The Complexity of Discretionary Access Control

Stephen Dranger, Robert H. Sloan*, and Jon A. Solworth

Dept. of Computer Science
University of Illinois at Chicago
stdrange@alumni.uchicago.edu; sloan|solworth@uic.edu

Abstract. A recent paper presented an access control scheme for dis-
cretionary access controls with a decidable safety problem. This paper
deals with the complexity analysis of that access control, and finds it to
be, in its worst cases, PSPACE-complete, but polynomial time for prac-
tical cases. The PSPACE-hardness reduction uses the theory of succinct
problems in a more general manner than circuit representation.

1 Introduction

In a computer system, access controls restrict subjects (users and/or processes)
to performing only those operations on objects (e.g., files) for which they are
authorized. For each such operation, the access controls either allow or disallow
that operation to be performed. In Discretionary Access Controls (DACs), each
object has an owner who exercises primary control over the object. DACs are
oldest and most widely used class of access controls, the access controls for both
Windows and UNIX are DAC. The Unix DAC, for example, has the well known
three primitive permissions read, write, and execute.

In the late 1970s, Harrison, Ruzzo, and Ullman (HRU) introduced a seem-
ingly very simple general-purpose language for Discretionary Access Control
(DAC). In spite of the simplicity of the HRU language, a safety property with
parameters a specific permission p, subject s, and object o:

“Always s does not have permission p for o” (1)

is undecidable [3].

Recently Solworth and Sloan gave a group-based mechanism for designing
DAC:s for which the safety problem (Equation 1) is decidable [10], and showed
that that mechanism is expressive enough to construct any particular DAC from
a taxonomy of DACs given by Osborne et al. (OSM) [8].

That group-based access control scheme was the first general access control
model proved both to have a decidable safety property and to be capable of
implementing the full range of DAC models. From HRU’s work in the 1970s
though the early 2000s, general access control models were published that have
both decidable (but relatively weak) and undecidable (but more expressive) vari-
ants. This includes HRU, Sandhu’s 1992 Typed Access Model (TAM) [9], and

* Partially supported by NSF grant No. CCF-0431059.

Koch et al.’s 2002 graph-based model [4, 5]. In each of these cases, decidability
is obtained by requiring a type of monotonicity: an operation can add or remove
privileges but not both. Thus, for example, changing a user’s group membership
is not permitted in the decidable version of those access control schemes, since
changing groups typically both adds and removes privileges.

In this paper we consider the precise complexity of the safety problem in the
Solworth and Sloan access control scheme. We show that for the implementation
of any DAC in Osborne et al.’s taxonomy, the safety problem can be decided
in polynomial time, and that for the mechanism in its full generality, the safety
problem is PSPACE complete. The proof of PSPACE hardness may have some
interest in its own right. As we mention very briefly in Section 6, it generalizes
the theory of succinct graph problems [2].

In the next section we quickly sketch the group-based access control model
of [10] (full details are given in that paper). Section 3 describes the sliding marker
net, a new marked graph model, which is the appropriate abstraction of the key
part of the group-based access control system. Section 4 gives the polynomial-
time result, and Section 5 gives the PSPACE-completeness result. We conclude
in Section 6.

2 Review of the access control scheme

Solworth and Sloan’s group-based access control model is a general purpose
scheme that allows one to describe a wide variety of particular access control
systems. It corresponds to what they called “Layer 1”7 [10], and to what Li
and Tripunitara [6] call an access control scheme. An access control scheme has
a set of states and family of transition functions, and possible permissions. A
particular access control system specifies a particular transition function, and
the specific permissions, and typically narrows the set of states as well.

In all particular access control systems in the Solworth-Sloan scheme, pro-
cesses derive authority to perform operations from the user on whose behalf
they execute. Every object—or entity that can be accessed by a process—has a
label that (indirectly) defines the privilege (also called permission or right) that
various users have to perform operations on the object. (A file is the typical
example of an object.) Objects are disjoint from users.

In defining a particular system, a fixed constant number of privileges is chosen
(e.g., read, write, and execute). Privileges map labels to groups of users; the
mapping is fixed when the label is created, although the membership of the
group is not fixed. Protection is at the granularity of labels.

The group mechanism is the novel part of the scheme. A group set is a
collection of one or more groups; a group is a set of users.! Every group set has
a set of users, a set of group tags, and a set of pairs, (u,t) where u is a user ID
and ¢ is a group tag, which determine group membership.

! What we describe in this section are “native groups and group sets” in [10]; to
implement a particular DAC policy one typically uses more than one of these native
groups to implement one group in the specified policy.

2.1 Formal description of Solworth-Sloan scheme

In this subsection, for completeness, we give a fairly detailed description of the
relevant parts of the Solworth-Sloan access control scheme. However, the reader
can probably follow the main points of this paper without reading these details.

Formally, in the Solworth-Sloan scheme, every state (in any possible system)
is a tuple with the following (many) components:

The set U of current users

— The set O of current objects

— The set L of current labels of objects

— A map £: O — L giving the label of every object

The set G'S of current group sets

The set G of current groups

The set of privileges, and for each privilege, a map p : L — G telling which

group of users has that privilege

— A map gs: G — GS that determines the group set of each group

The set T of current group tags, and a map f : T¢ — GS that gives the

group set of each group tag.

— The set GL C U x TC of all user-group tag pairs. Each ordered pair (u,t)

can be thought of as a “group label” on a notional group object.
Each user has at most one group tag for each group set at any time; that
is, if both (u,t), (u,t’) € GL then f(t) # f(t'). The current set of users
of a given group set is exactly the set of users that have a an group tag
associated with the group set; that is, the users of groups set gs are exactly
{w:3t: f(t) = gs and (u,t) € GL}.

— A relation 7 C: TY x G relating group tags to groups. User u is a member
of group g iff there is a t € T such that (u,t) € GL and r(t, g).

We require that group tags give membership only in groups in the tags group
set; that is, that if r(¢, g), we have f(t) = gs(g).

— A set of triples rules C T% x T¢ x G. Each triple (t,t', g) gives a group label
relabel rule of the form Relabel(t,t") = g , which means that any member of
group g can, for any u change group label (u,t) to (u,t’).

A relabel rule must be inside of a single group set; that is, if (¢,t', g) € rules,
then f(t) = f(t'). However, we do not require that the group administering
the relabel be in the group set; that is, we do not require gs(g) = f(¢).

— The current set N C TY of new user group tags. When a new user u, is

added to the system, for each ¢t € N a new group label (u,,t) is created.

2.2 Key points about groups and group sets

In this paper, we are not concerned with any state transitions that add new
groups or group sets to a system. We are concerned exclusively with those tran-
sitions that change the membership of existing groups. There are two types of
transitions that change group membership: the addition of new users, and the
application of group tag relabel rules to change the user—group tag pairs. These

transition rules are the same in any system using the Solworth-Sloan access con-
trol scheme—what varies from system to system are the groups and group sets
that can be created. In obtaining the hardness results in this paper, we assume
that arbitrary groups and groups sets can be created.

Roughly speaking (see the previous subsection for more details), every system
is comprised of a set of users U, a set of objects O, a set of labels L, a mapping
{: 0O — L, and group sets, groups, and permissions. We describe group sets in
detail shortly, but each group set has some (unique) groups, and the set of all
groups in all groups sets is denoted G. Now for each primitive privilege (e.g.,
read, write) we have a map p : L — G specifying the group of users that have
that permission for objects with a particular label.

Each group set includes the following components:

—_

. Its set of groups. Every group belongs to exactly one group set.

. Its set of group tags. Every group tag is associated with exactly one group
set.

. The current group tag—user pairs.

An optional new user tag.

. Its set of users.?

. The relation of the group set’s group tags to its groups.

. Group tag relabel rules.

[\N)

N oUW

All components are finite, and all components except the group tag—user pairing
are specified and fixed for the life of the group set when the group set is created.
An initial group tag—user pairing is specified when the group set is created, but
it evolves over time.

Each user in the group set has exactly one group tag at any time. The
group-tag—user pairs are referred to as group labels, and are thought of as labels
on notional objects. Thus, if group tag G is associated with groups ¢; and g3,
and user u has group tag G in group set G, then (at that time) u is a member
of groups g; and g3, and not a member of any other group of G (From this
information alone, we cannot tell which groups of other group sets u is in.)

The definition of the group set tells which users are initially in the group set,
and the group tag for each user. If G has new user tag G,,, then all users added
to the system are added to group set G with tag G,,.

For any two group tags G1,G2 in group set gs, a group relabel permission
Relabel(G1,G3) = g may be defined at gs’s creation that enables any member
of group g to change the group tag of any user v in G from G; to G5. Group g
may be either in gs or an existing group in another group set.

2.3 Safety problem in this setting

In this setting, the safety problem of Equation 1 becomes, “Can user s become
a member of group g = p(¢(0))?”, where | = £(0) is the label of object o and p(I)
is the group having permission p for label /. This in turn becomes the question,

2 Formally, the set of users is induced by the set of group tag—user pairs.

“for each group tag G associated with group g in group set gs, could user u be
paired with tag G?7”

3 Abstract model of problem

To model the safety problem for this access control system, we introduce the
sliding marker net model. Group tags form the vertices of a digraph, with the
edges corresponding to the existence of a relabel rule. Markers on the vertices
represent users. Thus k markers in a vertex representing group tag G correspond
to k users having a user—group-tag pair with G. Each edge is governed by a
set of vertices—corresponding to the tags for the group that has the relabel
permission for that edge. A marker can be moved across an edge only if at least
one vertex in the set of vertices governing that edge contains a marker. A set of
new marker vertices that can have markers added to them models the new user
tag mechanism for adding new users. More formally:

Definition 1. A sliding marker net is a 5-tuple, (V, E, A, My, N), where V
and E are the vertices and edges of a directed graph, A is a function A : E — 2V,
mapping each edge to a vertex set, My : V — N is the initial marking, and
N C V. (N represents the group of new users.) We say vertex set A(e) governs
edge e (if |A(e)| = 1 we may say a vertex governs an edge). The underlying
digraph is called the sliding marker graph.

The marking of a sliding marker net is its state. For marking M we say that
vertex v is nonempty if M (v) > 0 and empty if M(v) = 0.

Given a marking M of a sliding marker net, we can obtain a new marking M’,
or make a move, in two ways. One is by “sliding a marker” over edge (u,v) € E.
This move requires that M (u) > 0 and that there is a w € A(u, v) s.t. M(w) >0
(i.e., A(u,v) has at least one nonempty vertex in marking M), and decreases
M (u) by 1 and increases M (v) by 1. The other kind of move is to add 1 to M (v)
for every v € N, which models adding new users.

The VERTEX SET NONEMPTINESS problem for sliding marker nets is as fol-
lows: Given a sliding marker net (V, E, A, My, N) and a vertex set S, is there
a sequence of moves that yields a new marking in which at least one v € S is
nonempty? This has the same complexity as VERTEX NONEMPTINESS (ignoring
a multiplicative factor of at most |V|), whether a particular v € V' can be made
nonempty, and we work with this slightly simpler problem. To the best of our
knowledge, sliding marker net VERTEX NONEMPTINESS is a novel graph problem.

We are in fact analyzing the complexity of a slightly different problem than
the analog of the stated safety problem (1). The sliding marker net analog of the
safety problem in this context is, “Can a specific, named marker reach vertex
v?” However, this problem and VERTEX NONEMPTINESS are both PSPACE-
complete. A slightly messier version of Theorem 1’s construction would show
this problem is in PSPACE as well. In the other direction, there is a simple
reduction of VERTEX NONEMPTINESS to the specific-marker version: Given a
sliding marker net and vertex v*, add two new vertices v; and vo with an edge

(v1,v2), and add the specific named marker to v in the initial marking. Finally
set A((v1,v2)) = {v*}. The VERTEX NONEMPTINESS instance has a solution iff
the named marker can reach v*.

4 The OSM DACs can be decided in polynomial time

The group mechanism of Sloan and Solworth can be used to implement some in-
tricate access control policies that go beyond what are conventionally considered
DAC systems. To obtain the PSPACE hardness result we show in Section 5, we
construct an artificial access control system that certainly goes beyond a normal
reasonable DAC system. In this section we briefly argue that the safety question
for conventional DAC systems can be answered in polynomial time.

The result needed for sliding marker nets is that VERTEX NONEMPTINESS
can be decided quickly for an sliding marker net with a simple structure. We say
vertices U C V of sliding marker net (V, E, A, My, N) form an isolated component
iff both (1) there is no directed edge between U and U in the underlying graph
and (2) every edge e within U has A(e) C U.

Theorem 1. If the underlying digraph of sliding marker net (V,E, A, My, N)
consists of isolated components where each component has only a constant num-
ber of vertices, then VERTEX NONEMPTINESS can be solved in linear time.

Proof. We need consider only the component with the vertex in question; let
its size be c. To decide its nonemptiness, first, add ¢ markers to every vertex
in the set V. If any vertex in the component has more than ¢ markers, reduce
its number of markers to c¢. Then exhaustively construct the portion of the
state space obtained only by sliding markers in the component. The required
bookkeeping can be done in time linear in the size of the sliding marker net.

Now OSM gave a taxonomy intended to include all reasonable DAC systems.
In all of them, the owner of an object can grant or revoke ordinary permissions
(e.g., read, write, and execute) to the object. The various OSM DACs allow the
following variations: (1) Whether or not a owner of an object can give it away
(change ownership). (2) Whether the owner of an object can delegate the right
to grant ordinary permissions to other users. The case where the owner can
delegate is called liberal DAC, and it has a number of variations: (a) who can
revoke ordinary permissions, and (b) whether the delegation propagates. OSM
propose no propagation (“one-level grant”), that an owner can make either a
grant that cannot be propagated, or a grant that can be propagated once (“two-
level grant”), and arbitrary propagation (multi-level grant).

Solworth and Sloan [10] sketched the implementation of any of these DAC
mechanisms on top of their group mechanism. Objects are protected at the
granularity of labels. For each label [and each ordinary permission, two group
sets are used, one for the ordinary permission and one for the administration. The
ordinary permission group set has two group tags, and the administrative group
set has only two tags in all cases except for liberal DAC with 2-level grant, when

it has three tags. In all cases, all group tag relabel permissions within those two
group sets are held by members of the administrative group set. The group tags
correspond to vertices. Relabeling of a users group tag occurs only among group
tags inside one group set. The sets A((u,v)) correspond to the users allowed to
relabel an arbitrary user’s group tag from u to v. Thus the construction gives
isolated components of 4 vertices for each OSM DAC except for 5 vertices for
liberal DAC with two-level grant.
Thus we have sketched the argument for:

Corollary 1. The safety problem can be decided in polynomial time for all the
OSM DACs.

Remark: The extension to OSM to allow n-level grants for any constant n is
also decidable.

5 General problem is PSPACE complete

In this section we will show that sliding marker net VERTEX NONEMPTINESS is
PSPACE complete.

5.1 Vertex nonemptiness is in PSPACE
Theorem 2. Sliding marker net VERTEX NONEMPTINESS € PSPACE.

Proof. We argue VERTEX NONEMPTINESS is in PSPACE = NPSPACE. Consider
net (V, E, A, My, N). Vertices having more than one, as opposed to exactly one,
marker affect the emptiness/nonemptiness of vertices in reachable markings only
because some of those “extra” markers could later move, creating additional
nonempty vertices. Thus we can treat markings with more than |V| markers in
a vertex as if they had only |V| in that vertex. Hence we may modify M, to a
marking M{) by first adding |V'| markers to every vertex in N (“new users”), and
then reducing the marking of any vertex u with more than |V| markers to |V].

Thus we have at most |V|? markers. So the total number of distinct mark-

ings is less than the number of ways we can fit |V|? indistinguishable markers
into |V| 4+ 1 containers, or (IVlli/_-ilrz\Vl) < (IV)? + [V)IVL. (We add another con-
tainer to represent the markers that are not on the sliding marker net yet.) To
solve the problem nondeterministically, we simply choose a legal move, increment

a counter, and repeat. This requires O (\V\ log |V| + log ((|V|2 + |V|)‘V|)) =
O(|V|log V) space: O(|V|log|V]) to keep track of where the markers are (i.e.,

we need to store |[V'|+1 integers in the range of 0 to |[V'|2) and O <log ((\V\Q + V) IVI))
to keep to keep track of the binary counter.

5.2 Vertex nonemptiness is PSPACE hard

Our reduction for PSPACE hardness is loosely inspired by succinct representa-
tions of graphs [2,7]. In that theory, a graph is represented by a (sometimes)
exponentially smaller circuit describing the graph. Here, the state space of the
sliding marker net is exponentially bigger than the sliding marker net itself.

Theorem 3. Sliding marker net VERTEX NONEMPTINESS is PSPACE-hard.

We will reduce QUANTIFIED BOOLEAN FORMULA (QBF) to VERTEX NON-
EMPTINESS. The reduction is rather involved; we give it here, and then sketch
the argument for its correctness.

Reduction

Throughout let n be the number of variables in the given QBF

w = Q1$1Q2$2"'Qnmn¢(xla-~-7xn) (2)

where each @) is either 3 or V, and ¢ is some 3CNF formula.

We implicitly use but do not construct a “QBF graph” of ¢ that has a path
from a designated source to a designated sink iff ¢ is satisfiable. This graph is
adopted from [7]; here we construct a digraph. We construct a sliding marker
net such that it has designated vertex that can become nonempty iff the QBF
graph has a source to sink path. We will rely on:

Proposition 1 ([7]). A QBF is satisfiable if and only if its QBF graph has a
path from s to t.

QBF graph The QBF graph is a digraph with source s and sink ¢; every vertex
is either “s-side” or “t-side.” Each vertex corresponds to a partial assignment
to the n Boolean variables. A vertex’s level m, for 0 < m < n, tells how many
variables are set. The only level 0 vertices are s and ¢. For 1 < m < n, in a level
m vertex, the first m variables are set. We give each vertex a 2n + 1 bit label:
First, n bits for the level m in (padded) unary; then 1 bit for s or ¢; then m bits
for the setting of the first m variables; and lastly (n —m) Os if on the s side, or
1s if on the t side.

The edges are (roughly) as follows. For m < n, each s-side level (m — 1)
vertex has one or two level m successors on the s-side: two successors setting
ZTm to each of 0 and 1 if @,, is 3, and one successor setting x,, = 0 if Q,, is V.
For each (complete) variable assignment a that satisfies ¢, there is an edge from
the level n s-side to the level n t-side vertex with assignment a. For 0 < m < n,
the edges out of each t-side vertex with level m are as follows. If @,,, = 3 or the
assignment to x,, = 1, then the vertex has a level m — 1 t-side successor with
the same assignment to the first m — 1 variables and with z,, = 1 (though the
level m — 1 means that this is not considered part of the partial assignment). If

000 100 110 111 111 110 100 000
)) @ @ “Levels >) @ [0)

Fig. 1. QBF graph for Jz1Vzedzs¢p. The vertex labels shown are the values of x;,
written z1z2x3. (Full vertex label doesn’t fit in this diagram.) Vertex levels are shown
above in both unary and decimal. The line through the center of the graph divides the
s and t sides. The dotted horizontal lines through that line represent edges that exist
exactly when ¢ is true for that particular value of z1z223. Dashed vertices and dashed
edges show the minor modification in our construction. Notice that unset variables are
always 0 on the s side and 1 on the ¢ side.

Qm =V and z,, = 0, then the vertex has a level m s-side successor with the
same assignment except z,, = 1.

We now make one modification, so that there are no edges where both the
level and the truth setting changes. For existential variables on the s side, for
the successor that corresponds to setting the variable to 1, we use two vertices—
the immediate successor has a label with the level not increased and the truth
setting changed to 1, and that vertex has one successor with the level increased.
Similarly, for the ¢ side we decrease the level, then change the truth setting to 0
when we unset an existential variable. See Figure 1.

Sliding marker net construction We do not construct the QBF graph. We
do construct a sliding marker net of size polynomial in n that has certain special
markings corresponding to vertices of ¥’s QBF graph. Our construction will

allow it to move from one special marking to another if and only if there is a
corresponding edge in the QBF graph. From there, we will show this construction
therefore allows a designated vertex v* to be marked if and only if there is an
s-to-t path in the QBF graph.

The sliding marker net has two isolated vertices, empty (with no marker)
and full (with one marker). We lay out the remaining vertices in rows within
3n+2 numbered columus: first n level columns, then one s/t column, then n truth
(assignment) columns, then n ON/OFF columns, and lastly one final column.
We denote the ith column by C;. All columns except the s/t column have 3n + 2
vertices. (The number of vertices in the s/t column depends on the number of
clauses in the formula.) The initial marking puts one marker in each column, in
the top-most vertex. Each column has both directed edges between every pair of
(vertically) adjacent vertices, except the final column which has only the down
directed edge. There are no other edges. We refer to edges from vertex m to
m+ 1 in a column as down (side) edges, and edges from vertex m + 1 to m as
up (side) edges. See Figure 2 for the layout of the sliding marker graph.

Level Columns (n) Truth Columns (ﬂ) ON/OFF columns ()
s/t column

@
@@

Final Column

NS
@Q@@ © ©

number of
clauses

©

Fig. 2. Overall layout of constructed sliding marker graph for n-variable formula.

The top-most and bottom-most rows play a special role. We refer to the top
row of the ON/OFF columns as the OFF row and the bottom row as the ON
row. For the other columns we refer to the top row as the 0 row and the bottom
row as the 1 row; we also speak of ON, OFF, 0, and 1 vertices. (It may help
to remember that QBF graph we are modeling starts at 0 and ends at 1.) The
notation 0,, (respectively 1,,) stands for the top (respectively bottom) vertex
of column C,; 0/1,, denotes the vertex set{0,,, 1,,}. Somewhat inconsistently,

OF'F; (respectively ON;) stands for the OFF (respectively ON) vertex of the ith
ON/OFF column, which is column Cs,,14;. When clear from context we also
use the term for a vertex for the singleton set containing that vertex.

A marking of this sliding marker net is a QBF marking if every marker is
in the top or a bottom row of its column. A QBF marking corresponds to a QBF
vertex whose label is obtained from the bits of the level, s/t, and truth columns
of the sliding marker net. See Figure 3 for an example of a QBF marking.

level columns ’/[truth columns 000 100

MMM.@ s

Fig. 3. Example of a marking of the sliding marker net that corresponds to a vertex
in the QBF graph. In this figure, the shaded circles in the sliding marker net represent
vertices with markers on them and the shaded circle in the QBF graph represents the
vertex that the sliding marker net marking corresponds to.

We give some more notation; then describe the governing sets for the edges.
For simplicity’s sake, we call an edge (in either direction) between rows r and r+1
the “rth edge.” (Row 1 is the top row.) Besides vertex sets mentioned already, we
need n—1 additional OFF vertex sets: {OFF,,OFF»},...,{OFF,...,OFF,}.
We refer to these vertex sets as OFFy_o,...,OFF .

There is a correspondence between the rth edge of an arbitrary column (ex-
cluding the final column) and the rth column for 1 < r < 3n + 1. First, for any
column C,,, we can speak of the first n edges of column C,, as being the “level
edges” of C,,. Similarly, edge n+1 is the “s/t edge”, and then we have n “truth”
edges followed by n ON/OFF edges. Second, if the rth edge of column C, is
not governed by empty, full, or some OFF group, then it must be governed by a
vertex set contained in the corresponding column C,.

That is, for any column C,,, if the rth edge of C,, for 1 <r < 3n + 1 is not
governed by one of empty, full, or some OFF group, then the rth edge of column
Cp, (between rows r and r + 1) must be governed by one of the vertex sets 0.,
1, 0/1, of column r. Thus we often use the shorthand of saying that edge e has
A(e) =0 (or 1 or 0/1 or ON) without specifying the column for the set A(e),
because A(e)’s column is determined by e’s row.

We now specify the governing vertex set of each edge. First, every ON/OFF
edge is governed by ON unless otherwise stated.

The level columns Our goal is that a marking with a marker in 1; for : < m and
in 0; in the remaining n — m level columns should correspond to a QBF graph
vertex with level m.

Level column C,,, down edges: The first m — 1 level edges are governed by
1; the mth by full, and the remaining n — m level edges by 0. That is, the rth
down edge in column C,, is governed by the 1 vertex of column C, for r < m,
and by the 0 vertex of column C, for r > m. This forces the level columns to
move their markers from the 0 to the 1 row in order—C,,, can move its marker
down the first n rows from its 0 vertex only if Cy,...,C,,—1 all have markers in
their 1 vertices, and Cy,41, ..., C, all have markers in their 0 vertices.

The s/t down edge is governed by 0 (s), insuring that we can move down
this edge only there is a marker in the s/t column corresponding to the s side
of the QBF graph.

The n truth edges depend on Q.. If @, =V, the xth truth edge is governed
by the 0/1 vertex set 1 < x < m—1, and by the 0 vertex set for m < x < n. This
corresponds to allowing either setting of the first m — 1 Boolean variables and
requiring the remaining variables to be 0 in the universal case. The case @),,, = 3
is the same except that the mth truth edge is governed by the 0/1 rather than
the 0 vertex set, because for existential quantifiers, m Boolean variables would
have been set already.

Level column C,,, up edges: These are the same as the down edges with two
exceptions. First, the s/t edge is governed by 1 (¢), corresponding to being on the
t side of the QBF graph for decreasing of level. Second, those truth edges that
must be governed by the 0 vertex for the down edges must instead be governed
by the 1 the vertex. This is because instead of making sure variables have been
set, we must make sure variables have been unset.

The s/t column The s/t column is special in this construction: it has a different
number of vertices (and edges). This column is used to control the edges between
the s and ¢ sides. There is a path from s to t if the Boolean formula ¢ is true for
the particular variables; edges from ¢ back to s are needed to handle universally
quantified variables.

The s/t column, C, 1, starts with 3n + 2 vertices with 3n + 1 edges just
like the level columns. The s/t column’s down level edges are governed by 1,
since we must be at level n to evaluate the Boolean formula. The s/t down edge
is governed by full. The truth edges are governed by the 0/1 vertex set. The
governing vertex sets for the up edges of this s/t column are the same as for the
down direction except that edges governed by ON on the down side are governed
by OFF} .., on the up side.

Going downwards from vertex 3n+2, this column should “compute” whether
¢ is true on the truth setting encoded in the truth columns in the current marking
(i.e., Boolean z; is 1 (respectively 0) if the 1 (respectively 0) vertex of the ith
truth column is marked). We add one additional vertex to the column for each

clause of ¢. To govern the down edge for each of these these additional vertices,
we use a vertex set of three vertices (from the truth columns) for the clause.
If the clause contains x; (respectively Z;), then the vertex set contains truth
column 4’s 1 (respectively 0) vertex.

The corresponding up edges are all governed by the full.

The truth columns Column Cj 414, is the mth of the n truth columns.

Truth column m, down edges: The first m — 1 level edges are governed by 1.
Edge m is governed by 0,, if @Q,, = 3 and 1,, if Q,, = V. (If x,, is existential,
our QBF graph sets x,,, = 1 immediately before incrementing the level to m.)
The remaining n —m level edges are governed by 0. The s/t edge is governed by
0/1if Q=T and 1if Q,, = V.

The first m — 1 truth edges are governed by 0/1, and the mth by full. The
last n — m truth edges are governed by the 0/1 vertex set if Q,, = 3, and the 1
vertex if Q,,, = V.

If Q. =V, the mth ON/OFF edge is governed by OFF,,.

Truth column m, up edges: The first m — 1 level edges are governed by 0/1;
the remaining level edges by 0. This is to allow x,, to revert to false if a universal
x; for i < m needs to reset itself. The s/t edge is governed by 1 (¢) to make sure
we are on the t side of the graph.

The truth edges are governed by 0/1 except that the mth truth edge is
governed by full. The first m—1 ON/OFF edges are all governed by OF F__,—1.
(All the truth edges of the first truth column are governed by empty.)

ON/OFF columns The n ON/OFF columns are designed to be ON/OFF
switches. Intuitively they are used to turn off the sliding marker net—put it
into a QBF marking not corresponding to an QBF graph vertex. This is used
when we have two QBF vertices u and v that differ in more than one area of
information, which happens when we need to test the second value of a univer-
sally quantified variable. The governing vertex sets are assigned so that we can
move ON/OFF switch m from ON to OFF only at level m.

ON/OFF column m up edges: We first give the rules for the up edges. The
first m level edges are governed by 1 and the remaining level edges by 0. This
ensures that we can move a marker down over these edges only at level m. The
mth level is the point in the graph where we must retest the x,, with the other
Boolean value if Q,,, = V.

The s/t edge is governed by 1 (t), because we must be on the ¢ side of the
graph. The first m — 1 truth edges are governed by 0/1; the mth truth edge by
0; the remaining n — m truth edges by 1. The mth ON/OFF edge is governed
by full.

ON/OFF column m down edges: If Q,, = 3, then empty is the governing
group for every edge of the mth ON/OFF column. Thus z,, can never be turned
on after being turned off.

Otherwise (@, = V), the level edges are the same as for the down edges of
this column, and the s/t edge is governed by 0 (s), because to turn back on,
we must be on the s side of the QBF graph. The first m — 1 truth edges are

governed by 0/1, the mth truth edge by 1, and the remaining n — m truth edges
by 0. The mth ON/OFF edge is governed by full.

The final column The final column has 3n + 2 vertices; its bottom vertex the
special designated vertex v*.

The final column’s first n edges are level edges governed by the 1 vertex,
its next n edges behave as a second set of level edges, governed by 0, its next
n edges behave as truth edges, governed by 1, and its last edge as an s/t edge
governed by t.

This ensures that the rest of the net first enters a marking with level n, and
then later enters a marking with level 0. Then we make sure that we have the
right Boolean values for the end and we are on the correct side.

Sketch of why reduction is correct

Let G(¢) be the QBF graph of ¢ of the form of Equation (2), and let SM be
the constructed sliding marker net. Then SM is of size O(n? + |¢|), and can be
constructed in polynomial time.

By Proposition 1, v is satisfiable if and only if G(¢) has an s to ¢ path. Thus
we need to argue that a marker can reach the bottom vertex of the final row of
SM if and only G() has an s to t path.

A QBF marking is a @ BF ON marking if all the markers in the ON/OFF
columns are in ON. The point of our construction is that each QBF ON marking
of the sliding marker net corresponds to a vertex of the QBF graph whose level,
s/t, and truth labels match the marking of the level, s/t, and truth-setting
columns of the sliding marker net. In this correspondence, the initial marking of
SM is a QBF ON marking that corresponds to the vertex s of G(v).

To show that an s to ¢ path in G(v¢) implies that a marker can reach the
bottom vertex of the final column of SM, it suffices to show that if there is a
directed edge from vertex u to vertex v in G(¢), then from a QBF ON marking
corresponding to the label of u, there is a series of legal moves to a QBF ON
marking corresponding to the label of v. In fact, this can be done without moving
any of the markers in the ON/OFF columns in all cases except when w is on the
t side and v is on the s side. In that case, then exactly one ON/OFF column has
to have its marker move from the ON to the OFF column and then back again,
as well as markers moving in at least one truth column, as SM passes through
one or more QBF markings.

Secondly, we have to show that for any QBF ON marking of SM that cor-
responds to the label of a vertex v that is in G(¢), then for every QBF ON
marking reachable directly (without any intervening QBF ON marking) in SM,
there is a corresponding successor of v in G(v)).

The following technical lemma says that we can always restrict our attention
in SM to moves that move one marker from one end of a column all the way to
the other end, without any moves in other columns in between, and would be
used in a formal proof of both directions.

Lemma 1. If the constructed sliding marker net can go from QBF marking M
to QBF marking Ms, then it can do so with moves such that a marker always
moves from one top/bottom vertex to the opposite top/bottom vertex before any
other marker moves at all.

Proof. Given any QBF marking M and any two columns C. and Cy, if the
marker in C. moves, and stops at row z in between column C.’s top and bottom
vertices, then the marker in column Cy cannot move from one to the other
top/bottom vertex because (exactly) one edge of column Cj is governed either
by a vertex set consisting of one or two top/bottom vertex vertices of column
C. or by empty. Therefore, if the marker in column C, moves, then C;’s marker
cannot move until the marker in column C, reaches a top/bottom vertex (and
thus sliding marker net reaches a QBF marking again).

If the marker in ¢ begins to move, then the most any other column d can
do until ¢ reaches a top/bottom vertex is to move only part of the way from
top/bottom vertex of its column to the other. Therefore, when ¢’s marker finally
reaches one top/bottom vertex of the column, the graph is not in a QBF marking;
however, the marker in column d could have reached the same vertex had it
waited until ¢ “finished” its move.

6 Concluding remarks

In this paper, we have determined the complexity of the safety problem for the
group-based access control system of [10]. For Osborne et al.’s exhaustive catalog
of DAC systems [8], it is polynomial time. In general, it is PSPACE-complete.

This in fact creates an important open problem for practical access control
systems, because there are numerous access control policies that have aspects of
discretionary access control, but are not purely discretionary. The group-based
mechanism appears to be powerful enough to implement any of the access control
policies discussed in the literature, discretionary, mandatory, or otherwise. In
considering any particular such policy, say, Chinese Wall [1], we have been able
to make some sort of particular argument similar to Section 4 that that policy’s
implementation gives a safety problem that can be decided in polynomial time.
However, we would like to find a characterization of some group structure that
could implement any of these more exotic access control policies in addition to
DAC policies, while still having a polynomial-time safety problem.

In the area of complexity theory, we think the time may be ripe to revisit
the area of succinct graph representations, taking a much broader view of repre-
sentations, and, simultaneously, a view that is more tied to application areas. In
the original theory [2], a graph is represented by an exponentially smaller circuit
that recognizes the graph. Here “recognize” meant that the circuit returns 1 for
those binary numbers that encode an edge of the graph. In this paper we showed
an application from computer access controls where a group membership system
could represent, through its state space, an exponentially larger graph. Perhaps
similar results can be obtained for various structures used in contemporary ar-
tificial intelligence, such as Bayes nets (belief nets).

References

1.

2.

10.

D. F. C. Brewer and M. J. Nash. The Chinese Wall security policy. In Proc. IEEE
Symp. Security and Privacy, pages 206-214, 1989.

Hana Galperin and Avi Wigderson. Succinct representations of graphs. Informa-
tion and Control, 56:183-198, 1983.

Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. Protection in op-
erating systems. Communications of the ACM (CACM), 19(8):461-471, 1976.
Manuel Koch, Luigi V. Mancini, and Francesco Parisi-Presicce. Decidability of
safety in graph-based models for access control. In Proc. European Symp. Research
in Computer Security (ESORICS), pages 229-243. LNCS, Springer-Verlag, 2002.

. Manuel Koch, Luigi V. Mancini, and Francesco Parisi-Presicce. A graph-based

formalism for RBAC. ACM Transactions on Information and System Security
(TISSEC), 5(3):332-365, 2002.

Ninghui Li and Mahesh V. Tripunitara. Security analysis in role-based access
control. In Proc. of ACM Symposium on Access Control Models and Technologies
(SACMAT), 2004.

Antonio Lozano and José L. Balcazir. The complexity of graph problems for
succinctly represented graphs. In Proc. of Graph-Theoretic Concepts in Computer
Science, volume 441 of Lecture Notes in Computer Science, pages 277-285, 1990.

. Sylvia Osborn, Ravi Sandhu, and Qamar Munawer. Configuring role-based ac-

cess control to enforce mandatory and discretionary access control policies. ACM
Transactions on Information and System Security (TISSEC), 3(2):85-106, 2000.
Ravi S. Sandhu. The typed access matrix model. In Proc. IEEE Symp. Security
and Privacy, pages 122-136, 1992.

Jon A. Solworth and Robert H. Sloan. A layered design of discretionary access
controls with decidable properties. In Proc. IEEE Symp. Security and Privacy,
pages 5667, 2004.

