Raghunath Raghavan* +++
Mentor Graphics

THE COMPLEXITY OF DESIGN AUTOMATION
PROBLEMS
Sartgj Sahni* + Atul Bhatt++
University of Minnesota Sperry Corp.
ABSTRACT

This paper reviews severa problems that arise in the area of design auto-
mation. Most of these problems are shown to be NP-hard. Further, it is
unlikely that any of these problems can be solved by fast approximation
algorithms that guarantee solutions that are always within some fixed
relative error of the optimal solution value. This points out the impor-
tance of heuristics and other tools to obtain algorithms that perform well
on the problem instances of interest.

KEYWORDSAND PHRASES
design automation; complexity; NP-hard; approximation algorithm.

*The work of these authors was supported in part by the National Science Foundation under grants
MCS 78-15455 and M CS 80-005856.

+ Address: Department of Computer Science, University of Minnesota, Minneapolis, MN 55455
++ Address: Sperry Corporation, P.O. Box 43942, St.Paul, MN 55|64.

+++ Address; Mentor Graphics, Beaverton, OR 97005.

1. INTRODUCTION

Over the past twenty years, the complexity of the computer design pro-
cess has increased tremendously. Traditionally, much of the design has
been done manually, with computers used mainly for design entry and
verification, and for a few menial design chores. It is felt that such
labor-intensive design methods cannot survive very much longer. There
are two main reasons for this.

The first reason is the rapid evolution of semiconductor technol -
ogy. Increases in the levels of integration possible have opened the path
for more complex and varied designs. LSl technology has already taxed
traditional design methods to the limit. With the advent of VLSI, such
methods will prove inadequate. As a case in point, the design of the
Z8000 microprocessor, which qualifies as a VLS| device, took 13,000
man-hours and many years to complete. In fact, it has been noted
[NOY C77] that industry-wide, the design time (in man-hours per month)
has been increasing exponentially with increasing levels of integration.
Clearly, design methods will have to go from labor-intensive to
computer-intensive.

Secondly, labor-intensive methods do not adequately accomodate
the increasingly more stringent requirements for an acceptable design.
Even within a given technology, improvements are constantly sought in
performance, cost, flexibility, reliability, maintainability, etc. This
increases the number of iterations in the design cycle, and thus requires
smaller design times for each design step.

Industry-wide, the need for sophisticated design automation (DA)
toolsiswidely recognized. To date, most of the effort in DA has concen-
trated on the following stages of the design process: physical implemen-
tation of the logic design, and testing. DA for the early stages of the
design process, involving system specification, system architecture and
system design, is virtually nonexistent. Though DA does not pervade
the entire design process at this time, there are a number of tools that aid
in, rather than automate, certain design steps. Such computer-aided
design tools can dramatically cut design times by boosting designer pro-
ductivity. We shall restrict our attention to problems encountered in
developing tools that automate, rather than aid in, certain design steps.

In the light of the need for more advanced and sophisticated DA
tools, it becomes necessary to re-examine the problems tackled in
developing such tools. They must be thoroughly analyzed and their
complexity understood. (The term "complexity" will be defined more
precisely, using concepts from mathematics and computer science, later
in this chapter.) A better understanding of the inherent difficulty of a
problem can help shape and guide the search for better solutions to that
problem. In this paper, several problems commonly encountered in DA
are investigated and their complexities analyzed. Emphasis is on prob-
lems involving the physical implementation and testing stages of the
design process.

Section 2 contains a brief description, in general terms, of the DA
problems considered. The concepts of complexity and nondeterminism
are introduced and elaborated upon in Section 3. This section also
includes other background material.

The problems described in Section 2 are analyzed in Section 4.
Each problem is mathematically formulated and described in terms of its
complexity. Most problems under discussion are shown to be NP-hard.
In addition, a brief account in Section 5 describes ways of attacking

these prablems via heuristics and what are called "usually good" algo-
rithms.

The book edited by Breuer [BREU72a] and a survey paper by him
[BREU72b] provide a good account on DA problems, techniques for
solutions, and their applications to digital system design. Though these
efforts are about ten years old, the problems as formulated therein are
still very representative of the kinds of problems encountered in design-
ing large, fast systems using MSI/LSI technology and a hierarchy of phy-
sical packaging. The book by Mead and Conway [MEADS8Q] describes
a design methodology that appears to be appropriate for VLSI. This
design methodology gives rise to a number of design problems, some of
which are similar to problems encountered earlier, and some that have
no counterpart in MSI/LSI-based design styles. W. M. van Cleemput
[CLEE76] has compiled a detailed bibliography on DA related discip-
lines. The computational aspects of VLS| design are studied in the book
[ULLM84]. David Johnson's ongoing column "The NP-Completeness
Column" in the Journal of Algorithms, Academic Press, is a good source
for current research on NP-completeness. In fact, the Dec. 1982 column
is devoted to routing problems, [JOHN82].

2. SOME DESIGN AUTOMATION PROBLEMS

There are numerous steps in the process of designing complex digital
hardware. It is generally recognized that the following classes of design
activities occur:

(1) Systemdesign.
Thisisavery high-level architectural design of the system. It aso
defines the circuit and packaging technologies to be utilized in
realizing the system. (While it might appear that this is a bit too
early to define the circuit and packaging technologies, such is not
the case. It is necessary if one is to obtain cost/performance and
physical sizing estimates for the system. These estimates help
confirm that the system will be well-suited, cost- and
performance-wise, to its intended application.) Clearly, system
design defines the nature and the scope of the design activities to
follow.

(2) Logical design
This is the process by which block diagrams (produced following
the system design) are converted to logic diagrams, which are basi-
cally interconnected sets of logic gates. The building blocks of the
logic diagrams (e.g., AND, OR and NOT gates) are not necessarily
representative of the actual circuitry to be used in implementing
the logic. (For example, programmable logic arrays, or PLA’'s, may
be used to implement chunks of combinational logic.) Rather,
these building blocks are primitives that are 'understood’ by the
simulation tools used to verify the functional correctness of the
logic design.

(3) Physical design.
This is the process by which the logical design is partitioned and
mapped into the physical packaging hierarchy. The design of a
package, or module, at any level of the physical packaging hierar-
chy includes the following activities: (i) further partitioning of the
logic "chunk’ being realized between the sub-modules (which are
the modules at the next level of the hierarchy) contained within the

given module; (ii) placement of these sub-modules; and (iii) inter-

connection routing.

The design process is considered to be essentially complete follow-
ing physical design. However, another important pre-manufacturing
design step is prototype verification and checkout, wherein a full-scale
prototype is fabricated as per the design rules, and thoroughly checked.
The engineers may make some small changes and fixups to the design at
this point ("engineering changes').

These design steps exist both in 'conventional’ hardware design
(i.e., using MSI/LSI parts) and in VLSI design. In conventional design,
the design steps mentioned above occur more or less sequentially,
whereas in some VLS| design methodologies, there is much overlap,
with system, logical and physical design decisions occurring, in varying
degrees, in parallel.

The design step that has proved to be the most amenable to auto-
mation is physical design. This step, which contains the most tedious
and time-consuming detail, was also the one that received the most
attention from researchers early on. Our discussion on DA problems will
concentrate on the class of physical design problems, and to a lesser
extent, on testing problems.

In discussing physical design automation problems, we shall
further classify them into various sub-classes of prablems. Although
these sub-classes are intimately related (in that they are al redly parts of
asingle problem), it is preferable to treat them separately because of the
inherent computational complexity of the total problem. Actualy, each
of these problems represents a general class of problems whose precise
definition is strongly influenced by factors such as the level (in the wir-
ing hierarchy of I1C chip, circuit card, backplane, etc.) of design, the par-
ticular technology being employed, the electrical constraints of the cir-
cuitry, and the tools available for attacking the problems. The specific
problem, in turn influences the size of the problem, the selection of
parameters for constraints and optimization, and the methodology for
designing the solution techniques.

2.1 Some Classes of Design Automation Problems

2.1.1 Implementation Problems

For lack of a better term, we shall classify as "implementation problems'
al those problems encountered in the process of mapping the logic
design onto a set of physical modules. These implementation problems
include the following types of problems.

(a) Synthesis

This problem deals with the trandation of one logical representation of a
digital system into another, with the constraint that the two representa-
tions be functionally equivalent.

This problem arises because the building blocks of the logic design
are determined by the functional primitives understood by the logic
simulation system, and not by the functionalities of the circuits most
conveniently implemented in the given semiconductor technology. (So,
though the choice of the underlying technology influences the logic
designer, insofar as he takes advantage of its strengths and compensates
for its weaknesses, the primitives in which his design eventually gets

expressed are not altered.) Consequently, there is a need to re-write the
design in terms of the circuit families supported by the given technol ogy.

Synthesis is a magjor bottleneck in designing computer hardware.
Manual synthesis, apart from being slow, is quite error-prone. Designers
often find themselves spending half their time correcting synthesis
errors. Unfortunately, automated synthesis is far from viable at this
point in time, and much work needs to be done in this area.

(b) Partitioning

The partitioning problem is encountered at various levels of the system
packaging hierarchy. In very general terms, the problem may be
described as follows. Given a description of the design to be imple-
mented within a given physical package, the problem isto subdivide the
logic among the sub-assemblies (i.e., packages at the next level of the
hierarchy) contained within the given package, in a way that optimizes
certain predetermined norms.

Quantities of interest in the partitioning process are:

(1) The number of partition elements (i.e., distinct sub-assemblies)
[KODR&9].

(2) The size of each partition element. This is an indication of the
amount of space needed to physically implement the chunk of
logic within that partition element.

(3 The number of external connections required by each sub-
assembly.

(4) Thetotal number of electrical connections between sub-assemblies
[HABAGS][LAWLG62].

(5) The (estimated) system delay [LAWLG9]. This points to the fact
that proper partitioning is an extremely key element in optimizing
the system performance. In fact, in many design methodologies,
partitioning, at least at the early (and critical) stages of the design
process, is till done manually by extremely skilled designers, in
order to extract the maximum performance from the logic design.

(6) The reliability and testability of the resulting system implementa-
tion.

(c) Construction of a Sandard Library of Modules

The library is a set of fully-designed modules that can be utilized in
creating larger designs. The problem in creating libraries is deciding the
functionalities of the various modules that are to be placed in the library.
The process involves balancing the richness of functionality provided
against the need to keep within reasonable bounds the number of distinct
modules (which is related to the total cost of creating the library). Notz
et a. [NOTZ67] propose measures which aid in the periodic update of a
standard library of modules.

The problem of library construction isintimately related to the par-
titioning problem. The library should be constructed with a good idea of
what the partitioning will be like in the various logic designs that use
that library (though parts of a library may be based on earlier successful
sub-designs). On the other side of the coin, partitioning is often done
based on a good understanding of the library’s contents.

In SSI terms, the library isthe 7400 parts catalog. In LS| terms, the

parts in the library are far more complex functionally. Library construc-
tion isusually quite expensive. Thelogical and physical designs of each
part in the library have to be totally optimized to extract the maximum
performance while requiring the least space and power, given a specific
semiconductor technology.

d) Sdection of Modules from a Standard Library

Given a partition of a circuit along with a standard library of modules,
the selection problem deals with finding a set of modules with either
minimal total cost or minimal module count to implement the logic in
the partition.

2.1.2 Placement Problems

In the most general terms the placement problem may be viewed as a
combinatorial problem of optimally assigning interrelated entities to
fixed locations (cells) contained in a given area. The precise definition
of the interrelated entities and the location is strongly dependent on the
particular level of the backplane being considered and the particular
technology being employed. For instance, we can talk of the placement
of logic circuits within a chip, of chips on a chip carrier, of chip carriers
on a board, or of boards on a backplane. As stated earlier, the particular
level influences the size of the prablem, the choice of nhorms to be optim-
ized, the constraints, and even the solution techniques to be considered.

The optimization criterion in placement problems is generally
some norm defined on the interconnections and in practice a number of
goals are to be satisfied. The main goal is to enhance the wireability of
the resulting assembly, while ensuring that wiring rules are not violated.
Some of the norms used are listed below:

(1) Minimizing the expected wiring congestions [CLARG9].
(2) Avoidance of wire crossovers [KODR62].

(3) Minimizing the total number of wire bends (in rectilinear technolo-
gies) [POME65].

(4) Elimination of inductive cross-talk by minimum shielding tech-
niques.

(5) Elimination/suppression of signal echoes.

(6) Control of heat dissipation levels.

It can be seen that satisfying all the above-mentioned goalsis a vir-
tually impossible task. In most practical applications the norm minim-
ized isthe total weighted wire length.

In the context of VLSI, the placement problem is concerned almost
exclusively with enhancing wireability. A difference is that the cell
shapes and locations are not fixed, and the relative (or topological)
placement of the cells is the important thing. Before absolute placement
on silicon occurs, the cell shapes and the amount of space to be allowed
for wiring have to be determined. This gives placement a different flavor
from the MSI/LSI context. Furthermore, the term ’placement’ does not
have a standard usage in 'VLSI’. For instance, it has been used to
describe the problem of determining the relative ordering of the termi-
nals emanating from a cell.

2.1.3Wiring Problems

These are also referred to as interconnection or routing problems, and
they involve the process of formally defining the precise conductor paths
necessary to properly interconnect the elements of the system. The con-
straints imposed on an acceptable solution generally involve one or more
of the following:

(1) Number of layers (planes in which paths may exist).

(2) Number and location of via holes (feedthrough pins) or paths
between layers.

(3 Number of crossovers.

(4) Noiselevels.

(5) Amount of shielding required for cross-talk suppression.
(6) Signal reflection elimination.

(7) Linewidth (density).

(8) Pathdirections, e.g., horizontal and/or vertical only.

(9) Interconnection path length.

(10) Total area or volume for interconnection.

Due to the intimate relationship that exists between the placement and
the wiring phases, it can be seen that many of the norms considered for
optimization are common to both phases.

Approaches to wiring differ based on the nature of the wiring sur-
face. There are two broad approaches. one-at-a-time wiring, and a two-
stage coarse-fine approach.

One-at-a-time wiring is most appropriate in situations where the
wiring surface is wide open, as is typicaly the case with PC cards and
back-panels. In practice, one-at-a-time wiring is generally viewed as
comprising the following subproblems:

(1) Wirelist determination.
(2) Layering.

(3) Ordering.

(4) Wire layout.

Wire list determination involves making a list of the set of wires to be
laid out. Given a set of points to be made electrically common, there are
anumber of alternative interconnecting wire sets possible.

Layering assigns the wires to different layers. The layering problem
involves minimizing the number of layers, such that there exists an
assignment of each wire to one of the layers that results in no wire inter-
sections anywhere. The

ordering problem decides when each wire assigned to a layer is to be
laid out. Since optimal wire layout appears to be a computationally
intractable problem, all wire layout agorithms currently in use are
heuristic in nature. Therefore, this sequence or ordering not only affects
the total interconnection distance, but also may lead to the success or
failure of the entire wiring process. Last but not least, the

wire layout problem, which seems to have attracted more interest than
the others, deals with how each wire is to be routed, i.e., specifying the
precise interconnection path between two elements.

A criticism of one-at-a-time wiring has been that, when a wire is
laid out, it is done without any prescience. Thus, when awire is routed,
it might end up blocking alot of wires that have yet to be considered for
wire routing. To aleviate this problem, a two-stage approach, based on
[HASHT71], is often used.. Here, the wiring surface is usually divided
into rectangular areas caled channels. Inthe first stage, often referred to
as global routing, an algorithm is used to determine the sequence of
channels to be used in routing each connection. In the second stage,
usually called channel routing, al connections within each channel are
completed, with the various channels being considered in order.

This two-stage approach, which is generically referred to as the
channel routing approach, is very appropriate for wire routing inside
IC’'s, where the wiring surface is naturally divided into channels. There
are, however, situations where the channel routing approach is not
appropriate. In particular, it isnot very appropriate for wide open wiring
surfaces, where al channel definition becomes artificial. With wire ter-
minals located all over the wiring surface, it becomes difficult to define
non-trivial channels, while ensuring that all terminals are on the sides of
(and not within) channels. Even when channel definition is possible,
applying the channel routing approach to relatively uncluttered wiring
surfaces results in many instances of the notorious channel intersection
(or switchbox) problem. The effects of the coupling of constraints
between channels at channel intersections are usually undesirable, and
can destroy the effectiveness of the channel routing approach when the
number of channel intersectionsislargein relation to the problem size.

For very large systems, where the number of interconnections may
be in the tens of thousands, an interesting approach to the general wiring
problem, given a wide open wiring surface, is the single row routing
approach. It was initially developed by So [SO74] as a method to esti-
mate very roughly the inherent routability of the given problem. How-
ever, as it produces very regular layouts (which facilitates automated
fabrication), it has been adopted as being a viable approach to the wiring
problem.

Single row routing consists of a systematic decomposition of the
general multilayer wiring problem into a number of independent single
layer, single row routing problems. There are four phases in this decom-
position ([TING78]) :

(1) Viaassignment
In this phase, vias are assigned to the different nets such that the
interconnection becomes feasible. Note that after the via assignment
is complete, wires to be routed are either horizontal or vertical.
Design objectives in this phase include:
(8 minimizing the number of vias used.
(b) minimizing the number of columns of vias that result.

(2) Linear placement of via columns
In this phase, an optimal permutation of via columns is sought that
minimizes the maximum number of horizontal tracks required on the
board.

(3) Layering
The objective in this phase is to evenly distribute the edges on a
number of layers. The edges are partitioned between the various
layers in such away that all edges on alayer are either horizontal or
vertical.

(4) Single Row Routing
Inthisfinal phase, oneis presented with a number of single row con-
nection patterns on each layer. The problem here isto find a physical
layout for these patterns, subject to the usua wiring constraints.

If one of the objectives during the via assignment phase is minimizing
the projected wiring density, the single row wiring approach in fact
becomes an effective application of a two-stage channel routing-like
approach to situations in which the wiring surface is wide open.

The apparent complexity of the general wiring problem has
sparked investigations into topologically restricted classes of wiring
problems. One such class of problems involves the wiring of connec-
tions between the terminals of a single rectangular component, with wir-
ing allowed only outside the periphery of the component. A norm to be
minimized is the area required for wiring.

Another restricted wiring problem is river routing. The basic prob-
lem is as follows. Two ordered sets of terminals (a;, as, .., a,) and (b,,
b, .., b,) are to be connected by wires across a rectangular channel, with
wire i connecting terminal a to termina b;, 1<isn. The objective isto
make the connections without any wires crossing, while attempting to
minimize the separation between the two sets of terminals (i.e., the chan-
nel width).

River routing has found applications in many VLSI design metho-
dologies. When a top-down design style is followed, it is possible to
ensure that by and large, the terminals are so ordered on the perimeter of
each block that, in the channel between any adjacent pair of blocks, the
terminals to be connected are in the correct relative order on the opposite
sides of the channel (i.e., ariver routing situation exists).

The regquirement concerning the proper ordering of the terminals of
each block is admittedly quite difficult to always meet. However, itisa
less severe requirement to meet than the one imposed in design systems
like Bristle Blocks [JOHAT79]. In the latter system, wiring is conspicu-
ously avoided by forcing the designer to design modules in a plug-
together fashion; the blocks must al fit together snugly, and al desired
connections between blocks are made to occur by actually having the
associated terminals touch each other. In such a design environment, all
channel widths are zero, and thus there can be no wiring.

2.1.4 Testing Problems

Over the years, fault diagnosis has grown to be one of the more active,
abeit less mature, areas of design automation development. Fault diag-
NOSiS comprises:

1) Fault detection, and

2) Fault location and identification.

The unit to be diagnosed can range from an individua IC chip, to a
board-level assembly comprising several chip carriers, to an entire sys-
tem containing many boards. For proper diagnosis, the unit’s behavior

10

and hardware organization must be thoroughly understood. Also essen-
tial is a detailed analysis of the faults for which the unit is being diag-
nosed. This in turn involves concepts like fault modeling, fault
equivalence, fault collapsing, fault propagation, coverage analysis and
fault enumeration.

Fault diagnosis is normally effected by the process of testing. That
is, the unit’'s behavior is monitored in the presence of certain predeter-
mined stimuli known astests. Testing isageneral term, and its goal isto
discover the presence of different types of faults. However, over the
years, it has come to mean the testing for physical faults, particularly
those introduced during the manufacturing phase. Testing for non-
physical faults, eg., design faults, has come to be known as design
verification, and it isjust emerging as an area of active interest. In keep-
ing with the industry trend and to avoid confusion, we shall use the terms
"testing’ and 'design verification' in the sense described above.

2.1.4.1Testing

The central problem in testing is test generation. Majority of the effort
in testing has been directed towards designing automatic test generation
methods. Test generation is often followed by test verification, which
deals with evaluating the effectiveness of a test set in diagnosing faults.
Both test generation and test verification are extremely complex and
time consuming tasks. As a result, their development has been rather
slow. Most of the techniques developed are of a heuristic nature. The
development process itself has consistently lagged behind the rapidly
changing IC technologies. Hence, at any given time, the testing methods
have always been inadequate for handling the designs that use the tech-
nologies existing in the same time frame. Most of the automatic test
generation methods existing today were developed in the 1970's. They
mainly addressed fault detection, and were based on one of the follow-
ing: path sensitizing, D-algorithm [ROTH66], or Boolean difference
[YAN71]. They basicaly handled logic networks implemented with
SSI/MSI level gates. Also, most of the techniques considered only com-
binational networks, and ailmost all of them assumed the simplified sin-
gle stuck-at fault model. As regards test verification, to date, formal
proof has been almost impossible in practice. Most of the verification is
done by fault simulation and fault injection.

The advent of LSl and VLSI, while improving cost and perfor-
mance, has further complicated the testing problem. The different archi-
tectures and processing complexities of the new building blocks (e.g.,
the microprocessor) have rendered most of the existing test methods
quite incapable. As a result, it has become necessary to re-investigate
some of the aspects of the testing problem. Take for instance the single
stuck-at fault model. For years, the industry has clung to this assump-
tion. While being adequate for prior technologies, it does not adequately
cover other fault mechanisms, like bridging shorts or pattern sensitivi-
ties. Furthermore, for testing microprocessors, PLA’'s, RAM’s, ROM’s
and complex gate arrays, testing at a level higher than the gate level
appears to make more sense. This involves testing at the functional and
agorithmic or behavioral levels. Also, more work needs to be done in
the area of fault location and identification. The method presented in
[ABRAS8Q] attempts to achieve both fault detection and location without
requiring explicit fault enumeration.

Finally, there is the prudent approach of designing for testability in

11

order to simplify the testing problem. Design for testability first
attracted attention with the coming of LSI. Today, with VLS, its need
has become all the more critical. One of the main problemsin this area
is deriving a quantitative measure of testability. One way isto analyze a
unit for its controllability and observability [GOLD79], which quantities
represent the difficulty of controlling and observing the logical values of
internal nodes from the inputs and outputs respectively. Most existing
testability measures , however, have been found to be either crude or
difficult to determine. The next problem is deriving techniques for testa-
bility design. A comprehensive survey of these techniques is given in
[GRASB0] and [WILL82]. Most of them are of an ad hoc nature,
presented either as general guidelines, or hard and fast rules. A sum-
mary of these techniques appears in Figure 2.1.

Figure2.1

12

2.1.4.2 Design Verification

The central issue here is proving the correctness of a design. Does a
design do what it is supposed to do? In other words, we are dealing with
the testing for design faults. The purpose of design verification is quite
clear. Design faults must be eliminated, as far as possible, before the
hardware is constructed, and before prototype tests begin. The increas-
ing cost of implementing engineering changes given LSI/VLSI hardware
has enhanced the need for design verification.

Compared to physical faults, design faults are more subtle and seri-
ous and can be extremely difficult to handle. Hence, the techniques
developed for physical faults cannot be effectively extended to design
faults. To date, very little effort has been devoted to formalizing design
verification. Designs are still mostly checked by ad hoc means, like fault
simulation and prototype checkout.

Like other disciplines, design verification too has not been spared
the impact of LSI/VLSI. Some of these influences are listed below.

Ratification or matching the design specification was accomplished in
the pre-LSl era by gatelevel simulation. This may no longer be
sufficient. The simulations need to be more detailed, and they need to be
done at higher levels, like the functional and behaviora levels. Also,
techniques are required for determining the following:

(1) Stopping rules for simulation.

(2) The extent of design faults removed.

(3) A quantitative measure for the correctness or quality of the final
design.

Validation. In the pre-LSl days, this was restricted to the testing of

hardware on the test floor. Moreover, the testing process was not formal-

ized or systematic, and hence lacked thoroughness and rigor. Today,

validation mainly involves testing the equivalence of two design

descriptions. The descriptions may be at different levels. Thus, before

being compared, they need to be trandated to a common level. For

example, one can construct symbolic execution tree models of the design

descriptions to be compared.

Timing Analysis. In the pagt, it was sufficient to analyze only single "crit-
ica" paths. The technology rules of LSI/VLSI are so complex that the
identification of these critical paths has become extremely difficult. Sta-
tigtical timing analysis methods need to be investigated, in order to cope
with the tremendous densities and wide range of tolerances impaosed by
LSI/VLSI.

Finally, research has also started in developing design techniques
to alleviate the need for, and/or facilitate, the design verification process.

3. COMPLEXITY AND NONDETERMINISM

3.1 Complexity

By the complexity of an algorithm, we mean the amount of computer
time and memory space needed to run this algorithm. These two quanti-
tieswill be referred to respectively as the time and space complexities of
the algorithm. To illustrate, consider procedure MADD (Algorithm 3.1):
it is an agorithm to add two mxn matrices together.

13

line procedure MADD(A,B,C,m,n)
{compute C=A+B}

declare A(m,n),B(m,n),C(m,n)
fori « 1tomdo

forj —« 1tondo

C(i,j) — AG.j)+B(i.))

endfor

endfor
7 end MADD

U WNPEF

Algorithm 3.1 Matrix addition.

The time needed to run this algorithm on a computer comprises
two components. the time to compile the algorithm and the time to exe-
cute it. The first of these two components depends on the compiler and
the computer being used. This time is, however, independent of the
actual values of n and m. The execution time, in addition to being depen-
dent on the compiler and the computer used, depends on the values of m
and n. It takes more time to add larger matrices.

Since the actua time requirements of an algorithm are very
machine-dependent, the theoretical analysis of the time complexity of an
agorithm is restricted to determining the number of steps needed by the
agorithm. This step count is obtained as afunction of certain parameters
that characterize the input and output. Some examples of often-used
parameters are: number of inputs; number of outputs, magnitude of
inputs and outputs; etc.

In the case of our matrix addition example, the number of rows m
and the number of columns n are reasonable parameters to use. If
instruction 4 of procedure MADD is assigned a step count of 1 per exe-
cution, then itstotal contribution to the step count of the algorithm is mn,
asthisinstruction is executed mn times. [SAHNB8O, Chapter 6] discusses
step count analysis in greater detail. Since the notion of a step is some-
what inexact, one often does not strive to obtain an exact step count for
an algorithm. Rather, asymptotic bounds on the step count are obtained.
Asymptotic analysis uses the notation O, Q, ® and 0. These are defined
below.

Definition: [Asymptotic Notation] f(n) = O(g(n)) (read as "f of n is big
oh of g of n") iff there exist positive constants ¢ and ny such that
f(n)<cg(n) for al n, n=n,. f(n) = Q(g(n)) (read as"f of n is omega of g of
n") iff there exist positive constants ¢ and ny such that f(n)=cg(n) for all
n, n=ny. f(n) is @(g(n)) (read as "f of nistheta of g of n") iff there exist
positive constants c,, c,, and ny such that c,g(n)<f(n)<c,g(n) for al n,
n=ny. f(N) = o(g(n)) (read as"f of nislittle o of g of N") iff lim f (n)/g(n)

=1 0O
The definitions of O, Q, ©, and o0 are easily extended to include
functions of more than one variable. For example, f(n,m) = O(g(n,m)) iff
there exist positive constants c, ny, and mg such that f(n,m)<cg(n,m) for
al n=ny and al mzm,.
Example 3.1: 3n+2=0(n) as 3n+2<4n for al n, n=2. 3n+2=Q(n) and
3n+2=0(n). 6*2"+n2=0(2"). 3n=0(n?). 3n=0(3n) and 3n=0(n?). O
Asillustrated by the previous example, the statement f(n)=0(g(n))
only states that g(n) is an upper bound on the value of f(n) for al n, n=n,.

14

It doesn't say anything about how good this bound is. Notice that if
n=0(n), n=0(n?), n=0(n2%), etc. In order to be informative, g(n) should
be as smal a function of n as one can come up with such that
f(N)=0O(g(n)). So, while we shal often say that 3n+3=0(n), we shall
almost never say that 3n+3=0(n?).

Asin the case of the "big oh" notation, there are several functions
g(n) for which f(n)=Q(g(n)). g(n) is only a lower bound on f(n). The
theta notation is more precise than both the "big oh" and omega nota-
tions. The following theorem obtains a very useful result about the order
of f(n) when f(n) isa polynomial in n.

Theorem 3.1: Let f(n)=a,,n™+a,_1n™ 1+ - - -+ay, a, # 0.

(& f(n) = O™

(b) f(n) =Q(n™)

(c) f(n) = ©(n™)

(d) f(n) = o(anxn™) O

Asymptotic analysis may also be used for space complexity.

While asymptotic analysis does not tell us how many seconds an
agorithm will run for or how many words of memory it will require, it
does characterize the growth rate of the complexity (see Figure 3.1).
So, if procedure MADD takes 2 milliseconds (ms) on a problem with
m=100 and n=20, then we expect it to take about 16ms when mn=16000
(the complexity of MADD is ®(mn)). For sufficiently large values of n, a
©(n?) algorithm will be faster than a ©(n?) algorithm.

We have seen that the time complexity of an algorithm is generally
some function of the instance characteristics. This function is very use-
ful in determining how the time requirements vary as the instance
characteristics change. The complexity function may also be used to
compare two algorithms A and B that perform the same task. Assume
that algorithm A has complexity ©(n) and algorithm B is of complexity
©(n?). We can assert that algorithm A is faster than algorithm B for
"sufficiently large' n. To see the validity of this assertion, observe that
the actual computing time of A is bounded from above by n for some
constant ¢ and for all n, n=n,; while that of B is bounded from below by
dn? for some constant d and all n, n=n,. Since cn<dn? for n>c/d, algo-
rithm A is faster than algorithm B whenever n=max{n,, n,, c/d}. One
should always be cautiously aware of the presence of the phrase
"sufficiently large' in the assertion of the preceding discussion. When
deciding which of the two algorithms to use, we must know whether the
n we are dealing with isin fact "sufficiently large'. If algorithm A actu-
ally runsin 10°n milliseconds while algorithm B runs in n? milliseconds
and if we always have n<10°, then algorithm B is the one to use. To get
a fedl for how the various functions grow with n, you are advised to
study Figure 3.1 very closely. Asis evident from the figure, the function
2" grows very rapidly with n. In fact, if an algorithm needs 2" steps for
execution, then when n=40 the number of steps needed is approximately
1.1*10%. On a computer performing one billion steps per second, this
would require about 18.3 minutes. If n=50, the same agorithm would
run for about 13 days on this computer. When n=60, about 36.56 years
will be required to execute the algorithm and when n=100, about 4* 103
years will be needed. So, we may conclude that the utility of algorithms
with exponential complexity islimited to small n (typically n<40).

15

Figure3.1

Algorithms that have a complexity that is a polynomial of high degree
are also of limited utility. For example, if an algorithm needs n'® steps,
then using our one billion step per second computer we will need 10
seconds when n=10; 3,171 years when n=100; and 3.17*10*® years when
n=1000. If the algorithms complexity had been n® steps instead, then we
would need one second when n=1000, 16.67 minutes when n=10,000;
and 11.57 days when n=100,000.

Table 3.1 gives the time needed by a one hillion instruction per

16

second computer to execute a program of complexity f(n) instructions.
One should note that currently only the fastest computers can execute
about one billion instructions per second. From a practical standpoint, it
is evident that for reasonably large n (say n>100) only algorithms of
small complexity (such as n, nlogn, n?, n3, etc.) are feasible. Further,
this is the case even if one could build a computer capable of executing
10% instructions per second. In this case, the computing times of Table
3.1 would decrease by a factor of 1000. Now, when n = 100 it would
take 3.17 years to execute n'® instructions, and 4* 10 years to execute
2" instructions.

17

Table3.1

Another point to note is that the complexity of an algorithm cannot
aways be characterized by the size or number of inputs and outputs.
The time taken is often very data dependent. As an example, consider
Algorithm 3.2. Thisis avery primitive backtracking algorithm to deter-
mine if there is a subset of {W(1),W(2),..W(n)} with sum equal to M.
This problem is called the sum of subsets problem. Procedure SSisini-
tially invoked by the statement:

X « S(1,M)

18

procedur e SS(i,P)
{determine if W(i:n) has a}
{'subset that sumsto P}
global W(1:n),n
if i>n then return(false)
case
‘W(i)=P: return(true)
\W(i)<P: if S§(i+1,P-W(i))
then return(true)
elsereturn(SS(i+1,P))
endif

19

:else: return (SS(i+1,P))
endcase
end SS

Algorithm 3.2

Procedure SS returns the value true iff a subset of W(1:n) sums to
n
M. Observe that if 3 W(i)=M then SSrunsin ©(n) time. If no subset of

i=1

W(1:n) sums to M, then SS takes ©(2") time to terminate. For other
cases, the time needed is anywhere between ©@(n) and ©(2"). So, the
complexity of SSisQ(n) and O(2"). In cases like SSwhere the complex-
ity is quite data dependent, one talks of the best case, worst case and
average (or expected) complexity. A precise definition of these terms
can be found in [SAHNS81]. Here, we shall rely on our intuitive under-
standing of these terms.

Most of the complexity results obtained to date have been con-
cerned with the worst case complexity of algorithms. The value of such
analyses may be debated. Procedure SS has a worst case time complex-
ity of ©(2"). Thisjust tells us that there exist inputs on which this much
time will be spent. However, it might well be that for the inputs of
"interest”, the algorithm is far more efficient, perhaps even of complex-
ity O(n?).

As another example, consider the much publicized Khachian algo-
rithm for the linear programming problem. This algorithm has a worst
case complexity that is apolynomial function of the number of variables,
eguations, and size (i.e., number of bits) of the coefficients. The Simplex
method is known to have a worst case complexity that is exponential in
the number of equations. So, as far as the worst case complexity is con-
cerned, Khachian's algorithm is superior to the Simplex method.
Despite this, Khachian's algorithm is impractical while the Simplex
method has been successfully used for years to solve reasonably large
instances of the linear programming problem. The Simplex method
workswell on those instances that are of "interest” to people.

It has recently been shown [DANT80] that under reasonable
assumptions, the expected (or average) complexity of the Simplex
method is in fact O(m®) where m is the number of equations (the
expected number of pivot steps in 3.5m, and each such step takes O(m?)
time).

Thus, the notion of average complexity seems to better capture the
complexity one might observe when actually using the algorithm. Aver-
age complexity analysis is however far more difficult than worst case
analysis and has been carried out successfully for only alimited number
of algorithms. As a result of this, this paper will be concerned mainly
with the worst case complexity of design automation problems. One
should keep in mind that while many of the design automation problems
will shown to be "probably" intractable in terms of worst case complex-
ity, these results do not rule out the possibility of very efficient expected
behavior algorithms.

20

3.2 Nondeter minism

The commonly used notion of an algorithm has the property that the
result of every step is uniquely defined. Algorithms with this property
are caled deterministic algorithms. From a theoretical framework, we
can remove this restriction on the outcome of every operation. We can
alow algorithms to contain operations whose outcome is not uniquely
defined but is limited to a specific set of possibilities. The machine exe-
cuting such operations is allowed to choose any one of these outcomes.
This leads to the concept of a nondeterministic algorithm. To specify
such algorithms we introduce three new functions:

(@) choice(S) ... arbitrarily choose one of the elements of set S;
(b) failure ... signals an unsuccessful completion;
(c) success ... signals a successful completion.

Thus the assignment statement X ~ choice(1:n) could result in X
being assigned any one of the integers in the range [1,n]. There is no
rule specifying how this choice is to be made. The failure and success
signals are used to define a computation of the algorithm. One way to
view this computation is to say that whenever there is a set of choices
that leads to a successful computation, then one such set of choices is
made and the agorithm terminates successfully. A nondeterministic
agorithm terminates unsuccessfully iff there exists no set of choices
leading to a success signal. A machine capable of executing a nondeter-
ministic algorithm in thisway is called a nondeter ministic machine.

Example 3.2: Consider the problem of searching for an element x in a
given set of elements A(1) to A(n), n=1. We are required to determine
anindex j such that A(j) =x orj =0if xisnot in A. A nondeterministic
agorithm for thisis:

j « choice(1:n)
if A(j) =xthen print (j); success endif
print ("0"); failure.

From the way a nondeterministic computation is defined, it follows
that the number "0" can be output iff there isno j such that A(j) =x. The
computing times for choice, success, and failure are taken to be O(1).
Thus the above algorithm is of nondeterministic complexity O(1). Note
that since A is not ordered, every deterministic search algorithm is of
complexity at least O(n). O

Since many choice sequences lead to a successful termination of a
nondeterministic algorithm, the output of such an algorithm working on
a given data set may not be uniquely defined. To overcome this
difficulty, one normally considers only decision problems, i.e., problems
with answer 0 or 1 (or true or false). A successful termination always
yields the output 1 while unsuccessful terminations always yield the out-
put O.

In measuring the complexity of a nondeterministic algorithm, the
cost assignable to the choice(S) function is O(log k) where k is the size
of S. So, strictly speaking, the complexity of the search algorithm of
Example 3.2 is O(log n). The time required by a nondeterministic algo-
rithm performing on any given input depends upon whether or not there
exists a sequence of choices that leads to a successful completion. If
such a sequence exists, then the time required is the minimum number of
steps leading to such a completion. If no choice sequence leads to a suc-
cessful completion, then the algorithm takes O(1) time to make a failure

21

termination.

Nondeterminism appears to be a powerful tool. Algorithm 3.3 isa
nondeterministic algorithm for the sum of subsets problem. Its complex-
ity is O(n). The best deterministic algorithm for this problem has com-
plexity O(2"2) (see HORO74).

procedure NSS(W,n,M)
declare X(1:n),W(1:n),n,M
fori « 1tondo
X(i) « choice({0,1})
end
if > W(i)X(i) =M then success
i=1
elsefailure
endif
end NSS

Algorithm 3.3 Nondeterministic sum of subsets algorithm.

3.3 NP-hard and NP-complete Praoblems

The size of a problem instance is the number of digits needed to
represent that instance. An instance of the sum of subsets problem is
given by (W(1),W(2),...W(n),M). If each of these numbers is nonnega-

tive and integer, then the instance size is [%IogZW(i)H[IogzM] if

i=1
binary digits are used. Anagorithm isof polynomial time complexity iff
its computing time is O(p(m)) for every input of size m and some fixed
polynomial p().

Let P be the set of all decision problems that can be solved in
deterministic polynomial time. Let NP be the set of decision problems
solvable in polynomia time by nondeterministic algorithms. Clearly, P
NP. It is not known whether P= NP or P# NP. The P= NP problem is
important because it is related to the complexity of many interesting
problems (including certain design automation problems). There exist
many problems that cannot be solved in polynomial time unless P = NP.
Since, intuitively, one expects that P # NP, these problems are in "all
probability" not solvable in polynomial time. The first problem that was
shown to be related to the P = NP problem, in this way, was the problem
of determining whether or not a propositional formulais satisfiable. This
problem isreferred to as the Satisfiability problem.

Theorem 3.2: Satisfiability isin Piff P= NP.

Proof: See[HORO78] or [GARE79]. O

Let A and B be two problems. Problem A is polynomially reduci-
ble to problem B (abbreviated A reduces to B, and written as A a B) iff
the existence of a deterministic polynomial time agorithm for B implies
the existence of a deterministic polynomial time algorithm for A. Thus,
if A a B andB is polynomialy solvable, then so also isA. A problem A
is NP-hard iff Satisfiability a A. An NP-hard problem A is NP-complete
iff A e NP.

Observe that the relation a is transitive (i.e,if Aa Band B a C

22

then A a C). Consequently, if A a B and Satisfiability a A then B is
NP-hard. So, to show that any problem B is NP-hard, we need merely
show that A a B where A is any known NP-hard problem. Some of the
known NP-hard problems are:

NPL1: Euclidean Steiner Tree [GARE77]

Input: A set X ={(x,y;)|1<i<n} of points.

Output: A finite set Y ={(a;,b;)|1<i=sm} of points such that the minimum
spanning tree for XY is of minimum total length over all choices for Y.
The distance between two points (t,u) and (v,w) is[(t-v)?+(u-w)?].

NP2: Manhattan Steiner Tree [GARE77]

Input: Same asin NP1.

Output: Same as in NP1, except that the distance between two points is
taken to be [t-v|+|u-w|.

NP3: Euclidean Traveling Salesman [GARE76b]

Input: Same asin NPL1.

Output: A minimum length tour going through each point in X. The
Euclidan distance measure is used.

NP4. Euclidean Path Traveling Salesman [PAPA77]
(also called Euclidean Hamiltonian Path)
Input: Sameisin NP1,
Output: A minimum length path that visits all points in X exactly once.
The Euclidean distance measure is used.

NP5: Manhattan Traveling Salesman [GARE76b]

Input: Same asin NP3.

Output: Same as in NP3, except that the Manhattan distance measure is
used.

NP6: Manhattan Path Traveling Salesman [PAPA77]
(also called Manhattan Hamiltonian Path)
Input: Same asin NPL1.
Output: Same as in NP4, except that the Manhattan distance measure is
used.

NP7: Chromatic Number | [EHRL76]

Input: A graph G which is the intersection graph for straight line seg-
ments in the plane.

Output: The minimum number of colors needed to color G.

NP8: Chromatic Number || [EHRL76]
Input: Same asin NP5.
Output: 'Yes if Gis 3-colorable and 'Nd otherwise.

NP9: Partition [KARP72]
Input: A multiset A = {a;|1<i<n} of natural numbers.
Output: "Yes' if there is a subset B {1,2,...,n} such that Y & =

i fP(moB
> a&."No' otherwise.
ifP(nmB

NP10: 3-Partition [GARE75]

23

Input: A multiset A = {g]1<i<3m} of natural numbers, and a bound B,
such that

i) > a=mB

a fP(moA

(i) B/l4< a < B/2 for 1<i<3m
Output: "Yes' if A can be partitioned into m digoint sets A;,A,, - - Ay,
such that, for 1<ism, ¥ a; = B; "No" otherwise.

QEA

NP11: Knapsack(maximization) [KARP72]
Input: Multisets P = {p;|1<i<n} and W = {w;|1<i<n} of natural numbers
and another natural number M.
Output: x; € {0,1} such that 3 px; is maximized and 3 w;x;.<M.
1 I

NP12: Knapsack(minimization)
Input: Same asin NP11, except replace set P by K = {k;|1<i<n}.
Output: x; € {0,1} such that > kx; is minimized and 3 w;x,=M.

NP13: Integer Knapsack [LUEK75]

Input: Multiset W = {w;|1<i<n} of nonnegative integers and two addi-
tional nonnegative integers M and K.

Output: "Yes' if there exist nonnegative integers x, 1<isn such that
Swix<M and 3 w;x=K. "No" otherwise.

NP14: Quadratic Assignment Problem [SAHN76]
Input: ¢;; , 1<i<n, 1<j<n.

dyq » 1sksm, I<gsm.
Output: x; € {0,1} , 1<i<n, 1<k<m, such that

m
(@) > %<1, 1<i<n
k=1

() Xk = 1, 1sksm

i=1

n m

and 3 { X CijdqXi kX q} iSminimized.
iji=1 kg=1

A listing of over 200 known NP-hard problems can be found in
[GARETY9]. The importance of showing that a problem A is NP-hard lies
in the P = NP problem. Since we don't expect that P = NP, we don't
expect NP-hard problems to be solvable by algorithms with a worst case
complexity that is polynomial in the size of the problem instance. From
Figure 3.1 and Table 3.1, it is apparent that if a problem cannot be solved
in polynomial time, then it isintractable, for al practical purposes. If A
is NP-complete and if it does turn out that P= NP, then A will be polyno-
mially solvable.

24

4. COMPLEXITY OF DESIGN AUTOMATION PROBLEMS

In Section 4.1 we illustrate how one goes about showing that a problem
is NP-hard or NP-complete. We consider three examples from the
design automation area. Over thirty design automation problems are
described in Section 4.2. With each problem, a discussion of its com-
plexity isincluded.

4.1 Showing Problems NP-hard and NP-complete

4.1.1 Circuit Realization

In this problem, we are given a set of r modules. Associated with
module i isacost ¢;, 1<i<r. Module i contains my; gates of type j, 1<j<n.
We are required to redlize a circuit C with gate requirements
(b1,by,...bn), .., circuit C consists of by gates of type j. (xq,...x) real-
izes circuit Ciff

M-

m]X|Z b], 1San
1

and x, isa natural number, 1<i<r.

.

The cost of the redization (xi,...x) is Y cx. We are interested in
i=1

obtaining a minimum cost realization of C.

Theorem 4.1: Thecircuit realization problem is NP-hard.

Proof: From Section 3.2, we see that it is sufficient to show that Q a cir-
cuit realization, where Q is any known NP-hard problem. We shall use Q
= NP13 = integer knapsack (Section 3.2).

Let (wy,wz,...w,), M, and K be any instance of the integer knap-
sack problem. Construct the following circuit realization instance:

Nn=1;b;=K;r=p;m;=w, I<i<p; ¢ =w;, 1<i<p

Clearly, the least cost redlization of the above circuit instance has a
cost at most M iff the corresponding integer knapsack instance has
answer "yes'. So if the circuit realization problem is polynomially solv-
able, then so aso is NP13. But NP13is NP-hard. So, circuit realization
isalso NP-hard. O

In order to show that an NP-hard problem Q is NP-complete, we
need to show that it isin NP. Only decision problems (i.e., problems for
which the output is "yes' or "nd") can be NP-complete. So, the circuit
realization problem cannot be NP-complete. However, we may formu-
late adecision version of the circuit realization problem : Isthere areal-
ization with cost no more than S? The proof provided in Theorem 4.1 is
valid for this version of the problem too. Also, there is a nondeterminis-
tic polynomial time algorithm for this decision problem (Algorithm 4.1).
So, the decision version of the circuit realization problem is NP-
complete.

25

procedure CKT(b,Sm,r,n,c)
{Bsthere acircuit redization with cost < S?}
declarer, n, _c(r), m(r,n), b(n), S, x(r)
q - mjax{b(J)}
for i — 1tordo {obtain xsnondeterministically}
X(i) « choice(0:0)
endfor
for i « 1tondo {check feasibility}
if > m(j,i)Ix(i) < b(i) then failure endif
=1
enoJIfor

if S c(i)x(i) > Sthen failure
i=1

else success
end CKT

Algorithm 4.1

4.1.2 Euclidean Layering Problem

A wire to be laid out may be defined by the two end points (x,y) and
(u,v) of the wire. (x,y) and (u,v) are the coordinates of the two end
points. In a Euclidean layout, the wire runs along a straight line from
(x,y) to (u,v). Figure 4.1(a) shows some wires laid out in a Euclidean
manner. Let W ={ [(u,vi),(x.y)] | 1<isn } be a set of n wires. In the
Euclidean layering problem, we are required to partition W into a
minimum number of digoint sets W;,W,,..., Wi, such that no two wiresin
any set W, cross. Figure 4.1(b) gives a partitioning of the wires of Figure
4.1(a) that satisfies this requirement. The wires in W; and W, can now

be routed in separate layers.

26

Figure4.1

Theorem 4.2: The Euclidean layering problem is NP-hard.

Proof: We shall show that the known NP-hard problem NP7 (Chromatic
Number 1) reduces to the Euclidean layering problem. Let G=(V,E) be
any intersection graph for straight line segments in the plane. Let W be
the corresponding set of straight line segments. Note that W=V|as V has
one vertex for each line segment in W. Also, (i,j) is an edge of G iff the
line segments corresponding to vertices i and j intersect in Euclidean
space. From any partitioning W4,W,,... of W such that no two line seg-
ments of any partition intersect, we can obtain a coloring of G. Vertex i
is assigned the color j iff the line segment corresponding to vertex i isin
the partition W,. No adjacent vertices in G will be assigned the same
color as the line segments corresponding to adjacent vertices intersect
and so must be in different partitions. Furthermore, if G can be colored
with k colors, then W can be partitioned into Wy,...,W.

Hence, G can be colored with k colors iff W can be partitioned into
k digoint sets, no set containing two intersecting segments. So, if we
could solve the Euclidean layering problem in polynomial time, then we
could solve the chromatic number problem NP7 in polynomia time by
first obtaining W as above and then using the polynomial time algorithm
to minimally partition W. From the partition, a coloring of G can be
obtained. Since NP7 is NP-hard, it follows that the Euclidean layering
problemisaso NP-hard. O

The above equivalence between NP7 and the Euclidean layering
problem was pointed out by Akers [BREU72].

A decision version of the Euclidean layering problem would take
the form: Can W be partitioned into < k partitions such that no partition
contains two wires that intersect? The proof of Theorem 4.2 shows that
this decision problem is NP-hard. Procedure ELP (Algorithm 4.2) isa
nondeterministic polynomial time agorithm for this problem. Hence,
the decision version of the Euclidean layering problem is NP-complete.

27

procedure ELP(W,n k)
{n=W}
wire set W, integer nk;
L(@i) < O, 1<i<k
for i —« 1tondo{assign wiresto layers}
j < choice(1:k)
LG) < LG) O {1uw),(xy01}
endfor
for i « 1to k do { check for intersections}
if two wiresin L(i) intersect then failure
endif
endfor
success
end ELP

Algorithm 4.2

4.1.3 Rectilinear Layering Problem

This problem is similar to the Euclidean layering problem of Section
4.1.2. Once again, we are given aset W = {[(u;,v),(x;,yi)]1<i<n} of wire
end points. In addition, we are given apxq grid with horizontal and vert-
ical lines at unit intervals. We may assume that each wire end point is a
grid point. Each pair of wire end points is to be joined by a wire that is
routed along grid lines alone. No two wires are permitted to cross or
share the same grid line segment. We wish to find a partition
W1, W,,...,.W, of the wires such that k is minimum and the end point pairs
in each partition can be wired as described above. The end point pairsin
each partition can be connected in a rectilinear manner in asingle layer.
The complete wiring will use k layers.

Theorem 4.3: Therectilinear layering problem is NP-hard.

Proof: We shall show that if the rectilinear layering problem can be
solved in polynomial time, then the known NP-hard problem NP10 (3-
Partition) can also be solved in polynomia time. Hence, the rectilinear
layering problem is NP-hard.

Let A = {a;,a;,....asm}; B; Xa = mB; B/4 < & < B/2 be any
instance of the 3-Partition problem. For each a, we construct a size
subassembly and enforcer subassembly ensemble as shown in Figure
4.2(a). Figure 4.2(b) shows how the ensembles for the n as are put
together to obtain the complete wiring problem. The grid has dimen-
sions (B+1)x(i,+i,+1) where

i1=>a+m=mB+m
and
i, =Y[a +2(m-1)] + m=mB + 6m? - 6m +m

Note that al wire end points are along the bottom edge of the grid.

28

Figure4.2

The valve assembly shown in Figure 4.2(b) is similar to the
enforcer subassembly except that it contains m wires instead of m-1. As
is evident, no two wires of the valve assembly can be routed in the same
layer. Hence, at least m layers are needed to wire the valve.

An examination of the ensemble for each g reveals that:

(i) no 2 wires in the enforcer subassembly can be routed on the same
layer, obvioudly.

(ii) a wire from the size subassembly cannot be routed on the same
layer with awire from the enforcer subassembly.

(iii) al wiresin a size subassembly can be routed on the same layer.

Therefore, at least m layers are required to route each ensemble. Hence,
the rectilinear layering problem defined by Figure 4.2(b) needs at least m
layers.

If the 3-Partition instance has a 3-Partition A;, A,,...,A,, then only
m layers are needed by Figure 4.2(b). In layer i, we wire the size
subassemblies for the three a;sin A; as well as one wire of the valve and
one wire from each of the 3m-3 enforcer subassemblies corresponding to
the 3m-3a;snotin A.

On the other hand, if Figure 4.2(b) can be wired in m layers, then
there is a 3-Partition of the as. Since no layer may contain more than 1
wire from the valve, each layer contains exactly B wires from the size
ensembles. If awire from the size ensemble for g isin layer j, then all a
wires from this ensemble must be in this layer. To see this, observe that
the remaining m-1 layers must each contain exactly 1 wire from a’s
enforcer subassembly and so can contain no wires from the size
subassembly. Hence, each layer must contain exactly three size ensem-
bles. The 3-Partition is therefore A={ | the size subassembly for j isin
layer i}.

So, Figure 4.2(b) can be wired in m layers iff the 3-Partition
instance has answer "yes'. Hence, the rectilinear layering problem is
NP-hard. O

As in the case of the problems considered in Sections 4.1.1 and
4.1.2, we may define a decision version of the rectilinear layering prob-
lem and show that this version is NP-compl ete.

4.2 Mathematical Formulation and Complexity of Design Automa-
tion Problems

4.2.1 Implementation Praoblems

IP1: Function Realization

Input: A Boolean function B and a set of component types C,,Cs,...,Cy.
C; realizes the Boolean function F;.

Output: A circuit made up of component types C,,C,,...,.C, redizing B
and using the minimum total number of components.

Complexity: NP-hard. The proof can be found in [IBAR75a], where IP1
iscalled P6.

IP2: Circuit Correctness

29

Input: A Boolean function B and acircuit C.

Output: "yes' if C realizes B and "nd' otherwise.

Complexity: NP-hard. The proof can be found in [IBAR75a], whereit is
called P5. It isshown that tautology reduces to P5 (1P2).

IP3: Circuit Realization

Input: Circuit requirements (bq,b,,...,.b,) with the interpretation that b;
gates of type i are needed to realize the circuit; modules 1,2,...,r with
composition my;, where module i has m; gates of type j; module costs ¢;,
where ¢; isthe cost of one unit of modulei.

Output: Nonnegative integers x,,Xs,....X, such that

ijxi = bj, ISan and
i

> cix; isminimized.
i

Complexity: NP-hard. See Section 4.1.1.

IP4: Construction of a Minimum Cost Standard Library of Replaceable
Modules

Input: A set {C,,C,,....C,} of logic circuits such that circuit C; contains
y;j circuits of type j, 1<j<r; and a limit, p, on the number of circuits that
can be put into amodule.

Output: A set M={m;,m,,...m} of module types, with module my con-
taining a; circuits of type j, such that:

(i) Ya;sp, 1<i<k;
i

(i) Y xjaq2yig, 1sisnandl<qs<r,
x;; = smallest number of modules m; needed inimplementing C;.

(iii) >3 x; isminimum over al choices of M.
i

Complexity: NP-hard. Partition (NP9) reduces to IP4 as follows. Let
A={a;,a,,...,a,} be an arbitrary instance of NP9. Construct the following
instance of IP4. Theset {C,,C,,....C,,,Ch+1} hasthe composition

vi =a, l<isnm

Yij =O, 1Si,j <nandi ¢j,

Yn+1i =&, 1<ism;

p= (3 a)2.
Clearly, there exists aset M such that 3 ¥ x; = n+2 iff the corresponding

partition problem has answer "yes'. !

IP5: Construction of a Standard Library of a Minimum Number of

30

Replaceable Module Types

Input: Sameasin IP4. Inaddition, a cost bound C is specified.

Output: A minimum cardinality set M = {my,m,,...m} with a;, 1<i<k,
1<j<r asin IP4 for which there exist natural numbersx; such that

S % 8jm 2 Yim, 1<msr, 1<i<n, and
j

ZX”‘ <C.

Complexity: NP-hard. Partition (NP9) reduces to IP5, as follows. Given
an arbitrary instance of partition, the equivalent instance of IP5 is con-
structed exactly as described for IP4. In addition, let C = n+2. Clearly,
k=2 can be achieved iff the corresponding partition problem has answer
"yes'.

IP6: Minimum Cardinality Partition

Input: A set V={1,2,...,n} of circuit nodes; a symmetric weighting func-
tion w(i,j) such that w(i,j) is the number of connections between nodes i
and j; asize function (i) such that s(i) is the space needed by node i; and
constants E and S which are, respectively, bounds on the number of
external connections and the space per module.

Output: Partition P={P,P,,...,P} of V of minimum cardinality such that

@ Y si)<S isj<k;
i fP(moP;

(b > w(i,q) <E, 1sj=k.

ifP(moP; and g fP(nmP;
Complexity: NP-hard. Partition (NP9) reduces to this problem, as fol-

lows. Let A= {a;,a,,...,a,} be an arbitrary instance of partition.
Equivalent instance of 1P6:

s(i)=a, 1<i<n;

s= (T a)2

w(i,j)=0, 1<ij<n;
E=0.

There is a minimum partition of size 2 iff the partition instance has a
subset that sumsto S

IP7: Minimum External Connections Partition |
Input: V,w,s,and Sasin IP6.
Output: A partition P of V such that:

@ ¥ si)<S isisk

i fP(moP,

() >{ S w(i,q)} is minimized.

j ifP(moP; and qfP(nmP;

31

Observe that the summation of (b) actually gives us twice the total
number of inter-partition connections.

Complexity: NP-hard. This problemisidentical to the graph partition-
ing problem (ND14) in the list of NP-complete problems in [GARE79].

IP8: Minimum External Connections Partition I
Input: V,w, s, andSasinlP6. A constant r.
Output: A partition P={P4,...,P} of V such that:

@ ks,
(b)) 3 oi)<S Isjk;
i fP(MOP;
(c) max{ > w (i,q)} is minimized.

I ifP(moP; and qfP(nmP;
Complexity: NP-hard. Partition (NP9) can be reduced to IP8 as
described above for IP6.

IP9: Minimum Space Partition
Input: V,w, s, and EasinIP6. Inaddition, aconstant r.
Output: A partition P={P4,P,,...,P} of V such that:

@ ks,

(b) > w(i,q) < E, 1sj=k;

i fP(moP; and qfP(nmP;

(€) max{ > S(i)}isminimized.

i fP(moP;
Complexity: NP-hard. Partition (NP9) can be reduced to IP9 in a
manner very similar to that described for |P6.

IP10: Module Selection Problem

Input: A partition element A’ (as in the output of 1P6) containing y; cir-

cuits of type i, 1<i<r; a set M = {mjl<j<n} of module types, with z

copies of each module type m;. Each m; has a cost h; and contains a; cir-

cuits of typei, 1<i<r, 1<j<n.

Output: An assignment of non-negative integers x;,X,,.... %, 0=x<z to
n

minimize the total cost 3 x;h; and subject to the constraint that all cir-
j=1 N

cuitsin A’ areimplemented, i.e., 3 a;x; 2 vy;, 1<i<r.

=1
Complexity: NP-hard. P10 conéai ns the 0/1 Knapsack problem (NP12)
as a special case. Given an arbitrary instance w, M, K of the 0/1 Knap-
sack problem, the equivalent instance of 1P10 has

r=1Y, =M; andz=1,a;=w;,hj=k;i=1,1<j<n.
4.2.2 Placement Problems

PP1: Module Placement Problem
Input: m; p; s; N={Ny,No,...Ns}, Ni{L,....m}; D(p x p) = [d;]; and W(L:s)
= [w]. m is the number of modules. p is the number of available

32

positions (or dlots, or locations); s is the number of signals; N;, 1<i<s are
signal nets; d;; is the distance between positions i and j; and w; is the
weight of net N;, 1<i<s.

Output: X(mx p) = [x;] such that x; O {0,1} and

p

@ inj =1
j=1

(b) Sx;<1;
i=1

(© > wif(i,X) isminimized.

i=1

x; is 1iff modulei isto be assigned to position j. Constraints (a) and (b),
respectively, ensure that each module is assigned to a slot and that no
slot is assigned more than one module. f(i,X) measures the cost of net N;
under this assignment. This cost could, for example, be the cost of a
minimum spanning tree; the length of the shortest Hamiltonian path con-
necting all modules in the net; the cost of a minimum Steiner tree; etc.
In general, the cost is afunction of the d;;s.

Complexity: NP-hard. The quadratic assignment problem (NP14) is
readily seen to be a special case of the placement problem PP1. To see
this, just observe that every instance of NP14 can be transformed into an
equivalent instance of PP1 in which |N;|=2 for every net and f(i,X) issim-
ply the distance between the positions of the two modulesin N;. So, PP1
is NP-hard.

PP2: One-Dimensiona Placement Problem
Input: A set of components B ={b,,b,,....0n}; alist L ={N,N,,..N} of
nets on B such that:

N, £ B, 1<ism;
[N =B; NN; =, i#].

Output: An ordering o of B such that the ordering
Bs = { Do) Po@ - Pom}

minimizes max { number of wires crossing the interval between b, and
bc(i+1) | 1<i< n'l}.

Complexity: NP-hard. The problem is considered in [GOTO77].

4.2.3 Wiring Problems

WP1: Net Wiring With Manhattan Distance

Input: A set P of pin locations, P = {(x,y;)1<i<n}; set F of feedthrough
locations, F = {(a,b)l<sism}; and a set E = {E[l(<=i(<=r} of
equivalence classes. Each equivalence class defines a set of pins that are
to be made electrically common.

Output: Wire sets W, = {[(t},u}),(v}, w})][1sj<q;} such that &l pinsin E;
are made electrically common. Each (tj, uj) and (v, w}) is either a pin

33

location in E; or is a feedthrough pin. No feedthrough pin may appear as
a wire end point in more than one W;. The wire set, W, is such that
> (t}-viHHuj-wj) is minimum.

Bomplexity: NP-hard. The Manhattan Steiner Tree problem (NP2) is a
specia case of WPL. To seethis, let

E={P} and F={(ab)(a b)0OP} =P

Hence WPL1 is NP-hard.

WP2: Net Wiring With Euclidean Distance
Input: P, F,and Easin WP1.
Output: Wire sets asin WP1 but 3 [(t}-v})?+(u}-w})?] is minimized.
I
Complexity: NP-hard.]
The Euclidean Steiner tree problem (NPL1) is a specia case of WP2, in
exactly the same way that NP2 was a specia case of WP1. Hence, itis
NP-hard.

WP3: Euclidean Spanning Tree

Input: A set Pof pinlocations, P={(x,y;)|1<i<n};

Output: A spanning tree for P of minimum total length. The distance
between two points (ab) and (cd) is the Euclidean metric
[(a-c)?+(b—d)].

Complexity: Polynomial. An O(nlog n) algorithm to find the minimum
spanning tree is presented in [SHAM75].

WP4: Manhattan Spanning Tree

Input: P, asin WP3.

Output: A spanning tree for P of minimum total length. The distance
between two points (a,b) and (c,d) is the Manhattan metric a-d+b-d.
Complexity: Polynomial. An O(nlogn) algorithm that finds the
minimum spanning tree is presented in [HWAN79].

WP5: Degree Constrained Wiring with Manhattan Distance

Input: P, E, and F asin WP1 and a constant d.

Output: Wisasin WP1 but with the added restriction that at most d wires
may be incident on any pin or feedthrough location.

Complexity: NP-hard. WP5 contains the Manhattan Hamiltonian path
problem (NP6) as a specia case. To seethis, let E={P},d=2andF=.
Hence WP5 is NP-hard.

WP6: Degree Constrained Wiring With Euclidean Distance

Input: P, F, and E asin WP1 and a constant d.

Output: Wisasin WP2 but with the added restriction that at most d wires
may be incident on any pin.

Complexity: NP-hard. WP6 contains the Euclidean Hamiltonian path
problem (NP4) as a specia case. The argument is analogous to that
presented for WP5.

WP7: Length Constrained Wiring (Manhattan Distance)
Input: P, F, and Easin WP1, and a constant L.

34

Output: Wisasin WP1 with the added requirement that
-} pHuj-wi < L.

Complexity: NP-hard.
WP7 contains WP1 as a specia case, when L = . Since WPL is NP-
hard, sois WP7.

WPS8: Length Constrained Wiring (Euclidean Distance)
Input: P, F,and Easin WP1, and a constant L.
Output: Wisasin WP2 with the added requirement that

[+l w)? S L

Complexity: NP-hard. WP8 contains WP2, which isitself NP-hard, as a
specia case, when L = oo,

WP9: Euclidean Layering Problem |

Input: A set W of wires, W = {[(u;,v;),(x;,y;))]1<i<n}. (u,v) and (x;,y;) are
the coordinates of the end points of wirei.

Output: A partitioning Wy ,W,,...,W, of W such that WW, =, i#j; O W, =
W and no two wiresin any W intersect. The end points of wires are con-
nected by straight wires (i.e., in Euclidean manner). K isto be minimum.
Complexity: NP-hard. See Section 4.1.2.

WP10: Euclidean Layering Problem I1

Input: W asin WPQ and a constant r.

Output: A partitioning of W into sets Wy,W,,...,.W,, and X. No two wires
in any W, intersect when end points are connected by a straight wire. X
IS minimum.

Complexity: NP-hard when r=3. The corresponding intersection graph
is 3-colorable iff x=. Since deciding 3-colorability of intersection graphs
is NP-hard (NP8), WP10 is also NP-hard.

WP11: Manhattan Layering Problem |

Input: Same asin WP9.

Output: Same as in WP9, except that the end points of each wire are
connected in a Manhattan manner (i.e., a straight run along the x-axis
and a straight run along the y-axis).

Complexity: Status unknown.

WP12: Manhattan Layering Problem I1

Input: Same asin WP10.

Output: Same as in WP10, except that wire end points are connected in
Manhattan manner.

Complexity: Status unknown.

WP13: Rectilinear Layering Problem

Input: A pxq grid; awire set W={[(u;,vi)(x;,y;))]1<i<n}. (u,v) and (x.y;)
are grid points which are the end points of wirei. All the wires are con-
strained to be routed along the grid lines only.

Output: A partition of W into Wy ,W,,...,.W, such that

35

() WW = i) ; DW=W;

(i) a_lll wires 0 W, can be routed along the grid lines without intersec-
tions.

(iii) risaminimum.

Complexity: NP-hard. See Section 4.1.3.

WP14: Grid Routing

Input: Set W of wires as in WP9 and a rectangular mxn grid. The end
points of wires correspond to grid points.

Output: A routing for each wire such that no two wires intersect and all
wire segments are on grid segments.

Complexity: NP-hard ((KRAMS82] and [RICH84]).

WP15: Single Bend Grid Routing

Input: Same asin WP14.

Output: Maximum number of wires that can be routed on the grid using
at most one bend per wire.

Complexity: NP-hard [RAGH81].

WP16: Minimum Layer Single Bend Grid Routing

Input: Same asin WP14.

Output: Minimum number of layers needed to route all the wires in W
using at most one bend per wire.

Complexity: NP-hard [RAGH81].

WPL17: Single Row Layering Problem

Input: A set of vertices V ={1,2,...,n} evenly spaced along aline; alist
of nets L = {Ny,N,,....N} such that N; V, 1<ism; ON; = V; NiN; = i#];
integers c, and ¢;: the respective upper and lower street capacities.
Output: A decomposition of L intoL,L»,..., L, such that

(|) L,sz,lij,l:“_,:l_

(ii) al nets O L; have single layer single row redlizations that require
no more than ¢, and ¢, tracks in the upper and lower streets respec-
tively.

(iii) risminimum.

Complexity: NP-hard. By setting c,=0 and ¢,=B+1,3-Partition (NP10)

can be reduced to WP15 in a manner very similar to that described for

WP13.

WP18: Single Row Routing with Non-Uniform Conductor Widths
Input: V and L asin WPL17; in addition a natural number valued function
t, wheret; isthe width of the conductor used to route net N;.
Output: A layout for the nets that minimizes
max { total width required in the upper street, total
width required in the lower street}
Complexity: NP-hard.
Partition (NP9) reduces to this problem, as shown. Given an arbitrary
instance of partition A = {a;,a, ... a,} the equivalent instance of WP16
is:
V={12,..2n};
N; ={i,2n+1-i} , 1<i<n;
i =9, 1<i<n.

36

Clearly, there exists a realization with upper street width = lower street
width = (3 &)/2 iff the corresponding partition instance has answer "yes'.

WP19: Single Row Routing Problem
Input: V and L asin WP17.
Output: A layout for L that minimizes
max { number of tracks needed in upper street, number of
tracks needed in lower street}
Complexity: NP-hard. See [ARNO82].

WP20: Minimum Width Single Row Routing

Input: V andL,asin WP17.

Output: A layout for L that minimizes (number of tracks needed in
upper street + number of tracks needed in lower street).

Complexity: Status unknown.

WP21: Single Row Routing With Fewest Bends |

Input: V andL,asin WP17.

Output: A layout for L that minimizes the total number of bends in the
wiring paths.

Complexity: NP-hard [RAGH84].

WP22: Single Row Routing With Fewest Bends |

Input: V andL,asin WP17.

Output: A layout for L that minimizes the maximum number of bendsin
any one wire.

Complexity: NP-hard [RAGH84].

WP23: Single Row Routing With Fewest Interstreet Crossings |

Input: V andL,asin WP17.

Output: A layout for L that minimizes the total number of conductor
crossings between the upper and lower streets.

Complexity: NP-hard [RAGH84].

WP24: Single Row Routing With Fewest Interstreet Crossings ||

Input: V andL,asin WP17.

Output: A layout for L that minimizes the maximum number of conduc-
tors between an adjacent pair of nodes.

Complexity: NP-hard [RAGH84].

WP25: One Component Routing

Input: A rectangular component of length | and height h having n pins
aong its periphery and a set of two point nets defined on these pins.
Output: A two layer wiring of the nets such that all vertical runs are on
one layer and al horizontal runs are on the other. Wires can run only
around the component. The area of the smallest rectangle that cir-
cumscribes the component and all routing paths is minimized.
Complexity: O(n®) [LaPa80a]. When an arbitrary number of rectangular
components are present and each net may consist of several pins, the
routing problem is NP-hard [SZY M 82b].

WP26: River Routing
Input: Two ordered sets X = (x4, X2, “**, Xy and Y = (yq, Y2, *-,Y,) Of

37

pins separated by a wiring channel. Each set is divided into blocks of
consecutive pins. While the relative ordering of blocks is fixed, their
relative positioning is not.

Output: A one layer wiring pattern connecting x; toy;, 1<i<n. The chan-
nel dimensions necessary to accomplish this wiring are given by the
vertical distance (separation) needed between the two rows of pins and
the horizontal length (spread) of the channel. The channel area is the
product of spread and separation. The output wiring should optimize
these channel dimensions.

Complexity: If the wiring channel is assumed to be a single layer grid
(hence wires must be rectilinear) a placement of the blocks that minim-
izes the channel separation can be found in O(n logn) time; for a given
separation a placement with minimal spread can be determined in O(n)
time; and a placement minimizing channel area may be obtained in
O(n?) time [LEIS81]. When the position of each pin is not fixed and
wires are not constrained to run along grid lines (but must still consist of
horizontal and vertical runs with some minimum separation) the channel
separation can be minimized in O(n?) time [DOLES81]. When the wires
can take on any shape and the pin positions are fixed, minimum length
wiring can ba done in O(n?) time [TOMP80]. If two layers are allowed
with one devoted to horizontal runs and the other to vertical runs, then
the minimum separation can be found in O(n) time [SIEG81] provided
upto two vertical wires are permitted to overlap. The offset that minim-
izes the separation for both the single layer and restricted two layer case
can be found in O(nlogn) time [SIEG81]. Furthermore, the offset that
leads to the minimum area circumscribing rectangle may be found in
O(n®) time for both cases.

WP27: Channel Routing

Input: A set of nets. Each netisapair of pins on opposite sides of arec-
tangular channel.

Output: A two layer wiring of the nets such that no wire has more than
one horizontal segment. Horizontal segments are to be layed out in one
layer and vertical segments in the other. The number of horizontal
tracks used is minimized.

Complexity: NP-hard [LaPa80b]. The problem remains NP-hard if
doglegs are alowed and nets are permitted to contain any number of
pins from both sides of the channel [SZYM82a]. Severa good heuristics
for two layer channel routing exist ([DEUT76], [YOSH82], [MARES2],
[RIVESL], [FIDD82]). All of these alow doglegs and those of
[MARES82] and [RIVES8L] permit horizontal and vertical segments to
share layers. Lower bounds on the number of tracks needed are
developed in [BROWS81]. Routing in the T-shaped and X-shaped junc-
tions that result from the intersection of rectangular channels is con-
sidered in [PINT81].

4.2.4 Fault Detection Problems

Let C be an n-input 1-output combinational circuit. Let Z be the set of
al possible single stuck at 0 (s-a0) and stuck at 1 (s-a1) faults. The
tuple (iq,iz, -, in, j, F(0), F(1)) isafault detection test for C iff each of
the following is satisfied:

@ i&{0,1}, 1<k=n; je{ 0,1}

38
(b) FO) z; K1) Z; F0) F1)=;F0) F1)#.

(© (i) Thereisas-a0fault at one of the locations in F(0) iff C with
iNPUtSi4,i,,....i., hasoutput j.

(i) Thereisas-a1lfault at one of the locations in F(1) iff C with
iNPUtSi4,i,,....i., hasoutput j.

A test set, T, isa set of fault detection tests. T isatest set for L Z iff (i)
the union of all the F(0)s for the tests in T is L and (ii) the union of all
the F(1)sfor thetestsin TisL. If L =Z then T isatest set for C. Circuit
Cisirredundant iff it has a test set.

39

FDP1: Irredundancy

Input: A combinational circuit C.

Output: "yes' iff the circuit is irredundant (i.e. all s-a0 and s-a-1 faults
can be detected by 1/0 experiments); "na' otherwise.

Complexity: NP-hard. Seeproblem P1in[IBAR754].

FDP2: Line Fault Detection

Input: Same as for FDPL.

Output: "yes' iff a fault in a particular input line can be detected by 1/0
experiments; "ng"' otherwise.

Complexity: NP-hard. Seeproblem P2in[IBAR754].

FDP3: All Faults Detection

Input: Same as for FDPL.

Output: "yes' iff al single input faults can be detected by 1/0 experi-
ments, "nc’ otherwise.

Complexity: NP-hard. See problem P3in[IBAR754].

FDP4: Output Fault Detection

Input: Same as for FDPL.

Output: "yes' iff faults in the output line can be detected by 1/0 experi-
ments, "nc’ otherwise.

Complexity: NP-hard. See problem P4in[IBAR754].

FDP5: Minimal Test Set

Input: Same as for FDPL.

Output: If Cisirredundant, aminimal test set for C.
Complexity: NP-hard. See[IBAR754].

5.HEURISTICSAND USUALLY GOOD ALGORITHMS

Having discovered that many of the interesting problems that arise in
design automation are computationally difficult (in the sense that they
are probably not solvable by a polynomial time algorithm), we are left
with the issue of alternate paths one might take in solving these prob-
lems. The three most commonly tried paths are:

(@) Obtain a heuristic algorithm that is both computationally feasible
and that obtains "reasonably" good solutions. Algorithms with this
latter property are called approximation algorithms. We are
interested in good, fast (i.e., low order polynomial; say O(n), O(n
log n), O(n?), etc.) approximation algorithms.

(b) Arrive at an algorithm that always finds optimal solutions. The
complexity of this algorithm is such that it is computationally
feasible for "most" of the instances people want to solve. Such an
agorithm will be called a usually good algorithm. The Simplex
agorithm for linear programming is a good example of a usually
good algorithm. Its worst case complexity is exponential. How-
ever, it is able to solve most of the instances given it in a "reason-
able' amount of time (much less than the worst case time).

(c) Obtain a computationally feasible algorithm that "almost" always
finds optimal solutions. An algorithm with this property is called a
probabilistically good algorithm.

40

5.1 Approximation Algorithms

When evaluating an approximation algorithm, one considers two meas-
ures. agorithm complexity, and the quality of the answer (i.e., how
close it is to being optimal). As in the case of complexity, the second
measure may refer to the worst case or the average case.

There exist several categories of approximation algorithms. Let A
be an algorithm that generates a feasible solution to every instance | of a
problem P. Let FY(1) be the value of an optimal solution, and let F (1) be
the value of the solution generated by A.

Definition: A is an absolute approximation agorithm for P iff F(1)-
F (1)< k for dl I, with k aconstant. A is an f(n)-approximate algorithm
for Piff|Fo(1)-F (1IYFY(1) < f(n) for dl I. nisthe size of | and we assume
that FY(1)>0. An f(n)-approximate algorithm with f(n) < € for al n and
some constant € is an e-approximate algorithm.

Definition: Let A(g) be a family of algorithms that obtain a feasible
solution for every instance | of P. Let n be the size of . A(g) is an
approximation scheme for P iff for every €>0 and every instance |,
FE()-F (IYFH(1) < €. An approximation scheme whose time complexity
is polynomial in nis a polynomial time approximation scheme. A fully
polynomial time approximation scheme is an approximation scheme
whose time complexity is polynomia in n and 1/e. For most of the
heuristic algorithms in use in the design automation area, little or no
effort has been devoted to determining how good or bad (relative to the
optimal solution values) these are. In what follows, we briefly review
some results that concern design automation. The reader is referred to
[HORO78, Chap 12] for a more complete discussion of heuristics for
NP-hard problems. For most NP-hard problems, it is the case that the
problem of finding absolute approximations is also NP-hard. As an
example, consider problem IP3 (circuit realization). Let

min ZCi X;

(1) subject to
Zm]X|2b], 1San

and
%20 and integer

be an instance of 1P3. Consider the instance:

min 3 d;x;
(2) subject to |
ijXiij, 1S]Sn

x=0 and integer

where di=(k+1)c;. Since the values of feasible solutions to (2) are at
least k+1 apart, every absolute approximation algorithm for 1P3 must
produce optimal solutions for (2). These solutions are, in turn, optimal
for (1). Hence, finding absolute approximate solutions for any fixed k is
no easier than finding optimal solutions. Horowitz and Sahni [HORQO78,
Chap 12] provide examples of NP-hard problems for which there do
exist polynomial time absolute approximation algorithms. It has long
been conjectured ([GILB68]) that, under the Euclidean metric,

41

length of minimum spanning tree _ F~ _ 2/3

length of optimum Steiner tree FU

Hence,

F-F] _2-P(s3 _
< e 3 <0.155

Hence, the O(n log n) minimum spanning tree algorithm in [SHAM75]
can be used as a 0.155-approximate algorithm for the Euclidean Steiner

tree problem.
For the rectilinear Steiner tree problem, it is known ([HWAN79],

42

[LEE76]) that

length of minimum spanning tree _ F~ <3/2
length of optimum Steiner tree =

Hence,

wsﬂz

FEI

The O(n log n) spanning tree algorithm in [HWAN79a] can be used as a
0.5-approximate algorithm for the Steiner tree problem.

Since both the Euclidean and rectilinear Steiner tree problems are
strongly NP-hard, they can be solved by afully polynomial time approxi-
mation scheme iff P=NP. (See [HORO78, Chapter 12] for a definition of
strong NP-hardness and its implications).

[SHAM75] suggests an O(n log n) approximation algorithm that
finds a traveling salesman tour that is not longer than twice the length of
an optimal tour, using the Euclidean minimum spanning tree. Thisis a
1-approximate algorithm, and it is possible to do better. [CHRI76] con-
tains a 0.5-approximate algorithm for this problem. Sahni and Gonzalez
[SAHN76] have shown that there exists a polynomia time e-
approximation algorithm for the quadratic assignment problem iff P=NP.

5.2 Usually Good Algorithms

Classifying an algorithm as "usually good" is a difficult process. From
the practical standpoint, this can be done only after extensive experi-
mentation with the algorithm. The Simplex method is regarded as good
only because it has proven to be so over years of usage on a variety of
instances. An analytical approach to obtain such a classification comes
from probabilistic analysis. [KARP75 and 76] has carried out such an
analysis for several NP-hard problems. Such analysis is not limited to
agorithms that guarantee optimal solutions. [KARP77] analyzes an
approximation algorithm for the Euclidean traveling salesman problem.
The net result is afast algorithm that is expected to produce near optimal
salesman tours. Dantzig [DANT80] analyzes the expected behavior of
the Simplex method.

Kirkpatrick et al. ([KIRK83 and VECC83]) have proposed the use
of smulated annealing to obtain good solutions to combinatorially
difficult design automation problems. Experimental results presented in
these papers as well asin [NAHAS85], [GOLD84], and [ROMES84] indi-
cate that simulated annealing does not perform as well as other heuristics
when the problem being studied has a well defined mathematical model.
However, for problems with multiple constraints that are hard to model,
simulated annealing can be used to obtain solutions that are superior to
those abtainable by other methods. Even in the case of easily modeled
problems, simulated annealing may be used to improve the solutions
obtained by other methods.

6. CONCLUSIONS

Under the worst case complexity measure, most design automation prob-
lems are intractable. This conclusion remains true even if we are
interested only in obtaining solutions with values guaranteed to be
"close' to the value of optima solutions. The most promising
approaches to certifying the value of agorithms for these intractable
problems appear to be: probabilistic analysis and experimention.
Another avenue of research that may prove fruitful is the design of
highly paralel algorithms (and associated hardware) for some of the
computationally more difficult problems.

45

7. REFERENCES

[ABRASO]

[ARNOS2]

[BREU66]

Abramovici, M. and M. A. Breuer, "Fault diagnosis base on
effect-cause analysis. An introduction’, Proceedings 17th
Design Automation Conference, 1980, pp. 69-76.

Arnold, P.B., "Complexity results for circuit layout on
double-sided printed circuit boards', Bachelor's thesis, Har-
vard University, 1982.

Breuer, M. A., "The application of Integer Programming in
Design Automation®, Proc. SHARE Design Automation
Workshop, 1966.

[BREU72a] Breuer, M.A.(ed.), Design Automation of Digital Systems,

Vol.1, Theory and Techniques, Prentice-Hall, Englewood
Cliffs, NJ, 1972.

[BREU72b] Breuer, M.A., "Recent Developments in the Automated

[BROWSI]

[CHRI76]

[CLARG9]

[CLEET76]

[DANTS0]

[DEJK77]

[DEUT76]

[DOLES]]

[EHRL76]

[EICH77]

[FIDD82]

[GARE75]

Design and Analysis of Digital Systems', Proceedings of the
IEEE, Val. 60, No. 1, January 1972, pp. 12-27.

Brown, D. and R. Rivest, "New lower bounds for channel
width", in VLSI Systems and Computations, ed. Kung et al.,
Computer Science Press, pp. 178-185, 1981.

Christofedes, N., "Worst-case Analysis of a New Heuristic
for a Traveling Salesman Problem', Mgmt. Science
Research Report, Carnegie Méellon University, 1976.

Clark, R.L., "A Technique for Improving Wirability in
Automated Circuit Card Placement, Rand Corp. Report R-
4049, August 1969.

vanCleemput, W.M., "Computer Aided Design of Digital
Systems'’, 3 volumes, Digita Systems Lab., Stanford
University, Computer Science Press, Potomac, MD, 1976.

Dantzig, G., "Khachian's algorithm: a comment™ SIAM
News, vol 13 no. 5, Oct. 1980.

Dejka, W. J., "Measure of testability in device and system
design", Proceedings 20th Midwest Symposium on Circuits
and Systems, Aug. 1977, pp. 39-52.

Deutsch, D., "A dogleg channel router”, Proceedings 13th
Design Automation Conference, pp. 425-433, 1976.

Dolev, D., et d., "Optimal wiring between rectangles’, 13th
Annua Symposium On Theory Of Computing, pp. 312-317,
1981.

Ehrlich, G.S., S.Even and R.E.Tarjan, "Intersection graphs
of Curves in the Plan€', Jr. Combin. Theo., Ser. B, 21, 1976,
pp. 8-20.

Eichelberger, E. B. and T. W. Williams, "A logic design
structure for LS| testability”, Proceedings 14th Design Auto-
mation Conference, 1977, pp. 462-468.

Fidducia, C. and R. Rivest, "A greedy channel router",
Proceedings 19th Design Automation Conference, 1982, pp.
418-424.

Garey, M.R. and D.S. Johnson, "Complexity Results for

46

Multiprocessor Scheduling under Resource Constraints',
SIAM J. Comput., 4, pp.397-411.

[GARE764] of Near-Optimal Graph Coloring”, JACM, 23, 1976, pp.43-
49.

[GARE76b] Geometric Problems', Proc. 8th Annual ACM Symposium
on Theory of Computing, ACM, NY., 1976, pp.10-22.

[GARE77] Garey, M.R., R.L.Graham and D.S.Johnson, "The Complex-
ity of Computing Steiner Minimal Trees', SIAM
Jr.Appl.Math., 32, 1977, pp.835-859.

[GARE79] Garey, A Guide to the Theory of NP-completeness',
W.H.Freeman and Co., San Francisco, CA, 1979.

[GILB68] Gilbert, EN. and H.O. Pollak, "Steiner Minimal Trees',
SIAM JAppl. Math., January 1968, pp.1-29.

[GOLD79] Goldstein, L. H., "Controllability/observability analysis of
digital circuits', IEEE Trans. on Circuits and Systems, vol.
CAS-26, no. 9, Sept. 1979, pp. 685-693.

[GOLD84] B. Golden and C. Skiscim, Using simulated annealing to
solve routing and location problems, University of Mary-
land, College of Business Administration, Technical Report,
Jan. 1984.

[GOTO77] Goto S, |. Cederbaum and B. S. Ting, "Suboptimum Solu-
tion of the Backboard Ordering with Channel Capacity Con-
straint”", |IEEE Transactions on Circuits and Systems, Vol.
CAS-24, November 1977, pp.645-652.

[GRASB0] Grason, J. and A. W. Nagle, "Digital test generation and
design for testability", Proceedings 17th Design Automation
Conference, 1980, pp. 175-189.

[HABAGS] Habayeb, A.R., "System Decomposition, Partitioning, and
Integration for Microelectronics', IEEE Trans. on System
Science and Cybernetics, Vol.SSC-4, No.2, July 1968,
pp.164-172.

[HASH71] Hashimoto, A. and J. Stevens, "Wire routing by optimizing
channel assignment within large apertures', Proceedings 8th
Design Automation Conference, 1971, pp. 155-169.

[HORO74] Horowitz, E. and S.Sahni, "Computing Partitions with
Applications to the Knapsack Problenm’, JACM, 21, 1974,
pp.277-292.

[HORO78] Horowitz, E. and S.Sahni, Fundamentals of Computer Algo-
rithms, Computer Science Press, Potomac, MD, 1978.

[HWAN76] Hwang, F.K., "On Steiner Minimal Trees wioth Rectilinear
Distance’, SIAM J Appl. Math, January 1976, pp.104-114.

[HWAN79a]Rectilinear Minimal Spanning Trees', JACM, 26, 1979,
pp.177-182.

[HWAN79Db]Rectilinear Steiner Trees', IEEE Transactions on Circuits
and Systems, Vol. CAS-26, January 1979, pp.75-77.

[IBAR75a] Ibarra, O.H. and S.Sahni, "Polynomially Complete Fault
Detection Problems’, IEEE Trans. on Computers, Vol.C-24,
March 1975, pp.242-249.

[IBAR75b] Ibarra, O.H. and C. E. Kim, "Fast Approximation

[IBAR77]

[JOHAT79]

[JOHNS2]

[KARP72]

[KARP75]

[KARP76]

[KARP77]

[KIRK83]

[KODR62]

[KODR69)]

[KRAMS82]

[LAWL62]

[LAWL69]

[LAWL77]

[LEE76]

[LEIS81]

47

Algorithms for the Knapsack and Sum of Subset Problems’,
JACM, 22, 1975, pp.463-468.

Ibaraki, T., T.Kameda and S.Toida, "Generation of Minimal
Test Sets for System Diagnosis', University of Waterloo,
1977.

Johannsen, D., "Bristle blocks: A silicon compiler™
Proceedings 16th Design Automation Conference, 1979.

Johnson, D., "The NP-Completeness Column: An ongoing
guide', Jr of Algorithms, Dec 1982, Vol 3, No 4, pp. 381-
395.

Karp, R., "On the Reducibility of Combinatorial Problems’,
in R.E.Miller and JW.Thatcher(eds.), Complexity of Com-
puter Computations, Plenum Press, NY, 1972, pp.85-103.

Karp, R., "The Fast Approximate Solution of Hard Com-
binatoria Problems’, Proc. 6th Southeastern Conf. on Com-
binatorics, Graph Theory, and Computing, Winnipeg, 1975.

Karp, R., "The Probabilistic Analysis of Some Combina-
torial Search Algorithms', University of California, Berke-
ley, Memo No.ERL-M581, April 1976.

Karp, R., "Probabilistic Analysis of Partitioning Algorithms
for the Traveling Salesman Problem in the Plane', Math. of
Oper. Res., 2(3), 1977, pp.209-224.

S. Kirkpatrick, C. Gelatt, Jr., and M. Vecchi, Optimization
by smulated annealing, Science, Vol 220, No 4598, May
1983, pp. 671-680.

Kodres, U.R., "Formulation and Solution of Circuit Card
Design Problems Through Use of Graph Methods', in
G.A.Walker(ed.), Advances in Electronic Circuit Packaging,
Vol.2, Plenum Press, New York, NY, 1962, pp.121-142.

Kodres, U.R., "Logic Circuit Layout", The Digest Record of
the 1969 Joint Conference of Mathematical and Computer
Aidsto Design, October 1969.

Kramer, M.R., and J. van Leeuwen, "Wire-routing is NP-
Complete' Technical Report, Computer Science Dept.,
University of Utrecht, The Netherlands, 1982.

Lawler, E.L., "Electricd Assemblies with a Minimum
Number of Interconnections', |IEEE Trans. on Electronic
Computers (Correspondence), Vol.EC-11, February 1962,
pp.86-88.

Lawler, E.L., K.N.Levitt and J.Turner, "Module Clustering
to Minimize Delay in Digital Networks', IEEE Trans. on
Computers, Vol.C-18, January 1969, pp.47-57.

Lawler, E.L., "Fast Approximation Algorithms for Knapsack
Problems',Proc. 18th Ann. IEEE Symp. on Foundations of
Computer Science, 1977, pp.206-213.

Lee, JH., N.K. Bose and FK. Hwang, "Use of Steiner's
Problem in Suboptimal Routing in Rectilinear Metric', IEEE
Transactions on Circuits and Systems, Vol. CAS-23, July
1976, pp.470-476.

Leiserson, C. and R. Pinter, "Optimal placement for river

[LaPa804]

[LaPa80b]

[LUEK 75]

[MARES2]

[MEADS0]
[NAHASS]

[NOTZ67]

[NOY C77]

[PAPA77]

[PINT81]

[POME65]

[RAGHS1]

[RAGHS4]

[RICHS4]

[RIVES1]

[ROMES4]

[ROTH66]

48

routing’, in VLSl Systems and Computations, Kung et al.
editors, Computer Science Press, pp.126-142, 1981.

La Paugh, A., "A polynomia time algorithm for routing
around arectangl€’, 21st Annual |EEE Symposium on Foun-
dations of Computer Science, pp. 282-293, 1980.

La Paugh, A., "Algorithms for integrated circuit layout: An
analytic approach’, MIT-LCS-TR-248, Doctoral disserta-
tion, MIT, 1980.

Lueker, G.S., "Two NP-complete Problems in Nonnegative
Integer Programming’, Report N0.178, Computer Science
Lab., Princeton University, Princeton, NJ, 1975.

Marek-Sadowska, M. and E. Kuh, "A new approach to chan-
nel routing’, Proceedings 1982 ISCAS Symposium, |EEE,
pp. 764-767, 1982.

Mead, C. and L. Conway, "Introduction to VLS| systems',
Addison-Wesley, 1980.

Nahar, S., S. Sahni and E. Shragowitz, "Experiments with
simulated annealing", 1985 Design Automation Conference.

Notz, W.A., E.Schischa, J.L.Smith and M.G.Smith, "Large
Scale Integration; Benefitting the Systems Designer”, Elec-
tronics, February 20, 1967, pp.130-141.

Noyce, R. N., "Microelectronics', Scientific American, Sept.
1977, pp. 62-69.

Papadimitriou, C.H.",The Euclidean Traveling Salesman
Problem is NP-Complete', Theoretical Computer Science 4,
1977, pp.237-244.

Pinter, R., "Optimal routing in rectilinear channels', in VLSI
Systems and Computations, ed. Kung et a., pp.153-159,
1981.

Pomentale, T., "An Algorithm for Minimizing Backboard
Wiring Functions', Comm. ACM, Vol.8, No.11, November
1965, pp.699-703.

Raghavan, R., J. Cohoon, and S. Sahni, "Manhattan and rec-
tilinear routing", Technical Report 81-5, University of Min-
nesota, 1981.

Raghavan, R., and S. Sahni, "The complexity of single row

routing’, IEEE Transactions on Circuit and Systems, vol.
CAS-31, No 5, May 1984, pp. 462-472.

Richards, D., "Complexity of single-layer routing', IEEE
Transactions on Computers, March 1984, pp. 286-288.

Rivest, R., A. Baratz, and G. Miller, "Provably good channel
routing algorithms', in VLS| systems and Computations, ed.
Kung et al., pp. 153-159, 1981.

F. Romeo, A. Vincentelli, and C. Sechen, Research on simu-
lated annealing at Berkeley, Proceedings ICCD, Oct. 1984,
pp 652-657.

Roth, J. P., "Diagnosis of automatic failures: A calculus and
a method", IBM Jr of Syst. and Dev., no. 10, 1966, pp. 278-
291.

[SAHNT76]
[SAHNSI]

[SHAM75]

[SIEG81]

[SO74]

49

Sahni, S. and T.Gonzalez, "P-Complete Approximation
Problems', JACM, 23, 1976, pp.555-565.

Sahni, S., "Concepts in discrete mathematics', Camelot Pub-
lishing Co., Fridley, Minnesota, 1981.

Shamos, M.I. and D.Hoey, "Closest Point Problems’, 16th
Annua |EEE Symposium on Found. of Comp. Sc., 1975,
pp.151-163.

Siegel, A. and D. Dolev, "The separation for general single
layer wiring barriers', in VLSl Systems and Computations,
Kung et a. editors, Computer Science Press, pp. 143-152,
1982.

So, H.C., "Some Theoretical Results on the Routing of Mul-
tilayer Printed Wiring Boards', IEEE Symposium on Cir-
cuits and Systems, 1974, pp.296-303.

[SZYM82a] Szymanski, T., "Dogleg channel routing is NP-complete’,

unpublished manuscript, Bell Labs, 1982.

[SZYM82b] Szymanski, T. and M. Yannanakis, Unpublished manuscript,

[TOMPSO0]

[TINGT78]

[ULLM84]

[VECC83]

[WILL82]

[WOJT81]

[YAN71]

[YAO75]

[YOSH82]

1982.

Tompa, M., "An optimal solution to a wiring routing prob-
len’, 12th Annual ACM Symposium On Theory Of Com-
puting, pp. 161-176, 1980.

Ting, B.S. and E.S. Kuh, "An Approach to the Routing of
Multilayer Printed Circuit Boards', IEEE Symposium on
Circuits and Systems, 1978, pp.902-911.

Ullman, J., Computational Aspects of VLSI, Computer Sci-
ence Press, Maryland, 1984.

M. Vecchi and S. Kirkpatrick, Global wiring by simulated
annealing, |IEEE Trans. On Computer Aided Design, Vol
CAD-2, No 4, Oct. 1983, pp 215-222.

Williams, T. W. and K. P. Parker, "Design for testability: A
survey", IEEE Trans. on Computers, vol. C-31, no. 1, 1982,
pp. 2-15.

Wojtkowiak, H., "Deterministic systems design from func-
tiona specifications’, Proceedings 18th Design Automation
Conference, 1981, pp. 98-104.

Yan, S. S. and Y. S. Tang, "An efficient algorithm for gen-
erating complete test sets for combinational logic circuits',
|EEE Trans. on Computers, 1971.

Yao, A., "An O(EloglogV)) Algorithm for Minimum Span-
ning Trees', Information Processing Letters, 4(1), 1975,
pp.21-23.

Yoshimura, T. and E. Kuh, "Efficient algorithms for channel
routing", IEEE Transactions on DA, pp. 1-15, 1982.

