
The Complexity of Embedded Axiomatization

for a Class of Closed Database Views †

Stephen J. Hegner

Umeå University

Department of Computing Science

SE-901 87 Umeå, Sweden

hegner@cs.umu.se

http://www.cs.umu.se/˜hegner

Revised: 3 September 2005

Abstract

It is well known that the complexity of testing the correctness of an arbitrary update to a

database view can be far greater than the complexity of testing a corresponding update to the

main schema. However, views are generally managed according to some protocol which limits

the admissible updates to a subset of all possible changes. The question thus arises as to whether

there is a more tractable relationship between these two complexities in the presence of such a

protocol. In this paper, this question is addressed for closed update strategies, which are based

upon the constant-complement approach of Bancilhon and Spyratos. The approach is to address a

more general question — that of characterizing the complexity of axiomatization of views, relative

to the complexity of axiomatization of the main schema. For schemata constrained by denial or

consistency constraints, that is, statements which rule out certain situations, such as the equality-

generating dependencies (EGDs) or, more specifically, the functional dependencies (FDs) of the

relational model, a broad and comprehensive result is obtained in a very general framework which

is not tied to the relational model in any way. It states that every such schema is governed by an

equivalent set of constraints which embed into the component views, and which are no more

complex than the original set. For schemata constrained by generating dependencies, of which

tuple-generating dependencies (TGDs) in general and, more specifically, both join dependencies

(JDs) and inclusion dependencies (INDs) are examples within the relational model, a similar

result is obtained, but only within a context known as meet-uniform decompositions, which fails

to recapture some important situations.

To address the all-important case of relational schemata constrained by both FDs and INDs,

a hybrid approach is also developed, in which the general theory regarding denial constraints

is blended with a focused analysis of a special but very practical subset of the INDs known as

fanout-free unary inclusion dependencies (fanout-free UINDs), to obtain results parallel to the

above-mentioned cases: every such schema is governed by an equivalent set of constraints which

embed into the component views, and which are no more complex than the original set. In all

cases, the question of view update complexity is then answered via a corollary to this main result.

†Parts of this paper are based upon work reported in [Heg04b]

1

1. Introduction

In a seminal work [BS81], Bancilhon and Spyratos showed how well-behaved update strategies for

database views can be modelled in a very general framework using the so-called constant complement

strategy. Despite the classical nature of this work, it has seen signifi cant recent application; for

example, in [FGM*04], these ideas are applied to problems in the synchronization of tree-structured

data.

The theory of constant-complement update strategies has also been advanced in recent years.

In [Heg02] and [Heg04a], it is shown that by augmenting this basic framework with natural order

structure, true uniqueness for so-called order-based updates may be obtained, in the sense that there

is but one way to represent an update to the view in terms of an update to the main schema, regardless

of the choice of complement.

In addition to the questions of which updates to a view to allow, and how to reflect those updates

back to the main schema, the question of tractability is also of fundamental importance. Specifi cally,

it is important to know how diffi cult it is to determine whether a proposed view update is admissible

under the constraints inherited from the main schema. Issues surrounding this complexity question

are the focus of study in this paper.

1.1 Example — A simple view with complex constraints The complexity of the constraints

which govern a view can be much greater than those of the schema over which the view is taken,

as the following simple example illustrates. Let E1 be the single-relation schema with relation name

R[ABCD] on four attributes, constrained by the set F 1 = {A → D,B → D,CD → A} of functional

dependencies (FDs). For a relation M not to satisfy the constraints of F 1, it must fail to satisfy at least

one of the FDs, and this may be determined by identifying a specifi c pair of tuples in M for which

that FD fails. In other words, to check whether M satisfi es the constraints of F1, it suffi ces to test each

pair of tuples in M. Thus, such testing has complexity bound O(n2) for (worst-case) time, with n the

size of the relation.1

Now consider the simple projection view ΠABC on E1, which maps any relation M on R[ABCD] to

its projection πABC(M) on R[ABC]. As shown in Appendix A, this view is not fi nitely axiomatizable.

More precisely, for any odd positive integer k, there is a ternary relation Mk, containing exactly k

tuples, with the property that there is no relation N on R[ABCD] which satisfi es the dependencies

in F1 and for which πABC(N) = Mk, yet for every proper subset M′ (Mk, there is a relation N ′ on

R[ABCD] which satisfi es the dependencies in F1 and for which πABC(N′) = M′. In other words, it is

not possible to test, in time O(nk) for any fi nite k, whether a given ternary relation M is of the form

πABC(N) for some relation N on R[ABCD] which satisfi es the constraints of F1.

While this example shows that checking the legality of a candidate state of a view is not a univer-

sally easy one, it does not establish that it is universally diffi cult either. Testing an arbitrary proposed

update to a view for correctness is far more general a task than is testing a proposed update under a

disciplined update strategy. A simple example, based upon 1.1, makes this clear.

1It is of course possible to do better in certain cases via the use of appropriate data structures. Indeed, upon using

the number of disk accesses as the measure of complexity, key constraints may be checked in constant time [WG92].

However, the focus of this paper is a general theory based only upon the size of databases; the nuances of such special

cases will not be considered.

2

1.2 Example — The complexity of view update Let E2 be the relational schema with the fi ve-

attribute relation S[ABCDE], constrained by F 2 = F1 ∪ {A → E}. The pair of projections

{ΠABCD,ΠABCE}, with the obvious semantics, forms a lossless decomposition, since the FD A → E

implies ABC → E, which implies the join dependency ✶ [ABCE,ABCD] [PDGV89, Thm. 3.7]. Thus,

ΠABCD is a complement of ΠABCE in the classical sense of [BS81]. The decomposition into these two

views is furthermore dependency preserving, since F 1 embeds in ΠABCD, while {A → E} embeds in

ΠABCE . Now consider updating the view ΠABCE while holding ΠABCD constant. All constraints in

F1 will be satisfi ed after the update, since these constraints embed in ΠABCD. Thus, to guarantee that

a the new relation M on S[ABCE] is legal, it suffi ces to check that it satisfi es the single constraint

A → E. This observation is critical because ΠABCE is not fi nitely axiomatizable, for the same reason

that E1 of 1.1 is not. The knowledge that the complement is held constant while performing updates

is critical in keeping the complexity within bounds.

The above example notwithstanding, it is reasonable to ask why it is desirable to characterize the

constraints within the views themselves. It is quite possible simply to take a proposed update to the

view, reflect is back into the main schema using the constant-complement strategy, and accept it iff

the resulting state of the main schema satisfi es all of the constraints. The complexity of testing an

update in this fashion depends only upon properties of the constraints on the main schema, and not

upon those of the views. For example, if the main schema is constrained by FDs (as is E2 in 1.2),

then the complexity of testing admissibility of a view update is O(n2), with n the number of tuples in

the main schema. (Note that a join must be computed to check update correctness in this way, but the

time complexity to construct it is also O(n2).)
The goal of the work reported here, as well as that of the preceding work [Heg04a], [Heg02],

[Heg90a], is to investigate view update strategies which are closed. Roughly speaking, this means

that updating a view should be no different than updating a main schema. The constraints on the

view, as well as the updates which are allowed, must be understandable within the context of the view

alone. In particular, it must not be necessary to consult the complementary view (or, equivalently, the

main schema) to determine whether a view update is admissible. Clearly, the strategy of reflecting

the view update back to the main schema, and performing the test for correctness there, is not closed.

While not all situations involving view updates demand closed strategies, it is certainly reasonable

to expect that many will. The ideas surrounding this topic, with many illustrating examples, are

developed in detail in [Heg04a, Sec. 1], There it is argued that closed update strategies have further

desirable properties; more precisely, they are precisely those which are free of update anomalies.

A pair of views which supports a closed update strategy is called a meet complementary pair.

In this case, there is a view which is common to these two, called the meet, and it is necessary and

suffi cient to hold this meet constant to ensure that updates respect the constant-complement strategy.

The details are rather technical; they are developed in great detail in [Heg04a, Sec. 2], and summarized

in 2.1 of this paper. It is, however, possible to give a rather simple characterization within a common

relational context. Specifi cally, if R[U] is a relational schema constrained by a set of full dependencies,

and W1,W2 ⊆ U, then {ΠW1
,ΠW2

}, the pair of views defi ned by the projections of R[U] onto these

attributes, forms a meet-complementary pair iff the associated decomposition is both lossless and

dependency preserving, in the classical sense [Heg04a, 2.17]. Furthermore, the meet in this case

is just ΠW1∩W2
, the projection onto the common column of the two views. An example will help

illustrate.

3

1.3 Example — Closed and non-closed update strategies Continue with the example E2 of

1.2. The set {ΠABCD,ΠABCE} forms a meet complementary pair, since the decomposition is both

lossless and dependency preserving. The meet of these views is ΠABCD∩ABCE = ΠABC. The theory of

closed updates ensures that to check whether an update to ΠABCE under constant complement ΠABCD

satisfi es the constraints, it suffi ces to check whether it holds ΠABC constant (in addition to verifying

that it satisfi es the local view constraints – in this case {A → E}). Note that ΠABC may be regarded

as a view of S[ABCE]; thus, whether the update is admissible does depends only upon the state of

S[ABCE], and not upon the specifi c state of S[ABCD]. In other words, the test for admissibility of an

update to ΠABCE may be checked entirely within that view, provided that it is known that the current

state of ΠABCD is legal.

Now, let E3 have the same fi ve-attribute relation S[ABCDE], but with the additional constraint

D → E. That is, the constraint set is F 3 = F2 ∪{D → E}. This decomposition is not dependency

preserving (although it is lossless), since D → E cannot be embedded in either view. Furthermore,

the associated update strategy on ΠABCE with constant complement ΠABCD is not closed. Indeed,

let M1 = {(a1,b1,c1,d1,e1),(a2,b2,c2,d2,e1)}, and let M2 = {(a1,b1,c1,d1,e1),(a2,b2,c2,d1,e1)},

Clearly, each is a legal state of E3. In each case, the associated state of ΠABCE is N = {(a1,b1,c1,e1),
(a2,b2,c2,e1)}. Consider the update to N which changes (a1,b1,c1,e1) to (a1,b1,c1,e2). This update

is legal if the state of E3 is M1, but not if it is M2. Thus, the admissibility of this proposed update

depends upon not only the state of ΠABCE, but also on the state of the complement ΠABCD. Hence,

the associated strategy is not closed.

The theory developed in this paper includes the decomposition of E2 into ΠABCD and ΠABCE , but

excludes the same decomposition of E3.

These examples illustrate that the question of the complexity of checking the correctness of can-

didate view updates with respect to a closed update strategy may be answered by studying a more

general problem — that of determining the complexity of the constraints in an embedded cover (into

the views of the decomposition) for the constraints of the main schema. It is primarily this latter

question which forms the topic of investigation in this paper. From these examples, it might appear

that the answer to this question is a rather trivial one, since the constraints which embed into the

views are precisely those which are specifi ed on the main schema. However, this presupposes that the

constraints on the main schema are already expressed in a fashion which allows them to be embedded

into the views. With FDs, this is not a problem, since it is easy to determine when an FD embeds into

a projection (although in general it is necessary to determine whether some cover of the FDs embed

[PDGV89, Def. 3.7]), but with more general families of constraints, particularly those which gener-

ate new elements, the representation of the constraints on the main schema as an equivalent family of

constraints which embed in the views is far from trivial. Furthermore, there is no guarantee that this

re-representation of full constraints as embedded ones can be achieved with no change of complexity.

The main results of this paper are along two dimensions. For schemata constrained by rules which

check consistency (e.g., the equality generating dependencies (EGDs) [PDGV89, Sec. 3.6] of the clas-

sical relational theory), a result is established, in a very general set-based context, independently of

any particular data model, which states that there is an embedded cover of those constraints into

the views which is no more complex than the original constraints. On the other hand, for situations

in which rules which generate new elements are allowed, (e.g., the tuple-generating dependencies

(TGDs) of the classical relational theory, including the implicational dependencies and inclusion de-

pendencies of the classical relational theory [PDGV89, Sec. 3.6]), the general results are somewhat

4

more limited. It does not appear that the techniques for the consistency-checking rules can be ex-

tended in a way that includes the behavior of such dependencies within a broad range of applications.

To remedy this limitation, at least partly, an investigation of decompositions of multi-relational

schemata constrained by EGDs together with fanout-free unary inclusion dependencies (UINDs) is

also conducted. The approach combines the general results for constraint-checking dependencies

with a detailed investigation of how such UINDs decompose. The result is a positive one — both the

EGDs and the UINDs have embedded covers within the views with no increase in complexity. It is

also a potentially practical one, since UINDs are adequate to model referential integrity constraints,

or foreign-key dependencies, which are commonly employed in real-world database systems. While

these results, which are found in Section 6, are formally based upon the the framework presented

earlier, the reader may nonetheless wish to look through this section to obtain an idea of the power of

this approach within the relational setting.

The organization of this paper is as follows. Section 2 provides a concise overview of the key ideas

of the constant-complement update strategy, including in particular recent work on uniqueness within

order-based frameworks. In Section 3, the principles of PF-schemata and PF-views, the abstraction of

these database concepts used in this paper, is elaborated and related to those used in earlier papers. In

Section 4, the key ideas of the decomposition results of the earlier paper [Heg04a] are translated to this

framework, and specialized notions essential to the measure of complexity are developed. In Section

5, the general decomposition results, including in particular the embedding theorems for consistency-

checking constraints, are established. Section 6 contains the detailed investigation within the context

of multi-relational schemata constrained by both EGDs and UINDs. Section 7 offers some further

directions and comparisons to the literature. Finally, Appendix A provides the details surrounding the

axiomatizability issues of the example scheme E1 of 1.1.

To close this section, some basic information on posets and relational notation which will be used

throughout the paper is presented.

1.4 Posets, isomorphisms, and basic relational notation A partially ordered set (poset) is a pair

P =(P,≤) in which P is a set and ≤ is a partial order on P. For Pi =(Pi,≤) posets for i = 1 and

i = 2, a morphism f : P1 → P2 is a function f : P1 → P2 with the property that for all x,y ∈ P, x ≤ y

implies f (x) ≤ f (y). For any (not necessarily fi nite) set X , the poset PPP f (X) = (Pf (X),⊆) consists

of all fi nite subsets of X , ordered by set inclusion. For additional background on posets, the reader is

referred to [DP02].

As a general principle, following the standard mathematical convention [AHS90, 3.8], in all con-

texts an isomorphism will be taken to be a morphism which has both an left and a right inverse.

Thus, if f : X → Y is an morphism in some context C , it is an isomorphism iff there is a morphism

g : X1 → X2 with the properties that g◦ f = 1X1
and f ◦g = 1X2

, with 1Xi
the identity morphism on Xi.

In the context of sets and functions, an isomorphism is a bijection, while in the context of posets, it is

a bijection which both preserves and reflects order; i.e., f is a poset isomorphism iff it is a bijection

with the additional property that, for all x,y ∈ P, f (x) ≤ f (y) iff x ≤ y.

Frequently, examples will be based upon the classical relational model, and the terminology and

notation which has become standard over the past thirty years will be used without additional clarifi -

cation. For any questions, the reader is referred to [PDGV89] or [AHV95]. For this paper, it suffi ces

to remark that given a universal relational schema R[U] on attribute set U, and a subset W ⊆ U, ΠW

will be used to denote the projective view of R[U] onto the attributes in W, while πW : R[U] → R[W]
will be used to denote the database mapping underlying this view. The notation Dom(A) will be used

5

to denote the domain of A; i.e., the set of values associated with the attribute A ∈ U.

Finally, the notation Card(A) will be used to denote the cardinality of the set A.

2. An Overview of Previous Work

While the results presented in this article do not deal with update strategies explicitly, they do address

complexity issues which are cast within a context in which view updates are modelled and analyzed.

Therefore, it is helpful to understand the underlying constant-complement update strategy. To provide

the reader with this essential background, this section contains two summaries. 2.1 recaps the nec-

essary aspects of closed update strategies within the relevant set-based framework. It provides ideas

which originated with the work of Bancilhon and Spyratos of [BS81], although it is recast within the

formalism of [Heg02] [Heg04a]. 2.2 sketches the key ideas developed in [Heg02] [Heg04a] which

are necessary to extend the set-based ideas to the order-based context. These summaries include only

the notions which are essential to the understanding of the current paper; the reader is referred to the

aforementioned references for details and further clarifi cation. Since [Heg04a] is an expanded and

corrected version of [Heg02], for the most part, only references to [Heg04a] will be given, even in the

case that both papers contain the relevant material.

2.1 The classical results in the set-based framework In the original work of Bancilhon and

Spyratos [BS81], a database schema D is just a set. To maintain consistency with the more structured

frameworks to be introduced shortly, this set will be denoted LDB(D) and called the legal databases

of D. Thus, a database schema is modelled by its instances alone; constraints, schema structure, and

the like are not represented explicitly. A morphism f : D1 → D2 of database schemata is a function

f : LDB(D1) → LDB(D2).

D

V1 V2

γ1 γ2

f

Figure 1: View mor-

phism

A view of the schema D is a pair Γ = (V,γ) in which V is a schema

and γ : D → V is a surjective database morphism. A morphism f : Γ1 → Γ2

of views Γ1 = (V1,γ1) and Γ2 = (V2,γ2) is a morphism f : V1 → V2 of

schemata such that the diagram to the right commutes. The congruence of

Γ is the equivalence relation on LDB(D) defi ned by (M1,M2) ∈ Congr(Γ)
iff γ(M1) = γ(M2). It is easy to see that the views Γ1 = (V1,γ1) and Γ2 =
(V2,γ2) of D are isomorphic iff Congr(Γ1) = Congr(Γ2).

A pair {Γ1 = (V1,γ1),Γ2 = (V2,γ2)} of views of the schema D is called a subdirect comple-

mentary pair if it defi nes a lossless decomposition of D. More precisely, the product Γ1 × Γ2 =
(V1 γ1

⊗γ2
V2,γ1 ⊗ γ2) has LDB(V1 γ1

⊗γ2
V2) = {(γ1(M),γ2(M)) | M ∈ LDB(D)}. The decomposition

morphism γ1⊗ γ2 : D → V1 γ1
⊗γ2

V2 is given on elements by M 7→ (γ1(M),γ2(M)). The set {Γ1,Γ2} of

views forms a subdirect complementary pair, and Γ1 and Γ2 are called subdirect complements of one

another, just in case γ1 ⊗ γ2 is a bijection. In other words, {Γ1,Γ2} is a subdirect complementary pair

precisely in the case that the state of the schema D is recoverable from the combined states of V1 and

V2.

To defi ne an update strategy on a view, the way in which such updates are reflected back to

the main schema must be specifi ed. In a constant complement update strategy, as fi rst presented in

[BS81], a (subdirect) complement is held constant. Thus, to update Γ1 from N1 to N2 in the above

context, the state of the schema V2 of the complement Γ2 is held fi xed. Since the decomposition

6

morphism is injective, it is easy to see that there can be only one way to translate an update in such a

context.

A fundamental condition in the study of view updates,as reported in [Heg02], [Heg04a], and

[Heg04b], is that the update strategies should be closed. The formal defi nition of an update strategy,

and the list of conditions which render it closed, are quite technical and are not needed to understand

the work reported here. The reader is therefore referred to [Heg04a, 3.1] for the complete, formal

specifi cation. For this work, it suffi ces to understand the basic idea that a closed update strategy has

the property that whether or not a given update is allowed does not depend upon the particular state of

the complement. Thus, if a given update from N1 ∈ LDB(V1) to N′
1 ∈ LDB(V1) is allowed for some

state N2 ∈ LDB(V2) of the complement, then it must be allowed for all states N ′
2 ∈ LDB(V2) with the

property that (N1,N
′
2) ∈ LDB(V1 γ1

⊗γ2
V2).

D

V1 V2

V1 γ1
∧γ2

V2

γ1 γ2

λ〈Γ1,Γ1 ∧Γ2〉 λ〈Γ2,Γ1 ∧Γ2〉

γ1 ∧ γ2

Figure 2: Relative views

Although every closed update strategy is defi nable

via constant complement, not every subdirect comple-

ment of a view Γ1 gives rise to closed update strategy.

The property that a constant-complement update strat-

egy be closed was termed Γ2-translatability in [BS81,

Def. 5.1]. However, it was not characterized explicitly

until [Heg90a, 2.10], in which it was shown that Γ2-

translatability is characterized precisely by the property

that the congruences of the views commute. Formally,

the set {Γ1,Γ2} of views of D is called a fully commut-

ing pair if Congr(Γ1) ◦Congr(Γ2) = Congr(Γ2) ◦Congr(Γ1), with “◦” denoting ordinary composi-

tion of binary relations; i.e., (M1,M2) ∈ Congr(Γ1) ◦Congr(Γ2) iff there is an M3 ∈ LDB(D) such

that (M1,M3) ∈ Congr(Γ1) and (M3,M2) ∈ Congr(Γ2). A subdirect complementary pair {Γ1,Γ2}
which is fully commuting is called a meet-complementary pair, and Γ1 and Γ2 are called meet com-

plements of one another. In this case, Congr(Γ1) ◦ Congr(Γ2) is also an equivalence relation on

LDB(D), and so it is possible to defi ne (up to isomorphism) the view Γ1 ∧Γ2 = (V1 γ1
∧γ2

V2,γ1 ∧ γ2)
with Congr(Γ1 ∧Γ2) = Congr(Γ1) ◦Congr(Γ2), called the meet of {Γ1,Γ2}. It is, in effect, a well-

behaved greatest lower bound of {Γ1,Γ2}. The situation is summed up in Fig. 2 above. Note that

V1 γ1
∧γ2

V2 is (the schema of) a view not only of D, but of V1 and V2 as well. The mappings

λ〈Γi,Γ1 ∧Γ2〉 : Vi → V1 γ1
∧γ2

V2 for i = 1,2 are the morphisms of the associate relative views (see

[Heg04a, 2.8]; or 3.12 for a development within the special context of this paper). In the context of

updates, if {Γ1,Γ2} forms a meet-complementary pair, then an update to the schema of Γ1 is allowed

with constant complement Γ2 iff that update keeps the state of the meet schema V1 γ1
∧γ2

V2 constant.

Since the meet schema may be regarded as a view of Γ1, knowledge of the precise state of the view

of Γ2 is not necessary.

For a concrete example, identify D with the schema E2 of 1.2 and 1.3, identify Γ1 with ΠABCE , and

identify Γ2 with ΠABCD. Then, as sketched in 1.2, V1 γ1
∧γ2

V2 = ΠABC. The mapping λ〈ΠABCE,ΠABC〉
is the projection πABC : S[ABCE] → S[ABC]. Similarly, λ〈ΠABCD,ΠABC〉 is the projection πABC :

S[ABCD] → S[ABC]. On the other hand, γ1 ∧ γ2 is the projection πABC : S[ABCDE] → S[ABC]. More

generally, in the context of relational schemata and views defi ned by projection, a pair of views

forms a meet-complementary pair iff the decomposition is both lossless and dependency preserving

[Heg04a, 2.17]. In this case, the meet view is just the projection on the common columns. To obtain

an example in which the views form a subdirect complementary pair but not a meet complementary

pair, it suffi ces to consider an example which is lossless but not dependency preserving, as sketched

7

in 1.3.

In [Heg93], the connection between decompositions of database schemata and commuting con-

gruences is investigated thoroughly.

2.2 The order-based framework Despite its simplicity and elegance, the set-based framework

for closed update strategies has a substantial shortcoming; namely, the update strategy depends upon

the choice of the complement. For example, let F0 be the relational schema with the single relation

R[ABC], constrained by the single FD B → C, and let ΠAB be the view defi ned by the projection

mapping πAB. Defi ne ΠBC similarly. Since the pair {ΠAB,ΠBC} forms a lossless and dependency-

preserving decomposition of F0, it also forms a meet-complementary pair [Heg04a, 2.17]. Indeed,

ΠBC is the “natural” complement of ΠAB, and the one which yields the “obvious” strategy for re-

flecting updates to ΠAB back to F0. However, as shown in [Heg04a, 1.3], it is possible to fi nd other

complements of ΠAB which have exactly the same meet, and so support exactly the same updates

to ΠAB. Although these alternate complements are a bit pathological, the set-based theory outlined

above in 2.1 does not prefer ΠBC to them in any way.

To formalize this preference, additional structure must be incorporated into the model. Most

database models incorporate some sort of order structure. In the relational model, the databases may

be ordered via relation-by-relation inclusion. Furthermore, the common database mappings built from

projection, selection, and join are all order preserving with respect to this natural order structure. In

particular, while the views ΠAB and ΠBC are order mappings, the alternate views identifi ed in [Heg04a,

2.17] are not.

The theory developed in [Heg04a] provides a systematic extension to the results outlined in 2.1

above to the order-based setting. An order schema D is taken to be a poset (LDB(D),≤D). An order

database mapping f : D1 → D2 is an order-preserving function; i.e., M1 ≤D1
M2 implies f (M1) ≤D2

f (M2). An order view Γ = (V,γ) of D consists of an order schema V and an open surjection γ :

LDB(D) → LDB(V); that is, a surjection which is order preserving and, in addition, which satisfi es

the property that whenever N1 ≤V N2, there are M1,M2 ∈ LDB(D) with the properties that M1 ≤D M2,

f (M1) = N1, and f (M2) = N2. For the pair of order views {Γ1,Γ2} to form a subdirect complementary

pair in the order sense, the mapping γ1 ⊗ γ2 : D → V1 γ1
⊗γ2

V2 must be an order isomorphism (i.e., an

order database mapping which is an isomorphism), and not merely an order-preserving bijection. To

obtain a closed update strategy in the oder-bases sense, the formal conditions which apply in the

set-based framework must be augmented with special conditions which guarantee that the update

strategy respects the order structure [Heg04a, 3.1]. Modulo these modifi cations, it is fair to say, at

least in a general way, that [Heg04a] extends the classical set-based constant complement theory to the

order-based setting. As a rich source of classical but important examples, all SPJR-mappings (Select,

Project, Join, Rename) in the classical relational setting defi ne order views [Heg04a, 2.5]. The results

of the current paper are cast within a more restrictive order-based context in which selection and

projection, but not join, defi ne views.

In [Heg94], a theory of direct decomposition (i.e., situations in which the views are independent

and so the meet is trivial) of order-based schemata is presented.

8

3. PF-Schemata and PF-Views

The database schemata with order of [Heg04a] and summarized in 2.2 model only those databases

which satisfy the constraints of the schema; those which fail to satisfy those constraints are simply

not part of the formalism. In order to model the complexity of constraint checking, it is necessary

to employ a formalism which includes all databases, including those which fail to satisfy those con-

straints. Furthermore, to have a basis for measuring the complexity, the extended formalism must

provide some notion of size of a database.

In this section, the foundations of such a framework are presented. Although it has much in com-

mon with the earlier work [Heg04b], it differs in a very fundamental way. Specifi cally, in [Heg04b],

the starting point was the so-called semantic schemata — those which include only the databases

which satisfy the constraints of the schema. From the semantic schemata the more general syntactic

schemata — those which embody all databases, regardless of whether or not they satisfy the con-

straints — were constructed, using a sort of “completion” operation. While this approach is effective,

it is also somewhat limiting, in that it presupposes suffi cient structure on the semantic schemata and

their morphisms to yield unique and well-defi ned completions. This requirement is, unfortunately,

not always met in practical examples. In the approach taken here, the starting point is the syntactic

schema, with the semantic properties imposed later. As will be seen, this allows a more general class

of constraints to be modelled, since unique completions are no longer required.

3.1 CFA-schemata and morphisms In order to capture the complexity of checking constraint

satisfaction, the formal notion database schema must contain two pieces of information which are

not present in the general order-based schemata of [Heg04a]. First of all, the order schema model of

[Heg04a] contains only the legal databases; the idea that there are also databases which do not satisfy

the constraints is not represented. Second, there is no measure of database size, without which there

is no possibility of measuring complexity. To address these issues, in [Heg04b] the notions of CFA-

schema and CFA-morphism were introduced. In the current paper, these notions have been replaced

by the more flexible PF-schema and PF-morphism, respectively. The purpose of this subsection is to

tie the “CFA” notions to their newer “PF” counterparts, and may safely be skipped by the reader not

interested in the evolution of these ideas.

In [Heg04b], the set of all databases, legal or not, was modelled by Pf (X) for some (not neces-

sarily fi nite) set X , while the legal databases were modelled by a special type of sub-poset of Pf (X),
called a CFA-poset. Clearly, choosing the databases to be fi nite sets gives a simple measure of size

— the cardinality of the set. Furthermore, taking the legal databases to be a subset of the set of all

databases is completely natural and obvious. In the context of the classical relational model, think of

X as the set of all possible tuples of the relation(s).

Formally, a CFA-poset over X is a sub-poset of Pf (X) which contains all singleton sets, as well as

the empty set. This choice was made for the model of a database schema because it facilitated the def-

inition of database morphisms within this context. Specifi cally, if P = (P,⊆) is a CFA-poset, defi ne

Atoms(P) = {{x} | x ∈
S

P}, ExtAtoms(P) = Atoms(P)∪{ /0}, and Foundation(P) =
S

Atoms(P).
For any M ∈ P, the basis of M is BasisP(M) = {{x} | x ∈ M}. A CFA-schema is just a CFA-

poset. CFA-morphisms were then modelled as basis-preserving mappings; that is, if P = (P,⊆)
and Q = (Q,⊆) are CFA-posets, then a CFA-morphism is a function f : P → Q with the property

that, for all M ∈ P, { f (a) | a ∈ BasisP(M)}\{ /0}= BasisQ(f (M)).2 In other words, a CFA-morphism

2Unfortunately, the defi nition given in [Heg04b] is incorrect. The condition that { f (a) | a ∈ BasisP(M)} \ { /0} =

9

is completely defi ned by its action on singletons, and the image of each singleton must itself be a

singleton or the empty set. The advantage of this defi nition is that it embodies the syntactic mor-

phism as well as the syntactic one. More precisely, a morphism f : P → Q may be extended to

f̄ : Pf (Foundation(P)) → Pf (Foundation(Q)) by defi ning f̄(M) =
S

{ f ({x}) | x ∈ M}. This f̄ is

the syntactic extension of f to all databases, legal or not. (As a concrete example, think of f as speci-

fying a projection on the legal relations of a universal schema. f̄ extends f to all relations, regardless

of whether or not they satisfy the constraints.)

3.2 PF-schemata In a CFA-schema, all singletons, as well as the empty set, are legal databases.

Translated to a universal relational schema, this means that the empty relation and all relations con-

taining just one tuple are legal. If all constraints are typed and universal (e.g., equality generating de-

pendencies and full implicational dependencies), this condition is automatically satisfi ed. However,

relational schemata governed by dependencies involving existential quantifi cation, such as embedded

join dependencies, inclusion dependencies, and even foreign-key dependencies, will not have this

property. Since the scope of the work here is to include specifi cally such flavors of constraints, the

model of CFA-schema must be augmented. The trick is to include two pieces of information with

each schema. The fi rst provides the equivalent of the foundation of a CFA-schema, and the second

gives the legal databases, taken as a subset of the fi nite powerset over that foundation. While this

may seem to be a bit heavy handed, remember that this is a mathematical model, not a blueprint for

implementation. It is the most convenient means of recapturing all of the information necessary.

(a) A PF-schema is an ordered pair D=(SynFnd(D),LDB(D)), in which SynFnd(D) is a nonempty

set (not necessarily fi nite), with LDB(D) ⊆ Pf (SynFnd(D)). (The prefi x PF- is derived from

the notation Pf (−).) The set SynFnd(D) is called the syntactic foundation of D, and LDB(D)
is the set of legal databases of D.

Note that there is no requirement that each x ∈ SynFnd(D) occur in some M ∈ LDB(D), much less

that {x} ∈ LDB(D) and /0 ∈ LDB(D) hold, so that the limitations of CFA-posets do not apply. In the

context of a classical one-relation schema, think of SynFnd(D) as the set of tuples which the relation

may contain, and LDB(D) as the set of relations over those tuples which satisfy the constraints of the

schema.

For the rest of this subsection, assume that D is a PF-schema. There is not one but three order

relations associated with D.

(b) The poset of legal databases of D is just LDBPoset(D)=(LDB(D),⊆).

Note that LDBPoset(D) is a database schema with order, in the sense of [Heg04a], although it is not

necessarily a CFA-schema in the sense of [Heg04b], since it need not contain all singletons and the

empty set. It is the syntactic foundation poset which contains the representation of the latter.

(c) The extended syntactic foundation of D is ExtSynFnd(D) = SynFnd(D)∪{ηD}, in which ηD is

a special symbol, called the null element of D, which does not occur in SynFnd(D).

(d) The syntactic foundation poset of D is SFPoset(D)= (ExtSynFnd(D),≤SF(D)). The ordering

≤SF(D) is defi ned to be that in which ηD ≤SF(D) x for all x ∈ SynFnd(D), but is otherwise flat.

BasisQ(f (M)), which is the one intended, is expressed incorrectly as
S

{ f (a) | a ∈ BasisP(M)} = BasisQ(f (M)).

10

In other words, x ≤SF(D) y holds iff x = ηD or else x = y. SFPoset(D) is trivially a database schema

with order. Think of ηD as a special marker which represents the empty set as a database. Its rôle will

become apparent later, in 3.4 for the defi nition of a PF-morphism and in 3.9 for the modelling of an

atomic equivalence relation.

The third poset is the disjoint union of the fi rst two. Its use is purely technical; it makes it possible

to consider a PF-schema as an order schema in the sense of [Heg04a].

(e) Defi ne ExtSynFnd(D)⊞LDB(D) to be the disjoint union of these two sets, and defi ne the order

≤⊞(D) on ExtSynFnd(D)⊞ LDB(D) to be the (disjoint) union of ⊆ on LDB(D) and ≤SF(D) on

ExtSynFnd(D).

(f) Defi ne the combined poset of D to be DJPoset(D)=(ExtSynFnd(D)⊞LDB(D),≤⊞(D)).

DJPoset(D)=(ExtSynFnd(D)⊞LDB(D),≤⊞(D)) is clearly a database schema with order, in the sense

of [Heg04a]. It is not necessarily a CFA-poset, although it embodies the information necessary to

extend LDBPoset(D) uniquely to a CFA-poset.

The syntactic schema of D, defi ned below, is constructed directly from the extended syntactic

foundation; its elements represent all databases, legal or not. Note that this schema is itself a PF-

schema, in the sense of (a) above, and all properties associated with PF-schemata apply to it as well.

(g) For D = (SynFnd(D),LDB(D)), defi ne D = (SynFnd(D),DB(D)) to have DB(D) =
Pf (SynFnd(D)). D is called the syntactic schema over which D is taken.

To avoid confusion, when /0 is considered as an element of LDB(D) or DB(D), it will sometimes be

written as ⊥D and ⊥D , respectively.

Finally, for a database M, it is occasionally advantageous to be able to augment M with the null

element for D. This augmentation has no special semantics, but is useful in establishing certain results

in which the empty set behaves like an atom.

(h) For M ∈ DB(D), Defi ne NullExt(M) = M∪{ηD}.

3.3 Example — PF-schema Let E4 be the two-relation schema consisting of R1[ABC] and

R2[DEF]. Defi ne F4 = {A → B,D → EF}, and assume that these constraints hold on the schema.

SynFnd(E4) consists of all tuples over these relations; that is, it consists of all tuples on Dom(A)×
Dom(B)×Dom(C), together with all tuples on Dom(D)×Dom(E)×Dom(F). These tuples must

somehow be tagged, so that it is known to which relation they belong. In this example, domain ele-

ments will be represented by (possibly subscripted) lower case letters which match the domain name;

so, for example, (a1,b1,c1) is associated with R1, while (d1,e1, f1) is associated with R2. Thus, the

tagging is implicit in the naming convention.

The set SynFnd(E4) is then just the set of all such tuples. The extended syntactic foundation

ExtSynFnd(E4) adds one additional element, which would be called ηE4
in the notation of 3.2. The

ordering on the syntactic foundation poset SFPoset(E4) has ηE4
at the bottom, with all tuples other-

wise incomparable.

The set DB(E4) is the fi nite powerset of SynFnd(E4); that is, the set of all fi nite subsets of tuples,

while LDB(E4) is the subset of DB(E4) consisting of sets which satisfy the constraints in F 4. Note

that in this formalism it is necessary to collect the set of all tuples of a database instance into a single

set, rather than the more common practice of having a separate set of tuples for each relation. Since

11

the tuples are tagged, this amounts to an inessential syntactic variation which has no impact upon the

underlying theory.

3.4 PF-morphisms In the same manner that PF-schemata generalize CFA-schemata,

PF-morphisms generalize CFA-morphisms. In the PF-context, it is no longer possible to stipulate

the basis-preserving property directly on the mappings between legal databases, because the basis

itself may not be embedded in those states. Rather, the starting point for a PF-morphism is a mapping

between the extended syntactic foundations, which replace the bases of the CFA-context. The map-

ping between legal databases is then defi ned as an extension of the mapping between the foundations.

To begin, it is necessary to formalize the notion of an elementary mapping, as well as its exten-

sions. For the remainder of this subsection, let D1 = (SynFnd(D1),LDB(D1)) and

D2 =(SynFnd(D2),LDB(D2)) be PF-schemata.

(a) An elementary mapping is a function e : ExtSynFnd(D1) → ExtSynFnd(D2) with the property

that e(ηD1
) = ηD2

.

(b) The full extension of the elementary mapping e is the function e+ : DB(D1)→ DB(D2) given on

elements by M 7→ {e(x) | x ∈ M}\{ηD2
}.

A few remarks are appropriate at this point, regarding how null elements are involved in the above

defi nitions. In the defi nition of CFA-morphism in 3.1, a basis preserving morphism was required to

map atoms to extended atoms; that is, each atom was mapped either to another atom or else to the

null set. However, the members of SynFnd(Di) are foundation elements, and not atoms (i.e., they

are of the form t, not {t}). Therefore, it is necessary to employ the special marker ηDi
as a sort of

surrogate for /0 = {} with one set of brackets stripped away. More concretely, observe that e : t 7→ ηD2

means that e+ : {t} 7→ /0 = ⊥D2
. Note also that the null elements are always stripped away in the full

extension, since that function deals with databases, of which a null element is never a member.

It may also be remarked that an elementary mapping could have been defi ned to be of the form

e : SynFnd(D1) → ExtSynFnd(D2), since null elements are not needed in the domain. However, this

would have complicated the defi nition of morphism composition somewhat. Including ηD1
in the

domain of e is harmless enough, since it is always mapped to ηD2
.

Next, the details of extending an elementary mapping to mappings between databases are elabo-

rated.

(c) The elementary mapping e is semantically stable if e+(LDB(D1)) ⊆ LDB(D2); i.e., for each

M ∈ LDB(D1), e+(M) ∈ LDB(D2).

(d) Formally, a PF-morphism f : D1 → D2 is a triple (f ♯ , f ♭, f ⊞) in which

(i) f ♯ : ExtSynFnd(D1) → ExtSynFnd(D2) is a semantically stable elementary mapping;

(ii) f ♭ : LDB(D1) → LDB(D2) with f ♭(M) = (f ♯)+(M) for all M ∈ LDB(D).

(iii) f ⊞ : ExtSynFnd(D1)⊞LDB(D1) → ExtSynFnd(D2)⊞LDB(D2) given by f ⊞(x) = f ♯(x)
if x ∈ SynFnd(D1), and f ⊞(x) = f ♭(x) if x ∈ LDB(D1).

This defi nition may seem to be needlessly complex, since f is completely determined by f♯ , and f ⊞

is obtained by combining f ♯ and f ♭. However, a notation is needed for all three components in any

case, and including them explicitly in the defi nition causes no harm, while making the defi nition of

morphism composition more concrete.

12

Composition of morphisms is defi ned in the obvious way; that is, f ◦ g is given by the triple

(f ♯ ◦g♯, f ♭ ◦g♭, f ⊞ ◦g⊞).
It is clear that all three of f ♯ : SFPoset(D1)→ SFPoset(D2), f ♭ : LDBPoset(D1)→ LDBPoset(D2),

and f ⊞ : DJPoset(D1) → DJPoset(D2) may be viewed as poset morphisms. f ⊞ embodies the ideas

of CFA-morphism, although it is not formally one itself.

The notions of a surjective morphism and an open morphism must be defi ned carefully here, since

they focus on LDB(D). The defi nition of isomorphism is standard [AHS90, 3.8].

(e) The PF-morphism f will be called surjective precisely in the case that both f ♯ : ExtSynFnd(D1)→
ExtSynFnd(D2) and f ♭ : LDB(D1)→ LDB(D2) are surjective. (Note that this is not equivalent to

the surjectivity of f ♯ alone.)

(f) The PF-morphism f is open if for any N1,N2 ∈ LDB(D2) with N1 ⊆ N2, there are M1,M2 ∈
LDB(D1) with M1 ⊆ M2 and f ♭(M1) = N1, f ♭(M2) = N2.

(g) The PF-morphism f is a PF-isomorphism if there is a morphism g : D2 → D1 with the property

that g◦ f is the identity on D1 and f ◦g is the identity on D2.

Finally, it is useful to have a special notation for the PF-morphism between the syntactic schemata

derived from D1 and D2.

(h) Defi ne the PF-morphism f̄ : D1 → D2 as (f̄ ♯, f̄ ♭, f̄ ⊞), with f̄ ♯ = f̄ , f̄ ♭ = f ♯+
, and f̄ ⊞ given by

f̄ ⊞(x) = f ♯(x) if x ∈ SynFnd(D1), and f̄ ⊞(x) = f̄ ♭(x) if x ∈ DB(D1).

3.5 Example — PF-morphisms The example builds upon the context introduced in 3.3. Let

W1AB
be the schema whose sole relation is R3[AB], constrained by the FD A → B. Defi ne the elemen-

tary mapping h4 : ExtSynFnd(E4) → ExtSynFnd(W1AB
) by (a,b,c) 7→ (a,b) if (a,b,c) ∈ Dom(A)×

Dom(B)×Dom(C), (d,e, f) 7→ ηW1AB
if (d,e, f) ∈Dom(D)×Dom(E)×Dom(F), and ηE4

7→ ηW1AB
.

The full extension h4
+ : DB(E4) → DB(W1AB

) is the morphism which projects each tuple of the

instance of R1[ABC] onto its AB projection, and ignores all tuples in the instance of R2[DEF], while

h4
♭ : LDB(E4)→ LDB(W1AB

) exhibits the same behavior on the instances satisfying F 4. Thus, if M =
{(a1,b1,c1),(a2,b2,c2),(d1,e1, f1),(d2,e2, f2)}, then ω1AB

(M) = {(a1,b1),(a2,b2)}. The morphism

h4 is clearly semantically stable; however, if the constraint A→ B were dropped on E4, with that same

constraint retained on R3[AB], then semantic stability would no longer hold.

It is important to note in particular the need for the null elements ηW1AB
. Without it, it would not

be possible to specify the behavior of ω1AB
on an element-by-element basis, since it would then be

impossible to specify the image of tuples in the instance of R2[DEF].

3.6 The limitations of PF-morphisms In a PF-morphism, the mapping is defi ned element by el-

ement. Thus, in the context of the classical relational model, a PF-morphism can represent operations

such as projection, selection, and renaming. However, join cannot be so represented, since the join

operation involves the combination of two tuples. This may seem to be a rather severe limitation, but

it is necessary to obtain the results developed in this work. Element-by-element operators, such as

projection and restriction, do not generate any constraints themselves; rather, they simply pass along

information about the constraints which already exist. On the other hand, an operation such as join

imposes a constraint (a join dependency) itself on the image, a constraint which may not exist on the

domain. Thus, a situation in which a single element in the view schema is constructed from several

13

elements in the main schema complicates matters enormously. The view mapping may itself impose

constraints, so that constraints now come from two sources, the other being the implied constraints

from the main schema. It seems most prudent here to begin with PF-morphisms, and to look for

extensions only after the theory for these element-by-element mappings is understood better.

3.7 PF-views The abstract defi nition of a PF-view parallels closely that of an order view [Heg04a,

2.3] and a CFA-view [Heg04b, 3.2]. Specifi cally, let (SynFnd(D),LDB(D)) be a PF-schema.

(a) A PF-view of D is a pair Γ = (V,γ) in which V =(SynFnd(V),LDB(V)) is a PF-schema and

γ : D → V is an open surjective PF-morphism.

Note that open and surjective have the meanings assigned in 3.4(e)-(f) above. Furthermore, it is

easy to see that Γ1 = (V1,γ1) and Γ2 = (V2,γ2) of D are isomorphic if there is a PF-isomorphism

f : V1 → V2 with the property that f ◦ γ1 = γ2. Indeed, if f is a PF-isomorphism, then f −1 ◦ γ2 =
f −1 ◦ (f ◦ γ1) = (f −1 ◦ f)◦ γ1 = γ1.

In the context of updates, it is important to have available the associated syntactic view, which is

defi ned as follows.

(b) The extension of Γ to D is Γ =(V, γ̄).

It is straightforward to verify that Γ̄ is a PF-view of D.

3.8 Congruences on a PF-schema The defi nition of closed update strategy is made within the

context of meet-complementary views, and the defi nition of the latter is based centrally upon the

congruences of those views. It is therefore critical to classify these congruences and identify their

rôles in the construction of complementary and meet-complementary views. Just as a morphism has

three functional components, so too does a view have three congruences. In addition, the congruence

of the syntactic extension f̄ is also identifi ed explicitly, since it is used in subsequent proofs.

Let D1 = (SynFnd(D1),LDB(D1)) and D2 = (SynFnd(D2),LDB(D2)) be PF-schemata, and let

f : D1 → D2 be a PF-morphism.

(a) The elementary congruence on D1 induced by f is the relation EltCongr(f) on ExtSynFnd(D1)
given by (x,y) ∈ EltCongr(f) iff f ♯(x) = f ♯(y).

(b) The full syntactic congruence on D1 induced by f is the relation SynCongr(f) on DB(D) given

by (M1,M2) ∈ SynCongr(f) iff f̄ ♭(M1) = f̄ ♭(M2).

(c) The full semantic congruence on D1 induced by f is the relation SemCongr(f) on LDB(D) given

by (M1,M2) ∈ SemCongr(f) iff f ♭(M1) = f ♭(M2).

(d) The full congruence on D1 induced by f is the relation Congr(f) on ExtSynFnd(D1)⊞LDB(D1)
given by (P1,P2) ∈ Congr(f) iff f ⊞(P1) = f ⊞(P2).

These four congruences have natural counterparts on views. Let Γ = (V,γ) be an PF-view of D.

(e) The elementary congruence of Γ, denoted EltCongr(Γ), is just EltCongr(γ).

(f) The syntactic congruence of Γ, denoted SynCongr(Γ), is just SynCongr(γ).

(g) The semantic congruence of Γ, denoted SemCongr(Γ), is just SemCongr(γ).

14

(h) The full congruence of Γ, denoted Congr(Γ), is just Congr(γ).

The congruences SynCongr(f) and SemCongr(f) have a special structure. Since they are defi ned

in terms of EltCongr(f), two sets are equivalent if and only if each element in one is equivalent to an

element in the other. In the formalization below, note in particular the use of NullExt(−) (see 3.2) to

support the fact that the syntactic foundation f ♯ of a PF-morphism f involves the null element as well

as the elements of the syntactic foundation.

3.9 Proposition — Characterization of equivalences Let D1 = (SynFnd(D1),LDB(D1)) and

D2 =(SynFnd(D2),LDB(D2)) be PF-schemata, and let f : D1 → D2 be a PF-morphism.

(a) For M1,M2 ∈ DB(D), (M1,M2) ∈ SynCongr(f) iff the following two conditions are satisfied:

(eeq-i) (∀x ∈ M1)(∃y ∈ NullExt(M2))((x,y) ∈ EltCongr(f)).

(eeq-ii) (∀y ∈ M2)(∃x ∈ NullExt(M1))((x,y) ∈ EltCongr(f)).

(b) Similarly, for M1,M2 ∈ LDB(D), (M1,M2)∈ SemCongr(f) iff the conditions (eeq-i) and (eeq-2)

are satisfied.

PROOF: Part (a) follows from the fact that f̄ is defi ned to be the full extension of f♯ (see 3.4). Part

(b) then follows immediately, since SemCongr(f) ⊆ SynCongr(f). ✷

3.10 Null-augmented congruence containment Given PF-views Γ1 = (V1,γ1) and Γ2 = (V2,γ2)
of the PF-schema D, to say that the congruence of Γ1 is fi ner than that of Γ2¡ it does not suffi ce to

assert only that Congr(Γ1) ⊆ Congr(Γ2). It is also necessary to guarantee that whenever γ♯
1 maps a

particular element to the null element, so too does γ♯
2. More precisely, proceed as follows.

(a) Defi ne EltCongr(Γ1) FEltCongr(Γ2) to mean that (∀x∈ SynFnd(D1))((γ♯
1(x) = ηV1

)⇒ (γ♯
2(x) =

ηV2
)).

When this condition is appended to a usual set-theoretic containment of congruences, new defi nitions,

denoted using ⊑ instead of ⊆, are obtained.

(b) Defi ne EltCongr(Γ1) ⊑ EltCongr(Γ2) to mean that both EltCongr(Γ1) ⊆ EltCongr(Γ2)
and EltCongr(Γ1) F EltCongr(Γ2) hold.

(c) Defi ne SynCongr(Γ1) ⊑ SynCongr(Γ2) to mean that both SynCongr(Γ1) ⊆ SynCongr(Γ2) and

EltCongr(Γ1) F EltCongr(Γ2) hold.

(d) Defi ne Congr(Γ1) ⊑ Congr(Γ2) to mean that both Congr(Γ1) ⊆ Congr(Γ2) and EltCongr(Γ1) F
EltCongr(Γ2) hold.

Next, the conditions which ensure that the fi ll-in of Fig. 1 exists in the framework of PF-morphisms

are established.

3.11 Proposition Let D=(SynFnd(D),LDB(D)) be a PF-schema, and let Γ1 = (V1,γ1) and Γ2 =
(V2,γ2) be PF-views of D. The following conditions are equivalent.

(a) EltCongr(Γ1) ⊑ EltCongr(Γ2).

15

(b) SynCongr(Γ1) ⊑ SynCongr(Γ2).

(c) Congr(Γ1) ⊑ Congr(Γ2).

(d) There is an open surjective PF-morphism f : V1 → V2 with the property that γ2 = f ◦ γ1.

PROOF: The equivalence of conditions (a)–(c), as well as (d) ⇒ (c), are immediate.

Suppose that conditions (a)–(c) are satisfi ed. Defi ne g : SynFnd(V1) → SynFnd(V2) as follows.

For y ∈ SynFnd(V1), pick any x ∈ SynFnd(D) with γ♯
1(x) = y, and defi ne g(y) = γ♯2(x). The fact

that EltCongr(Γ1) ⊆ EltCongr(Γ2) ensures that this defi nition is independent of the particular choice

of x ∈ (γ♯
1)

−1(y). Now, simply defi ne f to be the unique PF-morphism with f♯ = g. The fact that

(∀x ∈ SynFnd(D1))((γ♯
1(x) = ηD1

) ⇒ (γ♯
2(x) = ηD2

)) ensures that f will be surjective. To see that

f ♭ : LDB(V1)→ LDB(V2) is open, let N1,N2 ∈ LDB(V2) with N1 ⊆N2, and choose M1,M2 ∈ LDB(D)
with M1 ⊆ N2 and γ♭

2(M1) = N1, γ♭
2(M2) = N2. Then γ♭

2(M1) = f ♭(γ♭
1(M1)) ⊆ f ♭(γ♭

1(M2)) = γ♭
2(M2),

so (γ♭
1(M1),γ♭

2(M2)) is the desired pair which maps to (N1,N2) under f ♭. ✷

3.12 Relative views Let D =(SynFnd(D),LDB(D)) be a PF-schema, and let Γ1 = (V1,γ1) and

D

V1 V2

γ1 γ2

λ〈Γ1,Γ2〉

Figure 3: Relative

view morphism

Γ2 = (V2,γ2) be PF-views of D. Suppose further that the equivalent condi-

tions of 3.11 are satisfi ed. The relative view from Γ1 to Γ2 is the PF-view

Λ(Γ1,Γ2) = (V2,λ〈Γ1,Γ2〉) of V1, with λ〈Γ1,Γ2〉 : V1 → V2 the unique fi ll-

in identifi ed in 3.11(d) above. This situation is depicted in the diagram to the

right. The concept of a relative view is particularly critical to the construction

of a meet, as illustrated in Fig. 2, and developed in 4.3.

As a concrete example, think of D as R[ABC], V1 as R[AB], and V2 as

R[B], with γ1 = πAB : R[ABC]→ R[AB], and γ2 = πB : R[ABC]→ R[B]. Then λ〈Γ1,Γ2〉= πB : R[AB]→
R[B].

3.13 The view defined by an elementary congruence In some important constructions, it is

necessary to construct a view from a congruence. (In this work, the meet is such a construction; see

4.3(c)) for details.) This is a rather straightforward process; the steps are outlined below.

Let (SynFnd(D),LDB(D)) be a PF-schema, and let R be an equivalence relation on ExtSynFnd(D).
A PF-view of D, denoted JDK//R and unique up to isomorphism, with the property that the elementary

equivalence of the view is R, may be constructed via the following steps.

(a) Defi ne R/η = R|SynFnd(D) = R∩ (SynFnd(D)×SynFnd(D)).

(b) Defi ne SynFnd(JDK//R) = SynFnd(D)/R/η = the set of equivalence classes of SynFnd(D) under

the equivalence relation R/η .

(c) For M ∈ DB(D), defi ne [M]R/η = {[x]R/η | x ∈ M and (x,ηD) 6∈ R}. ([x]R/η denotes the block of

SynFnd(D)/R/η in which x lies.)

(d) Defi ne LDB(JDK//R) = {[M]R/η | M ∈ LDB(D)}.

(e) Defi ne JDK//R = (SynFnd(JDK//R),JLDB(D)K//R).

It is easy to see that JDK//R is a PF-schema.

16

(f) Defi ne g : ExtSynFnd(D) → ExtSynFnd(JDK//R) on elements as follows.

x 7→

{
[x]R/η if (x,ηD) 6∈ R.

ηJDK//R if (x,ηD) ∈ R.

(g) Let JθKR : D → JDK//R be the PF-morphism with (JθKR)♯ = g.

(h) Finally, put JΘKR = (JDK//R,JθKR).

It is easy to see that JΘKR is a PF-view which has R as its elementary congruence.

4. Decompositions in the Context of PF-Views

In order to be able to use PF-views as the abstract model for meet-complementary pairs, it is necessary

to show that the key ideas which were developed in the earlier work [Heg04a] can be extended to this

framework. Although the main ideas are essentially the same, there are a number of details to be

considered, particularly as regards the congruence to use in defi ning complementary pairs.

4.1 Products and complements of views Let Γ1 = (V1,γ1) and Γ2 = (V2,γ2) be PF-views of the

PF-schema D. Unfortunately, there does not appear to be a clean way to extend the defi nition of view

product presented in [Heg04a, 2.1] to the PF-context in such a way that γ1 ⊗ γ2 is a PF-morphism.

The problem is that the product mapping cannot be defi ned by an elementary mapping, since a single

element in the main schema D maps to two elements in the decomposition, one in LDB(V1) and

the other in LDB(V2). Fortunately, this is not a serious problem. There is no need to require the

decomposition mapping to be a PF-morphism; it is quite suffi cient that it be a poset morphism, and

so the defi nitions of the earlier work suffi ce. The appropriate translations of these defi nitions are as

follows.

(a) Defi ne LDB(V1 γ1
⊗γ2

V2) = {(γ♭
1(M),γ♭

2(M)) | M ∈ LDB(D)}.

(b) Defi ne the function γ♭1 ⊗ γ♭
2 : LDB(D) → LDB(V1 γ1

⊗γ2
V2) by M 7→ (γ♭

1(M),γ♭
2(M)).

(c) The pair {Γ1,Γ2} of PF-views is said to form a subdirect complementary pair just in case γ♭
1⊗γ♭

2 :

LDB(D) → LDB(V1 γ1
⊗γ2

V2) is a poset isomorphism, with both sets carrying the natural order

defi ned by set inclusion ⊆. In this case, it is also said that Γ1 and Γ2 are subdirect complements

of one another.

In the more general case of order schemata, it is quite possible for γ♭
1⊗γ♭

2 to be a bijection without

being a poset isomorphism [Heg04a, 2.11]. However, in the context of PF-views, this is not possible,

as is established by the following proposition.

4.2 Proposition Let D =(SynFnd(D),LDB(D)) be a PF-schema, and let {Γ1,Γ2} be a pair of

PF-views of D. For {Γ1,Γ2} to be a subdirect complementary pair it is necessary and sufficient that

γ♭
1 ⊗ γ♭

2 be injective.

PROOF: Since γ♭
1 ⊗ γ♭

2 is surjective by construction, under the injectivity assumption it is bijective. It

is immediate that it is also a poset morphism. That (γ♭
1 ⊗ γ♭

2)
−1

is a poset morphism is very straight-

forward also. Indeed, for M,N ∈ LDB(D) with γ♭
1(M) ⊆ γ♭

1(N) and γ♭
2(M) ⊆ γ♭

2(N), it is immediate

from the defi nition of product ordering that M ⊆ N. ✷

17

4.3 Fully commuting views and meet complements The importance of commuting congruences

cannot be overstated. It is the condition on a complementary pair which ensures that constant-

complement update strategies are independent of the state of the complement [Heg04a, 3.10]. In

addition, commuting congruences play a key rôle in the characterization of “desirable” properties of

decompositions which are related to the classical notion of acyclic schemata [Heg93].

Because of the way in which the (full) congruence of a PF-view is defi ned, the formal defi nition

is identical to that for order views.

(a) The pair {Γ1,Γ2} of PF-views of the PF-schema D is called a fully commuting pair if Congr(Γ1)◦
Congr(Γ2) = Congr(Γ2) ◦Congr(Γ1), with “◦” denoting ordinary composition of binary rela-

tions, as already sketched in 2.1 for set-based views. In view of the defi nitions of 3.8, this is

equivalent to simultaneous satisfaction of the following two conditions:

(i) EltCongr(Γ1)◦EltCongr(Γ2) = EltCongr(Γ2)◦EltCongr(Γ1).

(ii) SemCongr(Γ1)◦SemCongr(Γ2) = SemCongr(Γ2)◦SemCongr(Γ1).

Of course, if the semantic congruences SemCongr(Γ1) and SemCongr(Γ2) are suffi ciently rich; that

is, if they contain enough information to reconstruct the corresponding elementary congruences, then

condition (ii) suffi ces. This will be the case if the schemata and views are defi nable as CFA-schemata

and CFA-views, but it is not true in general. This provides the motivation for the rather heavy con-

structions of combining the two components using the “⊞” operators.

(b) A subdirect complementary pair {Γ1,Γ2} which is fully commuting is called a meet-

complementary pair, and Γ1 and Γ2 are called meet complements of one another.

(c) If {Γ1,Γ2} is a meet-complementary pair of PF-views of the PF-schema D, the view (unique up

to isomorphism — see 3.13) whose congruence is Congr(Γ1) ◦Congr(Γ2) is called the meet of

{Γ1,Γ2}, and is denoted Γ1∧Γ2. It is immediate that Congr(Γi)⊑ Congr(Γ1∧Γ2) for i ∈ {1,2}.

4.4 Independence dependencies The meet of a pair of meet-complementary views defi nes the

common ground on which the views must agree. More formally, let D =(SynFnd(D),LDB(D)) be a

PF-schema, let {Γ1,Γ2} be a subdirect complementary pair of PF-views, and let Γ3 = (V3,γ3) be a

PF-view of D, with Congr(Γ1) ⊑ Congr(Γ3) and Congr(Γ2) ⊑ Congr(Γ3).

(a) The Γ3-independence dependency on V1 γ1
⊗γ2

V2, denoted ⊗Γ3
, is satisfi ed iff for any M1 ∈

LDB(V1) and M2 ∈ LDB(V2), the following condition is satisfi ed [Heg04a, 2.13].

(id) ((M1,M2) ∈ LDB(V1 γ1
⊗γ2

V2)) ⇔ (λ〈Γ1,Γ3〉(M1) = λ〈Γ2,Γ3〉(M2))

In the context of PF-schemata, this dependency may be expressed in an element-by-element fash-

ion. To understand the difference, fi rst consider the example of a simple relational schema R[ABC]
constrained by the single FD B → C, which decomposes losslessly and in a dependency-preserving

fashion into the two projections ΠAB and ΠBC. In this case, the meet ΠAB∧ΠBC = ΠB [Heg04a, 2.17].

The ΠB-independence dependency asserts that the projection of the state of each view on attribute B

is the same. The alternate, element-by-element characterization states that for each tuple (a,b) in the

state of the view ΠAB, there is a tuple (b,c) in the state of the view ΠBC with a matching B-value,

and conversely. These conditions are so obviously identical that it may seem pointless to differen-

tiate between them. However, in a more general context, they display an important difference. The

18

ΠB-dependency characterization is formulated within the very general framework of order views; no

concept of tuple is necessary. On the other hand, a generalization of the tuple-by-tuple matching

condition requires a corresponding abstraction of the notion of a tuple; while general order views do

not support this abstraction, PF-views do. The formalizations are as follows.

(b) The pointwise Γ3-independence dependency is satisfi ed iff the following two dual conditions are

met for each (M1,M2) ∈ LDB(V1 γ1
⊗γ2

V2).

(∀x1 ∈ M1)(∃x2 ∈ NullExt(M2))(λ〈Γ1,Γ3〉
♯(x1) = λ〈Γ2,Γ3〉

♯(x2))(id:1)

(∀x2 ∈ M2)(∃x1 ∈ NullExt(M1))(λ〈Γ1,Γ3〉
♯(x1) = λ〈Γ2,Γ3〉

♯(x2))(id:2)

In other words, in the context of PF-views, conditions (id:1) and (id:2) may replace (id).

The formalization of these ideas is recorded in the following proposition.

4.5 Proposition Let (SynFnd(D),LDB(D)) be a PF-schema, let {Γ1,Γ2} be a subdirect comple-

mentary pair of PF-views of D, and let Γ3 be the view (unique up to isomorphism) whose congruence

is the smallest equivalence relation on ExtSynFnd(D1)⊞LDB(D1) containing both Congr(Γ1) and

Congr(Γ2). Then {Γ1,Γ2} is a meet-complementary pair iff conditions (id:1) and (id:2) of 4.4 are

satisfied.

PROOF: Follows directly from the discussion of 4.4 and [Heg04a, 2.14]. ✷

4.6 Generalized join dependencies The constructions of 4.4 characterize completely the condi-

tions needed for a decomposition into two views to be independent relative to a common view, but

they do not specify completely the minimal constraints on the main schema D which enable that de-

composition. Consider, once again, the relational schema R[ABC], this time without the FD B → C,

decomposed into the two projection views ΠAB and ΠBC, let r1 = {(a1,b1,c1),(a2,b1,c2)}, and let

r2 = {(a1,b1,c1),(a1,b1,c2),(a2,b1,c1),(a2,b1,c2)} be relations on R[ABC]. Both r1 and r2 map

to ({(a1,b1),(a2,b1)},{(b1,c1),(b1,c2)}) under the decomposition into the AB- and BC-projections,

but only one may be a legal state of R[ABC] under the constraints of the schema if the decomposition

is to be lossless. The classical relational theory mandates that the join dependency ✶ [AB,BC] hold on

R[ABC], so that r1 is excluded. However, the general theory outlined in 4.4 makes no such preference.

There could just as easily be a complex set of constraints on R[ABC] under which r1 is legal but r2 is

not.

In the general decomposition context developed in [Heg04a], it does not appear to be possible to

express such a preference in a natural way. However, in the present context, in which database states

are expressed as sets of elements, it is quite possible. Specifi cally, return to the general context of a

PF-schema D=(SynFnd(D),LDB(D)), with a pair {Γ1,Γ2} of meet-complementary PF-views whose

meet is Γ3.

(a) The join completion of M ∈ DB(D) relative to {Γ1,Γ2} is

JoinCompl〈Γ1;Γ2〉(M) = {x ∈ SynFnd(D) | (∃y ∈ M)(∃z ∈ M)(γ♯
1(x) = γ♯

1(y) ∧ γ♯
2(x) = γ♯

2(z))}

(b) Call M ∈ DB(D) join complete relative to {Γ1,Γ2} if M = JoinCompl〈Γ1;Γ2〉(M). It is easy to

see that M is join complete iff the following generalized join dependency, denoted ✶ [Γ1,Γ2], is

satisfi ed.

19

(gjd) (∀x,y ∈ M)((γ♯
3(x) = γ♯

3(y)) ⇒ (∃z ∈ M)(γ♯
1(z) = γ♯

1(x) ∧ (γ♯
2(z) = γ♯

2(y))))

(c) Say that D uses join reconstruction from {Γ1,Γ2} if every M ∈ LDB(D) is join complete relative

to {Γ1,Γ2}.

The theory of this paper will generally be formulated under the explicit stipulation that the decompo-

sition of the main schema D is governed by the join reconstruction from {Γ1,Γ2}. In such a context,

it is necessary to work with databases which, while not necessary in LDB(D), have the property that

their join completions are legal. The formal defi nition is as follows.

(d) Call M ∈DB(D) a join premodel relative to 〈Γ1;Γ2〉 if JoinCompl〈Γ1;Γ2〉(M)∈ LDB(D). The set

of all join premodels of D relative to JPair〈Γ1;Γ2〉 is denoted PLDB(〈D;{Γ1,Γ2}〉).

(e) The schema D has implicit join completion with respect to {Γ1,Γ2} if whenever M ∈ DB(D)
has the property that γ̄i(M) ∈ LDB(Vi) for both i = 1 and i = 2, then M ∈ LDB(D); i.e., M =
JoinCompl〈Γ1;Γ2〉(M).

For example, the schema E2 of 1.2 has implicit join completion, because the join dependency

✶ [ABCE,ABCD] is implied by the FD ABC → E, and the latter is satisfi ed by any legal state of

the schema of ΠABCE.

4.7 Observation — Premodels and view axiomatization Let D be a PF-schema with {Γ1,Γ2} a

meet-complementary pair of PF-views of D. Assume further that D has implicit join completion with

respect to {Γ1,Γ2}. Then for any M ∈ DB(D), M ∈ PLDB(〈D;{Γ1,Γ2}〉) iff γ̄i(M) ∈ LDB(Vi) for

both i = 1 and i = 2. ✷

4.8 Join schemata In order to study the complexity of constraint satisfaction and updates, it is

necessary to extend the semantic views; i.e., those views which operate on collections of the form

LDB(−), to syntactic views; i.e., those which operate on collections of the from DB(−). As identifi ed

in 3.4(h) and 3.7(b), the information needed to effect this translation is built into the PF-view itself.

However, there is one important detail which cannot be overlooked; namely, if {Γ1,Γ2} is a meet-

complementary pair of PF-views on the PF-schema D, it is not generally the case that {Γ1,Γ2} is

a meet-complementary pair on D. The problem is that γ̄♭
1 ⊗ γ̄♭

2 : D → V1 γ̄11
⊗γ̄2

V2 is not necessarily

injective, although it is certainly surjective. To render it injective, the domain must be restricted to

those elements of DB(D) which are join complete, in the sense of 4.6(b) above.

More formally, let D =(SynFnd(D),LDB(D)) be a PF-schema, and let {Γ1,Γ2} be a meet com-

plementary pair of views of D. Assume further that D uses join reconstruction from {Γ1,Γ2}.

(a) Defi ne 〈D;{Γ1,Γ2}〉 to be the schema with SynFnd(〈D;{Γ1,Γ2}〉) = SynFnd(D) and

LDB(〈D;{Γ1,Γ2}〉) = {JoinCompl〈Γ1;Γ2〉(M) | M ∈ DB(D)}. The notation JDB〈Γ1;Γ2〉(D) will

often be used to denote LDB(〈D;{Γ1,Γ2}〉).

(b) The view Γ̂i =(Vi, γ̂i) (i ∈ {1,2}) of 〈D;{Γ1,Γ2}〉 is given by γ̂i = γ̄i|JDB〈Γ1;Γ2〉
(D); that is, γ̂i is

just γ̄i restricted to the join-complete members of DB(D).

It is easy to see that γ̂i remains surjective, since for any M ∈DB(D), γ̄i(M) = γ̄i(JoinCompl〈Γ1;Γ2〉(M)).

20

It should also be stressed that the “hat” notation; e.g., γ̂i, is ambiguous, since the defi nition depends

not only upon γi, but upon the meet-complementary pair {Γ1,Γ2} as well. However, if this pair is

clearly fi xed by context, then the meaning of things such as γ̂i will be apparent and unambiguous.

It is also useful to have some terminology which describes pairs, and sets of pairs, which are

compatible with respect to a decomposition.

(c) Call a pair (M1,M2) ∈ DB(V1) ×DB(V2) join compatible for 〈Γ1;Γ2〉 if there is an M ∈
JDB〈Γ1;Γ2〉(D) such that (γ̂♭

1 ⊗ γ̂♭
2)(M) = (M1,M2).

4.9 Proposition Let (SynFnd(D),LDB(D)) be a PF-schema, and let {Γ1,Γ2} be a meet-

complementary pair of PF-views over D. Assume further that D uses join reconstruction from

{Γ1,Γ2}.

(a) {Γ̂1, Γ̂2} is a meet complementary pair of PF-views over 〈D;{Γ1,Γ2}〉.

(b) γ̂♭
1 ⊗ γ̂♭

2 = (γ̄♭
1 ⊗ γ̄♭

2)|JDB〈Γ1;Γ2〉
(D), with the last entry denoting the restriction of γ̄1 ⊗ γ̄2 to the

domain JDB〈Γ1;Γ2〉(D).

PROOF: To show (a), fi rst note that since JDB〈Γ1;Γ2〉(D) consists entirely of join complete sets,

γ̂♭
1 ⊗ γ̂♭

2 : JDB〈Γ1;Γ2〉(D) → V1 γ̂1
⊗γ̂2

V2 must be injective. Hence, in view of 4.2, {Γ̂1, Γ̂2} must be

a subdirect complementary pair. To show that it is meet complementary, it suffi ces to observe that

for M ∈ JDB〈Γ1;Γ2〉(D), letting M1 = γ̂1(M) and M2 = γ̂2(M), conditions (id:1) and (id:2) of 4.4 are

satisfi ed, and so by 4.5, {̂Γ1, Γ̂2} is a meet-complementary pair.

Part (b) follows directly from 4.8(c) ✷

5. Complexity of View Constraints in a General Setting

In this section, the relative complexity of verifying the constraints on a schema via a meet-

complementary pair of its views is investigated. For schemata governed by consistency constraints

which do not involve the generation of new elements, the conclusion is strong and positive: in a gen-

eral sense, a cover of the constraints on the main schema embeds in the view, and so the complexity

of constraint checking via the views is no more complex than constraint checking on the main schema

itself. This extends the result which was reported in [Heg04b], and this is accomplished with a much

simpler proof technique.

For constraints which can generate new tuples (such a join dependencies), the results require a

condition called meet uniformity, which stipulates that the two views comprising the decomposition

treat this common sub-view in a uniform way. While this condition is somewhat strict, the construc-

tions nonetheless provide valuable insights.

5.1 Notational convention Throughout this section, unless noted specifi cally to the contrary, D=
(SynFnd(D),LDB(D)) will be taken to be a PF-schema.

5.2 The k-submodel property In the earlier work [Heg04b], the k-submodel property was used as

the measure of constraint complexity. To motivate the extended framework developed in this section,

it is instructive to provide fi rst a brief summary of this idea.

21

Given a relation M and a set F of FDs, it may be determined whether M satisfi es those FDs by

checking two tuples at a time. If M does not satisfy all of the dependencies in F , then there must be

some ϕ ∈ F and some two-element subset N ⊆ M with the property that ϕ does not hold on N. In

other words, M satisfi es F iff every subset of M of size two satisfi es F . The k-submodel property

generalizes this idea of reducing constraint satisfaction to checking satisfaction on subinstances of a

fi xed size.

Formally, for k ∈
�

, a k-model of D is any M ∈ DB(D) with the property that for every N ⊆ M

with Card(N) ≤ k, it is necessarily the case that N ∈ LDB(D). The schema D has the k-submodel

property if for every M ∈ DB(D), M ∈ LDB(D) iff M is a k-model of D. If D has the k-submodel

property, then it has the unrestricted submodel property as well, in the sense that if M ∈ LDB(D),
then so too is every subset of M [Heg04b, 3.7].

In particular, a relational schema constrained solely by FDs has the 2-submodel property. More

generally, the equality-generating constraints, or EGDs, of this classical relational framework, are

characterizable via the k-submodel property. See 6.1 and 6.2 for more details.

Unfortunately, the k-submodel property cannot model any sort of relational constraint which man-

dates the existence of new tuples based upon existing ones. This includes both full tuple-

generating dependencies (TGDs) and embedded TGDs, such as inclusion dependencies, of which

the immensely important foreign-key constraints are a special case.

In order to model these more general constraints, an expanded notion of complexity is introduced.

Rather than simply asking whether every subset of M of a given size is a model, it asks whether every

subset of M of a given size is contained in a model which in turn is contained in M. The formalization

of this notion begins with the concept of a completion.

5.3 Completions Let M ∈ DB(D). A completion of M is any N ∈ LDB(D) which contains M.

There are two important families of completions of M, which are detailed below.

(a) The full set of completions of M is FullComplD(M) = {N ∈ LDB(D) | M ⊆ N}.

(b) The set of minimal completions of M is MinComplD(M) = {S ∈ FullComplD(M) | (∀T ∈
FullComplD(M))((T ⊆ S)⇒ (T = S))}. A minimal completion of M is thus a completion which

does not contain any proper subset which is itself a completion of M.

Observe that M ∈ LDB(D) iff MinComplD(M) = {M}.

Because a schema with the k-submodel property has the unrestricted submodel property as well,

it follows that the only possibilities for the set of minimal completions of M ∈DB(D) in that case are

{M} (in which case M is already in LDB(D)) and /0 (in which case no extension of M is in LDB(D)).

5.4 (k1,k2)-boundedness Clearly, the process of completion involves an increase in size of the

database. The notion of (k1,k2)-boundedness characterizes this growth locally; that is, for models of

size no more than k1. Informally, the (k1,k2)-boundedness property states that for any M ∈ DB(D)
with Card(M) ≤ k1, the size of any minimal completion is no more than k2. It is necessary to be

a bit careful here. Even though all databases are taken to be fi nite, there may be no bound on the

size of completions of databases of size k1. To model this possibility, let
�

denote the set consisting

of the natural numbers, together with a special element which will be denoted by ∞. The (k1,∞)-
boundedness property then provides no information on the maximum size of completions of databases

22

of size at most k1. The symbol ∞ will be used rather loosely, at least to the extent that it may be

compared to any natural number; i.e., m < ∞ for any m ∈
�

. The formal defi nition is as follows.

(a) For k1 ∈
�

, k2 ∈
�

, the schema D has the (k1,k2)-boundedness property if for every M ∈DB(D)
with Card(M) ≤ k1, every N ∈ MinComplD(M) has the property that Card(N) ≤ k2.

As a specifi c example, a universal relational schema constrained by FDs (or even EGDs) and a single

join dependency has the (2,4)-boundedness property.

5.5 The k1-premodel property The notion of a k-premodel and the k-premodel property general-

ize the notions of k-model and the k-submodel property to the context in which completions can add

new elements. A k-premodel contains a completion of each of its subsets of size at most k, with a

schema having the k-premodel property iff its legal databases are characterized by k-premodels.

More formally, Let k ∈
�

.

(a) A k-premodel of D is an M ∈ DB(D) with the property that for every N ⊆ M with Card(N) ≤ k,

there is a P ∈ MinComplD(N) with P ⊆ M.

(b) The schema D has the k-premodel property if for every M ∈DB(D), the condition M ∈ LDB(D)
holds iff M is a k-premodel of D.

5.6 Relative (k1,k2)-boundedness and relative k1-premodels In the framework of [Heg04b], it

is always the case that the join dependency underlying the decomposition of the base schema D into

meet-complementary views is generated by the other dependencies, which are in turn embeddable

into the component views. In that case, every join-compatible pair of legal view states gives rise

to a unique state of the main schema; in the terminology of 4.6(e), the main view has implicit join

completion. In the more general framework developed here, this need not be the case. Rather, the

join dependency may be specifi ed separately, as elaborated in 4.6. This dependency can force a

database in the main schema to be much larger than the sum of the sizes of its components under the

decomposition, giving an artifi cially high measure of how large completions can become. Thus, when

looking at some completion N of an M ∈ DB(D), it is advantageous to separate the increase in size

due to the constraints which embed in the view from that caused by the join dependency governing

the decomposition. The key is to ask not how large N can be, but rather how large some N ′ ∈ DB(D)
which completes to N upon applying the join dependency can be. The formalization of these ideas,

for both the k-submodel and the k-premodel contexts, is as follows. Let k ∈
�

, and assume that

{Γ1,Γ2} forms a meet-complementary pair of PF-views of D, and that D uses join reconstruction

from {Γ1,Γ2} (See 4.6(c)).

(a) M ∈ DB(D) is a 〈Γ1;Γ2〉-relative k-premodel of D if for every N ⊆ M with Card(N) ≤ k, there

is a P ⊆ M with JoinCompl〈Γ1;Γ2〉(P) ∈ MinComplD(N).

(b) The schema D has the 〈Γ1;Γ2〉-relative k-premodel property if for every M ∈ DB(D), the con-

dition M ∈ PLDB(〈D;{Γ1,Γ2}〉) holds iff M is a 〈Γ1;Γ2〉-relative k-premodel of D.

(a′) M ∈ DB(D) is a 〈Γ1;Γ2〉-relative k-model of D if every N ⊆ M with Card(N) ≤ k is in

PLDB(〈D;{Γ1,Γ2}〉).

(b′) The schema D has the 〈Γ1;Γ2〉-relative k-submodel property if for every M ∈ DB(D), the con-

dition M ∈ PLDB(〈D;{Γ1,Γ2}〉) holds iff M is a 〈Γ1;Γ2〉-relative k-model of D.

23

(c) For k1 ∈
�

, k2 ∈
�

, the schema D has the 〈Γ1;Γ2〉-relative (k1,k2)-boundedness property if for

every M ∈ DB(D) with Card(M) ≤ k1 and every N ∈ MinComplD(M), there is a P ⊆ M with

JoinCompl〈Γ1;Γ2〉(P) = N and Card(P) ≤ k2.

5.7 Rules and their containment semantics Characterization of the k-premodel and k-submodel

properties is facilitated greatly through the use of rules on a schema. Informally, a rule on D states

that if certain elements are present, then so too are others.

(a) A rule on D is a pair α=(Antc(α),Cnsq(α)) in which Antc(α)∈DB(D) and Cnsq(α)⊆DB(D),
with Antc(α) ⊆ M for each M ∈ Cnsq(α). Antc(α) is called the antecedent of α, and Cnsq(α)
its set of consequents.

(b) The rule α is called a denial rule if Cnsq(α) = /0, and a generator rule if Cnsq(α) 6= /0.

Roughly, denial rules correspond to constraints such as EGDs, while generator rules correspond to

constraints such as TGDs. See 5.9–5.12 below for examples and more details.

(c) Rules(D) (resp. GeneratorRules(D), resp. DenialRules(D)) denotes the set of all rules (resp.

generator rules, resp. denial rules) on D.

Informally, the containment semantics of a rule simply state that a structure which contains its an-

tecedent (as a subset) must also contain one of its consequents.

(d) The containment semantics of rules are defi ned as follows.

(i) For α ∈ Rules(D) and M ∈ DB(D), M ∈ Mod(α) iff Antc(α) ⊆ M implies that there is an

N ∈ Cnsq(α) with N ⊆ M.

(ii) For S ⊆ Rules(D) and M ∈ DB(D), M ∈ Mod(S) iff M ∈ Mod(α) for each α ∈ S .

Since containment semantics will be used exclusively in this paper, the notation Mod(−) will not

result in any ambiguity.

(g) The set of rule constraints of D is RuleConstr(D) = {α ∈ Rules(D) | (∀M ∈ LDB(D))(M ∈
Mod(α))}.

5.8 The completion rules of a schema The rules which form the foundation of the results devel-

oped here are based upon the notion of minimal completion, as defi ned in 5.3. They are formalized

as follows.

(a) Let M ∈ DB(D). The minimal-completion rule of M is defi ned to be MinComplRuleD(M)=
(M,MinComplD(M)). In other words, Antc(MinComplRuleD(M)) = M, and

Cnsq(MinComplRuleD(M)) = MinComplD(M).

(b) Defi ne MinComplRules(D) = {MinComplRuleD(M) | M ∈ DB(D)}.

(c) Let k ∈
�

. Defi ne MinComplRulesk(D) = {MinComplRuleD(M) | (M ∈ DB(D)) ∧ (Card(M) ≤
k)}.

Although the defi nition of schema semantics via minimal-completion rules has some similarities

to the use of classical constraints, there are a number of key differences. In the next four examples,

some of these are highlighted.

24

5.9 Example — Rule semantics with functional dependencies Let E5 be the relational schema

with the single relation R[ABCD], constrained by the FDs {A → B,C → D}. It should fi rst of all be

noted that rules, as defi ned here, do not support quantifi cation. Thus, it not possible to express the

following fi rst-order representation of the FD A → B as a single minimal completion rule.

(∀vA
1)(∀vB

1)(∀vB
2)(∀vC

1)(∀vC
2)(∀vD

1)(∀vD
2)((R(vA

1 ,vB
1 ,vC

1 ,vC
1)∧R(vA

1 ,vB
2 ,vC

2 ,vC
2)∧(vB

1 6= vB
2)) ⇒ false)

Rather, it is necessary to express each ground instance of the formula (i.e., each instance with the

variables bound to specifi c constants) as a distinct rule. A generic logical ground instance for the

above expression is

((R(a1,b1,c1,d1)∧R(a1,b2,c2,d2)) ⇒ false)

with a1, as well as the bi’s, ci’s, and di’s, values from the appropriate domains, and b1 6= b2. The

corresponding minimal-completion (denial) rule is

(αE5
A→B) ({(a1,b1,c1,d1),(a1,b2,c2,d2)}, /0)

Similarly, the FD C → D is represented by denial rules of the form

(αE5
C→D) ({(a1,b1,c1,d1),(a2,b2,c1,d2)}, /0)

in which d1 6= d2, but the other elements may nor may not be equal. All other ordered pairs of tuples

result in (trivial) normal rules. That is, rules of the form

({(a1,b1,c1,d1),(a2,b2,c2,d2)},{{(a1,b1,c1,d1),(a2,b2,c2,d2)}})

in which a1 6= a2 and c1 6= c2 are always in RuleConstr(E4). However, these not need be included

explicitly in a constraint set for this schema; it is suffi cient that rules of the form αE5
A→B and αE5

C→D

be included. In general, identity rules; that is, rules α for which Cnsq(α) = {Antc(α)}, never need

be included in the defi nition of minimal-completion semantics, since the containment semantics of

5.7(d) takes them to be true by default, unless overridden by other rules.

5.10 Example — Rule semantics with a join dependency Next, let E6 be the relational schema

with the single relation R[ABCD], constrained by the FD A → B and the join dependency ✶[ABC,CD].

The rule αE6
A→B, identifi ed above, applies to this schema as well. The join dependency ✶ [ABC,CD] is

represented in E6 by the set of all rules of the form

({(a1,b1,c1,d1),(a2,b2,c1,d2)},(αE6
✶[ABC,CD])

{{(a1,b1,c1,d1),(a2,b2,c1,d2),(a1,b1,c1,d2),(a2,b2,c1,d1)}})

with either a1 6= a2 or else b1 = b2. Note that this rule expresses the JD ✶ [ABC,CD] only in the

context of tuples which also satisfy the FD A → B. It is not possible to drop the conditions that either

a1 6= a2 or else b1 = b2. Minimal-completion rules, unlike classical integrity constraints, must have

consequents whose members satisfy all of the constraints on the schema. On the other hand, if the

FD A → B on E6 is dropped, so that the JD is its only constraint, then instances of the above rule with

both a1 = a2 and b1 6= b2 would apply.

Note also that this schema has the (2,4)-boundedness property.

25

5.11 Example — Rule semantics with multiple generating dependencies A third example il-

lustrates this integration of integrity constraints within rules more saliently. Let E7 have three binary

relation symbols R[AB], S[AB], and T [AB], and assume further that Dom(A) = Dom(B). Informally,

the constraints on E7 state that S contains R, as well as the composition of R with itself, and T contains

S, as well as the composition of S with itself. More formally, these constraints are expressed by the

following logical formulas.

(∀vA
1)(∀vB

1)(R(vA
1 ,vB

1) ⇒ S(vA
1 ,vB

1))

(∀vA
1)(∀vB

1)(S(vA
1 ,vB

1) ⇒ T (vA
1 ,vB

1))

(∀vA
1)(∀vA

2)(∀vB
1)(∀vB

2)(R(vA
1 ,vB

1)∧R(vA
2 ,vB

2)∧(vB
1 = vA

2) ⇒ S(vA
1 ,vB

2))

(∀vA
1)(∀vA

2)(∀vB
1)(∀vB

2)(S(vA
1 ,vB

1)∧S(vA
2 ,vB

2)∧(vB
1 = vA

2) ⇒ T (vA
1 ,vB

2))

The minimal-completion rules of E7 must embody all of these constraints simultaneously. For single

tuples, the rules take on the following forms. (Since tuples may now come from one of several

relations, they must be tagged with the name of the relation of origin.)

({R(a1,b1)},{{R(a1,b1),S(a1,b1),T(a1,b1)}})(αE7
1)

({S(a1,b1)},{{S(a1,b1),T (a1,b1)}})(αE7
2)

({T(a1,b1)},{{T(a1,b1)}})(αE7
3)

The third rule is an identity and will not affect the semantics of the total constraint set. Now, for rules

with two elements in the antecedent set, it is best to begin with relation S. There are two possibilities

for an antecedent containing two tuples. First, if a1 6= b2, there are rules of the following form.

(αE7
4) ({S(a1,b1),S(b1,b2)},{{S(a1,b1),S(b1,b2),T(a1,b1),T(b1,b2),T(a1,b2)}})

if a1 = b2, the rules take this form.

(αE7
5) ({S(a1,b1),S(b1,a1)},{{S(a1,b1),S(b1,a1),T (a1,b1),T (b1,a1),T(a1,a1),T (b1,b1)}})

The rules with two antecedent tuples in R are similar, but more complex, since they involve three

relation symbols. First, if a1 6= b2, the rules have the following form.

({R(a1,b1),R(b1,b2)},
(αE7

6)

{{R(a1,b1),R(b1,b2),S(a1,b1),S(b1,b2),S(a1,b2),T (a1,b1),T(b1,b2),T (a1,b2)}})

if a1 = b2, the rules take this form.

({R(a1,b1),R(b1,a1)},(αE7
7)

{{R(a1,b1),R(b1,a1),S(a1,b1),S(b1,a1),S(a1,a1),S(b1,b1),

T (a1,b1),T(b1,a1),T(a1,a1),T(b1,b1)}})

The rules of the form αE7
1 – αE7

2 and αE7
4 – αE7

7 suffi ce to identify the legal databases of E7, in the sense

that the models of these rules under the containment semantics of 5.7(d) are suffi cient to identify

26

LDB(E7). Since these rules all have antecedents of cardinality no more than two, this schema has

the 2-premodel property, although it does not have the 2-submodel property. It also has the (2,10)-
boundedness property, but it does not have the (2,k)-boundedness property for any k < 10. This is

the case even though the logical constraints, as identifi ed above, have a sort of (2,3)-boundedness

property, since each takes at most two antecedents and generates at most one additional consequent.

Thus, the size of the consequents of a generating rule can be much larger than those of a logical

constraint.

5.12 Example — rule semantics with an inclusion dependency Let E8 consist of two binary

relations R[AB] and S[AB], and suppose that it is constrained by the FD A → B on S, as well as the

inclusion dependency R[A] ⊆ S[A]. In other words, R[A] is a foreign key for S[A]. The rules which

enforce the FD have the following form, for b1 6= b2.

(αE8
1) ({S(a1,b1),S(a1,b2,)}, /0)

The rules which enforce the foreign-key dependency involve a possibly infi nite disjunction (depend-

ing upon the cardinality of the domain B). They have the following form.

(αE8
2) ({R(a1,b1)},{{R(a1,b1),S(a1,b)} | b ∈ Dom(B)})

The reason that these examples have been presented is to illustrate the essential difference be-

tween minimal-completion rules and ordinary database dependencies. In effect, the right hand side of

a minimal-completion rule must always be a collection of legal databases, which may render the rep-

resentation somewhat more complex. As shall be shown, minimal-completion rules are precisely the

kind of representation which is necessary for the study of relative complexity of view axiomatization.

5.13 Projection of rules to views To determine the constraints which a rule on the main schema

imposes upon a view, that rule is projected onto the view. The defi nition provided here applies only to

minimal-completion rules, but this is not a problem since only such rules are employed in this work.

Formally, let Γ = (V,γ) be a PF-view of D.

(a) For α = MinComplRuleD(M), defi ne the projection of α onto Γ to be the rule γ(α) =
MinComplRuleV(γ̄(M)).

(b) For S ⊆ Rules(D), γ(S) = {γ(α) | α ∈ S }.

(c) The set S ⊆ Rules(D) is said to define Γ semantically if LDB(V) = Mod(γ(S)).

See the discussion which follows 5.17(c) for an example of a view which is not semantically defi n-

able.

5.14 Further notational conventions For the rest of this section, the focus will be upon the be-

havior of minimal-completion rules within the context of a meet-complementary pair. To avoid repeat-

ing the context over and over, in addition to D =(SynFnd(D),LDB(D)) being a PF-schema, unless

stated specifi cally to the contrary, it will be assumed that Γ1 = (V1,γ1) and Γ2 = (V2,γ2) form a meet

27

complementary pair of views of D, with meet Γ3 = (V3,γ3). It will further be assumed that D uses

join reconstruction from {Γ1,Γ2}.

It is not diffi cult to see that the property of (k1,k2)-boundedness, as well as the property of being

a k-premodel or k-model, is inherited by the views from the main schema. The following two results

formalize these facts.

5.15 Observation Let k1 ∈
�

and k2 ∈
�

, and assume that D has the 〈Γ1;Γ2〉-relative (k1,k2)-
boundedness property. Then both V1 and V2 have the (k1,k2)-boundedness property.

PROOF: Let i ∈ {1,2}, let M ∈ DB(Vi) with Card(M) ≤ k1, and let N ∈ MinComplVi
(M). Choose

N′ ∈ LDB(D) with the property that γ̄i(N
′) = N, and choose M′⊆N′ with the property that γ̄i(M

′) = M

and Card(M′) = Card(M). Then N ′ ∈ FullComplD(M′), and so there is an N ′′ ∈
MinComplD(M′) with N′′ ⊆ N′. Since D has the 〈Γ1;Γ2〉-relative (k1,k2)-boundedness property and

Card(M′) = Card(M)≤ k1, there is a P ⊆ N′′ with JoinCompl〈Γ1;Γ2〉(P) = N′′ and Card(P) ≤ k2. Now

γ̄i(P) = γ̄i(N
′′) ⊆ γ̄i(N

′) = N, and since N ∈ MinComplVi
(M), it follows that γ̄i(P) = N. Further-

more, Card(N) = Card(γ̄i(P))≤Card(P)≤ k2, which establishes that Vi has the (k1,k2)-boundedness

property. ✷

5.16 Lemma — Projection of k-premodels and k-models Let k ∈
�

.

(a) If M is a 〈Γ1;Γ2〉-relative k-premodel of D, then γ̄i(M) is a k-premodel of Vi for both i = 1 and

i = 2.

(b) If M is a 〈Γ1;Γ2〉-relative k-model of D, then γ̄i(M) is a k-model of Vi for both i = 1 and i = 2.

(c) γ(MinComplRulesk(D)) = MinComplRulesk(V).

PROOF: Choose i ∈ {1,2}. To show (a), let M be a 〈Γ1;Γ2〉-relative k-premodel of D, and let N ′ ⊆
γ̄i(M) with Card(N′) ≤ k. Choose N ⊆ M with the property that γ̄i(N) = N′ and Card(N) = Card(N ′).
Since Card(N) = Card(N ′) ≤ k, there is P ⊆ M with JoinCompl〈Γ1;Γ2〉(P) ∈ MinComplD(N). Since

γ̄i(P) = γ̄i(JoinCompl〈Γ1;Γ2〉(P)) ∈ LDB(Vi), γ̄i(P) ∈ FullComplV(N′), so there is a Q ⊆ γ̄i(P) with

Q ∈ MinComplV(N′). Furthermore, since P ⊆ M, Q ⊆ γ̄i(P) ⊆ γ̄i(M), whence γ̄i(M) is a k-model of

V.

Part (b) is similar to (a). Just choose P = N and Q = N ′.

To establish part (c), it suffi ces to observe that for every M′ ∈DB(V), there is an M ∈DB(D) with

γ̄(M) = M′ and Card(M) = Card(M′). ✷

5.17 Notions of axiomatization for decompositions To address the question of axiomatization

of the views in a meet-complementary decomposition, it is fi rst necessary to be very precise about

what is meant by an axiomatization of the main schema D. Formally, let S ⊆ MinComplRules(D).

(a) S is called an 〈Γ1;Γ2〉-embeddable axiomatization of D if for every M ∈
DB(D), M ∈ PLDB(〈D;{Γ1,Γ2}〉) iff γ̄i(M) ∈ Mod(γi(S)) for both i = 1 and i = 2.

(b) S is called a complete 〈Γ1;Γ2〉-axiomatization of D if for every M ∈ DB(D), Mod(γi(S)) =
LDB(Vi) for both i = 1 and i = 2.

28

The schema E2 of 1.2 illustrates the distinction between these two notions. Let R 2 be the set of all

minimal-completion rules based upon the FDs in F 2, obtained using the techniques outlined in 5.9.

It is straightforward to show that πABCD(R2) represents {A → D,B → D,CD → A}, and πABCE(R2)
represents {A → E}. Thus, R 2 is an {ΠABCD,ΠABCE}-embeddable axiomatization of E2.

On the other hand, it cannot be a complete {ΠABCD,ΠABCE}-axiomatization of E2. Indeed, this

is the whole point of the example E2. The view ΠABCE cannot be axiomatizable by πABCE(R2). If it

were, it would have the 2-submodel property, which means that it would be axiomatizable by FDs.

However, as shown in Appendix A, it is not even fi nitely axiomatizable.

It is now possible to establish very sharp results about the decomposition of schemata which have

the k-submodel property. The decomposition is always 〈Γ1;Γ2〉-embeddable, and in particular, to

verify that a database of the main schema is legal, it suffi ces to verify that the decomposed components

are each k-models.

5.18 Proposition — View axiomatization via k-models Let k ∈
�

and let M ∈ DB(D). Then M

is a 〈Γ1;Γ2〉-relative k-model of D iff γ̄i(M) is a k-model of Vi for both i = 1 and i = 2.

PROOF: Let M ∈DB(D) have the property that γ̄i(M) is a k-model of Vi for both i = 1 and i = 2, and

let N ⊆ M with Card(N) ≤ k. Then Card(γ̄i(N)) ≤ k for both i = 1 and i = 2, so γ̄i(N) ∈ LDB(Vi).
Thus (γ̂♭

1 ⊗ γ̂♭
2)

−1
(γ̄1(N), γ̄2(N)) = JoinCompl〈Γ1;Γ2〉(N) ∈ LDB(D), and so N ∈ PLDB(〈D;{Γ1,Γ2}〉),

whence M is a 〈Γ1;Γ2〉-relative k-model of D.

The converse follows immediately from 5.16(b). ✷

5.19 Theorem For any k ∈
�

, if D has the 〈Γ1;Γ2〉-relative k-submodel property, then

MinComplRulesk(D) is a 〈Γ1;Γ2〉-embeddable axiomatization of D.

PROOF: The proof follows immediately from 5.18 and 5.16(c). ✷

5.20 Discussion — Interpretation in the classical framework At this point, it is helpful to step

back and interpret the above result within the context of the simple example of E2 presented in 1.2.

Since E2 is constrained by FDs, it has the 2-submodel property. The above proposition states that

to determine whether a relation r[ABCDE] satisfi es the set F2 of FDs, it suffi ces to check whether

each subset of r[ABCE] containing at most two tuples and each subset of r[ABCD] containing at most

two tuples satisfi es the constraints of the view. However, since the projection of a family of FDs is

a family of EGDs ([Fag82, Thm. 6.1]), and since the FDs are precisely the EGDs of degree two (see

6.1) it follows that this reduces to checking the FDs on ΠABCE and ΠABCD. The important point to

note is that this characterization does not require that the projected constraints completely axiomatize

each view individually. This has already been observed in the discussion of 5.17. The above result

shows that the projected constraints, taken together, nonetheless suffi ce to characterize those of the

main schema E2.

In the above example, the whole argument may seem rather trivial, since each FD of F 2 embeds

into one of the views. However, this need not be the case in general. To illustrate, let E9 be the

schema with the single relation R[ABC], governed by the FDs F 9 = {A → B, A →C, B → A, C → A},

and consider the pair {ΠAB,ΠBC} of views. Note that F 9 does not embed into the views. While

A → B and B → A embed into ΠAB, the FDs A →C and C → A embed into neither view, nor are they

implied by the pair {A → B, B → A}. Therefore, a naı̈ve approach which considers only those FDs

29

which embed into the views will not deliver the required constraints. Nonetheless, the decomposition

{ΠAB,ΠBC} is easily seen to be meet complementary. In the classical theory, the way to prove this is

to fi nd a cover of F9 (i.e., a set of equivalent FDs) which does embed into the two views. One such

cover is F ′
9 = {A → B, B →C, B → A, C → B}. which is easily seen to be equivalent to F 9. The set

{A → B, B → A} embeds into ΠAB, while {B →C, C → B} embeds into ΠBC.

At fi rst glance, this might seem to contradict the above results. However, it does not. The reason

is, once again, the distinction between classical logical constraints and minimal-completion rules.

Consider a generic ground rule for the FD A →C, with c1 6= c2.

(αE9

A→C) ({(a1,b1,c1),(a1,b2,c2)}, /0)

If A →C were the only constraint in F 9, then both projections of this rule (onto ΠAB and onto ΠBC)

would be identity rules. However, rules must take into consideration the entire constraint set, so in the

context of F 9, the projection onto ΠAB is the denial ({(a1,b1),(a1,b2)}, /0) in the case that b1 6= b2.

On the other hand, if b1 = b2, then the projection onto ΠBC is the denial ({(b1,c1),(b1,c2)}, /0), in

view of the fact that the FD B → C is implied by F 9. Thus, while the rule αE9
A→C above represents

only A →C, the semantics of projection defi ned in 5.13(b) ensure that the information about the other

constraints which must embed into the views is taken into account automatically. The key point of

the above result, in the context of denial rules, is that taking this additional information into account

does not increase the complexity of the rules. For sets of FDs, this can of course be proved in a more

direct fashion, since an embeddable cover of a set of FDs is always as set of FDs. However, for more

complex families of constraints, this may not be the case.

5.21 Example — Difficulties in extension to generating rules Based upon the strong result ex-

pressed in 5.19 for schemata constrained by denial rules, it is natural to conjecture that a similar result

holds in the presence of generating rules. Unfortunately, this is not the case. Indeed, for any n ∈
�

,

there is a schema E10 with the 2-premodel property, and a meet complementary pair {Ω101,Ω102}
of views of that schema with the property that the schema of Ω102 does not have the k-premodel

property for any k ≤ 2n−1. The example which illustrates this is quite simple. Let n ∈
�

, and let

A = {ai | 1 ≤ i ≤ 2n − 1} be an indexed set of elements. Let b be any element not in A, and defi ne

S = A∪{b}. Regard the elements of A as forming a complete binary tree, represented in sequential

fashion [HSR98, Sec. 2.2.2]. For each vertex ai with 1 ≤ i ≤ 2n−1, the left child is a2i and the right

child is a2i+1. Conversely, the parent of ai for i > 1 is a⌊i/2⌋, with ⌊i/2⌋ denoting n/2 rounded down

to the nearest integer. The elements of S form the syntactic basis for the PF-schema E10; the elements

of LDB(E10) are defi ned to be precisely those subsets of S which satisfy the following constraints.

(i) A parent vertex of the tree defi ned by A is in M ∈ LDB(E10) iff both of its children are. (Note

that one child may be present without the parent.)

(ii) If a1 ∈ M, then b ∈ M as well.

It is easy to see that E10 has the 2-premodel property.

Now, defi ne two views of E10. The view Ω101 has A as the syntactic basis of its schema E101, with

the view mapping M 7→ M∩A. In other words, Ω101 preserves the tree of A but drops b. For the view

Ω102, defi ne A′ = {ai | 2n−1 ≤ i ≤ 2n −1}, and let the syntactic basis of the underlying schema E102

be A′∪{b}, with the view mapping M 7→ M ∩ (A′∪{b}). In other words, Ω102 preserves b as well

as the leaf nodes of the tree formed by A, but drops all interior nodes of that tree. It is easy to see

30

that {Ω101,Ω102} forms a meet-complementary pair. The meet is the view which keeps just A′; i.e.,

the leaf nodes of the tree. It follows that for any M ∈ LDB(E10), a1 ∈ M iff A′ ⊆ M. In light of the

constraint identifi ed in (ii) above, the following constraint must hold in E10 and so in E102 as well.

(iii) If every element of A′ is in M ∈ LDB(E102), then so too is b.

However, this constraint cannot be represented any more succinctly within that view, since the struc-

ture of the interior vertices of the tree is not available. There are no other constraints on that view.

Clearly, this prevents E102 from having the k-premodel property for any k < 2n−1.

There is a class of decompositions for which such problems do not occur. These views have the

property that if two view states match on the meet, then so too do all completions.

5.22 Meet uniformity of rules

(a) A set S ⊆ Rules(D) is called Γ3-uniform, or just meet uniform, if whenever α1,α2 ∈
S ∩GeneratorRules(D) with γ̄3(Antc(α1)) = γ̄3(Antc(α2)), then for every M1 ∈ Cnsq(α1) and

M2 ∈ Cnsq(α2), γ̄3(M1) = γ̄3(M2).

(b) For k ∈
�

, the schema D is called 〈k,Γ3〉-uniform if the set MinComplRulesk(D) is Γ3-uniform.

Before moving on to the main decomposition result, it is necessary to establish a bound on how

large a “basis” or “skeleton” for a join-complete set must be, in terms of the size of its projections to

the views of the decomposition.

5.23 Lemma — Representation of join-complete sets Let M ∈ JDB〈Γ1;Γ2〉(D). Then there is a

set N ⊆ M containing at most Card(γ̄1(M)) + Card(γ̄2(M)) elements with the property that

JoinCompl〈Γ1;Γ2〉(N) = M.

PROOF: Begin by partitioning M into three disjoint sets. Let S1 = {a ∈ M | γ♯
2(a) = ηV2

}, S2 =
{a ∈ M | γ♯

1(a) = ηV1
}, and S3 = {a ∈ M | (γ♯

1(a) ∈ SynFnd(V1)) and (γ♯
2(a) ∈ SynFnd(V2))}. (Re-

call the defi nition of ηVi
from 3.2(c)). In other words, S1 consists of those elements which project

only onto Γ1, S2 those which project only onto Γ2, and S3 those which project onto both Γ1 and Γ2.

Next, choose T1 ⊆ S1 such that γ♯
1 is injective on T1; that is, a1,a2 ∈ T1 and γ♯

1(a1) = γ♯
1(a2) implies

a1 = a2. Similarly, choose T2 ⊆ S2 such that γ♯
2 is injective on T2. Thus, Card(Ti) = Card(γ̄i(Si))

for both i = 1 and i = 2. For any Q ⊆ S3, call an element a ∈ Q redundant for Q if there are

a1,a2 ∈ Q with a1 6= a, a2 6= a, and with the property that γ♯
i(ai) = γ♯

i(a) for both i = 1 and i =
2. Let T3 ⊆ S3 be obtained from S3 by repeatedly removing redundant elements, until there are

no more. Clearly γ̄i(T3) = γ̄i(S3) for both i = 1 and i = 2. Furthermore, since T3 does not con-

tain any redundant elements, Card(T3) ≤ Card(γ̄1(S3)) + Card(γ̄2(S3)). Defi ne N = T1 ∪ T2 ∪ T3.

Then Card(N) = Card(T1) + Card(T2) + Card(T3) ≤ Card(γ̄1(S1)) + Card(γ̄2(S2)) + Card(γ̄1(S3)) +
Card(γ̄2(S3)) ≤ Card(γ̄1(M))+Card(γ̄2(M)). Furthermore, for both i = 1 and i = 2, γ̄i(N) = γ̄i(M),
so JoinCompl〈Γ1;Γ2〉(N) = M, completing the proof. ✷

Now, the results of 5.18 and 5.19 may be extended to the case of meet-uniform rules.

5.24 Proposition — View axiomatization via 〈Γ1;Γ2〉-models Let k1 ∈
�

, k12,k22 ∈
�

, and

assume that D is 〈k1,Γ3〉-uniform.

31

(a) For any M ∈ DB(D), M is a 〈Γ1;Γ2〉-relative k1-premodel of D iff γ̄i(M) is a k1-premodel of Vi

for both i = 1 and i = 2.

(b) If V1 has the (k1,k21)-boundedness property, and V2 has the (k1,k22)-boundedness property,

then D has the 〈Γ1;Γ2〉-relative (k1,k21 + k22)-boundedness property.

PROOF: To show part (a), let M ∈ DB(D) have the property that γ̄1(M) is a k1-premodel of V1

and γ̄2(M) is a k-premodel of V2, and let N ⊆ M with Card(N) ≤ k1. Then for both i = 1 and i = 2,

Card(γ̄i(N))≤ k1 as well, so using the fact that γ̄i(M) is a k1-premodel, choose Pi ∈MinComplVi
(γ̄i(N))

with Pi ⊆ γ̄i(M) for i = 1 and i = 2. Since D is Γ3-uniform, it follows that λ〈Γ1,Γ3〉(P1) =
λ〈Γ2,Γ3〉(P2), so (γ̄1 ⊗ γ̄2)

−1(P1,P2) ∈ LDB(D). For notational convenience, defi ne P =
(γ̄1 ⊗ γ̄2)

−1(P1,P2). Since Pi ⊆ γ̄i(M) for both i = 1 and i = 2, it follows that P ⊆ JoinCompl〈Γ1;Γ2〉(M).
Hence, P ∈ FullComplD(N). It is furthermore the case that P ∈ MinComplD(N). Indeed, if P′ ∈
MinComplD(N) with P′ ⊆ P, then γ̄i(N) ⊆ γ̄i(P

′) ⊆ γ̄i(P) for both i = 1 and i = 2, and since γ̄i(P) =
Pi ∈ MinComplVi

(γ̄i(N)), it follows that γ̄i(P
′) = γ̄i(P) = Pi for both i = 1 and i = 2, whence P = P′.

Finally, set P′′ = M∩P to obtain P′′ ⊆ M with JoinCompl〈Γ1;Γ2〉(P
′′)∈MinComplD(N). The converse

follows immediately from 5.16(a).

To show part (b), fi rst note that by assumption, Card(Pi)≤ k2i for i = 1 and i = 2. Then, rather than

choosing P′′ = M∩P, use 5.23 to construct a P′′ with Card(P′′)≤ k21+k22 and JoinCompl〈Γ1;Γ2〉(P
′′) =

P. ✷

5.25 Theorem For any k ∈
�

, if D is Γ3-uniform and has the 〈Γ1;Γ2〉-relative k-premodel prop-

erty, then MinComplRulesk(D) is a 〈Γ1;Γ2〉-embeddable axiomatization of D.

PROOF: The proof follows immediately from 5.24 and 5.16(a)+(c). ✷

5.26 The applicability of meet uniformity The results of 5.24 and 5.25 provide an extension

of those of 5.18 and 5.19 in a context of relatively strong independence of the two views compris-

ing the meet-complementary pair. Unfortunately, it fails to supports a level of independence which

is adequate in some practical situations. For example, let E11 be the relational schema constrained

by the single relation R[ABCDE], together with the JD ✶ [ABC,CDE] and the two inclusion depen-

dencies R[A] ⊆ R[B] and R[D] ⊆ R[E]. It is easy to see that the pair {ΠABC,ΠCDE} forms a meet-

complementary pair, since R[A] ⊆ R[B] embeds in ΠABC and R[D] ⊆ R[E] embeds in ΠCDE . Yet, this

decomposition is not meet uniform, since the two inclusion dependencies may generate essentially

arbitrary values for attribute C.

As shown in 5.21, in the presence of generating rules, it is nonetheless necessary to exercise

some control over the nature of the meet. What seems to be necessary is a way to distinguish the

inconsequential additions to it made by the inclusions dependencies of E11 from the clever encoding

of information which is illustrated by the example of 5.21. The development of a theory which

addresses this distinction in a general way must be left as a topic for future research. However, as a

fi rst step in this direction, in the next section, it is shown that for situations involving the relational

model which include E11, it is possible to characterize, in a very useful way, characteristics which a

meet-complementary decomposition imposes upon the constraints of the schema.

The results of 5.18 and 5.19, as well as 5.24 and 5.25, extend those of [Heg04b] in a signifi cant

way. In that paper, the focus was on the complexity of verifying the correctness of updates on a

view. So rather than identifying the complexity of an embedded cover of the constraints of the main

32

schema, only the complexity of verifying that a proposed state of the view schema is correct, under

the assumption that the state of the complement is already correct, was established (as 4.14 of that

paper). Knowledge of the complexity of the embedded cover provides more information. These ideas

are formalized in the following, for both the k-submodel and k-premodel contexts.

5.27 The relative generalized submodel property Suppose that Γ1 is to be updated with constant-

complement Γ2. According to [Heg04a, 3.10] (see also the summary in 2.1 of this paper), the al-

lowable updates are precisely those which hold the meet Γ1 ∧Γ2 = Γ3 constant. Therefore, when

performing such an update, it is known that for any proposed new state M ∈ DB(V1), its projection

onto Γ3 is already legal; i.e., λ〈Γ1,Γ2〉(M) ∈ LDB(V3). This information may be used to reduce sub-

stantially the number constraints which need to be checked; the following defi nitions formalize these

concepts.

Let k ∈
�

and let i ∈ {1,2}. The ideas below generalize the those of [Heg04b, 4.13] for k-

premodels and k-submodels.

(a) The database M ∈ DB(Vi) is called Γ3-legal if λ〈Γi,Γ3〉(M) ∈ LDB(V3), and it is called a Γ3-

relative k-premodel (resp. Γ3-relative k-submodel) for Vi if it is both Γ3-legal and a k-premodel

(resp. k-model) of Vi.

(b) The view Γi = (Vi,γi) has the Γ3-relative k-premodel property (resp. Γ3-relative k-submodel

property) if, for every M ∈ DB(Vi), the condition M ∈ LDB(Vi) holds iff M is a generalized

Γ3-relative k-premodel (resp. a generalized Γ3-relative k-model) for Vi.

The next and fi nal theorem of this section establishes formally that the complexity of testing updates

on Γ1, with Γ2 held constant, is defi ned by the generalized Γ3-relative k-submodel property on V1,

even in the case that the full schema V2 itself has a much higher degree of complexity for its set of

constraints.

5.28 Theorem — Relative complexity for view updates under closed strategies Let k ∈
�

.

(a) If D has the 〈Γ1;Γ2〉-relative k-submodel property, then both Γ1 and Γ2 have the Γ3-relative

k-submodel property.

(b) If D is Γ3 uniform and has the 〈Γ1;Γ2〉-relative k-premodel property, then both Γ1 and Γ2 have

the Γ3-relative k-premodel property.

PROOF: The proof follows directly from 5.19 and 5.25. ✷

6. An Application within the Relational Framework

In the classical relational theory — as well as in practice — the two most important types of de-

pendencies are the functional dependencies and the inclusion dependencies. The latter are central to

the modelling of foreign-key constraints, which are a part of standard SQL and virtually all modern

database-management systems. While the theory of the previous section provides very strong results

for schemata constrained by functional dependencies (since they satisfy the 2-submodel property), it

does not provide any results for inclusion dependencies, since they are neither universal (and so do

33

not satisfy the k-submodel property for any k), nor do they defi ne meet-uniform minimal completions

(and so 5.25 does not include schemata which are constrained by them).

Given the importance of these families of constraints, it is essential for any theory of decompo-

sition to address schemata and decompositions in which they occur. In this section, the question of

the complexity of view axiomatization is addressed for multi-relation schemata constrained by EGDs

and an important subset of the implicational dependencies called fanout-free unary inclusion depen-

dencies (fanout-free UINDs). This class of inclusion dependencies is nonetheless quite powerful; in

particular, it is suffi cient to model foreign-key constraints. Using ideas reported in [CKV90], which

show that EGDs and UINDs essentially decouple from one another in terms of inference, it is es-

tablished that in the context of a meet-complementary decomposition defi ned by projections of the

component relations, if the main schema is constrained by a combination of EGDs of degree at most k

and fanout-free UINDs, then to verify that a candidate database of the main schema is legal, it suffi ces

to check that the decomposed components each satisfy all embedded EGDs of degree at most k, as

well as all embedded UINDs. In particular, if the EGDs are FDs, then it suffi ces to check that the both

components of the decomposition satisfy all embedded FDs as well as all embedded UINDs.

6.1 EGDs and UINDs The topic of dependencies on relational databases has been studied exten-

sively, if not exhaustively [Tha91]. Therefore, the discussion here is limited to establishing notation

and nonstandard conventions.

It is assumed that there is a fi nite set U of attributes, as well as a fi nite set of relation symbols

{Ri | 1 ≤ i ≤ n}. With each relation symbol is associated a Ui ⊆ U, with Ui ∩U j = /0 for i 6= j and

∪n
i=1Ui = U. There is also an infi nite set Dom(U) called the universe of domain values. Following

standard conventions, a tuple over Ri is a function t : Ui → Dom(U), and a relation for Ri is a fi nite

set of tuples over Ri. A database is just a set of relations, one for each Ri. Sets of attributes are often

written linearly, so R[ABC] is shorthand for R[{A,B,C}].
The universal dependencies (i.e., those dependencies which are representable using logical for-

mulas involving only universal quantifi ers) which are used in this work are called full implicational

dependencies (FIDs) [CKV90], or sometimes just implicational dependencies (IDs) [Fag82] [Hul84].

These include the functional dependencies (FDs) and join dependencies (JDs) which are ubiquitous in

the relational theory. The three references just cited all give readable summaries of these constraints,

so there is no need to repeat them here. Suffi ce to say that they are always unirelational (that is,

they apply to only one relation), and they are always typed; that is, they can make comparisons of

tuples only between entries in the same column. Because they are used fundamentally in the results

developed in this section, it is perhaps appropriate to say a bit more about the equality-generating

dependencies (EGDs) [PDGV89, Sec. 3.6], [AHV95, 10.1]. Such dependencies take the following

general form:

(∀.))((t1∧t2∧ . . .∧tn) ⇒ ε)

The terms on the left-hand side are (constant-free) atoms in the language of the relations, while the

right-hand side is an equality of two of the variables from the left-hand side. As an example, here is

the formula for the functional dependency A → B on R[ABC].

R(x1,y1,z1)∧R(x1,y2,z2) ⇒ (y1 = y2)

The degree of an EGD is the number of atoms which occur on the left-hand side of the defi ning for-

mula. The FDs are precisely the EGDs which can be expressed with degree two, and so a relational

34

schema constrained by EGDs has the 2-submodel property iff it has a basis consisting of FDs. Al-

though EGDs which are not FDs exist and are not diffi cult to construct, it is not clear that they have

any practical use. Nonetheless, since the theory developed here supports them with no additional ef-

fort, and since the inclusion of EGDs in fact shows more clearly how the complexity patterns behave,

they are retained in their full generality.

To follow the constructions below (particularly in 6.16 and 6.19), it is essential to understand in

detail what is meant by a typed constraint. By way of example, the following constraint is not typed,

because it compares values in two different columns,

R(x1,y1,z1)∧R(y2,x1,z2) ⇒ (y1 = y2)

and the following is not typed because it equates values in two different columns.

R(x1,y1,z1)∧R(x1,y2,z2) ⇒ (y1 = z2)

The family of inclusion dependencies (INDs) is neither typed nor universal. In its most general

form, for Yi ⊆ Ui and Y j ⊆ U j, the inclusion dependency Ri[Yi] ⊆ R j[Y j] stipulates that for every

tuple r in the instance of Ri, there is a tuple s in the instance of R j for which r[Yi] = s[Y j]. In

their general form, INDs are very complex. For example, it is known that the inference problem

for INDs and FDs together is undecidable [CV85]. For this reason, various subfamilies of the INDs

have been studied as well. For this work, the most important is the unary INDs (UINDs), in which

both Yi and Y j are restricted to contain just one attribute. For UINDs, various associated inference

problems are not only decidable, but of reasonable complexity as well. Furthermore, and central to

this paper, in the associated inference problem, the effects of the INDs and other dependencies (IDs,

etc.) can be essentially “decoupled” [CKV90]. Since each attribute occurs in exactly one relation,

the UID Ri[Yi] ⊆ R j[Y j] may be unambiguously abbreviated to just Yi ⊆ Y j. However, since the

symbol “⊆” is already overloaded mathematically, the alternate notation Yi ⊑ Y j using the squared

inclusion symbol will be used in the presentation which follows. (More precisely, since Yi = {Ai} and

Y j = {A j} are singletons in the case of UINDs, the resulting notation is just Ai ⊑ A j.) Occasionally,

the notation A j ⊒ Ai will be used; it has the same meaning as Ai ⊑ A j. Similarly, Ai ⊑ A j ⊑ Ak means

that both Ai ⊑ A j and A j ⊑ Ak hold.

There is one further point of framework to be made. In much of the classical theory of dependen-

cies, it is further assumed that Dom(U) is partitioned into disjoint sets {Dom(A) | A∈U}, with a tuple

entry for attribute A restricted to take values from Dom(A). In the context of typed dependencies, this

makes complete sense. However, since inclusion dependencies are not typed, this convention cannot

be used here. Rather, the same domain value must be permitted in different columns, both of the same

relation and of different relations. All that can be said is that Dom(A) ⊆ Dom(U) for each A ∈ U.

Finally, it is appropriate to recall a point of notation. If Φ is a set of constraints of some type T

(e.g., FIDs, UINDs, EGDs, FDs, etc.), then Φ+ is used to denote the set of all constraints of that same

class which are consequences of those in Φ. For the purposes of this paper, this will always mean

finite implication. See 6.7 below for more details.

6.2 Projections of EGDs The theory developed here is based upon views of relational schemata

which are defi ned by projections of relations onto subsets of their attributes. The problem of charac-

terizing the dependencies on a view is called the implied constraint problem [JAK82], of which there

are two dimensions. On the one hand, there is the aspect of complexity; as illustrated by the example

35

of 1.1, the constraints on the view may be far more complex than those on the main schema. On the

other hand, there is the aspect of form. Again, the example of 1.1 illustrates this, showing that the

projection of a family of FDs need not be characterized by FDs.

The main result on form which is needed in this paper states that the projection of a family of

EGDs is always characterized by a family of EGDs [Fag82, Thm. 6.1]. In other words, if the main

schema is constrained by EGDs, and the view is a projection, then the view schema has a basis for its

constraints consisting entirely of EGDs.

6.3 Single relation EGD-schemata and their views and decompositions While the theory de-

veloped here applies to multi-relation schemata, such schemata are constructed by assembling a set of

single-relation schemata, each with its own set of EGDs, and then imposing a common set of UINDs.

Therefore, it is appropriate to begin with a careful defi nition of single-relation schemata.

(a) A single-relation EGD-schema is a pair (R[U],Φ) in which R is a relation name on attribute set

U and Φ is a fi nite set of EGDs on R[U].

(b) Given a single relation EGD-schema R = (R[U],Φ) and W ⊆ U, the (projection) view defined

by W is ΠW = ((R[W],πW(Φ)),πW). πW(Φ) is the projection of the constraints Φ onto W, and

πW : R[U] → R[W] is the projection mapping of R from the attributes of U to the attributes of

W.

Although it is often the case that the EGDs of the schema will ensure that the decomposition is lossless

(that the EGDs defi ne a lossless decomposition was a requirement in the earlier work [Heg04b]), it is

not necessary to so require. As expressed in general form in 4.6, the dependency which defi nes the

reconstruction may be specifi ed separately. By its nature, this dependency is not embeddable in the

views. In the single-relation case, it is always a join dependency; the following defi nition makes this

explicit.

(c) A single-relation EGD-schema with JD is a triple (R[U],Φ,✶ [W1,W2]) in which (R[U],Φ) is

a single-relation EGD-schema and ✶ [W1,W2] is a full join dependency on U; i.e., W1,W2 ⊆ U

with W1 ∪W2 = U. The possibility that either of W1 and W2 is empty, or that W1 ∩W2 = /0, is

not excluded.

(d) The single-relation EGD-schema with JD (R[U],Φ,✶ [W1,W2]) defines a meet-complementary

pair if {ΠW1
,ΠW2

} forms a meet-complementary pair of views of (R[U],Φ).

Everything about EGD-schemata is decidable and constructible by algorithm, as shown by the

next result.

6.4 Proposition — Algorithmic construction of covers for EGDs Let R =(R[U],Φ,✶[W1,W2])
be a single-relation EGD schema with JD which defines a meet-complementary pair {ΠW1

,ΠW2
},

and let k ∈
�

.

(a) R has the {ΠW1
,ΠW2

}-relative k-submodel property iff Φ has a basis consisting of EGDs of

degree at most k.

(b) It is decidable whether or not R has the {ΠW1
,ΠW2

}-relative k-submodel property.

36

(c) If R has the {ΠW1
,ΠW2

}-relative k-submodel property, then it is possible to construct a set Ψ of

EGDs of degree no more than k with the property that Ψ∪{✶ [W1,W2]} and Φ∪{✶ [W1,W2]}
are equivalent sets of dependencies (for finite or infinite relations).

PROOF: To establish (a), let Φ′ be the set of all EGDs on R which are of degree at most k, and which

are consequences of those in Φ. Note that Φ′ is a fi nite set, up to renaming of variables, since the

number of distinct patterns of equality of variables on the left hand side is fi nite. Now, let M ∈DB(D)
satisfy all dependencies in Φ. Then, M is a 〈Γ1;Γ2〉-relative k-submodel, by construction, and hence

a model. Thus, Φ′ itself must be a basis for Φ, as required.

For (b), let Φ′′ be the set of all EGDs on R which are of degree at most k. This is a fi nite set, for

the same reason as Φ′ above is — there are only a fi nite number of possible patterns for the left hand

side of such a constraint. Now, for each such constraint ϕ ∈ Φ′′, simply test to see whether Φ |= ϕ,

using any of the standard inference procedures for data dependencies, such as the chase of [BV84a]

or the resolution-like procedure of [GJ82]. Since these are all universal dependencies, inference for

infi nite and fi nite relations are equivalent. Part (c) follows immediately from this. ✷

6.5 Multi-relation EGD-schemata and their views and decompositions In part (a) below, a

multi-relation EGD schema is nothing more than a suitably presented collection of single-relation

EGD schemata. In part (b), a common set of (inter-relational) UINDs is imposed on top of this to

obtain the formalization of the schemata to be investigated in this section.

(a) A multi-relation EGD-schema with JDs is a set {(Ri[Ui],Φi,✶ [W1i,W2i]) | 1 ≤ i ≤ n} in which

(Ri[Ui],Φi,✶ [W1i,W2i]) is a single-relation EGD-schema for 1 ≤ i ≤ n, and the attributes are

pairwise disjoint, in the precise sense that for i 6= j, Ui ∩U j = /0.

(b) A multi-relation EGD-schema with JDs and UINDs is a pair ({(Ri[Ui],Φi,✶ [W1i,W2i]) | 1 ≤
i ≤ n},ΦUIND) in which {(Ri[Ui],Φi,✶ [W1i,W2i]) | 1 ≤ i ≤ n} is a multi-relation EGD schema

with JDs and ΦUIND is a set of UINDs on these relations.

6.6 Axioms of inference for UINDs in the presence of FIDs As already remarked in 6.1, the

interaction of FIDs and UINDs is minimal. The following inference rules, from [CKV90]; apply

to single-relation schemata constrained by FIDs and UINDs. (Since both EGDs and JDs are FIDs,

these rules apply to the context of this paper.) They are presented in the standard format in which the

preconditions of the rule are presented above the horizontal line, with the consequences below it.

(a) Reflexivity and transitivity of UINDs:

(rt-uid)
A ⊑ A

A ⊑ B B ⊑C

A ⊑C

(b) The cycle rule for FDs and UINDs on fi nite databases:

(cy-uid)
C0 →C1 C1 ⊒C2 . . . Cm−1 →Cm Cm ⊒C0

C1 →C0 C2 ⊒C1 . . . Cm →Cm−1 C0 ⊒Cm

The cycle rule is peculiar to the context of fi nite databases, and does not apply in the infi nite case.

It is best understood in terms of a special case. Suppose that both C0 → C1 and C1 ⊑ C0 hold. For

37

a relation r which satisfi es these constraints, The FD forces Card(πC1
)(r) ≤ Card(πC0

(r)), while the

UIND forces Card(πC0
)(r) ≤ Card(πC1

(r)). Thus, Card(πC0
)(r) = Card(πC1

(r)), and combined with

the inclusion implied by the UIND, this forces the two sets to be equal, thus implying C1 → C0 and

C0 ⊑C1. The rule (cy-uid) states this idea in a more general form in which the FDs and UINDs may

chain over several relations. This is the only way in which FIDs may combine with UINDs to form

new constraints of either class. A formalization of these ideas is given next.

6.7 Lemma — Decoupling of FIDs and UINDs Let (R[U],Φ) be a single-relation schema in

which Φ = ΦFID ∪ΦUIND, with ΦFID a set of FIDs, and ΦUIND a set of UINDs, both taken over the

attribute set U. Let ϕ be any FID or UIND over R[U].

(a) Φ |=f ϕ holds iff Φ ⊢ ϕ may be established using standard inference rules for FIDs (such as the

chase [BV84a] or the resolution-like inference procedure of [GJ82]), together with the rules

(rt-uid) and (cy-uid) given in 6.6.

(b) Using this proof procedure, it is decidable whether or not Φ |=f ϕ holds.

Here, |=f denotes finite implication; that is, implication when the models are finite relations, and ⊢
denotes deduction via the above-mentioned proof procedures.

PROOF: See [CKV90, Corollary 5.3]. Note in particular that this result applies to finite models,

which is exactly the framework used here. ✷

6.8 Product-relation EGD schemata and EJU/EGD-schemata The results identifi ed in 6.7

above apply in the context of single-relation schemata, while the focus of investigation here is multi-

relation schemata. The easiest remedy to this problem is to recast (temporarily) the framework of this

section into a single-relation format. In this process, a minor additional constraint will be imposed.

The idea is simple — just form the Cartesian product of the component relations using the so-

called cross dependency ✶[U1, . . . ,Un], which is just a join dependency in which there are no common

columns of the component attributes. More precisely, let R = ({(Ri[Ui],Φi,✶ [W1i,W2i]) | 1 ≤ i ≤
n},ΦUIND) be a multi-relational EGD-schema with JDs and UINDs.

(a) The product-relation EGD schema with JDs and UINDs corresponding to R is

(mregd) (R1[U1]× . . .×Rn[Un], (
n

[

i=1

Φi)∪ΦUIND∪{✶[W1i,W2i] | 1≤ i≤ n}∪{✶[U1, . . . ,Un]})

It is important to note in the above that the JDs in {✶ [W1i,W2i] | 1 ≤ i ≤ n} may be viewed as

full (as opposed to embedded) dependencies. This is true because the embedding is into a Cartesian

product, and each JD lies in one component of this product. Indeed, defi ne Wi =
S

i 6= j(W1 j ∪W2 j),

and then replace ✶ [W1i,W2i] with ✶ [W1i ∪Wi,W2i ∪Wi]. In the presence of ✶ [U1, . . . ,Un], these

two constraints are equivalent, with the latter being an FID. Thus, all of the constraints, save for those

in ΦUIND, are FIDs.

There is a small complication; namely, this approach will not work if some of the relations are

empty and others are not. One way around this, taken in [FV83], is to add a special tuple to each

relation, and require that these special tuples always be present. Here, a simpler approach is taken, in

which the requirement is imposed that if one relation is nonempty, then they all must be nonempty. In

practice, this is hardly a serious drawback, since relations in real databases are almost never empty.

38

(b) Defi ne the uniform nonemptiness-emptiness constraint ϕUNE for R to be that which states that for

all i ∈ {1,2, . . . ,n}, it is either the case the the instance of every Ri is empty, or else the case the

instance of every Ri is nonempty.

(c) The uniform nonemptiness-emptiness schema corresponding to R is

(eju/egd) ({(Ri[Ui],Φi,✶ [W1i,W2i]) | 1 ≤ i ≤ n},ΦUIND ∪{ϕUNE})

(d) A multi-relation EGD-schema with JDs and UINDs and with the uniform nonemptiness-

nonemptiness constraint is exactly a schema of the above form. For convenience, such a schema

will also be called an EJU/EGD-schema.

6.9 Theorem — Constraint interaction on EJU/EGD-schemata Let R be an EJU/EGD-schema

of the form given in (eju/egd) of 6.8. Then it is possible to construct, by algorithm, finite sets of

constraints {Φ′
1,Φ

′
2, . . . ,Φ

′
n,Φ′

UIND
} with the following properties.

(a) With R′ defined as

({(Ri[Ui],Φ′
i,✶ [W1i,W2i]) | 1 ≤ i ≤ n},Φ′

UIND
∪{ϕUNE})

it is the case that LDB(R) = LDB(R′).

(b) For each i ∈ {1,2, . . . ,n}, if ϕ is an EGD on Ri with ((
Sn

i=1 Φ)∪ΦUIND) |=f ϕ, then Φ′
i |=f ϕ.

(b) If ϕ is a UIND on
Sn

i=1 Ui and ((
Sn

i=1 Φ)∪ΦUIND) |=f ϕ, then ϕ ∈ Φ′
UIND

.

PROOF: Follows directly from 6.7 and the equivalence between product- and multiple-relational

schemata developed in 6.8. The only point of concern is the effect of the join dependencies. How-

ever, according to [BV84b, Lem. 7], the join dependencies in {✶ [W1i ∪Wi,W2i ∪Wi] | 1 ≤ i ≤
n}∪{✶ [U1, . . . ,Un]} cannot cause any additional EGDs to be generated that would not already be

generated by the EGDs alone. Since UINDs and EGDs only interact via FDs, it follows that the JDs

are inconsequential in terms of constructing the Φ′
i’s and Φ′

UIND
. ✷

6.10 Notational and constraint-format convention For the rest of this section, unless stated

specifi cally to the contrary, R will be taken to be an EJU/EGD-schema of the form shown in (eju/egd)

of 6.8. For the sake of convenience, it will also be assumed that the Φi’s and ΦUIND satisfy the condi-

tions identifi ed in 6.9 above. In particular, ΦUIND will contain all UINDs which govern the schema.

Also, since the context ΦUIND is fi xed, for A1,A2 ∈ U, the statement A1 ⊑ A2 will be used as an

abbreviation for the more cumbersome A1 ⊑ A2 ∈ ΦUIND.

6.11 Notation for the views and decomposition of an EJU/EGD schema In the general context

of the previous sections, the decomposition of the main schema D was denoted {Γ1,Γ2}, with the

meet of this meet-complementary pair denoted Γ3. Similarly, a standard notation will be used for the

relational case considered here. The component views of the EJU/EGD schema R will be denoted

{Γπ1(R),Γπ2(R)}. These two will be taken to be a meet-complementary pair, with meet Γπ3(R). More

formally, proceed as follows.

(a) For i ∈ {1,2}, defi ne the schema πi(R) = {(Ri[Wi j],πWi j
(
Sn

m=1(Φim)∪ΦUIND)) | 1 ≤ j ≤ n}.

39

(b) Defi ne the schema π3(R) = {(Ri[W1i ∩W2i],πW1i∩W2i
(
Sn

m=1(Φim)∪ΦUIND)) | 1 ≤ j ≤ n}.

At this point, the sets of the form πZ(
Sn

m=1(Φim)∪ΦUIND) are simply some representation of the

constraints which project from R. It remains to characterize their exact nature.

(c) For i ∈ {1,2}, the mapping πR
i : R → πi(R) is just the collection of the projections {πWi

:

R[U j] → R[Wi j] | 1 ≤ j ≤ n}. For i = 3, πR
3 : R → π3(R) is {πW3

: R[U j] → R[W1 j ∩W2 j] | 1 ≤
j ≤ n}.

(d) For i ∈ {1,2,3}, the view Γπi(R) = (πi(R),πR
i).

(e) For i ∈ {1,2}, defi ne Ui =
Sn

j=1 Wi j, and defi ne U3 = U1 ∩U2. Furthermore, for i ∈ {1,2,3},

let Uī = U \Ui,

6.12 Further notational convention Unless stated specifi cally to the contrary, throughout the

remainder of this section, {Γπ1(R),Γπ2(R)} will be assumed to be a meet-complementary pair, with

meet Γπ3(R).

6.13 The graphs of ΦUIND The family ΦUIND defi nes a directed graph in a natural way, with the

vertices the attributes in U. An edge from A1 to A2 in this graph corresponds to A1 ⊑ A2, provided

that this dependency cannot be inferred by transitive closure. In other words, the graph defi nes a

minimal “skeleton” of the UINDs, from which the others may be derived via the transitivity rule of

(rt-uid) of 6.6.

(a) Formally, the graph of ΦUIND, denoted Graph(ΦUIND), is defi ned as follows.

(i) The set of vertices of Graph(ΦUIND) is just U, the set of all attributes over the relations.

(ii) For A1,A2 ∈ U, there is a (directed) edge from A1 to A2 precisely in the case that A1 ⊑ A2

and, for all A3 ∈ U with the property that A1 ⊑ A3 ⊑ A2, either A1 = A2 or else A2 = A3.

Write A1 ≺ A2 to indicate that there is an edge from A1 to A2 in Graph(ΦUIND).

It is important to be able to classify attributes (qua vertices) according to the projections in which

they lie. The following provides a convenient notation for this.

(b) For i ∈ {1,2,3, 1̄, 2̄, 3̄} and A ∈ U, A is an (i)-vertex precisely in the case that A ∈ Ui.

The graph Graph(ΦUIND) may contain cycles, and it is important to have a means of grouping the

corresponding vertices together, since they will all have exactly the same projection in any legal

database. The reduced graph of ΦUIND collapses Graph(ΦUIND) by collecting such equivalent vertices

into one.

(c) The vertices A1,A2 ∈ U are equivalent if both A1 ⊑ A2 and A2 ⊑ A1 hold. The equivalence class

of A1 under this relation is denoted [A1].

(d) The reduced graph of ΦUIND, denoted [Graph](ΦUIND), is defi ned as follows.

(i) The set of vertices of Graph(ΦUIND) is just {[A] | A ∈ U}. Denote this set by [U].

(ii) For [A1], [A2] ∈ [U], there is a (directed) edge from [A1] to [A2] precisely in the case that

[A1] 6= [A2] and B1 ≺ B2 in Graph(ΦUIND) for some B1 ∈ [A1] and B2 ∈ [A2]. Write [A1]≺ [A2]
to indicate that there is an edge from [A1] to [A2] in [Graph](ΦUIND).

40

The identifi cation process of (b) above extends to the reduced graph, but two possibilities must be

considered. The fi rst occurs when some element from the equivalence class lies in a given region, and

the other when all elements from that equivalence class do.

(e) For i ∈ {1,2,3, 1̄, 2̄, 3̄} and [A] ∈ [U], A is an (∃i)-vertex in the case that some B ∈ [A] is an

(i)-vertex in Graph(ΦUIND), and a (∀i)-vertex in the case that every B ∈ [A] is an (i)-vertex in

Graph(ΦUIND).

6.14 Fanout-free families of UINDs To realize the main result of this section, it is necessary to

place a restriction on the form of allowed family of UINDs. The requirement stipulates that there

cannot be branching in the forward direction. Formally, the condition is formulated as follows.

(a) The set ΦUIND is fanout free if for any A1,A2,A3 ∈ U, if both A1 ⊑ A2 and A1 ⊑ A3 hold, then one

of A2 ⊑ A3 or A3 ⊑ A2 holds as well.

It does not appear that restricting consideration to fanout free systems of UINDs is a signifi cant

limitation in practice. Consider in particular the ubiquitous foreign-key constraints or referential

integrity constraints [EN04, Sec. 5.2.4]. The inclusion A2 ⊑ A1 may be used to model the situation

in which A2 of (R2, say) is a foreign key to the primary key A1 (of R1, say). There may certainly

be another relation (R3, say) with a foreign key A3 which also references the primary key A1 of

R1. Fanout freeness does not prohibit this. What it would prohibit would be a situation in which a

foreign key had to be a subset of two distinct primary keys, but this is not part of traditional database

modelling.

Of course, primary keys consisting of more than one attribute are allowed in existing database

systems, although they are relatively uncommon. These are not modellable directly within the frame-

work developed here, although in real instances of such, the multiple attributes could likely be lumped

into one, for the purposes of modelling the dependencies of the schema.

6.15 Meet-free traversals and meet-situated ancestors and descendants The question of which

UINDs may be allowed and which must be prohibited in a meet-complementary decomposition is

now considered. The only type of UIND which is does not obviously embed into one of the two

component views of the decomposition is one which connects an attribute in U2̄ to one in U1̄; that is,

one whose two attributes lie in opposite views, with neither lying in the meet. (More precisely, these

two attributes cannot be equivalent to any which lie in the meet.) The formalization of this situation

is as follows.

(a) The edge A1 ≺ A2 of Graph(ΦUIND) defi nes a meet-free traversal from Γπ1(R) to Γπ2(R) if one of

the following two conditions is satisfi ed.

(i) [A1] is a type (∀2̄)-vertex and [A2] is a type (∀1̄)-vertex of [Graph](ΦUIND).

(ii) [A1] = [A2], A1 is a (2̄)-vertex, A2 is a (1̄) vertex, and for all B∈ [A1], B is either a (1̄)-vertex

or else a (2̄)-vertex of [Graph](ΦUIND).

(b) A meet-free traversal from Γπ2(R) to Γπ1(R) is defi ned analogously.

The goal is to show that meet-free traversals cannot occur in the case that {Γπ1(R),Γπ2(R)} is a meet-

complementary pair. The idea is simple. If A1 ≺A2 defi nes a meet-free traversal from Γπ1(R) to Γπ2(R),

41

and M ∈ LDB(R), then there is an a ∈ πA1
(M) which must necessarily be in πA2

(M) as well. Now,

replace this a with some b ∈ Dom(U) which does not occur in M to obtain a new model M ′. Then,

consider M′′ = (πR
1 ⊗πR

2)
−1

(πR
1 (M),πR

2 (M′)) which must also be in LDB(R), since it is constructed

from the appropriate view projections of M and M′. It is clear that M′′ cannot satisfy A1 ⊑ A2, whence

a contradiction is obtained. Thus, such a meet-free traversal cannot occur, and so there must be a

basis of the UINDs which embed in the views of the decomposition.

Unfortunately, there is a flaw in the above argument. Namely, when a is replaced by b, this may

change the state of the meet view Γπ3(R), since a may have been visible there as well, due to the

presence of other UINDs. Such a change would render the pair (πR
1 (M),πR

2 (M′)) join incompatible,

and prevent the construction of M′′. Fortunately, there is a way to ensure that this does not happen.

The details are now presented.

Informally, a minimal proper meet-situated ancestor of A1 is a predecessor of A2 (i.e., A2 ⊑ A1

which lies in the meet Γπ3(R), with the additional constraint that no attribute “between” between A2

and A1 has this property. A minimal proper meet-situated successor is defi ned dually; i.e., in the

opposite direction of inclusion. It should be noted that a minimal proper meet-situated successor

must be unique, if it exists, due to the fanout-freeness condition.

In the defi nitions below, let i ∈ {1,2}, and let A1 ∈ Uī.

(c) A2 is a minimal proper meet-situated ancestor of A1 if the following conditions are met.

(i) A2 ⊑ A1.

(ii) A2 is a (3)-vertex; (i.e., A2 lies in the meet Γπ3(R)).

(iii) Whenever A2 ⊑ A3 ⊑ A1 holds with [A1] 6= [A3] 6= [A2], it must be the case that [A3] is a

(∀3̄)-vertex; (i.e., A2 does not lie in the meet Γπ3(R)).

(d) A2 is a minimal proper meet-situated successor of A1 if conditions identical to (i)-(iii) above,

save that all instances of ”⊑” are replaced with “⊒”, are met.

Now, the fi rst of three lemmata which lead to the construction of the contradictory database M′′

of 6.15 is presented.

6.16 Lemma Assume that ΦUIND is fanout free, let i ∈ {1,2}, and let A1,A2 ∈ U with A1 ≺ A2 a

meet-free traversal from πi(R) to π2−i(R). Let M ∈ DB(D), and let a ∈ Dom(U) be such that the

following conditions are satisfied on M.

(i) a ∈ πA1
(M).

(ii) For no minimal proper meet-situated ancestor B of A2 is it the case that a ∈ πB(M).

(iii) For any minimal proper meet-situated successor B of A2, there exists b ∈ πB(M) with b 6∈
πA2

(M).

Then it cannot be the case that M ∈ LDB(R).

PROOF: To begin, assume that M ∈ LDB(R); it will be shown that this assumption is contradictory.

The idea is to replace a by b in certain place in M to obtain a new M ′ ∈ LDB(R) with the properties

that πU3
(M) = πU3

(M′) and M′ ∈ LDB(R) iff M ∈ LDB(R). In particular, it will be the case that

πU3
(M) = πU3

(M′).

42

First of all, since it is assumed that M ∈ LDB(R), it must be the case that a ∈ πA2
(M), since

the UIND A1 ⊑ A2 holds. Now assume that A2 has a minimal proper meet-situated successor B. In

view of the fanout-freeness assumption, all such ancestors must lie in the same equivalence class [B].
Choose b ∈ πB(M) \πA2

(M); such an element is guaranteed by (iii) above. Let [A2] = [B1] ≺ [B2] ≺
. . . ≺ [Bn] = B be the path in [Graph](ΦUIND) from [A2] to [B], and let [Bi] be the last element in this

path with b 6∈ Dom(Bi). Now, to obtain M′ from M, for all attributes C ∈ U with C ⊑ Bi, replace all

occurrences of a with b in the C position of all tuples containing that attribute with value a. (Note that

this replacement procedure includes Bi in particular.)

If A2 does not have a minimal proper meet-situated successor, then simply choose b to be any any

domain element which does not already occur in M, and replace all occurrences of a by b in M to

obtain M′.

Note four things. First of all, for tuple t and A ∈ U in which t[A] is changed from a to b, the value

a did not occur as the A-value of any other tuple t ′ of M. Thus, this replacement cannot force any

of the EGDs or the JDs to become unsatisfi ed, since these constraints are all typed. Within attribute

A, this replacement amounts to a simple renaming. Second, all of the UINDs remain satisfi ed, just

by construction. Third, by the assumption of (ii) above, none of these changes is visible in the meet

πU3
(R). Finally, note that this construction works even in the case that [A1] = [A2]. In this case, the

minimal proper meet-situated predecessors and successors will be common to the two attributes, but

this will not change the construction.

Thus, M′ ∈ LDB(R). Since πR
3 (M) = πR

3 (M′), M′′ = (πR
1 ⊗πR

2)
−1

(πR
1 (M),πR

2 (M′)) is well de-

fi ned, and must be in LDB(R) as well. However, it is clear that this latter element violates A1 ⊑ A2,

since a ∈ πA1
(M′′)\πA2

(M′′). This is a contradiction, and so M 6∈ LDB(R), as was to be shown. ✷

6.17 Products of databases Let {Mi | 1 ≤ j ≤ m} ⊆ DB(D). The product of ∏m
i=1 Mi is ob-

tained by taking the products of the relations componentwise. More specifi cally, for the relation

symbol Ri of R, if ti = (ai1,ai2, . . . ,aini
) is a tuple in the relation for Ri in Mi, 1 ≤ i ≤ m, then

t = (〈a11,a21, . . . ,ani1〉,〈a12,a22, . . . ,ani2〉, . . . ,〈a1m,a2m, . . . ,anim〉) is a tuple in the relation corre-

sponding to Ri in ∏m
i=1 Mi, and conversely. Note that this requires a renaming of the elements of

the domain Dom(U), but this is not a signifi cant issue, since it is the form of the models, and not the

names of the domain elements, which are of importance.

In [Fag82], the issues surrounding preservation of models on such products and the corresponding

projection operations are studied extensively, and a strong correspondence between such preservation

and Armstrong models is established. For the purposes of this paper, only the two simple results

stated in the lemma below are needed.

6.18 Lemma

(a) If {Mi | 1 ≤ i ≤ n} is a finite subset of LDB(D), then the product ∏n
i=1 Mi ∈ LDB(D) as well.

(b) Let A1,A2 ∈ U with the property that A1 ⊑ A2 6∈ ΦUIND. Then there is an M ∈ LDB(D) on which

A1 ⊑ A2 does not hold.

PROOF: First of all, part (a) follows almost immediately from [Fag82, Thm. 7.2], in which it is

shown that every schema constrained by constraints which are called extended embedded implica-

tional dependencies (XEIDs) is closed under products. All of the constraints used here — EGDs, JDs,

and UINDs — are special cases of XEIDs. The only caveat is that his result, as stated, holds only

43

on databases for which none of the component relations is empty. However, it is easy to see that it

also holds if the database in which all relations are empty is allowed. It is rather the case in which

some relations are empty and others are not which causes problems, and that case has already been

eliminated from the framework used here via the uniform nonemptiness-emptiness constraint ϕUNE.

For part (b), it suffi ces to note that since ((
Sn

i=1(Φi∪ ✶ [W1i,W2i]))∪ΦUIND) 6 |=f A1 ⊑ A2, there

must be some M ∈ DB(D) which satisfi es all of the constraints in
Sn

i=1(Φi∪ ✶ [W1i,W2i]) but does

not satisfy A1 ⊑ A2. This is exactly the M which is needed for part (b). ✷

6.19 Lemma For any A ∈ U there is an M ∈ LDB(R) and an a ∈ πA(M) with the following prop-

erties.

(i) For no B ∈ U with [B] ≺ [A] is it the case that a ∈ πB(M).

(ii) For no B ∈ U with [A] ≺ [B] is it the case that πB(M) = πA(M).

PROOF: Let B ∈ U with [B] ≺ [A]; thus, in particular, B ⊑ A ∈ ΦUIND while A ⊑ B 6∈ ΦUIND. In view

of 6.18(b), there is an MB ∈ LDB(R) with the property that A ⊑ B is not satisfi ed by MB. Thus, there

is an aB ∈ U with aB ∈ πA(MB) \πB(MB). Similarly, for B ∈ U with [A] ≺ [B]; A ⊑ B ∈ ΦUIND while

B ⊑ A 6∈ ΦUIND, and so there is an MB ∈ LDB(R) with the property that B ⊑ A is not satisfi ed by MB.

Now, let S′ = {[B] | [B] ≺ [A]}∪{[B] | [A] ≺ [B]} and let S be any subset of S′ which selects at least

one representative from each equivalence class. Defi ne M =∏B∈S MB; by 6.18(a), M ∈ LDB(D). Let

a ∈ M be the element whose Bth component is ab. Then a 6∈ πB(M) for any B with [B] ≺ [A], since

aB 6∈ MB. Hence, M satisfi es condition (i) above. Condition (ii) is in fact satisfi ed by every MB, and

so by the product in particular. ✷

It is now possible to establish that meet-free traversals cannot exist when the UINDs are fanout

free. This in turn leads to the conclusion that a cover of the UINDs embeds in the component views.

6.20 Proposition If ΦUIND is fanout free, then Graph(ΦUIND) cannot contain any meet-free traver-

sals.

PROOF: Let i ∈ {1,2}, and let A1,A2 ∈ U with A1 ≺ A2 a meet-free traversal from πR
i to πR

2−i.

Let A = A1 in 6.19, and obtain a database M ∈ LDB(R) satisfying the conditions (i) and (ii) of that

lemma. Then M also satisfi es the three conditions (i)-(iii) of 6.16, and so cannot be in LDB(R). This

is a contradiction; hence, such a meet-free traversal cannot exist. ✷

6.21 Embedded UINDs For i ∈ {1,2}, let πR
i (ΦUIND) denote the set of all UINDs which hold on

πR
i .

6.22 Proposition If ΦUIND is fanout free, then ΦUIND = (πR
i (ΦUIND)∪πR

2 (ΦUIND))
+. In other words,

there is an embedded cover of ΦUIND into the two views of the meet complementary pair.

PROOF: It is clear that the only UINDs which do not embed into one of the two component views,

or which cannot be deduced from such embedded UINDs via application of the transitivity rule of

(rt-uid) 6.6, are those which correspond to meet-free traversals. However, by 6.20, such traversals

cannot occur in the case that ΦUIND is fanout free. ✷

44

Finally, the main decomposition result may be established. Just as the inference rules for FIDs

and UINDs may be decoupled, so too does the constraint checking on the views of the decomposition

decouple into two independent checks, one for the EGDs and the other for the UINDs.

6.23 Theorem — Decomposition in the presence of EGDs and fanout-free UINDs Assume

that ΦUIND is fanout free, let k ∈
�

, and suppose that for each j, 1 ≤ j ≤ n, Φi consists of EGDs of

degree at most k. Let M ∈ JDB〈Γ1;Γ2〉(D). Then M ∈ LDB(R) iff for both i = 1 and i = 2, πR
i (M)

satisfies all EGDs in πR
i (Φi) of degree at most k, as as well as all UINDs in πR

i (ΦUIND).

PROOF: First of all, consider the same candidate model M ∈ JDB〈Γ1;Γ2〉(D), but as a database in

a modifi ed schema in which the UINDs in ΦUIND are ignored. The resulting schema clearly has the

{Γπ1(R),Γπ2(R)}-relative k-submodel property; thus, in view of 5.19, the main theorem on decompo-

sition of schemata with the k-submodel property, to verify that the EGDs in
Sn

i=1 Φi are satisfi ed, it

suffi ces to check that for both i = 1 and i = 2, πR
i (M) satisfi es all EGDs in πR

i (Φi) of degree at most

k.

Now, restore the requirement of checking satisfaction of the UINDs. By 6.22, a cover of the

UINDs must embed into the views. Thus, checking the satisfaction of the members of this cover

suffi ces to verify that the constraints of ΦUIND are satisfi ed. Hence, M ∈ LDB(D). ✷

Upon restricting the above theorem to the familiar territory of FDs, the following result is ob-

tained. In essence, to check the correctness of a decomposed database, it suffi ces to verify that each

of the component views satisfi es all embedded FDs and UINDs.

6.24 Corollary — Decomposition in the presence of FDs and fanout-free UINDs Assume that

ΦUIND is fanout free, let k ∈
�

, and suppose that for each j, 1 ≤ j ≤ n, Φi consists of FDs. Let

M ∈ JDB〈Γ1;Γ2〉(D). Then M ∈ LDB(R) iff for both i = 1 and i = 2, πR
i (M) satisfies all FDs and

UINDs from (Φi)
+∪ΦUIND which embed in the view πi(R). ✷

7. Final Remarks

7.1 Future Direction — An alternative approach to recapturing generating constraints The

decomposition results for schemata constrained by comparison constraints (5.19) are general and

comprehensive. On the other hand, the general results reported for generating constraints (5.25)

are not as broad. While the results established in Section 6 on schemata constrained by EGDs and

fanout-free UINDs nonetheless provide interesting results for what is perhaps the most important type

of generating constraint in databases, they make use of very specifi c properties of the relational data

model, and in particular of constraints governed by situations in which fi nite Armstrong relations

exist. A crucial next step in this work is to look for alternative formulations of the general prob-

lem which promise to lead to stronger results about decompositions in the presence of generating

constraints.

7.2 Future Direction — Strong uniqueness of complements In the preliminary version of this

paper [Heg04b], results on the uniqueness of update strategies were also presented. One of the weak-

nesses of the classical constant-complement strategy, set in the set-based framework, is that comple-

ments are almost never unique, and the way in which view updates are reflected back to the main

45

schema depends upon the choice of complement. The principal focus of [Heg04a] was to identify

situations in which such uniqueness may be obtained. The setting was database schemata with order,

and the main result stated that so-called order-based updates, that is, updates which may be realized

as a sequence of legal insertions and deletions, have a unique reflection to the main view, independent

of the choice of complement [Heg04a, 4.3].

In [Heg04b, Thm. 5.8], it was shown how to generalize this result in the context of CFA-views.

The key idea was to extend update strategies on a view Γ = (V,γ) to its syntactic extension Γ̂; i.e.,

from LDB(V) to DB(V). Since Γ̂ is an order-based view, the results of [Heg04a] guarantee that

the updates on Γ̂ are unique, and so these translate back to Γ. The upshot is that all updates on a

CFA-view Γ have a unique translation back to the main schema, provided that they are defi ned by a

constant-complement strategy with some CFA-view Γ′ as complement.

Due to space and time restrictions, it was not possible to provide a suitable elaboration to PF-

schemata and PF-views in this paper. These uniqueness results will be extended and reported sepa-

rately.

7.3 Relationship to other work The problem of characterizing the complexity of the constraints

on a view does not appear to have received much attention previously, aside from the classical work

of Hull [Hul84], in which it is shown that fi nite specifi cation is not preserved under projection, and

the work of Fagin [Fag82], which includes characterizations of projections of various classes of de-

pendencies.

There has been some work on the complexity of verifying the acceptability of view updates under

a constant complement strategy. In an early paper, Cosmadakis and Papadimitriou [CP84] present

pessimistic complexity results for view update under constant complement which would appear to

contradict those obtained here. However, they work with general subdirect complements, and not

meet complements, and so their results do not apply to the closed update strategies considered here.

They also investigate the complexity of identifying a minimal (not necessarily meet) complement

which will support a given update, again with pessimistic results.

Recently, Lechtenbörger and Vossen [LV03] have also looked at the complexity of the problem of

identifying (not necessarily meet) complements to views, but for the purpose of identifying informa-

tion missing in the view, and not with an eye towards update strategies. Their approach, by design,

does not concern itself with meet complements or update strategies. Beyond those works, most of the

literature on the problem of complexity of view updates is focused on logic databases. The funda-

mental issues which arise in that context (theory-oriented database models) are quite different from

those of instance-oriented database models, and so a meaningful comparison is diffi cult at best.

References

[AHV95] Abiteboul, S., Hull, R., and Vianu, V., Foundations of Databases, Addison-Wesley, 1995.

[AHS90] Adámek, J., Herrlich, H., and Strecker, G., Abstract and Concrete Categories, Wiley-

Interscience, 1990.

[BS81] Bancilhon, F. and Spyratos, N., “Update semantics of relational views,” ACM Trans.

Database Systems, 6(1981), pp. 557–575.

46

[BV84a] Beeri, C. and Vardi, M. Y., “Formal systems for tuple and equality generating dependen-

cies,” SIAM J. Computing, 13(1984), pp. 76–98.

[BV84b] Beeri, C. and Vardi, M. Y., “A proof procedure for data dependencies,” J. Assoc. Comp.

Mach., 31(1984), pp. 718–741.

[CV85] Chandra, A. K. and Vardi, M. Y., “The implication problem for functional and inclusion

dependencies is undedidable,” SIAM J. Computing, 14(1985), pp. 671–677.

[CKV90] Cosmadakis, S., Kannelakis, P. C., and Vardi, M. Y., “Polynomial-time implication prob-

lems for unary inclusion dependencies,” J. Assoc. Comp. Mach., 37(1990), pp. 15–46.

[CP84] Cosmadakis, S. and Papadimitriou, C., “Updates of relational views,” J. Assoc. Comp.

Mach., 31(1984), pp. 742–760.

[DP02] Davey, B. A. and Priestly, H. A., Introduction to Lattices and Order, Cambridge Univer-

sity Press, second edition, 2002.

[EN04] Elmasri, R. and Navathe, S. B., Fundamentals of Database Systems, Pearson Education,

fourth edition, 2004.

[Fag82] Fagin, R., “Horn clauses and database dependencies,” J. Assoc. Comp. Mach., 29(1982),

pp. 952–985.

[FV83] Fagin, R. and Vardi, M. Y., “Armstrong databases for functional and inclusion dependen-

cies,” Info. Process. Lett., 16(1983), pp. 13–19.

[FGM*04] Foster, J. N., Greenwald, M. B., Moore, J. T., Pierce, B. C., and Schmitt, A., “Combi-

nators for bi-directional tree transformations: A linguistic approach to the view update

problem,” Technical Report MS-CIS-04-15, Department of Computer Science, Univer-

sity of Pennsylvania, August 2004, to appear in POPL 2005.

[GJ82] Grant, J. and Jacobs, B. E., “On the family of generalized dependency constraints,”

JACM, 29(1982), pp. 986–997.

[Heg90a] Hegner, S. J., “Foundations of canonical update support for closed database views,” in:

Abiteboul, S. and Kanellakis, P. C., eds., ICDT’90, Third International Conference on

Database Theory, Paris, France, December 1990, pp. 422–436, Springer-Verlag, 1990.

[Heg90b] Hegner, S. J., “Some open problems on view axiomatization,” Bulletin of the EATCS,

40(1990), pp. 496–498.

[Heg93] Hegner, S. J., “Characterization of desirable properties of general database decomposi-

tions,” Ann. Math. Art. Intell., 7(1993), pp. 129–195.

[Heg94] Hegner, S. J., “Unique complements and decompositions of database schemata,” J.

Comput. System Sci., 48(1994), pp. 9–57.

47

[Heg02] Hegner, S. J., “Uniqueness of update strategies for database views,” in: Foundations

of Information and Knowledge Systems: Second International Symposium, FoIKS 2002,

Salzau Castle, Germany, February 2002, Proceedings, pp. 230–249, Springer-Verlag,

2002.

[Heg04a] Hegner, S. J., “An order-based theory of updates for database views,” Ann. Math. Art.

Intell., 40(2004), pp. 63–125.

[Heg04b] Hegner, S. J., “The relative complexity of updates for a class of database views,” in:

Seipel, D. and Turull-Torres, J. M., eds., Foundations of Information and Knowledge

Systems: Third International Symposium, FoIKS 2004, Wilehminenberg Castle, Austria,

February 17-20, 2004, Proceedings, pp. 155–175, Springer-Verlag, 2004.

[HSR98] Horowitz, E., Sahni, S., and Rajasekaran, S., Computer Algorithms, Computer Science

Press, 1998.

[Hul84] Hull, R., “Finitely specifi able implicational dependency families,” J. Assoc. Comp.

Mach., 31(1984), pp. 210–226.

[JAK82] Jacobs, B. E., Aronson, A. R., and Klug, A. C., “On interpretations of relational lan-

guages and solutions to the implied constraint problem,” ACM Transactions on Database

Systems, 7(1982), pp. 291–315.

[LV03] Lechtenbörger, J. and Vossen, G., “On the computation of relational view components,”

ACM Trans. Database Systems, 28(2003), pp. 175–208.

[PDGV89] Paredaens, J., De Bra, P., Gyssens, M., and Van Gucht, D., The Structure of the Relational

Database Model, Springer-Verlag, 1989.

[Tha91] Thalheim, B., Dependencies in Relational Databases, Volume 126 of Teubner-Texte zur

Mathematik, Teubner, 1991.

[WG92] Wang, K. and Graham, M. H., “Constant-time maintainability: A generalization of inde-

pendence,” ACM Trans. Database Systems, 17(1992), pp. 201–246.

Appendix A: A Simple Counterexample to the Finite Axiomatiz-

ability of Relational Views

It is part of the folklore of the theory of relational databases that there exists a schema with a simple

axiomatization which has a projective view which is not fi nitely axiomatizable. From time to time, it

is useful to be able to point to such an example, complete with an explanation of why fi nite axioma-

tizability fails. Unfortunately, they have rarely made it into the literature. Only two are known to the

author. In [Hul84, Lemma 4.1], Hull presents an example of a schema with fi ve attributes constrained

by three functional dependencies (FDs). The view which is not fi nitely axiomatizable is a projection

onto four of those attributes. In [Heg90b], the author identifi es a simpler example containing just

four attributes and constrained by three FDs, with the corresponding view a projection onto three of

those attributes. Unfortunately, that example contains an error; and, in any case, no argument for its

48

validity is offered. In this note, the example of [Heg90b] is corrected, and the proof of the lack of

fi nite axiomatizability of the view is elaborated.

a1 b1 c1 d1

a1 b2 c2 d1

a2 b2 c3 d1

a2 b3 c4 d1

a3 b3 c5 d1

a3 b4 c6 d1

a4 b4 c7 d1

a4 b5 c8 d1
...

...
...

...

ak−1 bk−1 c2k−3 d1

ak−1 bk c2k−2 d1
...

...
...

...

an−1 bn−1 c2n−3 d1

an−1 bn c2n−2 d1

an bn c1 d1

Figure 4: The layout of the generic counterexample instance

Let E1 be the relational schema with the single relation name R[ABCD] on four attributes; the

constraining set of FDs is F 1 = {A → D,B → D,CD → A}. The domain of possible values for each

attribute is assumed to be infi nite. Let ΠABC = (R[ABC],πABC) denote the view which is the projection

onto the attributes ABC. For any n > 0, let r(n) denote the instance which is depicted in Fig. 4.

Assume that any two elements with distinct names are distinct values, save that a1 and an may be

the same. It is easy to see that r(n) is a legal instance of the main schema if and only if a1 = an.

Similarly, r′(n) = πABC(r(n)) is a legal instance of ΠABC under the implied constraints if and only if

a1 = an, since a simple “chase” through any element of π−1

ABC(r′(n)) shows that all of the values in the

column of attribute D must be the same. However, if any tuple from r′(n) is deleted, a valid instance

of R[ABC] is obtained even if a1 6= an, since it is now possible to have two distinct values appearing

in column D in an inverse image. This situation is shown in Fig. 5 with the row containing (a3,b4,c6)
deleted. In this case, it need not be the case that a1 = an. Therefore, ΠABC is not axiomatizable by any

set of sentences having only n free tuple variables (i.e.; a maximum of n variables per column). Since

n is arbitrary, ΠABC is not fi nitely axiomatizable. In particular, it is not axiomatizable by any fi nite

set of equality generating dependencies (EGDs) [AHV95, 10.1], much less by a family of functional

dependencies.

49

a1 b1 c1 d1

a1 b2 c2 d1

a2 b2 c3 d1

a2 b3 c4 d1

a3 b3 c5 d1

a3 b4 c6

a4 b4 c7 d2

a4 b5 c8 d2
...

...
...

...

ak−1 bk−1 c2k−3 d2

ak−1 bk c2k−2 d2
...

...
...

...

an−1 bn−1 c2n−3 d2

an−1 bn c2n−2 d2

an bn c1 d2

Figure 5: The layout of the generic counterexample instance with one row deleted

50

