
The Complexity of Graph Connectivity

Avi Wigderson
Hebrew University and Princeton University

February 11, 2003

Abstract

In this paper we survey the major developments in understanding the complexity of
the graph connectivity problem in several computational models, and highlight some
challenging open problems.

1 Introduction

If you have ever lost your way, (especially when you had a map and road signs to guide you),
you must recognize that graph connectivity is not a completely trivial problem. While in
practice the relevant problem is how to get from point A to point B, here (in theory) we are
content with finding out if there is such a way at all.

Of all computational problems, this is the one that has been studied on the largest variety
of computational models, such as Turing machines, PRAMs, Boolean circuits, decision trees
and communication complexity. It has proven a fertile test case for comparing basic resources,
such as time vs. space, nondeterminism vs. randomness vs. determinism, and sequential vs.
parallel computation.

There seem to be two complimentary reasons for this wide interest in the complexity of
graph connectivity. On the one hand it is simple enough to be almost completely understood
from the combinatorial point of view. On the other hand, it has rich enough structure to cap-
ture (in different variants) several important complexity classes, whose exact computational
power is not yet completely understood.

Until about five years ago progress on the complexity of connectivity was sporadic. High-
lights are the basic results of the early 70’s, such as Savitch’s theorem and the DFS and BFS
algorithms, and the discovery in the early 80’s of the power or randomness in the undirected
case. More recently, there has been an upsurge in activity, yielding fundamental (and some-
times surprising) results, such as NL = coNL, the short universal traversal sequences, and
the lower bounds on the constant-depth and monotone circuits.

The aim of this paper is to summarize this progress, and to point to interesting directions
where more progress needs (and is perhaps likely) to be made. The paper reflects my biased
knowledge and viewpoint, and does not claim to be encyclopedic. In particular, I will focus
on what I consider intrinsic complexity issues, rather than algorithmic efficiency issues. My

hope is to attract researchers to the open problems, and am looking forward to more exciting
results.

The paper has four sections. In section 2 we give definitions and basic results. Sections 3
and 4 contain respectively results in the Turing machine and Boolean circuit models. Section
5 discusses three unrelated (structured) settings — projections, decision trees, and logical
expressibility. I have tried to give both the motivations for some directions of study, as well
as intuition for some of the results. The suggestions for open problems appear in the text in
their natural place. Clearly, to seriously pursue them one needs to read the original papers,
most of which are fortunately very well written.

2 Definitions and Completeness Results

2.1 Variants of Graph Connectivity

We define below the four variants of the graph connectivity problem that will be studied
in the paper. They are defined as languages, i.e. as subsets of (binary) strings, which is
suitable when studying Turing Complexity. As usual we shall also think of each language
as an infinite family of Boolean functions, one for every input length, which take the value
‘1’ on inputs in the language and ‘0’ otherwise. This is natural for nonuniform models like
circuits and decision trees.

We shall deal with both directed and undirected graphs G(V,E) with set of vertices V
and edges E. We will assume that graphs are represented by their adjacency matrix (as this
representation captures the monotonicity of connectivity), though most results hold in any
other standard representation. Finally s and t will denote fixed distinct vertices in V . The
problems are ordered in decreasing difficulty (under almost any choice of reductions).
STCONN : Directed st-connectivity
{< G, s, t > such that there is a directed path from s to t in the directed graph G}
USTCONN : Undirected st-connectivity
{< G, s, t > such that there is a path connecting s and t in the undirected graph G}
UCONN : Undirected connectivity
{< G > such that the undirected graph G is connected (i.e. every pair of vertices in G is
connected)}
CY CLE: Is a permutation cyclic?
{< G > such that the permutation G (every vertex has exactly one incoming edge and one
outgoing edge) has exactly one cycle}

2.2 Complexity Classes

All complexity classes defined below are standard. For the most updated source see [?].
This survey also discusses uniformity issues in circuit classes, that we shall ignore here. For
definitions of monotone complexity classes, see [?]. We shall think of complexity classes both
as classes of languages and classes of functions (for purposes of reductions). For a language L
we let L̄ denote its complement, and for a class C we let co−C = { L̄ |L ∈ C}. The class mC
will denote the monotone analog of C. For circuit classes this is easily done by disallowing

2

negations. For Turing machine classes it requires more work, but can be done in natural
ways [?]. All the classes we are interested in are within P , polynomial time. We list (most
of) them in obvious inclusion order (the same inclusions hold for the monotone analogs of
these classes). For circuit classes the basis is always ∧,∨,¬ unless otherwise specified, and
that they have bounded fan-in unless the depth is constant. Finally, I will neglect constant
factors and even the use of big-O and big-Ω.
AC0: Constant-depth, polynomial size circuits.
TC0: Constant-depth, polynomial-size circuits with threshold gates.
NC1: log n-depth, polynomial-size circuits (or equivalently, polynomial-size formulae)
L: Deterministic log space Turing machines.
ZPL: Probabilistic zero-error (Las Vegas) log-space, polynomial-time Turing machines.
RL: Probabilistic one-sided error (Monte-Carlo) log-space, polynomial-time Turing ma-
chines.
NL: Non-deterministic log-space Turing machines.
NC2: log2 n-depth, polynomial size circuits.

A class whose position in this list is not apriori obvious (other than being between L
and NL is symmetric log-space [?], defined by non-deterministic log-space Turing machines
whose next move relation is symmetric (i.e. if it is legal to move from configuration c to
configuration d, it is legal as well to move from d to c).
SL: Symmetric log-space Turing machines.

We shall use DSPACE(s(n)) and TISP (t(n), s(n)) to denote what can be com-
puted by deterministic Turing machines respectively in space s(n) and simultaneously in time
t(n) and space s(n). The class SC which contains NL is simply TISP (poly(n), polylog(n)).
SC: Polylog-space, polynomial-time Turing machines.

2.3 Completeness Results

As mentioned in the introduction, the importance of the above variants of graph connectivity
is that they capture complexity classes, and thus understanding the power of these classes
boils down to proving upper and lower bounds for these problems.

Theorem 1 ([?]) STCONN is NC1 complete for NL.

Theorem 2 ([?]) USTCONN is NC1 complete for SL.

Theorem 3 ([?]) CYCLE is NC1 complete for L.

We add that the first two problems (which are monotone) also belong to the monotone
analogs of the classes they are complete for.

3 Turing Machine Complexity

3.1 Directed Graphs

Two basic results on the complexity of STCONN exist for over 20 years. The first follows
from the discovery of the very efficient algorithms for graph traversal, BFS (Breadth-First

3

Search) and DFS (Depth-First Search), which use only linear time and space in n, the number
of vertices.

Theorem 4 STCONN ∈ TISP (n, n)

The second is Savitch’s theorem, giving an upper bound on the deterministic space com-
plexity of STCONN .

Theorem 5 ([?]) STCONN ∈ DSPACE(log2 n)

The algorithm uses the recursive doubling techniques, which can be thought of as a depth
first search of the circuit which computes STCONN by repeated squaring of the adjacency
matrix of the input graph. By the completeness of STCONN , Savich’s theorem resolves the
“space analog” of the P vs. NP question in time complexity, i.e that nondeterminism is not
superpolynomially stronger than determinism.

Corollary 1 ([?]) NL ⊆ DSPACE(log2 n)

Whether the quadratic upper bound is tight is the most important question in this area.
As current techniques have failed to provide super-logarithmic space lower bounds, such
bounds exist only for restricted models. One of the natural models for this problem is the
JAG (Jumping Automata on Graphs) of Cook and Rackoff [?]. It allows an automaton
to place pebbles on the vertex s and move them along edges or jump them to each other’s
location with the task of reaching t with at least one of them. Space in this model is the
logarithm of the number of states in the automaton, plus log n per each pebble used. They
show that this model can simulate Savitch’s algorithm in log2 n space (using log n pebbles),
and then prove

Theorem 6 ([?]) Every JAG algorithm for STCONN requires log2 n/ log log n space.

The same lower bound was proved even for randomized JAGs by Berman and Simon [?].
These structured lower bounds do not preclude, of course, a better space bound on real

Turing machines. A somewhat easier question arises since the algorithm which gives this
upper bound runs in time nlog n. It, together with the DFS and BFS algorithms, suggests that
there may be a nontrivial trade-off between time and space for this problem, and in particular
asks what is the smallest space for which STCONN can be computed in polynomial time.
The first progress on this problem, an algorithm using sublinear space, came only a couple
of months ago.

Theorem 7 ([?]) STCONN ∈ TISP (poly(n), n/2
√

log n).

I believe that the space bound can be significantly improved, to n1−ε and even nε, and
predict that such improvements will be found soon. Some people believe the opposite, and
in fact Tompa [?] proves that certain natural approaches cannot yield such space savings in
polynomial time.

Another natural question regarding nondeterministic space complexity, as long as the
quadratic gap in Savitch’s theorem remains, is whether NL is closed under complement.
This again took about 20 years to resolve in the affirmative. I prefer to state this result of
Immerman and Szelepcsenyi in terms of a reduction from STCONN to STCONN .

4

Theorem 8 ([?, ?]) STCONN is L-reducible to STCONN .

In words, there is a deterministic log-space procedure (in fact NC1) that takes the input
graph G and outputs a graph H such that there is a directed st-path in G if and only if
there is no such path in H. It follows that

Corollary 2 ([?, ?]) NL = co−NL

It is interesting to note that the inductive counting method used to prove this theorem
seems inherently non-monotone. This was made precise in [?] who showed that the mono-
tone circuit lower bound of [?] (which we shall discuss in the next section) implies that
STCONN 6∈ NL, and thus

Theorem 9 ([?]) mNL 6= mco−NL

3.2 Undirected Graphs

In contrast to the directed case, its friendlier undirected analog received much more attention,
and many nontrivial techniques and interesting results were obtained for it.

3.2.1 Probabilistic Algorithms

One of the earliest and most beautiful examples of the power of randomness is the proba-
bilistic log-space algorithm for undirected connectivity of Aleliunas et. al. [?].

Theorem 10 ([?]) USTCONN ∈ RL

The RL algorithm for undirected graphs can be viewed as a randomized version of the
NL algorithm for directed graphs. In the directed case a pebble (which requires only log n
space) is placed initially on the start vertex s, and the algorithm moves the pebble along
directed edges, each time guessing the next vertex, until it reaches t. Clearly, if an st-path
exists there will be a successful sequence of guesses and vice versa. In the undirected case, the
same pebble is moving between neighbouring nodes, only that the next move is determined
by coin flips. The fact that it is impossible “to get stuck” in an undirected graph allows a
fairly simple proof that such a walk will visit all vertices in the connected component of s in
expected polynomial time, and hence will determine if there is a path to t.

It is clear that if the pebble does not reach t, it may be (albeit with very small probability)
due to unlucky coin tosses, and thus there is one-sided error. The question of eliminating
this error altogether was raised in [?] and was answered in the affirmative only about 10
years later, by Borodin et. al. [?]. They employ the same randomized algorithm, together
with the inductive counting technique which is used to verify that indeed all vertices in the
connected component of s were visited.

Theorem 11 ([?]) USTCONN ∈ ZPL

From the completeness of USTCONN for SL we obtain

5

Corollary 3 ([?]) SL ⊆ ZPL

As ZPL is closed under complement (in fact ZPL = RL∩co−RL) this may be considered
an indication that SL may be closed under complement. This question is still open. We
remark that besides being a natural question, resolving it in the affirmative will collapse Reif’s
symmetric log-space hierarchy, which contains some interesting problems such as planarity
of bounded-degree graphs [?].

3.2.2 Universal Traversal Sequences

The notion that induced the largest and deepest set of results in this area is the universal
traversal sequences, proposed by Cook in the late 70’s. Cook tried to create a deterministic
analog of the pebble-moving algorithm used in the nondeterministic and probabilistic algo-
rithm. The idea was that the next move of the pebble will be determined by a sequence of
instructions that will be computed deterministically. For this purpose we assume that the
edges around every vertex are distinctly labeled by some set of labels, (e.g. 1,2,...,d if the
graph is d-regular, or 1,2,...,|V | otherwise), and the given sequence is over the set of labels.

Definition 1 A sequence is n-universal is for every connected graph on n vertices, every labeling
of the edges, and every start vertex on which the pebble is placed, the trajectory of the pebble
defined by the sequence will visit all the vertices in the graph.

The computational problem associated with this notion is the explicit construction of
such sequences.

Definition 2 UNIVSEQ is the relation {< 1n, σ > |n ≥ 1, σ is n-universal}

The hope was and still is that UNIVSEQ ∈ L, which will clearly imply USTCONN ∈ L.
However, the simple “greedy” construction of such sequences requires poly (n) space and the
resulting sequences have exp(n) length. (In general, if UNIVSEQ ∈ DSPACE(s(n)) then
the sequences produced by the given algorithm must have length at most exp(s(n))). The
first indication that the hope may not be too optimistic was given in the aforementioned
paper by Aleliunas et. al. (and indeed was one of their motivations).

Theorem 12 ([?]) There exist n-universal sequences of poly(n) length.

The proof however is by a probabilistic argument (essentially the same argument showing
that the probabilistic algorithm works) and does no give a space bound for constructing them
which is better than poly(n). We briefly remark that there are quite a few papers dealing
with upper and lower bounds on the shortest possible length of a universal sequence as a
function of the number of vertices and edges in the graph, that we do not mention here, which
are very interesting from the combinatorial point of view but less so from the computational
one.

The first breakthrough on the complexity of generating universal sequences appears in
the remarkable paper of Babai, Nisan and Szegedy [?]. This paper obtains a variety of
state-of-the-art results for different problems on different computational models, which are
all derived from a single lower bound on the multi-party protocols model of [?]. In particular
they obtain

6

Theorem 13 ([?]) UNIVSEQ ∈ DSPACE(exp(
√

log n)).

The proof utilizes pseudo-random generators for logspace, which are more important
than this particular corollary as we shall see in the next subsection. In another giant step
by Nisan [?] the complexity of these generators was significantly reduced, and with it the
upper bound on the complexity of UNIVSEQ.

Theorem 14 ([?]) UNIVSEQ ∈ DSPACE(log2 n)

This is the best known explicit construction of universal traversal sequences for general
graphs, and it results in a one-pebble deterministic algorithm for USTCONN with the same
space complexity of Savitch’s algorithm. Better space bounds for universal sequences for
special classes of graphs exist. Of these, the most interesting is Istrail’s result [?], which
constructs in L universal sequences for all labeled cycles. Here for each n there is only one
graph, the n-cycle, which is 2-regular, and the label set is 1,2. To stress our ignorance,
Borodin points out that if we add a self loop to every vertex on the cycle, and make the
label set 1,2,3, nothing better than the general construction is known.

3.2.3 Pseudo-random Number Generators

This subsection is somewhat of a detour, as it does not deal with the connectivity problem
directly. However, this direction was, and I expect it will continue to be, a major source
of results on the complexity of connectivity. For this subsection only we let G(V,E) be
a directed graph again, and s a fixed vertex in V . For a probability distribution D on
binary strings {0, 1}t let G(D) denote the distribution on V defined by the endpoint of the
following process: place a pebble initially on s, and use a random string from D to determine
a sequence of moves on G where at each step we use the next few bits to move the pebble
along a random edge out of the vertex it occupies (if there is no such edge, it stays put).
Let Ut be the uniform distribution on strings of length t. Thus the algorithm of [?] is an
instance of such a process, which in general captures probabilistic computation with log |V |
space that uses t (truly) random bits.

The idea of pseudorandom generators, which originated in cryptography [?] and found
many uses in complexity theory (see [?] and the references within), is to deterministically
compute distributions on t bits from a much shorter random string, that will “behave like” the
uniform distribution Ut. We shall consider here only functions f : {0, 1}r(n) → {0, 1}t(n) with
f ∈ DSPACE(log n), and log n ≤ r(n) << t(n) ≤ poly(n). The idea is that if G(f(Ur))
is “close” to G(Ut) then the random process on G can be simulated deterministically in
DSPACE(r(n)), by trying all possible “seeds” of length r to f (which is called a pseudo-
random generator).

The first result of this type is due to Ajtai, Komlos and Szemeredi [?]. If we define a
restricted version RL(t(n)) of random log-space which allows the machine to use only t(n)
random bits on length n inputs, their result can be stated as

Theorem 15 ([?]) RL(log2 n/ log log n) = L

7

There is no other computational model for which such a strong result, namely that
superlogarithmic number of random bits do not add computational power, holds. The au-
thors devise an ingenious pseudo-random generator f , based on walks on expander graphs,
which takes r(n) = O(log n) bits and outputs t(n) = log2 n/ log log n which has the fol-
lowing “closeness” property for every graph G on n vertices and every vertex v ∈ V . If
Pr[G(Ut)) = v] ≥ 1/n then Pr[G(f(Ur)) = v] > 0. This clearly suffices to simulate the
bounded one-way error in RL.

It is beyond the scope of this papers to list the variety of applications this construction
had in complexity theory, and we just mention as examples the deterministic amplification
of [?, ?] and the ε-biased random variables of [?].

Another nice feature of this result is that it suggests partial progress towards proving
RL = L, by finding faster growing functions t(n) for which RL(t(n)) = L holds. I am quite
optimistic that this can be shown for t(n) = polylog(n) in the near future.

The pseudo-random generators developed in [?, ?] are stronger in two respects than those
in [?]. First, they output t(n) = poly(n) bits, and hence do not restrict the number of random
bits used. Second, they achieve a stronger “closeness” property, namely |G(f(Ur))−G(Ut)| ≤
1/n, (where | · | denotes the L1 norm), and thus can handle two-sided errors as well. The
generator in [?], which is the most efficient generator known, uses r(n) = log2 n bits. The
construction is based on the properties of pairwise independent (2-universal) hash functions
of Carter and Wegman [?]. Both the construction and the proof that it works resembles the
recursive doubling of Savitch’s algorithm, and indeed can be thought as a strong probabilistic
analog of it. Combining this result with the one of [?] to obtain the universal sequence
bounds of the previous section is an exercise.

3.2.4 Time-Space Trade-offs

We are back again to undirected connectivity. As even the best universal sequences leave
the space bound for this problem at log2 n, activity shifted to trying to achieve polynomial
time with the smallest space penalty possible. The first step was by Barnes and Ruzzo [?],
who proved:

Theorem 16 ([?]) For every ε = ε(n) > 0,
USTCONN ∈ TISP (n1/ε, nε log2 n)

Note that this family of algorithms provides a complete trade-off curve with one extreme
at DFS/BFS, and the other at Savitch’s algorithm. In particular their algorithm uses poly-
nomial time whenever space is nε with any fixed ε > 0. This result survived only a few
months, till Nisan [?] showed that if we are willing to pay log2 n space, time can be reduced
to a polynomial, and there is no trade-off!

Theorem 17 ([?]) USTCONN ∈ TISP (poly(n), log2 n)

Again Nisan proves a much more general theorem of which the above is a corollary. He
uses the following simple idea, which should be kept in mind whenever we use a pseudo-
random generator. Generators are defined such that they work for every input, and thus

8

are used in an oblivious manner. However, all we need is a generator that works for the
given input! Nisan shows how, using space log2 n, a “subgenerator” of the general one in [?]
can be constructed, which is guaranteed to “fool” only the input graph. Furthermore, this
generator uses only r(n) = log n random bits as a “seed”. Thus he proves

Theorem 18 ([?]) RL ∈ TISP (poly(n), log2 n)

which he prefers to state concisely as

Corollary 4 ([?]) RL ∈ SC

3.2.5 Beating the Recursive Doubling Technique

In light of the last upper bound on USTCONN , the only thing to improve now is the space
bound of log2 n. In all of the results above that achieve this space bound recursive doubling
is implicit in the following sense: A function (such as squaring) which is in L is repeatedly
applied log n times, resulting in the above bound. The reason for the log n application is that
the natural parameter (distance between pairs of vertices in the case of squaring) shrinks
only by a constant factor with each application. If we could shrink something at a faster
rate, we would have fewer iterations and thus smaller space. (We note that a result of Ajtai
described in the next section suggests that it is unlikely that we can shrink the distance
parameter faster in L).

Such an algorithm was discovered very recently by Nisan, Szemeredi and Wigderson [?].
The L function takes the input graph G(V,E) and produces another graph G′(V ′, E ′), in
which s and t are connected if and only if they are connected in G. The parameter which
shrinks is simply the number of vertices, which drops by a factor of exp(

√
log n). Thus only√

log n iterations are required to bring the size down to a constant, where it is trivial to
check if s and t are connected, and hence the total space bound is log1.5 n.

Theorem 19 ([?]) USTCONN ∈ DSPACE(log1.5 n)

We can describe the above shrinking procedure in a few sentences. The idea is to choose
V ′ a subset of V , have each vertex in V find a reachable representative in V ′, and to homeo-
morphically contract each vertex to its representative. This will clearly preserve connectivity.
The choice of such small set V ′ is done in two steps. First, each vertex constructs a “ball” of
reachable vertices around it of size exp(

√
log n). This can be done using universal sequences

by scaling down the results in [?]. Second, V ′ is chosen to be a small hitting set of all the
balls. This is implemented using pairwise independent sampling. The representative of v
can thus be taken to be the smallest vertex which is both in V ′ and the ball of v.

We have made some attempts to improve this space bound. In particular a natural
approach is to try to apply this algorithm recursively, to obtain a space bound of log1+ε n.
There are obvious problems of vertex renaming that suggest themselves when trying to
implement this approach, but I am convinced that such a result will not be too difficult to
obtain.

Another interesting issue that pops back to life is the time-space trade-offs. The above

algorithm requires time n
√

log n. I think that the techniques of [?] should be powerful enough

9

to obtain a polynomial time algorithm while maintaining the log1.5 n space bound. However,
similar problems of vertex renaming that were mentioned in the previous paragraph will
have to be dealt with (unless an altogether different approach is found).

4 Circuit Complexity

It is easy to see that STCONN ∈ NC2, by considering the circuit which repeatedly squares
the adjacency matrix. One central problem (of the “algorithmic efficiency” type) in the area
of parallel algorithms comes from the fact that this circuit at best has size larger than n2.376,
which is the best current bound for matrix multiplication [?]. The problem, whether there
is a circuit that uses simultaneously polylog(n) depth and n2polylog(n) size (which is nearly
linear, as n2 is the input size), is known as the “transitive closure bottleneck”. It resisted
many attacks in the last 10 years, and resolving it will be of interest both in theory and
practice.

We return to complexity problems, and from now on there is no distinction between
the directed and undirected case; while we state the results for STCONN , they hold for
USTCONN as well. As it is not known if this problem is in L, and also is L is strictly
contained in NC2, one important direction is to try to reduce the depth below log2 n, as
was done for space. The other direction was to prove it cannot be computed by circuit
classes that are contained in L. This section surveys the progress in this direction, which
represents considerable effort in the circuit complexity community, employing and developing
more difficult arguments than those used in the Turing machine bounds of the previous
section. Before elaborating on these beautiful developments, I stress that the current state
of knowledge is quite shameful: we don’t even know that STCONN (or any function in NP
for that matter) cannot be computed by threshold circuits of depth 3 and polynomial size!

4.1 Constant-Depth Circuits

Furst, Saxe and Sipser, in the paper which proved the parity lower bounds [?], observed
that a simple reduction from the parity function to STCONN yields

Theorem 20 ([?]) STCONN 6∈ AC0

This is not too surprising, as perhaps we are asking for too much. If we could just shrink
in AC0 the pairwise distances between vertices by a function k(n) which tends to infinity
with n, we could repeat this a sublogarithmic number of times to beat the NC2 upper bound.
So define a family of problems STCONN(k(n)), which asks whether there is a path from s
to t of length at most k(n), and ask how small a function k(n) has to be so that this problem
is in AC0. It is trivial that this is possible for any constant function k(n). As for k(n) = n
it is not, where is the jump?

For another class of functions, the threshold functions, the jump is completely determined.
Define THRESH(k(n)) to be the function that determines if in a string of n bits there are
at least k(n) 1’s. Then we have

Theorem 21 THRESH(k(n)) ∈ AC0 iff k(n) ≤ polylog(n).

10

The upper bound follows from the probabilistic construction of [?], while the tight
lower bound from Hastad’s paper [?]. In fact, the aforementioned reduction from parity to
STCONN , together with Hastad’s bound give the same lower bound for STCONN .

Theorem 22 STCONN(k(n)) 6∈ AC0 for every k(n) 6≤ polylog(n).

To resolve where the jump occurs for STCONN much finer analysis of the random re-
striction techniques had to be developed. (In fact these techniques were developed towards
a more general goal, namely showing the weakness of certain logical proof systems [?, ?]).
The following result of Ajtai [?] shows that in fact the trivial constant upper bound is tight,
and thus STCONN is much more difficult then the symmetric functions in this sense.

Theorem 23 ([?]) If k(n) →∞ with n, then STCONN 6∈ AC0

This shows that shrinking distances by more than a constant is impossible in AC0.
However, to beat the NC2 bound it would suffice to shrink in NC1. Not anticipating a
lower bound in the near future, the reasonable challenge here seems to be to devise an NC1

algorithm for STCONN(k(n)) for a function k(n) which tends to infinity. This of course
will be a surprising result (but we have been accustomed in the last few years to surprising
upper bounds...). If you take on this challenge, make sure your circuit is non-monotone, as
the next section implies in particular that monotone constructions will fail.

4.2 Monotone Circuits

It is clear that the repeated squaring circuit for STCONN is in fact monotone, and thus
STCONN ∈ mNC2. The first monotone circuit depth lower bound (which does not follow
from a size lower bound) was showing that this upper bound is tight. If we denote by dm(f)
the minimum depth of a monotone circuit computing the function f (as a function of the
input size n), then the Karchmer-Wigderson lower bound as stated in

Theorem 24 ([?]) dm(STCONN) = Ω(log2 n)

Note that this lower bound is independent of the circuit size, which is allowed to be
superpolynomial. The proof also gives a lower bound on the problems STCONN(k(n)),
showing that in the monotone world the obvious is optimal.

Theorem 25 ([?]) For every function k(n),
dm(STCONN(k(n))) = Ω(log n log k(n))).

For proving this lower bound [?] introduced the communication complexity method.
This method provide a communication search problem in Yao’s 2-player model [?] for every
Boolean function f , such that the communication complexity of the problem exactly equals
the (monotone) circuit depth of f . For example, the following is the problem that captures
the monotone depth of STCONN . Player A receives as input an st-path, i.e an arbitrary
sequence of nodes starting with s and ending with t. Player B gets an st-cut, i.e. an
arbitrary 2-partition of the nodes with s in one part and t in the other. Clearly, there is at

11

least one edge in the given path whose endpoints belong to different sides of the given cut.
The task of the players is to find any such edge. It is easy to see that they can do it in about
log2 n communication bits using binary search as follows. Player A sends the name of the
middle vertex on his path (log n bits). Player B sends the side of the cut this vertex lies
on (1 bit). Now player A can discard one half of his path according to the answer, and so
log n such rounds will suffice. Observe that this protocol is simply a top-down view of the
repeated-squaring circuit for STCONN .

The proof of [?] shows that there is no protocol for this problem which is asymptotically
better. In some sense it finds an instance of binary search of this form in every protocol, and
argues that if it does not proceed for enough rounds, the players could not find an answer.
While I prefer the original proof that argues on the communication model, mainly due to
the intuition it supplied us with, I recommend reading also the proof given in [?], which
argues directly on the circuit model. On the other hand, such an elegant 1 transformation
of a proof in the communication model to the circuit model may not always be possible –
such is for example the case with the lower bound for the monotone depth of matching [?].

One interesting extension of the [?] lower bound appears in [?] – it is shown that even
a randomized protocol for the same communication problem will require the same number
of random bits, up to a constant factor. While randomized protocols results have no direct
circuit complexity analogs, this result can be translated into a strange nonmonotone lower
bound – though it is possible that STCONN ∈ NC1, it is impossible that such a shallow
circuit will need the negation of too few on its input variables (It is clear, as the function is
monotone, that all variable have to appear positively (unnegated)).

Theorem 26 ([?]) In every NC1 circuit for STCONN , at least a fixed fraction of all input
bits have to appear negated.

Grigni and Sipser strengthened the results of [?] in two ways. One, which was men-
tioned earlier, is that in [?] they observed that the proof of [?] is strong enough to imply
STCONN 6∈ mco−NL. As STCONN ∈ mNL, it separates the two classes. Another ques-
tion was to prove such a lower bound for a function in mL. Even a proper definition of
this class is not obvious, let alone the choice of a function for which similar techniques can
apply. This was done in [?]. The function FORK can be thought of as a monotone analog of
CYCLE 2 . It asks whether in the input graph, a path out of a fixed vertex s ever branches
(has more than one continuation). It is easy to see that

Theorem 27 ([?]) FORK ∈ mL

The communication problem associated with this function is particularly elegant. Fix
two distinct nodes tA and tB. Player A gets a path from s to tA, and player B a path from
s to tB. Their task is to find a vertex on both paths, from which the paths diverge. Using
this formulation they proved

1A mechanical transformation is always possible, as follows from the fact that the two models are
equivalent

2There is a simple (nonmonotone) reduction from CYCLE to FORK , and thus it is also complete for L.

12

Theorem 28 ([?]) dm(FORK) = Ω(log2 n).

Finally we remark on the unresolved status of the problem UCONN . In the absence
of a direct reduction 3, say from USTCONN to UCONN , the above lower bounds do not
follow for it, and call for a direct proof. A crucial technical point in all proofs mentioned
above is that we control the length of the st-path, and choose it to be some nε, which leave
most vertices “unimportant” from the point of view of player A. But in UCONN the input
to player A is a spanning tree, touching all vertices. Raz and I have announced a log2 n
monotone lower bound for this problem at the circuit complexity workshop in Durham,
1990, but have discovered a bug in the proof. While monotone lower bounds went out of
vogue, I am sure this lower bound is correct, and would be happy to see a proof. There is a
nontrivial monotone lower bound for this function, due to Yao [?].

Theorem 29 ([?]) UCONN 6∈ mTC0

5 Other Models

5.1 Monotone Projections

In [?], Skyum and Valiant proposed to study the relative complexity of (families of) Boolean
functions under the most stringent reduction possible – projection. Informally, a function
f is a projection of a function g if we can replace some variables of g with a constants (0
or 1) or with other variables or their negation to produce f . An efficient projection (p-
projection) demands that the number of inputs to g is only polynomially larger than that of
f . Finally, a projection is monotone if we cannot substitute negated variables. One of the
interesting results of the paper imply that under monotone p-projections, UCONN is strictly
weaker than USTCONN . This result has two parts. The first shows a hardness result for
USTCONN .

Theorem 30 ([?]) Every function in mNC1 has a monotone p-projection to USTCONN .

The second part gives a function in mNC1 such that every monotone projection from it
to UCONN requires exponential blow-up in the number of variables, and so by the above
theorem such a lower bound holds for any reduction from USTCONN to STCONN . In
particular

Theorem 31 ([?]) There is no monotone p-projection from USTCONN to UCONN .

5.2 Decision Trees

The simplest computational model is the Boolean decision tree. It counts the minimum
number of input bits an adaptive algorithm has to look at in order to determine the function
value (all other computation is free). A function that requires all bits to be queried is called

3The next section shows that at least two natural reductions are in fact impossible

13

evasive. It is not difficult (do it yourself, or see e.g. [?]) to develop an adversary strategy
that will force any adaptive algorithm computing USTCONN or UCONN to look at all the
n(n− 1)/2 “edge slots” before finding the answer. In fact much stronger and more difficult
result show (basically) the same for every monotone nontrivial property of graphs [?].

But let us return to connectivity. The above seem to show both USTCONN and UCONN
to have the same complexity. To supply more evidence that UCONN is weaker, [?] suggested
to consider reductions between these two problems in the decision tree model. Here we are
given an “oracle” for one problem when computing the other. Assume the (unknown) input
graph is G(V,E). Then a UCONN oracle takes a query which is a subset U of V , and
answers whether the induced subgraph on U is connected. An USTCONN oracle takes as
query a subset U and two vertices a, b ∈ U , and replies whether a and b are connected in
the subgraph induced on U . Note that in both cases, if |U | = 2, both oracles simply say if
the edge between the two nodes exist, and thus these are the standard Boolean queries.

Again the weakness of UCONN is demonstrated by two results. The first shows that an
USTCONN oracle significantly reduce the decision tree complexity of UCONN . The second
shows that a UCONN oracle is practically useless (in comparison to simple Boolean queries).

Theorem 32 ([?]) There is a decision tree for UCONN with an oracle for USTCONN that
uses only n− 1 queries.

The proof is trivial: the n − 1 queries test that vertex 1 (say) is connected to all other
n− 1 vertices (in all of them U = V). The difficult direction is to show

Theorem 33 ([?]) Every decision tree for USTCONN with an oracle for UCONN uses Ω(n2)
queries.

5.3 Expressibility in Logic

This subsection is different than the rest of the paper in that the model that “recognizes”
languages is a logical sentence in some theory. The interest in this model came after Fagin
[?] discovered that that languages definable by existential second order sentences (the class
Σ1

1), capture in a precise sense the complexity class NP . Many similar logical character-
izations of complexity classes followed, most of which are surveyed in [?]. Again graph
connectivity shows up in several places, and the logical point of view shed a different light
on the combinatorics of the problem. In particular, the relative difficulty of some variants of
connectivity is reversed! Again I will be informal, and refer the reader to the excellent text
of Enderton [?] on mathematical logic.

How does a logical sentence recognizes a language? Let us restrict ourselves to languages
which are subsets of graphs. The universe of variables for the formula is the vertex set V , and
the edge set E of the input graph G(V,E) is thought of as a relation for which membership
can be tested. It is best to give an example.

The sentence ∀x∃y[(x, y) ∈ E] “accepts” the language of all graphs in which there are
no isolated vertices. This sentence is clearly first order (quantifies only over elements in
the universe), and thus having no isolated vertex (as well as its complement) is a first-order
property.

14

How about our simplest connectivity problem, CYCLE? If you do not know the answer,
it is worth while to reflect about this before proceeding, and get a feeling (or proof?!) on
whether CYCLE is a first-order property or not. If you did not succeed in finding a sentence
for it, it may have occurred to you that showing that such a sentence does not exist requires
some technology. The most useful way for proving such “lower bounds” is the Ehrenfeucht-
Fraisse games, developed independently in [?] and [?]. We shall not describe it here, only
note that it is a two- person game, that bears some resemblance (albeit artificial) to the
communication complexity game of [?] which was used to prove lower bounds for circuit
depth. One of the earliest uses of this technique was proving this lower bound on CYCLE.
This result can be thought of as a precursor to the AC0 lower bounds of the previous section,
as AC0, in a very precise sense, is a nonuniform version of first order properties.

Theorem 34 CYCLE is not a first order property

A much more expressive set is the monadic existential second order (monadic Σ1
1) sen-

tences. The motivation for their definition, as well as most of the material below, can be
found in [?]. These are sentences of the form ∃A1∃A2 · · · ∃Akψ, where ψ is a first-order
sentence, and the Ai are subsets of the universe. It is an easy exercise to see that such a
sentence describes the set of 3-chromatic graphs. How about connectivity? The first two
results, which were used by Fagin [?] to separate this class of sentences from its complement
(where existential quantifiers are replaced by universal quantifiers) was to show

Theorem 35 ([?]) UCONN is a monadic Σ1
1 property, but UCONN is not.

The first part of the theorem is easy, as it suffices to guess a nontrivial component (subset
of the vertex set) and verify in first-order that it is nontrivial (not empty or equal V), and
that there are no edges in the cut it defines. The second part requires a nice generalization
of the Ehrenfeucht-Fraisse game to deal with such sentences.

It was somewhat surprising, and in some sense counter intuitive, when Kanellakis [?]
observed that USTCONN , which we think of as harder than UCONN , is a monadic Σ1

1

property.

Theorem 36 ([?]) USTCONN is a monadic Σ1
1 property.

To see this, guess the set which contains the vertices on a shortest st-path. It is easy
to see that one needs only verify (in first-order) that in the subgraph induced by this set s
and t have degree 1, and every other vertex has degree 2. Trying to apply the same trick in
directed graphs fails due to “back edges”, and the status of STCONN was raised. This was
resolved in the negative by Ajtai and Fagin [?].

Theorem 37 STCONN is not a monadic Σ1
1 property.

Acknowledgments

I wish to thank Moni Naor, Ilan Newman and Noam Nisan for reading and improving an
earlier version of this paper.

15

References

[A1] M. Ajtai, On the complexity of the pigeonhole principle, Proc. of the 29th FOCS, pp.
346–355, 1988.

[A2] M. Ajtai, First-order definability on finite structures , Annals of Pure and Applied
Logic, 45, pp. 211–225, 1989.

[AB] M. Ajtai and M. Ben-Or, A theorem on probabilistic constant-depth computation,
Proc. of the 16th STOC, pp. 471–474, 1984.

[AF] M. Ajtai and R. Fagin, Reachability is harder for directed than for undirected finite
graphs , The journal of Symbolic Logic, Vol 55, No 1, pp. 113–150, 1990.

[AKS] M. Ajtai, J. Komlos, E. Szemeredi, Deterministic simulation in logspace, Proc. of the
19th STOC, pp. 132–140, 1987.

[AK+] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovasz, C. Rackoff, Random walks, uni-
versal traversal sequences, and the complexity of maze problems , Proc. of the 20th
FOCS, pp. 218–223, 1979.

[BeSi] P. Berman and J. Simon, Lower bounds for graph threading by probabilistic machines,
Proc. of the 24th FOCS, pp. 304–311, 1983.

[Bo] B. Bollobas, Extremal Graph Theory, Academic Press, 1978.

[BBRS] G. Barnes, J. F. Buss, W. L. Ruzzo and B. Schieber, A sublinear space, polynomial
time algorithm for directed s − t connectivity, Technical report 92-03-05, Dept. of
Computer Science, University of Washington, 1992.

[BC+] A. Borodin, S. A. Cook, P. W. Dymond, W. L. Ruzzo and M. Tompa, Two applica-
tions of inductive counting for complementation problems , SIAM J. on Computing,
Vol 18, pp. 559–578, 1989.

[BI+] P. Beame, R. Impagliazzo, J. Krajicek, T. Pitassi, P. Pudlak and A. Woods, Ex-
ponential lower bounds for the pigeonhole principle, Proc. of the 24th STOC, pp.
200–220.

[BM] M. Blum and S. Micali, How to generate cryptographically strong sequences of pseudo-
random bits , SIAM J. on Computing, 13, 4, pp. 850–864, 1984.

[BNS] L. Babai, N. Nisan and M. Szegedy, Multi-party protocols and logspace-hard pseudo-
random sequences , Proc. of the 21st STOC, pp.1–11, 1989.

[BR] G. Barnes and W. L. Ruzzo, Deterministic algorithms for undirected st-connectivity
using polynomial time and sublinear space, Proc. 23rd STOC, pp. 43–53, 1991.

[BS] R. Boppana and M. Sipser, The complexity of finite functions , Handbook of Theoret-
ical Compluter Science, Vol. A, van Leeuwen (ed.), MIT Press/ Elsvier, pp. 759–804,
1990.

16

[CaWe] L. Carter and M. Wegman, Universal hash functions , J. of Computer Systems and
Sciences, 18, 2, pp. 143–154, 1979.

[Co] S. A. Cook, A taxonomy of problems with fast parallel algorithms , Information and
Computation, 64, pp. 2–22, 1985.

[CW] A. Cohen and A. Wigderson, Dispersers, deterministic amplification and weak random
sources , Proc. of the 30th FOCS, pp. 14-19, 1989.

[CoWi] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions,
Proc. of the 19th STOC, pp. 1–6, 1987.

[CFL] A. Chandra, M. Furst and R. J. Lipton, Multi-party protocols, Proc. of the 15th
STOC, pp. 94–99, 1983.

[CKR] M. Chrobak, H. Karloff, T. Radzik, Connectivity vs. reachability, Information and
Computation, Vol 91, No 2, pp. 177–188, 1991.

[CM] S. Cook and P. McKenzie, Problems complete for deterministic logarithmic space, J.
of Algorithms, Vol 8, No 3, pp. 385–394, 1987.

[CR] S. A. Cook and C. W. Rackoff, Space lower bounds for maze threadability on restricted
machines , SIAM J. on Computing, Vol 9, No 3, pp. 636–652, 1980.

[E] H. B. Enderton, A Mathematical Introduction to Logic, Academic Press, 1972.

[Eh] A. Ehrenfeucht, An application of games to the completeness problem for formalized
theories, Fund. Math., 49, pp. 129–141, 1961.

[Fa] R. Fagin, Monadic generalized spectra, Zeitschrift fur Mathematische Logik und
Grundlagen der Mathematik, Vol 21, pp. 89–96, 1975.

[Fr] R. Fraisse, Sur les classifications des systems de relations, Publications Scientifiques
de l’Universite d’Alger, Vol 1. pp. 35–182, 1954.

[FSS] M. Furst, J. Saxe and M. Sipser, Parity, circuits and the polynomial-time hierarchy,
Math System Theory 17, pp. 13–27, 1984.

[GS1] M. Grigni and M. Sipser, Monotone complexity, Proceedings of LMS workshop on
Boolean function complexity, Durham, M. Paterson (Ed.), Cambridge University
Press, 1990.

[GS2] M. Grigni and M. Sipser, Monotone separation of Logspace from NC1, Proc. of the
6th Structures in Complexity Theory conference, pp. 294–298, 1991.

[H] J. Hastad, Computational limitations of small-depth circuits, The MIT Press, 1987.

[Is] S. Istrail, Polynomial traversing sequences for cycles are constructible, Proc. of the
20th STOC, pp. 491–503, 1988.

17

[I1] N. Immerman, Descriptive and computational complexity, Computational Complexity
Theory, J. Hartmanis (Ed.), Proc. Symp. Applied Math. 38, American Mathematical
Society, pp. 75–91, 1989.

[I2] N. Immerman, Nondeterministic space is closed under complementation, SIAM J. on
Computing, 17, pp. 935–938, 1988.

[IZ] R. Implagliazzo and D. Zuckerman, How to recycle random bits , Proc. of the 30th
FOCS, pp. 248–253, 1989.

[J] D. Johnson, A catalog of complexity classes , Handbook of Theoretical Compluter
Science, Vol. A, van Leeuwen (ed.), MIT Press/ Elsvier, pp. 67–162, 1990.

[Ka] P. Kanellakis, Private communication, 1986.

[KSS] J. Kahn, M. Saks, D. Sturtevant, A topological approach to evasiveness, Combinator-
ica 4, pp. 297–306, 1984.

[KW] M. Karchmer and A. Wigderson, Monotone circuits for connectivity require super-
logarithmic depth, SIAM J. on Discrete Mathematics, Vol 3, No 2. pp. 255–265, 1990.

[LP] H. Lewis and C. Papadimitriu, Symmetric space-bounded computation, Theoretical
Computer Science 25, pp. 130–143, 1982.

[N1] N. Nisan, Pseudo-random generators for space-bounded computation, Proc. of the
22nd STOC, pp. 204–212, 1990.

[N2] N. Nisan, RL ∈ SC , Proc. of the 24th STOC, pp. 619–623, 1992.

[NN] J. Naor and M. Naor, Small-bias probability spaces: efficient constuctions and appli-
cations, Proc. of the 22nd STOC, pp. 213–223, 1990.

[NSW] N. Nisan, E. Szemeredi and A. Wigderson, Undirected connectivity in O(log1.5 n)
space, submitted to FOCS ’92.

[NW] N. Nisan and A. Wigderson, Hardness vs. Randomness , Proc. of the 29th FOCS, pp.
2–12, 1988.

[RW1] R. Raz and A. Wigderson, Probabilistic communication complexity of Boolean rela-
tions, Proc. of the 30th FOCS, pp. 562–567, 1989.

[RW2] R. Raz and A. Wigderson, Monotone circuits for matching require linear depth, Proc.
of the 22nd STOC, pp. 287–292, 1990.

[Re] J. H. Reif, Symmetric complementation, Proc. of the 14th STOC, pp. 201–214, 1982.

[S] R. Szelepcsenyi, The method of forcing for nondeterministic automata, Bull. of the
European Ass. of Theoretical Computer Science, 33, pp. 96–100, 1987.

18

[Sa] W. Savitch, Relashionships between nondeterministic and deterministic tape complex-
ities , Journal of Computer Systems and Sciences, 4, pp. 177–192, 1970.

[SV] S. Skyum and L. Valiant, A complexity theory based on Boolean algebra, Proc. of the
22nd FOCS, pp. 244–253, 1981.

[T] M. Tompa, Two familiar transitive closure algorithms which admit no polynomial
time, sublinear space implementations, SIAM J. on Computing, 11, 1, pp. 130–137,
1982.

[Y1] A. C. Yao, Some complexity questions related to distributive computing, Proc. of the
11th STOC, pp. 209–213, 1979.

[Y2] A. C. Yao, Private communication.

19

