has been moved to a child
of a node then at least one species has been moved to another child of the node,
implying that T ′ has no node with only one child.

We next argue that all n species are stored at the leaves of T ′ and that each
leaf of T ′ stores either one or two species. If there is a non-leaf node in T ′ that
still contains a species, then this species can be moved to at least two children
already storing at least one species in the respective subtrees, implying that the
adversary can force at least two distinct evolutionary trees which are consistent
with the answers returned. This is a contradiction. It follows that all species

are stored at leaves of T ′. If a leaf of T ′ stores three or more species, then an
experiment on three of these species can generate different evolutionary trees,
which again is a contradiction. We conclude that each leaf of T ′ stores exactly
one or two species, and all internal nodes of T ′ store no species. It follows that T ′

has at least n/2 leaves.
For a tree with k leaves and degree d, the sum of the depths of the leaves is at

least k logd k. Since each leaf of T ′ stores at most two species, the n species can
be partitioned into two disjoint sets of size ⌈n/2⌉ and ⌊n/2⌋ such that in each
set all species are on distinct leaves of T ′. The sum of the depths of all species is
thus at least ⌈n/2⌉ logd⌈n/2⌉ + ⌊n/2⌋ logd⌊n/2⌋ ≥ n logd(n/2). Since the depth
of a species in D is equal to the number of times the species has been moved one
level down in D, and since m experiments generate at most 6m/(d − 1) moves
and we perform at most n additional moves, we get the inequality

n logd(n/2) ≤ 6m/(d− 1) + n ,

from which the lower bound m ≥ (d − 1)n(logd(n/2) − 1)/6 follows. ⊓⊔

References

1. A. Andersson. Improving partial rebuilding by using simple balance criteria. In
Proc. 1st Workshop on Algorithms and Data Structures (WADS), volume 382 of
Lecture Notes in Computer Science, pages 393–402. Springer-Verlag, 1989.

2. A. Andersson and T. W. Lai. Fast updating of well-balanced trees. In Proc. 2nd
Scandinavian Workshop on Algorithm Theory (SWAT), volume 447 of Lecture Notes
in Computer Science, pages 111–121. Springer-Verlag, 1990.

3. A. Borodin, L. J. Guibas, N. A. Lynch, and A. C. Yao. Efficient searching using
partial ordering. Information Processing Letters, 12:71–75, 1981.

4. G. S. Brodal, S. Chaudhuri, and J. Radhakrishnan. The randomized complexity of
maintaining the minimum. Nordic Journal of Computing, Selected Papers of the 5th
Scandinavian Workshop on Algorithm Theory (SWAT), 3(4):337–351, 1996.

5. G. S. Brodal, R. Fagerberg, C. N. S. Pedersen, and A. Östlin. The complexity of
constructing evolutionary trees using experiments. Technical Report BRICS-RS-01-
1, BRICS, Department of Computer Science, University of Aarhus, 2001.

6. S. K. Kannan, E. L. Lawler, and T. J. Warnow. Determining the evolutionary tree
using experiments. Journal of Algorithms, 21:26–50, 1996.

7. M. Y. Kao, A. Lingas, and A. Östlin. Balanced randomized tree splitting with
applications to evolutionary tree constructions. In Proc. 16th Annual Symposium
on Theoretical Aspects of Computer Science (STACS), pages 184–196, 1999.

8. A. Lingas, H. Olsson, and A. Östlin. Efficient merging, construction, and mainte-
nance of evolutionary trees. In Proc. 26th Int. Colloquium on Automata, Languages
and Programming (ICALP), volume 1644 of Lecture Notes in Computer Science,
pages 544–553. Springer-Verlag, 1999.

9. C. G. Sibley and J. E. Ahlquist. Phylogeny and classification of birds based on the
data of DNA-DNA-hybridization. Current Ornithology, 1:245–292, 1983.

