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Abstract 

It is unknown how cortical entropy or “complexity”, a marker of consciousness, evolves in early 

human development. To test the hypothesis that the entropy of cortical signals increases 

approaching birth, we conducted the first ever study to relate fetal cortical entropy to 

maturation. MEG recordings were obtained from a sample of fetuses and newborns with prior 

evidence of perceptual consciousness. Using cortical responses to auditory irregularities, we 

computed several measures of signal entropy. Despite our hypothesis, cortical entropy 

significantly decreased with maturation in fetuses and newborns, with the strongest effect 

occurring with 4 – 10 Hz permutation entropy in both groups. Decreases in permutation entropy 

were driven by amplitude changes in both fetuses and newborns, whereas phase and its 

interaction with amplitude drove increases in entropy, possibly related to consciousness. These 

results lay groundwork both for future measures of perinatal consciousness and new in utero 

estimates of risk for neurodevelopmental disorders.  

 

Teaser: Even as birth nears, a neural marker of consciousness decreases with gestational age in 

late fetal development and continues to decline after birth. 
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Introduction 

The complexity of cortical signals is captured by entropy, or the number of unique ways in which 

states of a signal can be arranged. Entropy has been successfully used as a proxy for the level of 

consciousness across a wide range of conditions and populations (1). In adults, it decreases 

relative to wakefulness as consciousness vanishes in non-rapid eye movement (NREM) sleep (2, 

3), anesthesia (4, 5), and disorders of consciousness such as the coma and vegetative state (2, 6), 

and it increases as phenomenology gains vividness and intensity during hallucinatory states 

induced by psychedelic substances relative to ordinary wakefulness (7, 8) and lucid dreaming 

relative to non-lucid dreaming (9). Similarly, in both neurotypical children and children with 

abnormal cortical dynamics linked to genetic disorders, cortical entropy also tracks diminished 

consciousness during NREM sleep and outperforms spectral markers as an indicator of 

consciousness (10).  

In a broader context, neural complexity often positively reflects cortical health, as demonstrated 

in Alzheimer’s disease (11, 12), cognitive aging (13), autism spectrum disorder (ASD) (14–16), and 

attention deficit hyperactivity disorder (17, 18). While neural complexity shows an inverse 

relationship with these conditions (i.e., complexity is considered healthy), in other instances, 

excessive complexity may reflect disorganized neural firing patterns or excessive flexibility of 

circuits, e.g., in schizophrenia (19, 20). These lines of evidence, combined with analogous findings 

from other organ systems (21–23), suggest that optimal levels of physiological complexity might 

be general signatures of adaptability, flexibility, and fitness (24).  

Given the foregoing, neural complexity should be expected to track both healthy 

neurodevelopment and the emergence of consciousness in the earliest stages of life. Along these 

lines, two early electroencephalography (EEG) studies of infancy found differences in signal 

complexity (measured as dimensionality) between sleep stages (suggesting differences in 

conscious level), as well as higher complexity in full-term infants compared with preterm infants 

who had reached the same postmenstrual age (25, 26) (suggesting differences in cortical 

development). A later study reproduced this finding using different complexity measures and 

also found evidence that skin-to-skin care between mothers and preterm infants restores neural 

complexity in a small cohort (27). Another study that examined a similar intervention with a 

larger sample size (28) tested the integrated information theory (IIT) of consciousness (29) by 

estimating EEG complexity in preterm infants as integrated information. The authors found that 

this measure relates to conscious state and increases with postmenstrual age in preterm infants; 

moreover, the latter relationship shows a steeper slope for preterm infants who receive greater 

maternal care (28).  

Beyond infancy, it is known that cortical signal complexity increases with age in early (30, 31) and 

late (32, 33) childhood, yet the picture prior to birth has remained terra incognita. While a proof-

of-principle study has demonstrated that the signal-to-noise ratio (SNR) of fetal 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 22, 2022. ; https://doi.org/10.1101/2022.11.21.517302doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.21.517302
http://creativecommons.org/licenses/by/4.0/


Frohlich et al.                                                                                           Perinatal cortical entropy 

4 
 

magnetoencephalography recordings (generally referred to as fMEG) is sufficient to meaningfully 

compute cortical complexity measures (34), the extent to which such measures track brain 

development, maturation, cortical health, or the capacity for consciousness in fetuses remains 

unknown.  

In this study, we measured cortical responses to auditory irregularities with MEG recordings that 

passed rigorous quality control in a sample of fetuses and newborns for whom evidence of 

perceptual consciousness has already been inferred in prior work using a local-global paradigm 

(35, 36). This paradigm, which measures cortical responses to sensory irregularities (or 

“oddballs”) in a hierarchical learning context, has been previously used to infer consciousness in 

adult neurological patients (37–39). Because oddballs generate a Bayesian prediction error, we 

reasoned that they should more strongly perturb the thalamocortical system than repetitive 

trains of identical stimuli. Our approach thus takes inspiration from the perturbation complexity 

index (PCI) of consciousness (2), which emphasizes causal influences within a system (29). We 

therefore computed entropy from event-related data in contrast to the spontaneous entropy 

approaches cited earlier (25–28) and utilized two different auditory sequences (with and without 

local deviant tones). We hypothesized that cortical entropy would increase with maturation in 

fetuses as consciousness develops approaching birth, and also in newborns, as consciousness 

further develops in early infancy. Additionally, because fetal behavioral states are categorized in 

large part using heart rate variability (HRV) (40), we also hypothesized that cortical entropy would 

increase with HRV, as more active fetuses might plausibly be in a more conscious state compared 

with inactive or sleeping fetuses.  

To test these hypotheses, we utilized several distinct entropy measures, as well as 

decompositions of the MEG signal into amplitude and phase components and comparisons of the 

MEG signal entropy to that of surrogate signals. Finally, to better understand the relationship 

between entropy and oscillations, we also correlated entropy with spectral power and examined 

event related spectral perturbations (ERSPs) in relation to maturation and arousal. Our results 

for the total entropy change and amplitude component, which contradict our hypothesis, are 

perhaps the first observation of brain dynamics descending from a state of high entropy as the 

brain’s capacity for consciousness increases, rather than decreases. Our results for the non-

amplitude component of the permutation entropy change, on the other hand, demonstrate 

increasing entropy with age, as we originally hypothesized, perhaps related to an increasing 

capacity for consciousness. By exploring the behavior of entropy in response to auditory 

irregularities in fetuses and newborns, our results may pave the way for both biomarkers of 

perinatal consciousness analogous to the PCI (41) and in utero detection of neurodevelopmental 

disorder risk as indicated by abnormal cortical entropy trajectories.
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Results 

We utilized data that were collected from a previous study at the fMEG Center at the University 

of Tübingen. Recorded signals included both cortical activity (MEG) and cardiac activity 

(magnetocardiography or MCG), the latter of which was retained to measure HRV (one of the 

main parameters used to classify fetal behavioral and sleep states (40)) and, by proxy, arousal.  

The dataset consisted of 81 usable recordings of cortical and cardiac signals from 43 fetuses 

(gestational age range: 25 – 40 weeks) which passed strict MEG quality control. Of these data, 75 

recordings from 41 fetuses also contained usable MCG data; thus, only these data were used in 

the main analyses of fetal data that included HRV as a predictor. Two additional recordings 

lacking usable cardiac data were utilized in a follow up analysis (see “Maturation diminishes 

entropy through changes in MEG signal amplitude” below). For a description of which data were 

used in which analyses, see Tables S1 and S2. We additionally included 20 recordings from 20 

newborns (age range: 13 – 59 days) acquired with the same MEG system and which also passed 

strict MEG quality control. Each experiment exposed fetuses and newborns to two blocks of 

stimuli: sequences of identical tones (‘ssss’) or nonidentical tones (‘sssd’). In a subsequent test 

phase, sequences occasionally violated the block rule (capital letters denote rule violations). See 

Methods and Materials for additional details.    

We computed the signal entropy on the MEG signals averaged across trials and channels (see 

Materials and Methods), according to six approaches. Two approaches, Lempel-Ziv complexity 

(LZC) and context tree weighting (CTW), measure the compressibility of the signal. The remaining 

approaches are based on state-space reconstruction of the signal and include modified sample 

entropy (mSampEn, or the tendency of motifs to reoccur within a signal), modified multiscale 

entropy (mMSE, which computes mSampEn at different time scales), and permutation entropy 

(PermEn, or the occurrence of unique permutations based on ordinal rankings of data). We 

computed two different varieties of PermEn using a 32 ms lag (PermEn32, sensitive to 4 – 10 Hz 

activity) and a 64 ms lag (PermEn64, sensitive to 2 – 5 Hz activity). To account for longitudinal 

fetal data, we computed correlations from fetal data using normalized β regression coefficients. 

We corrected for multiple comparisons using the Benjamini-Hochberg (42) false discovery rate 

(FDR). For ERSPs, we also corrected for multiple comparisons using permutation cluster statistics 

before applying the FDR correction.  

Cortical entropy declines with maturation in fetuses and newborns 

In fetuses, all six entropy measures significantly decreased with maturation (Fig. 1, Table 1). The 

largest such effect was observed for PermEn32, which is sensitive to activity in the 4 – 10 Hz range 

(t = -4.71, PFDR < 0.0001). PermEn64, which is sensitive to activity in the 2 – 5 Hz range, showed 

only a marginally significant negative relationship with gestational age (t = -2.57, PFDR = 0.03). 

Thus, the largest fetal cortical entropy changes with maturation appear localized to the 4 – 10 Hz 

band, which may encompass the alpha band in early development (43). In newborns, as in 
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fetuses, PermEn32 showed the strongest relationship with maturation, significantly decreasing 

with age (t = -3.85, PFDR < 0.005); note that this relationship was only cross-sectional, as no 

longitudinal data were obtained from newborns. The same relationship was not significant in 

newborns for PermEn64 (t = -1.61, p > 0.05) suggesting, again, that entropy changes are mainly 

localized to the 4 – 10 Hz band measured with PermEn32. Two other entropy measures, CTW (t 

= -2.45, p = 0.05) and mSampEn (t = -2.72, p = 0.03), were marginally significant in newborns, also 

showing negative correlations with age. The remaining entropy measures did not significantly 

relate to maturation in newborns but nonetheless showed the same directionality as other 

measures, i.e., a negative relationship with age. See Table 1 for exact P-values. Arousal (inferred 

from HRV) did not significantly predict changes in any entropy measures for either group.  

Because fetal data contained multiple recordings from some subjects, we next evaluated 

whether these recordings could be approximated as independent samples by examining the 

usefulness of the random intercept term in the fetal LMMs. For each fetal model except for the 

LMM predicting PermEn64, the random effect term significantly increased the model fit (P < 10-

6, log-likelihood ratio test, uncorrected, Table S3), implying substantial dependencies between 

longitudinal recordings from the same subjects with consequences for our correlational analyses 

(see Fig. S3).  

After running linear mixed models (LMMs), we next computed correlations between entropy 

measures and maturation in fetuses and newborns (Fig. 1). These post hoc tests revealed a 

numeric pattern of stronger correlations for the global deviant sssD in both fetuses and for the 

global deviant sssS in newborns. Many correlations between age and entropy measures derived 

from newborns were moderate in degree with the same sign (negative) as those seen in fetuses 

[r < -0.3, 13/24 (54%)]. For comparison, this proportion was smaller in the fetal correlations 

[derived from model coefficients, β < -0.3, 8/24 (33%)]; thus, we may have been underpowered 

to detect a significant finding in some entropy measures (LZC, mMSE, and PermEn64) due to our 

small neonatal sample. Positive correlations between entropy and maturation were rare, 

occurring exclusively in the sssd condition in newborns (see Fig. 1).  

 

Changes in MEG signal amplitude drive maturational decreases in 

signal entropy 

To determine whether the decline in entropy with maturation was driven by changes in the MEG 

signal amplitude (e.g., the maturation of ERF component amplitudes) or by non-amplitude 

changes (i.e., changes in the MEG signal phase and its interaction with amplitude), we performed 

an entropy decomposition (44), which entailed randomizing Fourier phases to isolate the 

contributions of amplitude, phase, and their interaction (see Materials and Methods). In fetal 

MEG recordings, we performed this analysis using only those fetuses with longitudinal data from 

both early and late gestation, defined as before and after the 35 week mark. We further restricted 
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this analysis to the sssD condition, which had yielded the strongest relationship between entropy 

and gestational age in fetuses (Fig. 1). We identified n = 12 fetuses with data from both prior to 

35 weeks gestational age (“early”) and 35 weeks or later (“late”), choosing 35 weeks as the 

threshold based on evidence from a prior study that fetuses begin to show cortical responses to 

deviant tones at this gestational age (35). In cases where fetuses meeting this criterion had more 

than two recordings, we used the earliest recording for the early condition and the latest 

recording for the late condition. Note that two fetal recording from separate participants that 

were excluded from other analyses due to missing HRV data were included here (Table S1). In 

neonatal MEG recordings, we applied a median split at an age of 33 days in participants with 

usable data (n = 18) in the sssS condition (i.e., the data that yielded the strongest post hoc 

correlations between entropy and age in newborns). This allowed us to compare entropy changes 

between 9 younger and 9 older newborns using the same entropy decomposition that was 

applied to fetal data. Because we lacked longitudinal data in the neonatal cohort and thus could 

not examine entropy changes using a paired-samples approach, we computed differences using 

all possible pairings between age groups (see Materials and Methods). For each neonatal 

recording, we then computed the average difference between its entropy and the entropy of the 

neonatal recordings in the other age group. Next, we compared these average differences 

between amplitude and non-amplitude contributions. Because our findings were identical 

regardless of whether this contrast was performed referenced to the younger versus the older 

subgroup of newborns, we arbitrarily chose the younger subgroup for reporting our results 

below; results referenced to the older subgroup are reported in Table S4.  

We discovered that, for both measures of PermEn (i.e., PermEn32, sensitive to 4 – 10 Hz activity, 

and PermEn64, sensitive to 2 – 5 Hz activity), amplitude and non-amplitude properties of the 

signal caused opposite changes between early and late timepoints in both fetuses and newborns 

(Fig. 2). Specifically, as seen in Fig. 2 for both fetal and neonatal data, the MEG signal amplitude 

was responsible for the decline in entropy (i.e, ΔPermEn < 0, old - young), whereas the non-

amplitude properties (phase and phase x amplitude interactions) drove changes in the opposite 

direction (i.e, ΔPermEn > 0, old - young). The difference between amplitude and non-amplitude 

contributions was highly significant (Table 2) for both PermEn32 and PermEn64 in fetuses and 

newborns (PFDR < 10-10). Although the magnitude of these changes were similar between 

amplitude and non-amplitude components (Fig. 2), the absolute value of the amplitude 

component was larger in all cases except PermEn64 in newborns, resulting in larger PermEn at 

earlier timepoints in those cases where LMMs had already revealed statistically significant 

entropy decreases with age. Thus, PermEn ultimately declines with maturation in fetuses and 

newborns due to MEG signal amplitude, despite the opposing influence of non-amplitude factors. 

Other entropy measures did not yield significant differences in changes attributable to amplitude 

versus non-amplitude components in fetuses or newborns (Fig. S1). Note that we obtained the 

same results when entropy differences were references to older newborns (Fig. S2).  

Evidence of cortical stochasticity in fetuses and neonates 
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To assess the degree to which cortical MEG signals differed from noise, i.e., surrogate signals with 

the same amplitude distribution, we next tested whether the entropy estimates for cortical 

signals were significantly different from the entropy of surrogates. No entropy measures 

significantly distinguished cortical signals from surrogates (Table 3). This null result suggests that 

MEG signals lack nonlinear components that affect entropy. Given this likely lack of nonlinearity, 

at least some degree of stochasticity, or intrinsic randomness, appears to be present in MEG 

signals. Using the Toker decision tree algorithm (45), we found that the proportion of signals with 

deterministic dynamics was significantly larger in fetuses than in newborns (χ2 = 30.8, P = 2.8 x 

10-8, uncorrected; note that each recording was treated as an independent sample), yet neither 

maturation nor arousal predicted signal dynamics in fetuses or newborns (Fig 3, Table S5). 

Entropy measures correlate strongly with one another and weakly with 

spectral power 

To better understand the behavior of cortical entropy measures in our data, we computed 

correlations between these measures. As expected, in both fetal and neonatal data, entropy 

measures were positively correlated with one another (Fig. 4A,B), many strongly so (fetal range: 

β = 0.42 – 0.97;  neonatal range: r = 0.61 – 0.97), showing these measures are approximately 

capturing a reliable underlying property of the MEG signal. Although we used beta coefficients 

to measure correlations in fetal data with longitudinal recordings, beta coefficients returned very 

similar values as Pearson coefficient (Fig. S3). Next, we examined correlations between signal 

complexity measures and spectral power. Entropy measures were negatively correlated with 

spectral power at all frequencies in newborns (range: r = -0.77 – -0.089) and at frequencies < 5.5 

Hz in fetuses (range: β =-0.48 – -0.09), demonstrating that cortical synchronization introduces 

regularities into cortical signals that constrain their entropy (Fig. 4C,D). However, this relationship 

between entropy and power reversed at faster frequencies in fetuses, with moderate 

correlations as high as β = 0.36 for power at 9.5 Hz. Finally, we utilized time-resolved CTW to 

evaluate the relationship between entropy and spectral power within each recording. This 

within-recording analysis was only performed using CTW, given its high temporal resolution; we 

accepted this analysis as being representative of entropy in general, given that CTW is highly 

correlated with other entropy measures. We found that, after averaging TFRs and time-resolved 

CTW across all datasets, CTW was not strongly correlated with spectral power at most 

frequencies in fetuses and newborns; note that correlation coefficients were averaged in a 

nested fashion (first with-subjects, then between-subjects) to ensure that subjects with 

longitudinal data were not overrepresented. After averaging correlation coefficients across all 

four stimulus x block rule combinations, we found that the absolute value of the mean correlation 

did not exceed 0.25 for any frequency in fetal or neonatal data (Fig. 4E,F). Thus, signal entropy 

appears to be weakly correlated with spectral power within each dataset, but negatively—and, 

in some cases, strongly—correlated with spectral power between datasets. 
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Cortical synchronization increases with maturation in fetuses and 

newborns 

Finally, we examined how maturational variables influenced ERSPs in fetal and neonatal data. 

Using permutation cluster statistics, we observed three significant clusters (AGE term in model, 

PFDR < 0.005) in time-frequency representations from fetal data in which more mature fetuses 

demonstrated greater synchronization (Fig. 5A,B, Table 4), with this effect occurring within the 

delta frequency range (1 – 3 Hz). In newborns, we observed broadband synchronization with 

increasing maturation in ERSPs, yielding eight significant clusters (PFDR < 0.005) for the AGE term 

in our model (Fig. 5C,D, Table 4). Newborns also yielded three significant clusters (PFDR < 0.005) 

for the HRV model term, showing greater power with lower arousal at low frequencies 

corresponding to delta or theta (Fig. 5E,F, Table 4). For a full description of all time-frequency 

clusters with exact P-values, including those that were not statistically significant, see Table 4. 

For TFRs of trial-averaged ERFs in each condition, see Fig. S4.    
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Discussion 

In this study, we tested the hypothesis that fetal cortical entropy increases as the brain’s capacity 

for consciousness increases approaching birth, and that this trajectory continues after birth in 

newborns. Importantly, we utilized a sample of fetuses and newborns with prior evidence of 

perceptual consciousness (35). Although we built on a proof-of-concept study (34), our current 

work is the first to test hypotheses that these entropy measures change with physiological 

variables such as age and arousal in fetuses.  

Despite our expectation that cortical entropy would increase with maturation, we were surprised 

to discover significant decreases in total entropy in all measures of cortical signal complexity in 

fetuses and several measures in newborns. In both fetuses and newborns, the strongest effect of 

maturation was obtained using PermEn32, which is maximally sensitive to activity in the 4 – 10 

Hz range, i.e., the perinatal alpha band (43). However, an entropy decomposition revealed that 

these changes are specifically driven by changes in signal amplitude with maturation, whereas 

other signal changes—possibly related to the emergence of consciousness—drive increases in 

PermEn. Thus, the total effect of decreasing entropy with perinatal maturation may actually be 

the net result of two separate maturational processes with opposite effects on PermEn, although 

evidence for this was not observed using other entropy measures.  

While fewer entropy measures significantly related to maturation in newborns as in fetuses, 

many correlations between age and entropy in newborns were in fact of larger magnitude than 

those measured in fetuses and shared the same direction (negative). This could potentially be 

explained by the fact that we may have been underpowered to predict some entropy measures  

from age in our small sample of newborns (N = 20). Alternatively, we may have had fewer findings 

in newborns because the cradle is a less controlled environment than the womb (41). 

Toward an index of perinatal consciousness  

Cortical entropy is typically measured either from spontaneous EEG or MEG signals (5, 7), or using 

cortical responses to perturbations (2), recorded with EEG, to noninvasive transcranial magnetic 

stimulation (TMS). The latter approach, known as the PCI (2), is inspired by IIT, which emphasizes 

the role of casual influences within a system as the basis of consciousness (29). Despite its 

excellent empirical performance discriminating states of consciousness in adults (6), PCI’s 

application excludes fetuses and infants for whom the developmental risks of TMS are not fully 

understood. A safer alternative, however, is offered by sensory stimulation, which also perturbs 

the cortex, albeit in a very different fashion (46). These sensory perturbations may be useful for 

inferring the developmental onset of conscious awareness (41). 

Our application of entropy measures to cortical signals resulting from auditory prediction errors 

in fetuses and newborns is inspired by, yet different from, PCI based on TMS-perturbations in 

adults (6). Although we are hopeful that a sensory PCI might be achievable in the near future; 
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[for a discussion of feasibility, see Frohlich et al. (41)], we caution that, unlike published PCI 

algorithms, our calculations of cortical entropy measures in the present study did not take into 

account spatial entropy, as we averaged signals across 5 (newborns) or 10 (fetuses) MEG 

channels to overcome SNR limitations in our noisy recordings. This might explain why the total 

cortical entropy decreased with maturation in fetuses and newborns, despite a reasonable 

expectation that the brain’s capacity for conscious experience (which relates positively to cortical 

entropy) will increase, rather than decrease, over this time period. Had our SNR been sufficient 

to forego channel-averaging and instead compute the full spatiotemporal entropy pattern, it is 

plausible that the decrease in temporal entropy that occurs in fetal signals with maturation would 

have been counter-balanced or exceeded by an increase in spatial entropy over the same 

developmental period (Fig. 6B). This explanation is supported by the fact that corticocortical 

connectivity, whose measurement requires resolving the activity of spatially distributed sensors, 

is responsible for decreases in PCI during unconsciousness (47). On the other hand, the P300 

response elicited by sensory oddballs is longer and less spatially varied (48) compared with TMS-

evoked potentials (49), suggesting than entropy could still decrease with maturation even when 

a full temporospatial pattern is accounted for.  

Causes of cortical entropy changes in late fetal developmental  

Considering non-amplitude effects on PermEn, our original hypothesis that perinatal increases in 

the capacity for consciousness should manifest as increases in cortical entropy may still be 

partially correct though not reflected in the total entropy change. The maturation of ERF 

components, which introduce structure into cortical signals, thereby constraining their entropy 

(Fig. 6A), may mask the hypothesized increase. This interpretation is supported by the fact that 

signal amplitude is responsible for the decrease in PermEn (Fig. 2). Previous work in the same 

sample of fetuses has shown maturation of P300-like cortical responses to deviant tones late in 

the third trimester, with fetuses demonstrating stronger responses past 35 weeks gestation as 

compared to younger fetuses (35). However, in later development (one month to adulthood), 

the entropy of event-related cortical signals increases even as the responses mature and grow in 

amplitude (31, 32). Thus, it seems that entropy relates negatively with amplitude during the 

perinatal period, but this relationship may reverse in later development.  

Alternatively, one may also view the decrease in fetal cortical entropy with maturation through 

the lens of the entropic brain hypothesis (EBH) (50, 51). EBH emphasizes the entropy of 

spontaneous, rather than perturbed, brain activity as an index of the informational and 

phenomenological richness of conscious states. Although this relationship is generally positive in 

adults (3, 5, 7, 8) and young children (10, 52), one prediction of EBH is that the richness of 

conscious content should diminish if entropy exceeds a “critical zone” that is optimal for 

consciousness and information processing (50). One may therefore speculate that in perinatal 

development, the cortex begins in an over-entropic state, and that cortical entropy must 

decrease (e.g., via sculpting processes such as apoptosis and synaptic pruning) (53) before 
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consciousness emerges. However, this interpretation would also predict that cortical signals 

change their dynamics as the cortex descends into a critical state. Contrary to this prediction, 

signal dynamics were not significantly associated with maturation in data from fetuses or 

newborns (Fig. 3, Table S5).  

Fetal cortical entropy as an indicator of circuit flexibility and 

neurodevelopmental trajectories 

Above, we have assumed cortical entropy should track consciousness during perinatal 

development. Alternatively, however, changes in the total cortical entropy may reflect a different 

construct, such as the flexibility of cortical circuits. This view is supported by the fact that we 

failed to find a relationship between arousal (measured as HRV) and entropy (Table 1), even 

though these two variables are tightly related in most contexts (54, 55) and, moreover, that the 

relationship we did detect between maturational changes and total entropy changes showed the 

opposite direction (Fig. 1) as what one would likely hypothesize, given that entropy is a marker 

of consciousness (1). 

If the total cortical entropy measured from event-related perinatal MEG signals does not reflect 

the level of consciousness, an alternative interpretation of the cortical entropy changes we 

detected is that they relate to the evolving flexibility and adaptability of cortical circuits. Indeed, 

neural entropy has been previously described in this context (24), possibly explaining its 

reduction in many brain disorders and disease states (11–13, 17, 18, 16). Nonetheless, excessive 

neural entropy may reflect excessive flexibility whereby circuits fail to function properly, e.g., in 

schizophrenia (19, 20). Similarly, neural entropy might also indicate the progress of 

developmental forces. In ontogenesis, neural circuits may begin in many different patterns (high 

entropy) but converge toward a “canal” or mature pattern of activity (low entropy) through 

developmental processes such as apoptosis and synaptic pruning (Fig. 6D) (53).  

Because this process continues after birth, neural entropy has been used to track abnormal 

neural development and predict an eventual diagnosis of the neurodevelopmental disorder 

autism from EEG recorded as early as 3 months of age (14). Our finding that neural entropy 

decreases with gestational age might allow for new techniques that uses fetal entropy 

trajectories to assess the risk for neurodevelopmental disorders which largely begin in utero, 

including ASD and schizophrenia (56–58). The etiology of both disorders is thought to involve 

aberrant or excessive synaptic pruning (59, 60), which may be preceded by abnormal circuit 

development in utero. Given that entropy features derived from infant EEG recordings have 

recently shown promise for assessing ASD risk (14, 15), fetal MEG signal entropy changes, 

influenced by circuit maturation (Fig. 6D), might be used to detect a developing fetus’s risk of 

neurodevelopmental disorders later in life. A predictive biomarker such as this is greatly needed 

to initiate early interventions (61).  
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Limitations, future directions, and conclusions  

Herein, we have presented the first ever evidence of evolving cortical entropy during late fetal 

development. Combined with cross-sectional evidence from newborns, these results suggest a 

continuous decline in cortical entropy from late gestation to several weeks after birth. Our 

findings are admittedly limited by the low SNR of our recordings, which precluded our ability to 

study spatial changes in entropy with maturation or to examine oscillations in the beta and 

gamma range. Furthermore, our efforts to explore cortical entropy as a perinatal marker of 

consciousness are arguably limited by the inaccessibility of a ground truth, whereby we may only 

trust such markers insofar as they relate to consciousness in adults and children. Finally, even if 

neural markers of consciousness in adults carry the same meaning in fetuses and newborns, it 

remains uncertain whether sensory perturbations can be used in the same manner as TMS 

perturbations for detecting consciousness. For a detailed discussion of these final two issues, see 

Frohlich et al. 2022 (41). 

 

A notable strength of our study was the inclusion of a large sample of fetuses with both cross-

sectional and longitudinal sampling to study development. Although MEG signals from 

newborns—which we also recorded—offer a better SNR, fetal data offer the advantage that the 

womb is a highly controlled environment that regulates fetal arousal and isolates the fetus from 

many environmental distractors (41). Furthermore, our study was strengthened by the inclusion 

of fetal and neonatal cohorts for whom evidence of perceptual consciousness had already been 

established (35, 36).  

 

In conclusion, a key finding of our study is a realtionship between perinatal cortical entropu and 

maturation which suggests that entropy tracks an important developmental process in utero. Our 

work builds on an earlier proof-of-concept study (34) to demonstrate the successful application 

of entropy measures to fetal MEG signals and lays the groundwork for both for in utero 

assessments of ASD and schizophrenia risk and for quantitative inferences of conscious level in 

fetuses and newborns (e.g., using “sensory PCI”). Future investigations, particularly using 

optically pumped magnetometers to record MEG (62–64), should map spatial changes in 

perinatal cortical entropy and further investigate the feasibility of a PCI-like index of perinatal 

consciousness using sensory perturbations.  
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Materials and Methods 

Study population 

This work utilized publicly available (fetal data: https://zenodo.org/record/4541463#.Y0a-

iExByHt; neonatal data: https://zenodo.org/record/4018827#.Y0a-akxByHt) which were acquired 

for and previously analyzed in studies of hierarchical learning in fetuses (35) and newborns (36) 

that revealed markers of perceptual consciousness in both cohorts. Previous studies from which 

the data were obtained recruited parents or mothers-to-be who volunteered data from their 

newborn infants (N = 33) or fetuses (N = 60), respectively. Some mothers-to-be gave fetal data 

at multiple visits (see below). Newborns were 13 – 59 days old at the time of MEG recording. The 

study was approved by the local ethics committee of the Medical Faculty of the University of 

Tübingen. Consent to participate in the experiment was signed by the mother-to-be (fetal group) 

or both parents (neonatal group).  

MEG recordings 

Fetal and neonatal cortical signals were recorded in the context of earlier studies (see above) 

using the SARA (SQUID array for reproductive assessment, VSM MedTech Ltd., Port Coquitlam, 

Canada) system in a magnetically shielded room (Vakuumschmelze, Hanau, Germany) at the 

fMEG Center at the University of Tübingen. The SARA system is an MEG machine built for 

recording fetal data, with SQUID (superconducting quantum interference device) sensors 

arranged in a concavity that fits the maternal abdomen. All MEG signals were sampled at 

610.3516 Hz; this legacy sampling rate originates from the need to avoid interference from other 

radio signals during system installation. Recorded signals included both cortical activity (MEG) 

and cardiac activity (MCG), the latter of which was retained to measure HRV and arousal. Fetal 

head position was determined before and after each MEG recording using ultrasound 

(Ultrasound Logiq 500MD, GE, UK), and the first measurement was used to place a positioning 

coil on the maternal abdomen. Three additional positioning coils were placed around the 

abdomen (left and right sides, and one on the spine) to track changes in the position of the 

mother-to-be’s body. Recordings with excessive positional changes were discarded. The SARA 

system was also used to record neonatal cortical signals by placing newborns in a crib resting 

head-first toward the sensor array. All newborns were positioned lying on their left side, such 

that auditory stimuli could be delivered to the right ear. The SARA system is completely 

noninvasive and utilizes 156 primary sensors and 29 reference sensors. Because the sensor array, 

built to compliment the maternal abdomen, is much larger than the fetal or neonatal head, in 

both cases cortical signals are received largely by a subset of sensors that are located near the 

head.  

Experiments 
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Experiments with fetuses and newborns used a local-global paradigm with pure tones (200 ms 

each) of two frequencies, 500 and 750 Hz. For each participant, one frequency was assigned as a 

standard tone and the other as a deviant tone. Assignments were kept consistent for participants 

with longitudinal visits, but varied randomly across different participants. Each experiment 

consisted of two blocks in randomized order, counter-balanced across participants: in one block, 

fetuses and newborns were trained with 30 sequences each consisting of either four identical 

standard tones (block rule: ‘ssss’) or three identical standard tones followed by a deviant (block 

rule: ‘sssd’). In each block, the tone duration was 200 ms, the inter-tone interval was 400 ms, and 

each sequence lasted 2000 ms, with a 1700 ms silent interval between sequences (Fig. S5). After 

this learning phase, each block concluded with a testing phase of 180 sequences. In each test 

phase, 135 sequences (75%) were congruent with the block rule (global standard), whereas 45 

sequences (25%) violated the block rule (global deviant). At a minimum, at least two global 

standards were included between each global deviant, and the order of sequences in each testing 

phase was otherwise pseudorandomized. Each block was approximately 13 minutes in duration. 

Because the fourth tone of each sequence can be compared to either other tones within the 

same sequence (local) or tones from the sequence introduced by the block rule (global), two 

levels of deviation are possible in this paradigm. For instance, given the block rule ‘sssd’, test 

phase sequence ‘sssd’ is a global standard but also a local deviant (i.e., the fourth tone is 

incongruent with the first three tones in its sequence—a first-order rule violation—but congruent 

with the global block rule sequence). Conversely, given the same block rule ‘sssd’, the test phase 

sequence ‘sssS’ (where the capital letter denotes a global rule violation) is a local standard but 

also a global deviant. For the block rule ‘ssss’, however, the test phase sequence ‘sssD’ is both a 

local and a global deviant. Given the hierarchical nature of the local-global paradigm, it is possible 

that first and second-order rule violations produce different sizes of cortical perturbations. 

For additional details and protocols of this experiment, please see prior publications (35, 36). 

Data retention  

Prior to preprocessing, MEG datasets were rejected from N = 4 participants in the fetal group and 

N = 6 participants in the neonatal group whose recordings were interrupted early. Of the 

remaining N = 56 participants in the fetal group, longitudinal recordings from N = 22 participants 

(N = 7 x two sessions, N = 3 x three sessions, and N = 12 x four sessions) were obtained. This 

yielded a total of 105 fetal datasets. Of these, fetal cortical signals were detected based on 

amplitude in 81 datasets which were retained (N = 24 x one session, N = 5 x two sessions, 9 x 

three sessions, N = 5 x four sessions) across 43 unique fetal subjects. Fetal cortical signals were 

identified based on a principal component approach and quality checked for consistency in 

location with fetal head position and overlap with remaining heart or muscle artifacts [see 

supplementary material of (35) for a detailed description of the process]. In the main analyses 

(i.e., all LMMs that included HRV as a predictor), six recordings missing usable MCG data were 
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excluded, resulting in 75 datasets from 41 subjects. Note that recordings without HRV were still 

retained for correlations (e.g., Fig. 1 and Fig. 4), and some previously excluded recordings were 

also utilized in the entropy decomposition (Table S1).  

All recordings from newborns were cross-sectional. N = 6 newborns did not complete the full 

experiment, and thus data from N = 27 newborns entered preprocessing. After quality control, 

data from N = 20 newborns were retained. 

For additional details of data preprocessing, please see prior publications (35, 36). 

Heart rate variability (HRV) 

As a proxy for arousal level, HRV was measured in all fetal and neonatal data. R peaks were 

detected in the fetal/neonatal MCG signal prior to its removal from MEG data. The R peaks were 

then used to compute the normal-to-normal R-R intervals (65), the standard deviation of which 

(SDNN) was taken as our measure of HRV. SDNN was log10 transformed prior to statistical analysis 

to better approximate a Gaussian distribution. 

MEG data analysis 

Preprocessing of MEG data was conducted using MATLAB R2016b (The MathWorks, Natick, MA, 

USA). Fetal signals were bandpass filtered at 1-10 Hz and neonatal signals were bandpass filtered 

at 1-15 Hz prior to analysis, which is a typical filtering range for fetal and neonatal event related 

responses (66). For each fetal recording, a cluster of 10 channels with the highest signal 

amplitude after artifact removal were root mean square normalized and chosen for further 

analysis. Similarly, for each neonatal recording, five channels containing cortical signals were 

identified using principal component analysis and chosen for further analysis (67).  Signals were 

segmented from -200 ms to +3000 ms referenced to the onset of the first tone (Fig. S5). To adjust 

for the excess number of standard trials in each block, only standard trials immediately preceding 

deviant trials were analyzed. Note that we did not examine shorter subsegments of trial-

averaged signals (e.g., after the onset of the fourth tone) due to the lowpass filtering which limits 

the usefulness of shorter data segments (e.g., in fetal data lowpass filtered at 10 Hz, a 1000 ms 

subsegment would contain at most 10 oscillatory cycles). 

Cortical entropy 

Data analysis from this point forward was conducted using MATLAB R2021b/2022a. Entropy is 

an information-theoretic quantity which measures the degree of uncertainty (or unpredictability) 

in data generated by a given probability distribution. When applied to time series data, it can be 

interpreted as quantifying the degree of diversity in a signal: the higher a signal’s entropy, the 

more it will explore different trajectories. It is also, in a sense, a measure of information, as highly 

entropic signals may have a greater informational content (Cover and Thomas, 2006). To estimate 

cortical entropy, we used several approaches applied to signals that had already been averaged 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 22, 2022. ; https://doi.org/10.1101/2022.11.21.517302doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.21.517302
http://creativecommons.org/licenses/by/4.0/


Frohlich et al.                                                                                           Perinatal cortical entropy 

17 
 

across trials and channels from each recording. First, we utilized the LZC (68) and CTW (69) 

compression algorithms, which determine the number of unique substrings in the signal, a 

quantity which relates to the signal’s ground truth entropy (more technically, to its entropy rate) 

(70). Both approaches require the signal to be transformed into discrete symbols. For both LZC 

and CTW, we satisfied this requirement in a binary fashion by thresholding each signal using its 

median value. 

Besides compression-based methods, we also utilized entropy estimates based on state-space 

reconstruction (71). These include the modified sample entropy (mSampEn) ; (72) and 

permutation entropy (PermEn) (73). The mSampEn reflects the tendency of motifs to reoccur 

within a signal (74). We also examined a variant of mSampEn, the modified multiscale sample 

entropy, or mMSE, which computes mSampEn at different timescales (75); specifically, we 

averaged mMSE across 20 timescales. Both mSampEn and mMSE were calculated using z-scored 

signals. The PermEn reflects the occurrence of unique permutations based on ordinal rankings of 

data (73). These ordinal rankings are created by choosing a lag or timescale to separate samples. 

We computed PermEn using two different lags (38, 76) appropriate for our data: τ = 32 ms 

(PermEn32, sensitive to 4 - 10 Hz activity) and τ = 64 ms (PermEn64, sensitive to 2 - 5 Hz activity). 

All entropy measures were computed after averaging MEG channels of interest (see “Data 

retention” above).  

Cortical dynamics 

According to the entropic brain hypothesis, entropy levels exceeding a critical point may indicate 

diminishing, rather than increasing, levels of consciousness (50), e.g., if entropy represents 

cortical noise. Testing this hypothesis requires one to infer the dynamics of the signal. To 

investigate whether the dynamics of each cortical signals were stochastic (i.e., containing intrinsic 

randomness), or deterministic (i.e., predetermined by initial conditions, encompassing both 

periodic and chaotic behavior), we adapted a decision tree algorithm by Toker et al. (45). The 

algorithm infers whether signal dynamics are stochastic using two rounds of surrogate data 

testing with 1000 surrogates. For the first round, 1000 surrogates were generated using the 

iterative amplitude adjusted Fourier Transform method that exactly preserves the power 

spectrum (IAAFT-2). Additionally, to rule out the possibility of nonlinear stochasticity, a second 

round of surrogate data testing was performed using 1000 cyclic phase permutation surrogates. 

Because de-noising is crucial to the algorithm’s success (45), we lowpass filtered signals from 

newborns again at a lower frequency (10 Hz, finite impulse response, filter order = 610) before 

classifying their dynamics. Having identified all signals as either stochastic or deterministic, LMMs 

were then used to predict signal dynamics (see “Statistical analysis” below). 

Statistical analysis 

To evaluate the effects of maturation and arousal on signal complexity, we used LMMs (with 

MATLAB’s fitlme function) which accounted for longitudinal data. LMMs had the formula 
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COMPLEXITY ~ AGE + HRV + STIMULUS + RULE + STIMULUS*RULE + (1|PARTICIPANT)         (1) 

 

where COMPLEXITY is a value measuring signal entropy, AGE is the gestational age in weeks (fetal 

data) or postnatal age in days (neonatal data), HRV is the heart rate variability [measured as 

log10(SDNN)], STIMULUS is the stimulus type which varied depending on the fourth tone of the 

sequence (categorical variable: ‘ssss’ or ‘sssd’), RULE is the global rule established in the exposure 

phase which varied depending on the block (takes the same values as STIMULUS), 

STIMULUS*RULE is the interaction of stimulus type and block rule that determines whether 

stimuli are global standards or global deviants, and the final term (1|PARTICIPANT) denotes 

random intercepts for each participant.  

 

Next, to evaluate the effect of surrogacy on signal complexity measures (see “Surrogate data 

testing” below), we used LMMs with the formula  

 

COMPLEXITY ~ SURROGACY + STIMULUS + RULE + STIMULUS*RULE + (1|PARTICIPANT)         (2) 

 

where SURROGACY is a binary variable indicating whether signals are surrogates.  

Additionally, to evaluate the effects of maturation and arousal on signal dynamics, we used 

LMMs with the formula 

 

DYNAMICS ~ AGE + HRV + STIMULUS + RULE + STIMULUS*RULE + (1|PARTICIPANT)                             (3) 

 

where DYNAMICS is a categorical variable indicating the outcome of the decision tree for 

categorizing signal dynamics. 

Finally, to evaluate ERSPs, we modeled spectral power from each element of the TFR using LMMs 

with the formula 

 

POWER ~ AGE + HRV + STIMULUS + RULE + STIMULUS*RULE + (1|PARTICIPANT)          (4) 
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where POWER is the log10(power) of the TFR element. In doing so, we faced a multiple 

comparisons problem as models were fit for thousands of elements in each interpolated TFR. We 

addressed this problem using permutation cluster statistics (77). For each of 2000 permutations, 

we randomly shuffled each predictor variable (AGE, HRV, STIMULUS, and RULE) in the LMM. For 

each predictor, positive and negative t-statistics were thresholded separately based on whether 

they corresponded to p < 0.005. We then identified clusters of t-statistics exceeding the threshold 

using the regionprops() function in MATLAB and measured the `intensity’ of each cluster as the 

absolute value of the sum of the t-values of all regions within it. 

For each permutation, the size of the largest cluster was saved, thus generating a permutation 

distribution of cluster sizes. We then applied the same procedure to the non-permuted data and 

derived an empirical p-value for each cluster by comparing the actual cluster size to the 

permutation distribution of cluster sizes.  

More broadly, we faced another multiple comparisons problem stemming from multiple 

hypotheses tested across our analyses. To address this, we controlled the false discovery rate 

(FDR) using the Benjamini-Hochberg procedure to correct p-values (42).  

Entropy decomposition  

We used an entropy decomposition (44) to investigate the extent to which amplitude versus non-

amplitude (i.e., phase and its interaction with amplitude) properties of the MEG signal 

contributed to changes in each entropy measure. The decomposition requires two sets of paired 

data to compute differences in entropy. In fetuses, we compared entropy between early versus 

late fetuses in subjects with longitudinal data both before and after 35 weeks. In newborns, which 

did not give longitudinal data, we split participants according to their median age and computed 

entropy differences based on all possible pairings of “young” and “old” newborns. In each group, 

we selected data from the condition that yielded the largest correlations between maturation 

and entropy (sssD in fetuses and sssS in newborns). For each signal, we generated 250 surrogates 

(78) by shuffling phases separately within younger versus and subjects in one procedure and then 

between younger and older subjects pooled together in another procedure. By applying the 

inverse Fourier transform to obtain surrogate signals from these shuffling procedures, the 

decomposition algorithm allows for the effects of amplitude, phase, and their interaction to be 

systematically disentangled, e.g., when phases are pooled between age groups, the difference 

that remains is due to amplitude. For full details of the algorithm, please refer to Mediano et al. 

(44). 

 

As stated previously, newborn participants did not return to the laboratory for multiple visits, 

and thus natural pairings between neonatal recordings did not exist. As a workaround, for each 

of the older newborns, we computed the average difference between its entropy and that of the 

younger newborns; this procedure was then repeated with each of the younger newborns 

compared to older newborns. In other words, for the ith newborn in the younger subgroup, we 
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computed an entropy difference ΔH between its signal and the signal of all older newborns 

according to  

 

∆𝐻𝑖 =
1

𝑁
∑ 𝐻𝑖 − 𝐻𝑗

𝑁

𝑗=1
                 (5) 

 

where j indexes each of the older newborns. Similarly, for the jth newborn in the older subgroup, 

we computed ΔH between its signal and the signal of all younger newborns according to  

 

∆𝐻𝑗 =
1

𝑁
∑ 𝐻𝑖 − 𝐻𝑗

𝑁

𝑖=1
                 (6) 

 

and so we obtained one average difference for each participant, allowing us to ask which 

component of the entropy change was larger for each participant; note that the sum of ΔHi across 

all N newborns in the younger subgroup equals the sum of ΔHj across all N newborns in the older 

subgroup. To avoid artificially inflating our statistical power, we tested entropy differences 

separately for each subgroup, rather than pooling ΔH across the two subgroups. We then 

arbitrarily chose to report entropy difference referenced to the younger subgroup, while also 

confirming that the same finding persisted after referencing entropy differences to the older 

subgroup (see Fig. S2).  

 

After decomposing entropy changes into amplitude, phase, and amplitude x phase interaction 

components for fetal and neonatal data, we summed the differences in each entropy measure 

attributable to phase and phase x amplitude interactions to create a single “non-amplitude” 

quantity which we compared to the difference in entropy attributable to amplitude using paired 

samples t-tests.  

 

Surrogate data testing 

To assess whether the entropy of cortical signals differed from that of noise with similar spectral 

properties (i.e., surrogate data), we utilized surrogate data testing (78, 79). Surrogate signals 

were generated from each cortical signal using the iterative amplitude adjusted Fourier 

transform that exactly preserves the amplitude distribution (IAAFT-1) algorithm (80), resulting in 

signals with maximal entropy given a fixed variance (70). Note that we followed best practices by 

generating the surrogate signal after truncation of the original signal, so that start and end points 

had approximately the same value and same first derivative (79). The entropy of cortical signals 

was calculated separately with truncation only for the purpose of comparing with surrogates (i.e., 

elsewhere, we used the entropy computed from the full signal without truncation). For each 

cortical signal, entropy measures were also computed for each of 100 surrogate signals; the 

median entropy was then computed across all surrogates. To evaluate whether a given measure 
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differed between cortical and surrogate signals, we used LMMs (see “Statistical analysis” above) 

and evaluated the surrogacy term in each model.  

Correlations between MEG measures 

To investigate possible relationships amongst MEG measures, we examined correlations 

between signal entropy measures both with each other and with spectral power. For neonatal 

data, correlations were computed using Pearson correlation coefficients. Because fetal data 

show statistical dependencies between longitudinal recordings (see Table S3), we z-scored MEG 

measures from fetal data and used the normalized beta coefficients from random intercept 

regression models. Because standardized betas in LMMs depend on the variance of the random 

effect and are thus generally asymmetrical (i.e., βi,j ≠ βj,i), we used the mean of βi,j and βj,i to 

represent the correlation between entropy measure i and j (Fig. S1). This was done using LMMs 

with the formula 

 

MEASURE1 ~ MEASURE2 + (1|PARTICIPANT)               (7) 

and 

MEASURE2 ~ MEASURE1 + (1|PARTICIPANT)               (8) 

 

and subsequently averaging the beta coefficient of MEASURE2 in Eq. 8 with that of MEASURE 1 

in Eq. 9 to report the correlation strength, where MEASURE1 and MEASURE2 are the pair of MEG 

measures whose correlations is being determined. Note that because measures have unit 

variance after z-scoring, beta coefficients were bounded between -1 and 1.  

Because our concern was mostly with correlation direction and size rather than statistical 

significance, we did not derive p-values for correlations. Besides investigating correlations across 

recordings, we also examined temporal correlations of CTW with spectral power after averaging 

the ERF across all datasets within each of four stimulus/rule conditions. A notable property of 

CTW is its superior temporal resolution over LZC due to its faster convergence, which can be used 

to evaluate sub-second changes in entropy (81). For this reason, we used time-resolved CTW with 

164 ms (i.e., 100 sample) sliding windows with 90% overlap to evaluate correlations between 

entropy and spectral power on the grand-averaged ERFs. Spectral power was computed for 

grand-averaged ERFs as described above for ERSPs, except for correlations across datasets, in 

which case we used four wavelets per octave (rather than eight wavelets per octave) to limit the 

number of correlations. 

Post hoc correlations between maturation and entropy 
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After running LMMs to predict entropy from maturation and other variables, we examined the 

correlation between maturation without the influence of covariates. Outlier values of each 

entropy measure more than 6 median absolute deviations from the median value across both 

stimuli and block rules were discarded before running correlations. As described above, in fetuses 

with longitudinal data, we z-scored both gestational ages and entropy measures and used a 

random intercept model with the formula  

ENTROPY ~ AGE + (1|PARTICIPANT)               (9) 

to derive a correlation using the beta coefficient of the AGE term (again, -1 ≤ β ≤ 1). For newborns, 

we derived correlations using Pearson coefficients.  

Event related spectral perturbation (ERSPs) 

To compute ERSPs that map cortical responses to tones in frequency and time, we used Morlet 

wavelets with 8 wavelets per octave, yielding a total of 27 wavelets logarithmically spaced from 

1 to 10 Hz (fetal data) and 32 wavelets logarithmically spaced from 1 to 15 Hz (neonatal data). 

For all frequencies, sliding windows used for the wavelet transform overlapped by 90% and 

decayed exponential in length as a function of log2(frequency). Time frequency representations 

(TFRs) obtained from Morlet wavelets were linearly interpolated to increase TFR size. For fetal 

data, this resulted in a conversion from 23 x 27 bins to 177 x 209 bins (-200 - 3000 ms, time 

referenced to the first tone) x frequency (1.00 - 9.51 Hz). For neonatal data, this resulted in a 

conversion from 23 x 32 bins to 177 x 249 bins (-200 - 3000 ms, time referenced to the first tone) 

x frequency (1.00 - 14.7 Hz).  
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Figures 

 

Figure 1 Post-hoc correlations between maturation and entropy in fetuses and newborns. 

Correlations were measured using model coefficients derived from z-scored data (fetuses) or 

from the Pearson correlation coefficient (newborns) after removing entropy outliers move than 

6 median absolute deviations from the median of the distribution. All data were used that fell 

within 6 median absolute deviations from the median with entropy value  (i.e., including 

recordings without usable MCG data). Maturation was defined as gestational age in fetuses (top 

four rows) and age in newborns (bottom four rows). We found that correlations between 

maturation and entropy are mostly negative. In fetuses, the strongest correlations were yielded 

by the sssD condition. Despite the fact that only one entropy measure (PermEn32) was 

significantly predicted by age in newborns, the strongest correlations between maturation and 

entropy were found in newborns (see Discussion for speculative explanations).   
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Figure 2 Changes in PermEn (old - young) attributable to amplitude versus non-amplitude 

(phase + phase x amplitude interaction) components of the MEG signal. (A,B) Data from 12 

fetuses with MEG recordings at both early (< 35 weeks gestational age) and late (≥ 35 weeks 

gestational age) timepoints in the sssD condition. (C,D) Data from 9 newborns younger than 33 

days were compared to data from 9 newborns older than 33 days of age in the sssS condition; 

the average difference in PermEn between each newborn in the younger group and all older 

newborns was then compared between amplitude and non-amplitude components. In both 

fetuses and newborns, PermEn32 and PermEn64 show a pattern by which amplitude and non-

amplitude changes exert opposite influences on entropy, with the former being responsible for 

the overall decline in entropy with maturation that we detected in the main analysis using linear 

mixed models. The amplitude component of the PermEn changes is significantly greater than the 

non-amplitude component (PFDR < 10-10) in all cases.  
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Figure 3 Histograms of signal dynamics categories (stochastic or deterministic) by gestational 

age (fetuses, left column) and age (newborns, right column). The first two rows show results 

from global standards (A, B) and the second row shows results from global deviants (C, D). Both 

fetuses and newborns displayed a mixture of stochastic and deterministic dynamics. In fetuses, 

the majority of recordings were deterministic, whereas in newborns, the majority of recordings 

were stochastic. Dynamics were not significantly predicted by maturation in either group, though 

the proportion of recordings with stochastic dynamics was significantly higher in newborns than 

in fetuses (chi-squared test, χ2 = 30.8, p = 2.8 x 10-8).  
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Figure 4 Correlations between MEG measures. Entropy measures were highly correlated with 

one another in both fetuses (A) and newborns (B). These same entropy measures show negative 

correlations with spectral power at most frequencies in fetuses (C) and all frequencies in 

newborns (D). Subsecond CTW did not correlate strongly with subsecond spectral power after 

averaging across conditions in fetuses (E) or newborns (F). Note than because some fetuses had 

longitudinal data, correlation coefficients in (E) were first averaged within subjects and then 

between subjects to make sure that fetuses with longitudinal data were not over-represented.  
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Figure 5 Significant clusters in fetal and neonatal time-frequency representations (TFRs). The 

left column displays time-frequency maps of t-statistics from linear mixed models (LMMs), with 

statistically significant clusters outlined in black or (AGE term) or white (HRV term). Red vertical 

lines indicate the widest cross sections of the largest cluster in each left-column panel, which 

correspond to power spectral densities displayed in the right column (pink highlights indicate the 

frequency extent of the cluster). In fetal data, we identified three significant clusters of greater 

power with gestational age (A, black contours, see Table 4 for cluster details). Based on Moser et 

al. (2021), we split fetal recordings for visualization purposes based on a gestational age of 35 

weeks at which fetal cortical responses mature. Fetal recordings of at least this gestational age 

formed a group with greater low frequency power (delta band, between 1 and 2 Hz) at t = 2709 
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ms (B) than fetal recordings obtained below this gestational age. In neonatal recordings, we also 

found eight significant clusters corresponding to greater spectral power with age (C). We divided 

neonatal data based on a median split and found greater spectral power across a broad frequency 

range (D) in newborns with an age of at least 33 days versus younger newborns at a cross section 

of t = 1909 ms (just after the fourth tone). Additionally, we detected three significant clusters 

corresponding to greater spectral power with lower arousal in newborns (E). Using a median split 

for SDNN, we observed greater spectral power in the delta band (~3 Hz) in newborns with lower 

arousal [log10(ms) < 1.3] versus higher arousal at a cross section of t = 1836 ms (just after the 

fourth tone).  
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Figure 6 Possible scenarios explaining the decline of fetal cortical entropy with in utero 

maturation. (A) Cortical entropy may decline with gestational age in fetuses due to maturation 

of auditory evoked responses to auditory tones, which should impose structure on the cortical 

signal, thus minimizing its entropy. This scenario explains decreases in entropy driven event 

related fields (ERFs), yet leaves non-ERF driven changes unexplained. Our finding of decreasing 

cortical entropy with maturation persisted even after subtracting cortical response templates 

(CRTs) that model the auditory ERF; thus, the decline in entropy appears to be partly or mostly 

non-ERF driven. (B) Our finding of declining entropy may also be puzzling because it excludes the 

spatial dimension of the cortical response, which is needed to relate perturbational complexity 

to consciousness in adults. It is possible that while temporal cortical entropy decreases with 

gestational age in fetuses, a greater change in spatial cortical entropy occurs in the opposite 

direction (i.e., increasing). (C) Alternatively, our results might be understood in the context of the 

entropic brain hypothesis (EBH), which predicts that over-entropic levels existing above a global 

optimum for consciousness (i.e., a critical point) should be related to declining levels of 

consciousness; thus, decreases in entropy toward this critical point should correspond to 

increases in the conscious level. However, we did not find greater evidence of noise (i.e., 

stochasticity) in younger fetuses, thus casting doubt on this explanation. In the diagram 

illustrated here, vertical axis correspond to entropy level and the pink curve corresponds to the 

level of consciousness, with the green highlighted region representing the critical zone that is 

optimal for consciousness. (D) Finally, the maturational decline in fetal entropy might be 

unrelated to consciousness. Instead, it could reflect developmental processes such as apoptosis 

and synaptic pruning that reduce the number of ways in which neural circuits can be arranged 

(i.e., entropy). In this illustration, multiple circuit configurations (left) are possibly prior to the 

canalization process which brings circuits toward a genetically determined phenotype (right).  
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Tables            

 
Sample Measure Maturation t-stat Maturation PFDR HRV t-stat HRV PFDR 

Fetal CTW -3.50 0.00188 -2.01 0.0992 

Fetal LZC -3.64 0.00177 -1.96 0.107 

Fetal PermEn32 -4.71 6.87E-05 -0.189 0.957 

Fetal PermEn64 -2.57 0.0325 0.135 0.98 

Fetal mMSE -3.16 0.00583 -1.63 0.182 

Fetal mSampEn -3.81 0.00177 -1.77 0.146 

Newborn CTW -2.45 0.0476 0.747 0.605 

Newborn LZC -2.23 0.0726 0.685 0.644 

Newborn PermEn32 -3.85 0.00177 2.38 0.0544 

Newborn PermEn64 -1.61 0.19 1.17 0.37 

Newborn mMSE -2.15 0.0853 0.813 0.577 

Newborn mSampEn -2.72 0.0263 1.06 0.421 

 

Table 1 Predictors of cortical entropy in fetuses and newborns. All entropy measures were 

significantly predicted by gestational age in fetuses and one out of six entropy measures were 

significantly predicted by age in newborns. Note that PermEn32 (sensitive to 4 – 10 Hz activity) 

strongly related to maturation in both fetuses and newborns (p < 0.005), whereas PermEn64 

(sensitive to 2 – 5 Hz activity) did not relate to maturation in newborns, and its relationship with 

maturation in fetuses was only marginally significant (p = 0.03), suggesting that maturation 

relates strongly to MEG entropy in the perinatal alpha band. No entropy measures were 

significantly predicted by HRV—used as a proxy for arousal—in either cohort (note, however, a 

trend toward greater PermEn32 with greater HRV in newborns, p = 0.05).   
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Cohort Entropy measure t-stat PFDR 

Fetal 
CTW 0.835 0.577 

Fetal 
LZC 0.385 0.854 

Fetal 
PermEn32 43.7 2.86E-12 

Fetal 
PermEn64 33 4.61E-11 

Fetal 
mMSE 1.6 0.22 

Fetal 
mSampEn 1.32 0.325 

Neonatal 
CTW 0.557 0.746 

Neonatal 
LZC 0.631 0.698 

Neonatal 
PermEn32 115 1.46E-12 

Neonatal 
PermEn64 129 1.12E-12 

Neonatal 
mMSE 0.279 0.931 

Neonatal 
mSampEn 0.107 1.00 

 

Table 2 Differences between amplitude and non-amplitude (phase + amplitude x phase 

interaction) components of entropy changes in fetuses and newborns. In both fetal and 

neonatal data, the amplitude component drives decreases in PermEn with maturation, whereas 

the non-amplitude component drives decreases in in PermEn with maturation (true for both τ = 

32 ms and τ = 64 ms). Neonatal results in the above table are referenced to younger subjects; for 

results referened to older subjects, see Table SX.  
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Sample Measure t-stat PFDR 

Fetuses CTW -1.70 0.164 

Fetuses LZC -1.58 0.190 

Fetuses PermEnE32 -2.05 0.0942 

Fetuses PermEn64 -0.224 0.958 

Fetuses mMSE -0.76 

0.602 

 

Fetuses mSampEn 1.85 

0.131 

 

Newborns CTW -1.00 0.452 

Newborns LZC -0.450 0.809 

Newborns PermEn32 -4.05E-15 1.00 

Newborns PermEn64 2.93E-14 1.00 

Newborns mMSE -0.0716 1.00 

Newborns mSampEn 2.56 0.0339 

 

Table 3 Surrogate data testing of MEG complexity measures in fetuses and newborns. Entropy 

measures computed from cortical signals were compared to the median entropy across 100 

surrogate signals. Significant differences between entropy from cortical and surrogates signals 

were assessed using linear mixed models (LMMs). Bolded p-values are significant; surrogacy only 

significantly predicted entropy using mSampEn in newborns (p = 0.034).  
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Sample Predictor Direction PFDR 
Estimated Cluster 

size 

Cluster 

intensity 

Minimum 

frequency 

Maximum 

frequency 

Minimum 

time 

Maximum 

time 

Fetuses GA Positive 0.00177 Yes 178 564.52 1.45 1.87 2563.6 2854.5 

Fetuses GA Positive 0.00177 Yes 150 470.19 1.09 1.37 36.4 236.4 

Fetuses GA Positive 0.00177 Yes 128 408.57 2.54 3.08 1672.7 1981.8 

Fetuses GA Positive 0.0598 No 20 60.39 1.70 1.83 1381.8 1454.5 

Fetuses GA Positive 0.0863 No 14 42.69 1.48 1.70 90.9 90.9 

Fetuses GA Positive 0.142 No 9 25.63 2.38 2.59 963.6 963.6 

Fetuses GA Positive 0.142 No 9 26.42 1.30 1.38 2836.4 2854.5 

Fetuses GA Positive 1.00 No 2 5.68 1.68 1.68 1254.5 1272.7 

Fetuses GA Negative 1.00 No 2 5.69 7.34 7.42 236.4 236.4 

Fetuses GA Negative 1.00 No 1 2.84 8.72 8.72 1254.5 1254.5 

Newborns Age Positive 0.00177 Yes 1272 4591.34 2.33 11.56 1818.2 2563.6 

Newborns Age Positive 0.00177 Yes 1215 4411.54 1.00 1.79 -200.0 1218.2 

Newborns Age Positive 0.00177 Yes 903 3354.37 3.22 13.45 381.8 1109.1 

Newborns Age Positive 0.00177 Yes 628 2211.70 1.68 5.66 -200.0 109.1 

Newborns Age Positive 0.00177 Yes 161 538.72 1.04 1.41 2400.0 3000.0 

Newborns Age Positive 0.00177 Yes 114 356.74 3.22 4.76 2854.5 3000.0 

Newborns Age Positive 0.00177 Yes 49 150.06 1.38 1.72 1418.2 1563.6 

Newborns Age Positive 0.00177 Yes 43 127.26 3.29 3.67 218.2 381.8 

Newborns Age Positive 0.0969 No 14 55.34 1.00 1.00 1981.8 2218.2 

Newborns Age Positive 0.181 No 9 27.89 13.45 13.45 -200.0 -54.5 

Newborns Age Positive 0.205 No 8 24.96 11.56 13.45 672.7 672.7 

Newborns SDNN Negative 0.00177 Yes 142 479.38 4.00 6.73 1818.2 2000.0 

Newborns SDNN Negative 0.00177 Yes 138 472.52 2.59 3.36 -36.4 436.4 

Newborns SDNN Negative 0.00177 Yes 73 224.33 2.65 3.36 1254.5 1563.6 

Newborns SDNN Negative 0.131 No 11 36.71 1.00 1.00 1981.8 2163.6 

Newborns SDNN Negative 1.00 No 2 6.02 1.00 1.00 2545.5 2563.6 

 

Table 4 Time-frequency clusters in fetuses and newborns. Statistically significant p-values are 

bolded. The ‘Estimated’ column reports whether the cluster was greater in size than all 2000 

permutations; in these cases, we used 1/(Nperm+1) to derive the p-value prior to an FDR 

correction, where Nperm is the number of permutations (2000). Note that p-values were 

estimated for all significant clusters. In total, we report three significant clusters for which 

gestational age (GA) is significantly predictive of spectral power in fetuses (positive relationship), 

eight clusters for which age is significantly predictive of spectral power in newborns (positive 

relationship), and three clusters for which arousal (SDNN) is significantly predictive of spectral 

power in newborns (negative relationship). Note that minimum/maximum frequency/time do 

not delineate the points at which the effect beings and ends, i.e., cluster boundaries contain the 

effect within a certain degree of confidence cannot give information concerning its exact onset 

or offset along the frequency or time dimension.  
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