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Abstract

Abduction is an important form of nonmonotonic reasoning allowing one to find

explanations for certain symptoms or manifestations. When the application domain

is described by a logical theory, we speak about logic-based abduction. Candidates for

abductive explanations are usually subjected to minimality criteria such as subset-

minimality, minimal cardinality, minimal weight, or minimality under prioritization

of individual hypotheses. This paper presents a comprehensive complexity analysis

of relevant decision and search problems related to abduction on propositional the-

ories. Our results indicate that abduction is harder than deduction. In particular,

we show that with the most basic forms of abduction the relevant decision problems

are complete for complexity classes at the second level of the polynomial hierarchy,

while the use of prioritization raises the complexity to the third level in certain

cases.
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1 Introduction

This paper is on the computational complexity of abduction, a method of reasoning ex-

tensively studied by C.S. Peirce [58, 33]. Abduction has taken on fundamental importance

in Artificial Intelligence and related disciplines. Abductive reasoning is used to generate

explanations for observed symptoms and manifestations.

Abduction appears to be a powerful concept underlying commonsense reasoning. The

importance of abduction to Artificial Intelligence was first emphasized by Morgan [52]

and Pople [64]. One important application field within AI is diagnosis. As pointed

out by Peng and Reggia [59] and by others, there is a wide consensus that humans

typically use abduction in the diagnosis process. Furthermore, diagnosis is one of the

most representative and best understood application domains for abductive reasoning,

maybe because the diagnostic process is more amenable to being logically formalized than

many other problem-solving tasks. Several abduction-based diagnostic expert systems

have been built and were successfully applied, mainly in the medical domain [59, 36].

Regarding specifically logic-based abduction, THEORIST by Poole [62] is a framework

for abductive and default reasoning and can be used for diagnosis [63] and other problem

solving activities [61]. Also Cox and Pietrzykowski [17] and Console, Theseider Dupré,

and Torasso [13] present diagnostic systems that use logic-based abduction.

Abduction is also fruitfully used for several applications apart from diagnosis in ar-

eas such as planning [23], design synthesis [27], database updates [38], natural language

understanding and text generation [9, 10, 54, 34] analogical reasoning and machine learn-

ing [64, 14], user modeling (cf. [60]), and vision (cf. [11]).

Logic-based abduction

Several models and formalizations of abduction have been introduced. In this paper we

are interested in logic-based abduction, which is more general than most other formal

approaches to abduction. It has attracted a great deal of interest, especially in recent

years, due to progress in logic programming and logic-based knowledge representation

[42, 45].

Logic-based abduction can be described more formally as follows: Given a logical the-

ory T formalizing a particular application domain, a set M of atomic formulas describing

some manifestations, and a set H of (usually atomic) formulas containing possible indi-

vidual hypotheses, find an explanation (or solution) for M , i.e., a suitable set S ⊆ H such

that T ∪ S is consistent and logically entails M . Consider, for instance, the following

example from the domain of motor vehicles, inspired by [14]:

1



T = {¬(rich mixture ∧ lean mixture),

rich mixture → high fuel consumption,

lean mixture → overheating,

low oil → overheating,

low water → overheating },

H = { rich mixture, lean mixture, low oil, low water },

M = { high fuel consumption, overheating }.

Then, {rich mixture, low oil} and {rich mixture, low water} are abductive explanations

of the manifestations M . Note that {rich mixture, lean mixture} is ruled out as an ex-

planation, since it is inconsistent with T .

It is easy to see that logic-based abduction is a form of nonmonotonic reasoning. Adding

the formula ¬low oil to the theory T has the effect that {rich mixture, low oil} is no longer

an admissible explanation. Thus, from stronger theories we may sometimes abduce less

approaching categoricity.

Logic-based abduction is particularly suitable if one of the following conditions applies:

• the domain knowledge is best represented by a logical theory, e.g. if it involves

disjunctive information, integrity constraints, or negative information, which can

not be expressed easily by simple mappings between causes and effects.

• rich knowledge about the relationship between causes and effects is available, e.g.

about the behavior of a system in case of component failures.

Alternative approaches to logic-based abduction

A number of alternative approaches to logic-based abduction are known. These ap-

proaches can be uniformly described in terms of the following three basic concepts, which

have already been used in the logic-based approach:

• A structure or theory T representing all the relevant domain knowledge.

• A set M of present manifestations (or observations, symptoms), which is a subset

of the set M∗ of all possible manifestations.

• A set H of possible individual hypotheses that may be used to form explanations.

(Our formalization, without loss of generality will assume M∗ = M .) We briefly describe

the most relevant alternative approaches to logic-based abduction, namely abduction

by set-covering, probabilistic abduction, and consistency-based diagnosis with simplified

definitions in terms of T , M∗, M , and H .
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Abduction by set-covering is a prominent and widely used method, cf. [59]. Here

H is a finite set of atomic items representing all hypotheses (possible disorders). The

domain knowledge T is represented by a function e from subsets of H to subsets of M∗

such that X explains e(X); X can be seen as a possible cause for e(X). A solution to

a set-covering problem is a subset X ⊆ H such that e(X) = M . The attention is often

limited to solutions that are acceptable according to some criteria. (Different concepts of

acceptable solutions will be considered below.)

There are several variants and refinements of the set-covering approach to abduction.

For instance, a plausibility-order may be attached to subsets of H , cf. [6]. Furthermore,

it may be useful to require that an abduction problem is independent, i.e. the function e

satisfies e(X) =
⋃

h∈H e({h}), or that an abduction problem is monotonic, i.e. e satisfies

∀X, Y ⊆ H : X ⊆ Y ⇒ e(X) ⊆ e(Y ) [6].

The set-covering model is best suited when the relationships between causes and effects

are simple such that they can be easily made explicit in the form of a function.

Probabilistic abduction models the hypotheses in H and the manifestations in M

as events. In addition to structural knowledge, T contains probabilistic knowledge about

hypotheses and manifestations. In particular, T contains the prior probabilities of the

hypotheses and the conditional probabilities between (sets of) hypotheses and (sets of)

manifestations. A solution to a probabilistic abduction problem is a set A ⊆ H such that

the a-posteriori probability P (A|M) is maximized.

Several refinements and variants of probabilistic abduction have been introduced. Among

the most important are Pearl’s Belief Networks [56, 57] and Peng and Reggia’s Proba-

bilistic Causal Model [59]. Probabilistic models are best used when the following three

conditions are satisfied:

1. The structural relations between hypotheses and manifestations are rather simple;

2. the necessary probabilistic knowledge is available; and

3. certain independence assumptions can be made in order to be able to compute

a-posteriori probabilities (e.g. by applying Bayes’ Theorem).

Consistency-based diagnosis is usually considered as a competing approach to logic-

based abductive diagnosis. According to this approach, the hypotheses in H represent the

single components of the system to be diagnosed. The domain theory T is a set of first-

order sentences (called the system description) describing how the system functions. The

system description T involves literals of the form ¬AB(c) to express that a component

c ∈ H behaves correctly (i.e., not abnormally). The system behaves incorrectly iff T ∪M∪
{¬AB(c) : c ∈ H} is inconsistent. A diagnosis is a set A ⊆ H such that T∪M∪{¬AB(x) :

x ∈ H −A} ∪ {AB(x) : x ∈ H} is consistent.
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Translations between this approach and the logic-based abductive approach to diagnosis

have been studied in [14, 40]. In [15], Console and Torasso carefully compare the two

approaches and point out that the logic-based abductive approach often leads to more

precise diagnoses. Konolige also comes to this conclusion and shows that the abductive

approach offers several advantages if one is interested in the representation of domain

knowledge [40]. Notice that Bylander et al. have shown [6] how to map consistency-based

diagnosis into a set-covering abduction problem.

The consistency-based approach to diagnosis is particularly useful if we have a good

description of how the system functions properly when its components are not faulty.

It should be clear that being totally dogmatic about the virtues of logic-based abduction

is by no means justified. The complexity results derived in this paper suggest that logic-

based abduction is by far the most general computational formulation, but that does not

mean that logic-based abduction is always the method of choice. On the contrary, less

complex formulations should be preferred if they are applicable.

Preferred solutions

In accordance with Occam’s razor [59], which states that from two explanations the sim-

pler explanation is preferable, some minimality criterion is usually imposed on abductive

explanations. Different minimality criteria correspond to different preference relations

(usually preorders) on the solution space, or, more generally, on the powerset of H . Note

that each minimality criterion can be regarded as a qualitative version of probability such

that the minimal explanations correspond to the most likely ones.

We briefly list the most important minimality criteria and explain how they relate to

qualitative versions of probability. (Formal definitions are given in Sections 2 and 4.)

Subset-minimality (⊆). The subset-minimality criterion, termed irredundancy in [59],

is most frequently used. It adopts each solution S such that no proper subset S ′ ⊂ S

of S is a solution. In our motor vehicle example, the solution {rich mixture, low oil,

low water} is ruled out by this criterion, since e.g. the solution {rich mixture, low oil}
is a proper subset of it. Notice that {rich mixture, low oil} is a subset-minimal solution.

Subset-minimality is a rather weak minimality criterion. It is particularly appropriate

when the hypotheses are events whose chances to be present (resp. absent) obey prob-

abilistic principles, but there is no numeric knowledge about probability values. In this

case, a solution A ⊆ H is at least as likely as any superset solution A ∪ B ⊆ H . This

justifies discarding superset-solutions and concentrating on subset-minimal solutions.

Minimum cardinality solutions (≤). The minimum cardinality criterion states that

a solution A ⊆ H is preferable to a solution B ⊆ H if |A| < |B|. Note that this crite-

rion also rules out the solution {rich mixture, low oil, low water} in the motor vehicle
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example, since the cardinality of this solution is 3, while the cardinality of the solution

{rich mixture, low oil} is 2; the latter solution is a minimum cardinality solution. No-

tice also that each minimum cardinality solution is also a subset-minimal solution, but

not conversely. For this reason, minimum cardinality is a stronger criterion than subset-

minimality.

The restriction to minimum cardinality solutions is appropriate if the likelihood of so-

lutions is well described by a probability function (just as above) and if we can make the

additional assumption that all hypotheses ofH are roughly equally probable and mutually

independent events. In this case, sets of hypotheses of smaller cardinality will always be

assigned a higher probability than sets of higher cardinality.

Prioritization. The method of priorities is a refinement of the above minimality crite-

ria, which roughly operates as follows. The set of hypotheses H is partitioned into groups

of different priorities, and solutions which are minimal on the lowest priority hypotheses

are selected from the solutions. The quality of the selected solutions on the hypothe-

ses of the next priority level is taken into account for further screening; this process is

continued over all priority levels. (For a formal definition, see Section 4.) The subset-

minimality criterion or the minimum cardinality measure is used to compare solutions

on the hypotheses of a single priority level; the respective criteria, which depend on the

prioritization P , are denoted by ⊆P and ≤P . Notice that prioritization can be combined

analogously with other minimality criteria for solutions. Priority levels are also used in

the context of theory update and revision [25] and [30], in prioritized circumscription [46],

and in the preferred subtheories approach for default reasoning [3].

Prioritization is also a qualitative version of probability, where the different priority

levels represent different magnitudes of probability. Prioritization is well-suited in case

no precise numerical values are known, but the hypotheses can be grouped into clusters

such that the probabilities of hypotheses belonging to the same cluster do not differ

much compared to the difference between hypotheses from different clusters. If it can

be assumed that within any cluster the probabilities of hypotheses are approximately

equal, then prioritization is suitably combined with the minimum cardinality criterion;

otherwise, the combination with subset-minimality is appropriate.

Penalization (⊑p). The method of penalties is a refinement of the method of priori-

ties combined with the minimum cardinality measure. It allows one to attach a weight

(penalty) to each hypothesis from H and look for solutions with minimum total weight.

These weights may be subjective values (similar to certainty factors) or the outcome of a

statistical analysis.

In a more utilitarian fashion, penalties may also be used, e.g. in diagnosis, to represent

the cost of cure or repair associated with different hypotheses (= disorders); this would

mean that diagnoses (i.e. explanations) entailing less expensive cure or repairs would
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be preferred, which makes sense in some contexts. In a similarly utilitarian fashion,

penalties may be used to quantify the cost or effort required to check whether a hypothesis

belonging to a computed explanation effectively applies. A doctor will usually prefer to

consider a diagnosis first that can be confirmed or disproved by simply looking into the

patient’s mouth and measuring the blood pressure. Only if this diagnosis does not apply,

the doctor may want to consider diagnoses whose verification require a time consuming

and expensive computer-tomographic analysis (except in the US, where legally defensible

medicine is practiced).

Finally, penalties are also well-suited for expressing probabilistic knowledge (here of a

numeric nature) on the hypotheses. If the hypotheses are assumed to be statistically

independent events, then the probability P (hi) that hypothesis hi is present may be rep-

resented as the penalty p(hi) = log
(

1
P (hi)

)

. The penalty
∑n
i=1 p(hi) attached to the com-

posite hypothesis A = {h1, . . . , hn} then exactly matches the joint probability Πn
i=1P (hi)

of the events h1, . . . , hn, since log
(

1
Πn

i=1P (hi)

)

=
∑n
i=1 log

(

1
P (hi)

)

=
∑n
i=1 p(hi).

The main problems

In the context of logic-based abduction, the main decision problems are:

(i) to determine whether an explanation for the given manifestations exists at all;

(ii) to determine whether an individual hypothesis h ∈ H is relevant, i.e., whether it is

part of at least one acceptable explanation;

(iii) to determine whether an individual hypothesis is necessary, i.e., whether it occurs in

all acceptable explanations.

Furthermore, the search problems of computing an explanation or a best explanation are

important.

Due to results of Bylander, Allemang, Tanner and Josephson [1, 5, 6], the complexity

of these problems in the context of the set-covering approach to abduction is quite well

understood. On the other hand, the complexity of logic-based abduction has only been

partially investigated. Selman and Levesque [69], Bylander [4], and Friedrich et al. [28]

studied the particular case where T is a propositional Horn theory and where the subset-

minimality measure is used (for definitions, see Sections 2 and 5). Eshghi [24] studied

abduction under further restriction of T to a subclass of Horn theories. The complexity of

abductive reasoning in the general propositional case was left open, and it was also unclear

how different minimality criteria would affect the complexity in both the general and the

Horn case. It is precisely the aim of this paper to shed light on these questions. We give a

complete picture of the complexity of the main decision problems related to propositional

abduction by providing completeness results for several complexity classes at lower levels
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of the polynomial hierarchy, and we address some important search problems such as the

computation of a best solution.

Overview of results

We consider propositional abduction problems whose domain theories T are of one of the

following forms: general propositional theories, clausal theories, Horn clauses, or definite

Horn clauses. Our main results are shortly summarized as follows.

• General case. If T is an arbitrary propositional theory and no minimality criterion

is applied to the solutions, the complexity of the main decision problems is located at

the second level of the polynomial hierarchy. More precisely, checking for the existence of

an explanation is ΣP
2 -complete, testing the relevance of an individual hypothesis is also

ΣP
2 -complete, while checking if a hypothesis is necessary is ΠP

2 -complete. Thus, even the

simplest form of abduction is harder1 than deduction.

• General theories and subset-minimal explanations. If the subset-minimality

criterion is imposed on general explanations, then the same completeness results hold.

Thus, surprisingly, reasoning with subset-minimal explanations turns out to be of the

same complexity as reasoning with general explanations.

• General theories and minimum cardinality explanations. In case only minimum

cardinality explanations are accepted, both checking whether a hypothesis is relevant and

checking if it is necessary is complete for ∆P
3 [O(logn)], the class of decision problems solv-

able in polynomial time with a logarithmic number of calls to a ΣP
2 oracle. ∆P

3 [O(logn)] is

at the second level of the polynomial hierarchy. Thus, cardinality-based minimality leads

to a “mildly” harder complexity than subset-based minimality. Note that cardinality-

based minimization is equivalently obtained by attaching a penalty of value 1 to each

individual hypothesis.

• General theories and penalization. If the method of penalties is used, the same

problems become complete for ∆P
3 . This is the hardest class of problems at the second

level of the polynomial hierarchy. Note that our hardness-proof requires the use of very

high penalties whose value is exponential in the input size n. If we limit admissible

penalty-values to an upper bound p(n), where p is a polynomial, then the complexity falls

back to ∆P
3 [O(logn)]. The same applies if penalties are represented in tally notation.

• General theories and prioritization. We analysis the method of priorities combined

with subset-minimality as well as with the minimum cardinality criterion. In the first case,

relevance-checking is ΣP
3 -complete and necessity-checking is ΠP

3 -complete. The complexity

thus goes up to the third level of the polynomial hierarchy. In the second case, both

problems stay at the second level being complete for ∆P
3 .

1Under the assumption the polynomial hierarchy does not collapse; we will make this assumption

implicitly, whenever we use the term “hard” in the rest of this paper.
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• Theories in clause form. For clausal theories, exactly the same complexity results

hold as for the general theories.

• Horn theories. If T consists of Horn clauses, then the complexity of each of the

described decision problems is lowered by exactly one level in the polynomial hierarchy.

More precisely, any problem complete for ΣP
i , ΠP

i , ∆P
i , or ∆P

i [O(logn)] on general theories

is complete for the respective class ΣP
i−1, ΠP

i−1, ∆P
i−1, or ∆P

i−1[O(logn)] on Horn theories.

This is also true for definite Horn theories, except for testing of existence of a solution,

as well as for relevance and necessity checking when no minimality criterion at all is

applied to the explanations, or where subset-minimality is used together with the method

of priorities. In all the latter cases, the complexity is lowered by exactly two levels in the

polynomial hierarchy.

• Computation of solutions. Computing a general explanation or a subset-minimal

explanation is complete for the class of multivalued search problems solvable by nondeter-

ministic Turing machines with polynomially many NP-oracle calls. Under the cardinality-

based preference relation and with Horn theories, the same problem becomes a member

of the class of hard NP optimization problems recently defined by Chen and Toda [12].

These problems can be solved with arbitrarily high probability by randomized algorithms

making one free evaluation of parallel queries to NP.

Our results explain how various assumptions on the syntactic form of theories interact

with various minimality criteria and may support a designer of an abductive expert system

in choosing the right settings. For instance, our results suggest that – if permitted by the

application – using the method of penalties is preferable to using the method of priorities

together with the usual subset-minimality criterion.

Our completeness results also allow one to classify different versions of abduction with

respect to different alternative techniques of nonmonotonic reasoning and establish links

and translations between reasoning tasks in various formalisms. For example, it is known

that relevant reasoning tasks in Reiter’s default logic [66] or in Moore’s autoepistemic

logic [51] are ΠP
2 -complete [32]. Thus, one can polynomially transform abductive reason-

ing problems to default or autoepistemic reasoning tasks and take advantage of existing

algorithms and proof procedures. Conversely, any abductive reasoning engine can be used

to solve problems in other nonmonotonic logics. Note that a transformation from a rele-

vant fragment of default logic to abduction was already given in [60]. Another example is

theory updating. In [22] it is shown that evaluating counterfactuals according to Dalal’s

method of updating propositional theories is complete for ∆P
2 [O(logn)]. It follows from

the results of the present paper that this task can be polynomially mapped into a Horn

abduction problem with cardinality-based minimality measure.

Finally, our results show that the different variations of abduction provide a rich collec-

tion of natural problems populating all major complexity classes between P and ΣP
3 , ΠP

3 .

Abduction appears to be one of the few natural problems with this characteristic. Our
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results may thus be used as a “toolbox” helping to analyze the complexity of yet different

problems.

The rest of this paper is organized as follows. In Section 2 we provide the reader with the

basic definitions and give a brief review of the relevant complexity concepts. Section 3

reports about related previous work. The complexity results for general propositional

theories are shown in Section 4 while Section 5 is dedicated to Horn cases. Section 6

briefly addresses the problem of computing explanations. The main results of the paper

are compactly summarized in three tables in Section 7. There, we analyze sources of

complexity and conclude the paper by discussing some related results concerning other

forms of reasoning and by outlining possible issues for future research.

2 Preliminaries

Abduction model

Let LV be the language of propositional logic over an alphabet V of propositional variables,

with syntactic operators ∧, ∨, ¬, →, ↔, ⊤ (a constant for truth), and ⊥ (falsity). We

adopt the standard binding rules for operators. A theory is a finite set T ⊆ LV . For

convenience, we refer to a theory T also as the conjunction of its formulae. Each variable

is an atom, and a literal is an atom or a negated atom. Unless stated otherwise, we

assume throughout the paper that distinct variable symbols refer to distinct variables.

A clause is a disjunction x1 ∨ · · · ∨ xk ∨ ¬xk+1 ∨ · · · ∨ ¬xn of (pairwise distinct) literals.

We do not distinguish between clauses with different literal order and refer to a clause

also as the set of its literals. A clause is Horn (definite Horn) iff k ≤ 1 (k = 1).

A theory is in clausal form iff all its formulae are clauses. A formula is in conjunctive

normal form (CNF) iff it is a conjunction of clauses, and is in disjunctive normal form

(DNF) iff it is a disjunction D1 ∨ · · · ∨Dn of conjunctions Di of literals.

Truth assignments are defined in the usual way. For every truth assignment φ(V ) to

the variables V and F ∈ LV , Vφ(F ) denotes the truth value of F according to φ. F is

satisfied by φ iff Vφ(F ) = true. As usual, for F,G ∈ LV and T ⊆ LV , G |= F (resp.

T |= F ) means that for all truth assignments φ(V ), φ satisfies F if φ satisfies G (resp. all

formulas in T ).

If E is a formula and φ(X) is a truth assignment to variables X = {x1, . . . , xn} occurring

in E, then Eφ(X) denotes the formula obtained by replacing each occurrence of x in E by

⊤ if φ(x) = true and by ⊥ if φ(x) = false, for all x ∈ X.

Definition 2.1 A propositional abduction problem (PAP) P consists of a tuple 〈V,H,M, T 〉,
where V is a finite set of propositional variables, H ⊆ V is the set of hypotheses, M ⊆ V

is the set of manifestations, and T ⊆ LV is a consistent theory.
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Definition 2.2 Let P = 〈V,H,M, T 〉 be a PAP. S ⊆ H is a solution (or explanation) to

P iff T ∪ S is consistent and T ∪ S |= M . Sol(P) denotes the set of all solutions to P.

In this model of abduction, a hypothesis plays the role of what in other models is called

an abducible proposition (see [14]). Notice that neither H ∩M = ∅ nor H ∪M = V is

required. H ∩M 6= ∅ makes sense since a manifestation m may be an explanation for

another manifestation m′. H ∪M ⊂ V means that explanations are “assumption-based”,

as not all propositions are allowed to appear in a solution. This seems natural, however,

since, in focusing attention, one will be interested in an explanation from a certain subset

of facts rather than from all facts.

Anyway, neither H ∩M = ∅ nor H ∪M = V would imply a deficiency of our study of

computational issues, since our results remain valid under both restrictions. H ∩M = ∅
will hold in all but few proofs, and H ∪ M = V will with rare exceptions always be

considered. In the remaining cases, it will not be difficult to adapt proofs appropriately.

Note also that we only allow positive atoms in solutions and exclude negative atoms as

well as general propositional formulas F (cf. Konolige’s causal theories [40] for a similar

model). This convention is no restriction of generality, since we may add to T a formula

x′ ↔ F where x′ is a new variable that we add to the hypotheses H .

We do not require T to be in any special form. In implementations, however, theories

are often put into some special format. The most common of such formats is clausal form.

It appears that clausal form does not affect the computational complexity of logic-based

abduction, which is however no surprise.

We will consider several restrictions of Sol(P) to a subset of “acceptable” solutions, which

is defined by means of a suitable preference relation between solutions. Natural axioms

for such a preference relation are reflexivity and transitivity; thus, we model preference

relations by preorders. Throughout the paper, � denotes a preorder on the powerset 2H

of the hypotheses H . a ≺ b stands for a � b ∧ b 6� a. The preferred (or acceptable)

solutions Sol�(P) of a PAP P under order � are defined as follows.

Definition 2.3 Sol�(P) = {S ∈ Sol(P) : 6 ∃S ′ ∈ Sol(P) : S ′ ≺ S}, that is, Sol�(P) is the

set of minimal elements of Sol(P) under �.

In particular, Sol(P) equals Sol=(P). An important property for preference relations is

irredundancy of solutions [59, 69, 6, 40].

Definition 2.4 � is irredundant iff ∀S, S ′ ∈ Sol(P) : S ⊂ S ′ ⇒ S ≺ S ′.

We will mainly deal with irredundant preference orders in this paper. Two well-known

orders of this kind are the subset-minimality order and the minimum cardinality (or

mininum solution size) order. The subset-minimality order is just irredundancy itself,

that is, S � S ′ iff S ⊆ S ′, which we denote by ⊆. The minimum solution size order (e.g.
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[59]), which we denote by ≤, is defined by S1 ≤ S2 iff |S1| ≤ |S2|. Both orders will deserve

proper attention in our study.

The irredundant solutions Sol⊆(P) can also be characterized as follows.

Proposition 2.1 Let P = 〈V,H,M, T 〉 be a PAP. Then, Sol⊆(P) = {S ∈ Sol(P) :

S − {h} /∈ Sol(P), for all h ∈ S}.

Proof. Indeed, if S ∈ Sol(P) and S −{h} ∈ Sol(P) for some h ∈ S, then S /∈ Sol⊆(P).

Conversely, if S ∈ Sol(P) but S /∈ Sol⊆(P), then there exists S ′, S ′ ⊂ S such that S ′ ∈
Sol(P). By the monotonicity of |=, for all S ′′ such that S ′ ⊆ S ′′ ⊂ S, T ∪ S ′′ |= M , thus

S ′′ ∈ Sol(P); hence, S − {h} ∈ Sol(P) for some h ∈ S. 2

We conclude this subsection with a simple technical lemma.

Lemma 2.2 Let P1,P2, . . . ,Pn be PAPs, Pi = 〈Vi, Hi,Mi, Ti〉, 1 ≤ i ≤ n, such that

Vi ∩ Vj = ∅ for 1 ≤ i < j ≤ n, and let V =
⋃

i Vi, H =
⋃

iHi, M =
⋃

iMi, and T =
⋃

i Ti.

Then, Sol�(〈V,H,M, T 〉) = {S1 ∪ · · · ∪ Sn : Si ∈ Sol�(Pi), 1 ≤ i ≤ n}, if � is equality,

⊆-, or ≤-preference.

The main problems

Three interesting issues in abductive reasoning are: Given a PAP P,

1. does there exist a solution for P ?

2. does a hypothesis h contribute to some acceptable solution of P (relevance)?

3. does a hypothesis h occur in all acceptable solutions of P (necessity) ?

The study of the complexity of these problems is the main subject of this paper. The

problem of deciding relevance or necessity of hypotheses has previously been dealt with

in [5] for set-oriented abduction models and in [69, 28, 4] for certain subclasses of propo-

sitional abduction.

Definition 2.5 Let P = 〈V,H,M, T 〉 be a PAP, and let h ∈ H. h is �-relevant for

P iff there exists S ∈ Sol�(P) such that h ∈ S, and h is �-necessary for P iff for all

S ∈ Sol�(P), h ∈ S.

Note that H is divided into the three disjoint sets of not �-relevant, �-relevant but not

�-necessary hypotheses, and �-necessary hypotheses.

We say that h is �-irrelevant for P iff h is not �-relevant for P, and that h is �-

dispensable for P iff h is not �-necessary for P (in [36], necessity is termed indispensabil-

ity). Furthermore, in the case where � is equality, the �-prefix is dropped, and we say

necessary instead of =-necessary etc.

Throughout our analysis, we will primarily deal with �-dispensability rather than with

�-necessity for convenience. Results for �-necessity are easy corollaries to our results on

�-dispensability.
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Review of complexity classes

For the concepts of complexity theory, refer to [29, 35]. The notion of completeness

we employ is many-one polynomial time transformability (≤p
m). Recall that the classes

∆P
k ,Σ

P
k , and ΠP

k of the polynomial time hierarchy (PH) [50] are defined as follows (rf.

[29]):

∆P
0 = ΣP

0 = ΠP
0 = P

and for all k ≥ 0,

∆P
k+1 = PΣP

k , ΣP
k+1 = NPΣP

k , ΠP
k+1 = co-ΣP

k+1.

In particular, NP = ΣP
1 , co-NP = ΠP

1 , and ∆P
2 = PNP. PH is equal to

⋃∞
k=0 ΣP

k . We say

that a problem is at the k-th level of PH if it is complete for ∆P
k+1 under Turing reductions

(i.e., it is in ∆P
k+1 and ΣP

k -hard or ΠP
k -hard).

A well-known problem at the k-th level of PH, k ≥ 1, is deciding the validity of a

quantified Boolean formula with k “quantifier alternations”. A quantified Boolean formula

(QBF) is a sentence of the formQ1x1 · · ·QnxnE, n ≥ 0, where E is a propositional formula

whose variables are from x1, . . . , xn and where each Qi, 1 ≤ i ≤ n, is one of the quantifiers

∀, ∃ ranging over {true, false}.2 Such a formula is said to have a quantifier alternation for

Q1 and for each Qi, i > 1, such that Qi 6= Qi−1. The set of valid QBFs with k quantifier

alternations and Q1 = ∃ (resp. Q1 = ∀) is denoted by QBFk,∃ (resp. QBFk,∀). For example,

the QBF Φ = ∀x1∃x2∃x3∀x4 (x1 ∧ x2 → x3 ∨ x4) has 3 quantifier alternations; it is easily

seen that Φ is valid, hence Φ ∈ QBF3,∃. It is well-known that deciding whether a QBF Φ

satisfies Φ ∈ QBFk,∃ (resp. Φ ∈ QBFk,∀) is ΣP
k -complete (resp. ΠP

k -complete).

∆P
k also has complete problems for all k ≥ 2; for example, given a formula E on variables

x1, . . . , xn,y1, . . . , yr, r ≥ 0, and a quantifier patternQ1y1 · · ·Qryr, decide whether the with

respect to 〈x1, . . . , xn〉 lexicographically maximum truth assignment3 φ to x1, . . . , xn such

that Q1y1 · · ·QryrEφ ∈ QBFk−2,∀ (where such a φ is known to exist) fulfills φ(xn) = true

(cf. [74, 44]).4

∆P
k has been refined to account for the required number of oracle calls to solve a problem

[73, 43, 44, 37, 35, 74]. The class ∆P
k+1[O(logn)] (also denoted by PΣP

k
[O(logn)], or by ΘP

k+1)

is the class of problems decidable in deterministic polynomial time with O(logn) queries

to a ΣP
k oracle, where n is the input size [74, 44]. ∆P

k+1[O(logn)] has complete problems

for all k ≥ 1; for example, given QBFs Φ1, . . . ,Φm, such that Φi /∈ QBFk,∃ implies

Φi+1 /∈ QBFk,∃, for 1 ≤ i < m, decide whether max{i : 1 ≤ i ≤ m,Φi ∈ QBFk,∃} is odd

2In fact, Quantified Propositional Formula (QPF) rather than QBF would be correct. Note that

QPFs are second-order sentences. In abuse of terminology, we do not distinguish between the isomorphic

concepts of QPF and QBF.
3φ is w.r.t. 〈x1, . . . , xnx

〉 lexicographically greater than ψ iff φ(xj) = true, ψ(xj) = false for the least

j such that φ(xj) 6= ψ(xj).
4QBF0,∀ = QBF0,∃ is the set of all variable-free true formulas.
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([74], see proof of Lemma 4.5). A number of ∆P
2 [O(logn)]-complete problems appear in

[73, 43, 37].

Note that ∆P
k and ∆P

k [O(logn)] are closed under complementation, i.e. a problem Π is

in one of these classes iff its complementary problem co-Π is. In particular, Π is complete

for such a class iff co-Π is.

3 Previous results

Computational complexity results for abduction have been derived previously. It appears

that more work has been done on non-logical abduction approaches than on logical ab-

duction, which on the other hand has been analyzed mainly for fragments of propositional

logic.

Bylander and his coworkers extensively investigated the complexity of abduction, based

upon a “functional” abduction model [1, 36, 5, 6, 4]. Their work mainly aimed at charac-

terizing the complexity of computing any (in our terms) �-solution or all �-solutions of

an abduction problem, where � is an irredundant preference (in fact, even partial) order

based on a plausibility relation. The underlying assumptions of Bylander’s work allows

one to model certain parts of propositional logic [4], and is thus somewhat related to our

work (see below).

In the context of Bayesian belief networks [56], Cooper showed the intractability of cal-

culating the probability that a certain hypothesis is present in some explanation, ignoring

other hypotheses [16].

For the logical approach, a number of very interesting complexity results for abduction

on Horn theories have been derived by Selman and Levesque [69], Friedrich et al. [28],

and by Bylander [4]. Selman and Levesque show that, in our terms, finding a ⊆-solution

as well as finding any solution to a Horn PAP P is NP-hard, and that the same holds if

the solution must contain a certain hypothesis h.5 These results are shown by a reduction

from an NP-complete problem on graphs; we give new proofs. Eshghi has shown in [24],

where the notion of solution slightly stricter than in this paper, that finding a ⊆-minimal

solution is tractable if T is acyclic Horn and its pseudo-completion is unit-refutable.

Friedrich et al. studied complexity issues for definite Horn PAPs [28]. They showed that

under this restriction, deciding necessity, relevance, and ⊆-necessity of a hypothesis is

polynomial, and that deciding ⊆-relevance of a hypothesis is NP-complete.

Bylander [4] demonstrates a polynomial transformation of a certain subclass of the

functional abduction model [6], the independent abduction problems, into definite Horn

PAPs. Thus, by previous results [6], the tractability of finding some ⊆-solution (and hence

also of finding any solution) is established.

5We should note that not all these results are explicitly stated, but follow immediately from proofs in

that paper.
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Results somewhat less related to ours are also shown by Rutenburg [68] and Provan [65]

in the context of truth maintenance systems (TMS) [20]. The role of TMSs for abductive

problem solving has already been pointed out in [45], and the relationship between TMS

and abduction was further investigated in [31].

Rutenburg [68] analyzed the complexity of various alternatives of a TMS, and presented

several NP-completeness results and a ΣP
2 -completeness result for decision problems asso-

ciated to finding TMS-explanations (“nogoods”) of certain size. His analysis also covers

de Kleer’s popular assumption-based TMS (ATMS) [18], for which Provan derived similar

results [65].

4 Complexity results: the general case

In this section, we present complexity results for deciding �-relevance and �-dispensability

for a full propositional PAP under several preference criteria, among them ⊆-preference,

≤-preference, and prioritized abduction. We also cover the case of an arbitrary efficiently

decidable preference order, and we address the complexity of deciding whether a PAP

has any solution at all. All results derived in this section render the respective problems

complete for classes at the second or third level of the PH.

We note the following easy proposition.

Proposition 4.1 Let P = 〈V,H,M, T 〉 be a PAP. Deciding if S ⊆ H fulfills S ∈ Sol(P)

is in ∆P
2 .

Proof. Since S ∈ Sol(P) iff S ⊆ H , T ∪ S is consistent, and T ∪ S |= M , this is clear.

2

Remark: Deciding S ∈ Sol(P) is easily shown to be DP -complete (see [35] for DP ).

Deciding Sol(P) 6= ∅

First, we show that deciding if a PAP P has any solution is a ΣP
2 -complete problem. More

strictly, we show that this result may be strengthened to the case where H ∪M = V and

T is in clausal form. Roughly, deciding Sol(P) 6= ∅ is ΣP
2 -complete because one needs to

find a subset of hypotheses (corresponding to existentially quantified Boolean variables)

which entails the manifestations (corresponding to universally quantified variables).

Theorem 4.2 To decide if Sol(P) 6= ∅ for a given PAP P = 〈V,H,M, T 〉 is ΣP
2 -complete.

ΣP
2 -hardness holds even if H ∪M = V and T is in clausal form.

Proof. By Proposition 4.1, verifying a guess for S ∈ Sol(P) is in ∆P
2 , hence membership

in ΣP
2 follows.
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ΣP
2 -hardness of this problem is shown by a transformation from deciding Φ ∈ QBF2,∃.

Let without loss of generality Φ be a QBF ∃x1 · · · ∃xn∀y1 · · · ∀ymE. Let X = {x1, . . . , xn},
Y = {y1, . . . , ym}, X

′ = {x′1, . . . , x
′
n}, and let further s be a new variable. Define a PAP

P = 〈V,H,M, T 〉 as follows.

V = X ∪ Y ∪X ′ ∪ {s}

H = X ∪X ′

M = Y ∪ {s}

T = {xi ↔ ¬x′i : 1 ≤ i ≤ n} ∪ {E → s ∧ y1 ∧ · · · ∧ ym} ∪

{s→ y1 ∧ · · · ∧ ym}

Note that T is consistent and that P is constructible in polynomial time. We show that

Φ ∈ QBF2,∃ holds if and only if Sol(P) 6= ∅.
Assume Φ ∈ QBF2,∃ holds. Hence, there exists a truth assignment φ(X) such that

∀y1 · · · ∀ymEφ(X) ∈ QBF1,∀ holds. Define

S = {xi : φ(xi) = true, 1 ≤ i ≤ n} ∪ {x′i : φ(xi) = false, 1 ≤ i ≤ n}.

Clearly, S ⊆ H and T ∪ S is consistent. Since T ∪ S logically implies xi ≡ φ(xi),

1 ≤ i ≤ n, it follows that T ∪ S |= Eφ(X). Since T ∪ S |= E → s ∧ y1 ∧ · · · ∧ ym, clearly

T ∪ S |= s ∧ y1 ∧ · · · ∧ ym holds. Thus, S ∈ Sol(P).

Conversely, assume that there exists S ∈ Sol(P). Note that {xi, x
′
i} 6⊆ S, 1 ≤ i ≤ n.

It holds that T ∪ S |= E. To show this, assume that T ∪ S 6|= E, i.e., T ∪ S ∪ {¬E}
is consistent. It is easily seen that in this case, T ∪ S ∪ {¬E, ¬s} is consistent, too.

Consequently, T ∪ S 6|= s, which is a contradiction since S ∈ Sol(P) and s ∈ M . It

follows that T ∪ S |= E. Define a truth assignment φ(X) by φ(xi) = true if xi ∈ S and

φ(xi) = false if xi /∈ S, 1 ≤ i ≤ n. Since T ∪ S ∪ {x′i : xi /∈ S} is consistent and logically

implies xi ≡ φ(xi), for 1 ≤ i ≤ n, and since T ∪ S ∪ {x′i : xi /∈ S} |= Eφ(X), Eφ(X) is a

tautology. Thus Φ = ∃x1 · · · ∃xn∀y1 · · · ∀ymE ∈ QBF2,∃ holds.

It remains to show that deciding Sol(P) 6= ∅ is ΣP
2 -hard even if H ∪M = V and T is

in clausal form. Note that H ∪M = V already holds. By the results in [72], checking

Φ ∈ QBF2,∃ remains ΣP
2 -hard even if E is in DNF. Hence a CNF formula E(x1, . . . , xn,

y1, . . . , ym) = C1 ∧C2 ∧ · · · ∧Cr with E ≡ ¬E can efficiently be constructed. It is easy to

see that {E → s ∧ y1 ∧ · · · ∧ ym, s → y1 ∧ · · · ∧ ym} is logically equivalent to the clausal

theory

C = {Ci ∪ {s} : 1 ≤ i ≤ r} ∪ {Ci ∪ {yj} : 1 ≤ i ≤ r, 1 ≤ j ≤ m} ∪ {{¬s, yi} : 1 ≤ i ≤ m}

Clearly, C can be constructed in polynomial time from E as well as the clausal theory

T ′ = C ∪ {¬xi ∨ ¬x′i, xi ∨ x′i : 1 ≤ i ≤ n}. Since T ′ is clearly logically equivalent to T ,

checking Sol(P) 6= ∅ is ≤p
m-reducible to the subcase where H ∪V = M and T is in clausal

form. Whence the theorem is proved. 2
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We remark that deciding Sol(P) 6= ∅ becomes “easier” if H is consistent with T . In

this case, the problem is in NP (and clearly NP-complete). Thus unless hypotheses are

incompatible, abduction is, in a sense, no harder than deduction.

Relevance and dispensability

Checking whether a hypothesis is relevant for a PAP is of the same complexity as checking

if a PAP has a solution.

Theorem 4.3 Deciding if a given hypothesis is relevant for a PAP P is ΣP
2 -complete,

as well as deciding if a given hypothesis is dispensable for P. ΣP
2 -hardness holds even if

H ∪M = V and T is in clausal form.

Proof. By Proposition 4.1, verifying a guess for S ∈ Sol(P) such that h ∈ S (resp.

h /∈ S) is in ∆P
2 , hence membership of the problems in ΣP

2 is clear.

ΣP
2 -hardness is shown by the following reduction. Let P = 〈V,H,M, T 〉, and let

h, h′, m′ /∈ V be new variables. Define a PAP P ′ = 〈V ∪ {h, h′, m′}, H ∪ {h, h′},M ∪
{m′}, T ′〉 where

T ′ = {¬h ∨ F : F ∈ T} ∪ {h′ → m : m ∈M} ∪ {¬h ∨ ¬h′, h→ m′, h′ → m′}.

Clearly, T ′ is consistent and constructible in polynomial time. It is straightforward to

verify that Sol(P ′) = {S ∪ {h} : S ∈ Sol(P)} ∪ {{h′} ∪ A : A ⊆ H}.
Therefore, deciding if h′ is dispensable (resp. h is relevant) for P ′ is ΣP

2 -hard by The-

orem 4.2, by which also the sharpening of this result to the indicated subcase follows.

2

As a consequence of Theorem 4.3, if an algorithm is designed that tries to remove

hypotheses from H subsequently in order to construct a solution for a PAP P, it is most

likely that this algorithm will backtrack and will have exponential run-time, even if it has

access to an NP oracle.

⊆-preference

At first glance surprising is that relevance and dispensability checking under ⊆-preference

is of the same complexity as under no preference. The ⊆-minimality criterion imposed

on solutions is not an additional source of complexity, however, since deciding whether

a solution is a ⊆-solution is by monotony of classical inference |= possible in polynomial

time with an NP oracle.

Theorem 4.4 Deciding if a given hypothesis is ⊆-relevant for a PAP P is ΣP
2 -complete,

as well as deciding if a given hypothesis is ⊆-dispensable for P. ΣP
2 -hardness holds even

if H ∪M = V and T is in clausal form.
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Proof. Let P = 〈V,H,M, T 〉 and let h ∈ H . By Propositions 2.1 and 4.1 verifying a

guess for S ∈ Sol⊆(P) such that h ∈ S (resp. h /∈ S) is clearly in ∆P
2 . Hence membership

of those problems in ΣP
2 follows.

ΣP
2 -hardness of ⊆-relevance and ⊆-dispensability checking, even under the stated restric-

tion, follows immediately from the construction of P ′ in the proof of Theorem 4.3, since

{h′} ∈ Sol⊆(P ′) and hence h is relevant iff it is ⊆-relevant for P, and h′ is dispensable for

P ′ iff it is ⊆-dispensable for P ′. Whence the theorem is proved. 2

Note that the restriction of the acceptable solutions to inclusion-minimal solutions makes

the relevance and dispensability test not harder.

≤-preference

Under ≤-preference, deciding relevance and dispensability seemingly becomes more com-

plex. Thus while restricting the acceptable solutions to ⊆-solutions does not change the

complexity of the problems, ≤-preference presumably requires additional computational

power. This for the reason that already checking if S ∈ Sol≤(P) for a given S ∈ Sol(P)

is ΠP
2 -hard, and hence most likely not possible in polynomial time with an NP oracle.

Nevertheless, relevance and dispensability checking under ≤-preference is only “mildly”

harder than under ⊆-preference.

Roughly, deciding ≤-relevance and ≤-dispensability is harder than deciding ⊆-relevance

and ⊆-dispensability since verifying whether a solution S is a ≤-solution is apparently

more complex. An intuitive explanation is that in order to decide this problem, knowing

the “global” minimum solution size s is essential, while for ⊆-minimality this problem

requires no “global” knowledge and depends only “locally” on S. Computing s is ΣP
2 -

and ΠP
2 -hard, but possible in polynomial time with a ΣP

2 oracle. By using standard search

techniques, a logarithmic upper bound on the number of oracle calls can be established.

We refer in the proof of the next result to the following lemma.

Lemma 4.5 Let Φ1,Φ2, . . . ,Φm be QBFs such that Φi = ∃xi1 · · · ∃x
i
nx
∀yi1 · · · ∀y

i
ny
Ei, Ei

is in DNF, 1 ≤ i ≤ m, and that Φi /∈ QBF2,∃ implies Φi+1 /∈ QBF2,∃, 1 ≤ i < m. Let

ν(Φ1, . . . ,Φm) = max{i : Φi ∈ QBF2,∃, 1 ≤ i ≤ m}.6 Deciding whether ν(Φ1, . . . ,Φm) is

odd is ∆P
3 [O(logn)]-complete.

Proof. Since deciding Φi ∈ QBF2,∃ is ΣP
2 -complete [72], 1 ≤ i ≤ m, this follows

immediately from [74, Theorem 8.1], which states that for k ≥ 1, in terms of languages,

A ∈ ∆P
k+1[O(logn)] iff A ∈ ΣP

k (Pol), i.e. there exists B ∈ ΣP
k and a polynomial p such that

cB(x, i + 1) ≤ cB(x, i), for all 1 ≤ i ≤ p(|x|) and cA(x) = max{i : 1 ≤ i ≤ p(|x|), (x, i) ∈
B} mod 2, and the fact that new xi and yi variables that do not occur in Ei can be easily

added to the quantifier prefix of Φi such that the validity/invalidity of the formula Φi is

preserved. 2

6Here max ∅ = 0.
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Theorem 4.6 Given a PAP P = 〈V,H,M, T 〉 and a hypothesis h ∈ H, deciding if h is

≤-dispensable (resp. ≤-relevant) for P is ∆P
3 [O(logn)]-complete. ∆P

3 [O(logn)]-hardness

holds even if H ∪M = V and T is in clausal form.

Proof. Membership in ∆P
3 [O(logn)] is shown for both problems as follows: compute

the minimum solution size s = min{|S| : S ∈ Sol(P)} by binary search, querying the ΣP
2

oracle whether there exists S ∈ Sol(P) such that |S| ≤ k, where k is in the input. Then,

query the oracle whether there exists S ∈ Sol(P) such that |S| = s and h /∈ S (resp.

h ∈ S). The oracle answers yes if and only if h is ≤-dispensable (resp. h is ≤-relevant).

Note that this procedure works correctly also if Sol(P) = ∅ (s can be any value).

∆P
3 [O(logn)]-hardness for both problems is shown by a ≤p

m-reduction of the problem in

Lemma 4.5 as follows.

Consider Φi = ∃xi1 · · · ∃x
i
nx
∀yi1 · · · ∀y

i
ny
Ei. Construct a PAP Pi = 〈Vi, Hi,Mi, Ti〉 where

Vi = {xi1, . . . , x
i
nx
} ∪ {x′i1 , . . . , x

′i
nx
} ∪{yi1, . . . , y

i
ny
} ∪ {si} analogous to the PAP P in the

proof of Theorem 4.2 such that Sol(Pi) 6= ∅ iff Φi ∈ QBF2,∃. Then, apply a trans-

formation to Pi similar to the one described in the proof of Theorem 4.3 as follows.

Let hi1, h
i
2, a

i
1, . . . , a

i
r, m

i be new variables, where r = |Hi| + 1, and construct P i =

〈V i, H i,M i, T i〉 where

V i = Vi ∪ {hi1, h
i
2, a

i
1, . . . , a

i
r, m

i}

H i = Hi ∪ {hi1, h
i
2, a

i
1, . . . , a

i
r}

M i = Mi ∪ {mi}

T i = {¬hi1 ∨ F : F ∈ Ti} ∪ {hi2 → m : m ∈Mi} ∪

{¬hi1 ∨ ¬hi2, h
i
1 → mi, hi2 ∧ a

i
1 ∧ · · · ∧ air → mi}.

Clearly, T i is consistent and can be constructed in polynomial time. Note that the only

substantial difference between this transformation and the one employed in the proof of

Theorem 4.3 is that hi2 ∧ a
i
1 ∧ · · · ∧ air → mi replaces hi2 → mi. It is straightforward to

verify that

Sol(P i) = {S ∪ {hi1} ∪A : S ∈ Sol(Pi), A ⊆ {ai1, . . . , a
i
r}} ∪

{ {hi2, a
i
1, . . . , a

i
r} ∪H

′ : H ′ ⊆ Hi}

and that either for some S ∈ Sol(P i), it holds that T i ∪ S |= hi1 ∧ ¬hi2 (in this case,

Φi ∈ QBF2,∃) or for all S ∈ Sol(P i), it holds that T i ∪ S |= ¬hi1 ∧ h
i
2 (resp. Φi /∈ QBF2,∃).

Since for all S ∈ Sol(Pi), |S| < r, we thus get Φi ∈ QBF2,∃ iff for all S ∈ Sol≤(P i), hi1 ∈ S,

and Φi /∈ QBF2,∃ iff for all S ∈ Sol≤(P i), hi2 ∈ S.

Let P1, . . . ,Pm be the PAPs constructed that way. Then, define P = 〈H, V,M, T 〉, where

V =
⋃

i V
i, H =

⋃

iH
i, M =

⋃

iM
i, and T =

⋃

i T
i. Since V i ∩ V j = ∅ for 1 ≤ i < j ≤ m,

we obtain by Lemma 2.2 that Sol�(P) = {S1 ∪ · · · ∪ Sm : Si ∈ Sol�(P i), 1 ≤ i ≤ m} if �
is equality or ≤.

Since T i ⊆ T , we thus have the following:
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1. for all S ∈ Sol(P), either T ∪ S |= hi1 ∧ ¬hi2 or T ∪ S |= ¬hi1 ∧ h
i
2,

2. Φi ∈ QBF2,∃ iff for all S ∈ Sol≤(P), hi1 ∈ S,

3. Φi /∈ QBF2,∃ iff for all S ∈ Sol≤(P), hi2 ∈ S.

Now let o, e, ho, he be new variables. Define

ODD
m

= {h1
1 ∧ · · · ∧ h2k+1

1 ∧ h2k+2
2 ∧ · · · ∧ hm2 → o : 0 ≤ k < m/2},

EVEN
m

= {h1
1 ∧ · · · ∧ h2k

1 ∧ h2k+1
2 ∧ · · · ∧ hm2 → e : 0 ≤ k ≤ m/2}.

Note that the theories ODD
m
,EVEN

m
can be constructed in polynomial time. Let S ∈

Sol(P). From 1.) it follows that if {α → β, γ → δ} ⊆ ODDm ∪ EVENm and T ∪ S |=
α ∧ β, then α = β, γ = δ; hence, T ∪ S 6|= o ∧ e. Furthermore, since we have that

Φi /∈ QBF2,∃ implies Φi+1 /∈ QBF2,∃, 1 ≤ i < m, it holds that for all S ∈ Sol≤(P),

T∪ODD
m
∪EVEN

m
∪S |= o iff ν = ν(Φ1, . . . ,Φm) is odd and T∪ODD

m
∪EVEN

m
∪S |= e

iff ν is even.

Now construct the PAP P ′ = 〈V ′, H ′,M ′, T ′〉, where

V ′ = V ∪ {o, e, ho, he},

H ′ = H ∪ {ho, he}, M ′ = M ∪ {o, e},

T ′ = T ∪ ODD
m
∪ EVEN

m
∪ {he → o, ho → e}.

Since for each S ∈ Sol(P), T ′ ∪S 6|= o∧ e and ho, he /∈ V , we have that S ∈ Sol(P ′) fulfills

S − {ho, he} ∈ Sol(P) and S ∩ {ho, he} 6= ∅. Consequently, Sol≤(P ′) = {S ∪ {ho} : S ∈
Sol≤(P)} if ν is odd and Sol≤(P ′) = {S ∪ {he} : S ∈ Sol≤(P)} if ν is even. Therefore, ho
is ≤-relevant (and he is ≤-dispensable) for P ′ iff ν is odd.

Since P ′ can be constructed in polynomial time from Φ1, . . . ,Φm and since H ′∪M ′ = V ′

already holds, it remains to show that T ′ can be transformed efficiently into clausal form.

Since Ei is in DNF, 1 ≤ i ≤ n, however, each Ti in the first step of the transformation

can efficiently be transformed into clausal form (see the proof of Theorem 4.2); hence, it

is clear that T ′ can be efficiently transformed into clausal form. Whence the theorem is

proved. 2

Prioritization

Note that the complexity of �-relevance and �-dispensability checking slightly increases

by restricting the acceptable solutions from arbitrary to ≤-solutions. A substantial in-

crease happens if we introduce priorities among the hypotheses. This can be accomplished

by introducing priority levels, in the same way as in [25] and [30] in the context of theory

update, in prioritized circumscription [46], and in the preferred subtheories approach for

default reasoning [3]. The general idea is to divide the hypotheses into levels of priority
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P1, . . . , Pk and to eliminate, starting from P1, level by level, those solutions that are not

most preferable on the current priority level.

Definition 4.1 Let H be a finite set and � be a preorder defined on 2H , and let P =

〈P1, . . . , Pk〉, k ≥ 1, such that H = P1 ∪ · · · ∪ Pk, , where Pi ∩ Pj = ∅, 1 ≤ i < j ≤ k.

Then, define the relation �P on 2H by A �P B iff A = B or there exists i ∈ {1, . . . , k}
such that A ∩ Pj � B ∩ Pj, B ∩ Pj � A ∩ Pj, for all 1 ≤ j < i, and A ∩ Pi � B ∩ Pi,

B ∩ Pi 6� A ∩ Pi.

Intuitively, A �P B iff A and B are of equal preference on P1, . . . , Pi−1 and A is preferred

over B on Pi. Notice that e.g. in case of ≤P , this is equivalent with |A ∩ Pj | = |B ∩ Pj |
for 1 ≤ j < i and |A ∩ Pi| < |B ∩ Pi|. To give a concrete example, consider the motor

vehicle example from the introduction again. Let the prioritization P = 〈P1, P2〉 on

the hypotheses H = {rich mixture, lean mixture, low oil, low water} be defined by

P1 = {low oil, rich mixture} and P2 = {low water, lean mixture}. Then,

{rich mixture, low water} ≤P {rich mixture, low oil},

and

{rich mixture, low water} ≤P {rich mixture, low water, low oil}.

Clearly, �P collapses to � if P = 〈P1〉, that is no priorities between hypotheses exist. It

is not difficult to verify that �P defines a preorder on 2H . Furthermore, �P is irredundant

if � is irredundant, and �P is polynomial-time decidable if � is.

We consider ⊆P and ≤P , that is the method of priorities applied to irredundant and

minimum sized solutions. In both cases, the complexity of relevance and dispensability

checking increases. For ≤P , however, the problems remain at the second level of PH, while

for ⊆P they migrate to the third level. In particular, ⊆P is among the computationally

hardest preference orders with respect to relevance and dispensability checking, provided

that deciding solution preference is polynomial. An upper bound for this general case is

the following.

Lemma 4.7 Let P = 〈V,H,M, T 〉 be a PAP and assume deciding � is polynomial. Then,

deciding whether a given hypothesis h is �-relevant (resp. �-dispensable) for P is in ΣP
3 .

Proof. Since � is polynomial and deciding S ∈ Sol(P) is in ∆P
2 (Proposition 4.1),

deciding whether S ⊆ H satisfies S ∈ Sol�(P) is thus in ΠP
2 . Consequently, verifying a

guess for S ∈ Sol�(P) such that h ∈ S (resp. h /∈ S) is in ∆P
3 , from which membership of

the problems in ΣP
3 follows. 2

Note that this result still holds if deciding � is allowed to be in ∆P
2 instead of P = ∆P

1 .

Nevertheless, already preference orders in P may lead to ΣP
3 -hardness.

20



In particular, this holds for ⊆P , which is polynomial-time decidable and therefore not

a source of intractability. For P = 〈P1〉, we have from the results on ⊆-preference that

⊆P -relevance and ⊆P -dispensability checking are in this case ΣP
2 -complete. An additional

priority level suffices to unchain the worst case complexity of these problems, which is

ΣP
3 -completeness. This complexity increase may be intuitively explained by the loss of the

computationally benign property of ⊆-solutions in Proposition 2.1, which implied with

Proposition 4.1 a polynomial test for deciding whether a solution S is a ⊆-solution using

an NP oracle. In case of at least two priority groups, deciding whether S is a ⊆P -solution

is ΠP
2 -complete and thus more complex.

Theorem 4.8 Deciding ⊆P -relevance and ⊆P -dispensability of a given hypothesis h for

a P = 〈V,H,M, T 〉 is ΣP
3 -complete. ΣP

3 -hardness holds even if P = 〈P1, P2〉. The same

holds if T is in clausal form.

Proof. By Lemma 4.7, it remains to show ΣP
3 -hardness. We show this by a ≤p

m-

reduction of deciding Φ ∈ QBF3,∃ for a QBF Φ. Let without loss of generality Φ =

∃x1 · · · ∃xnx
∀y1 · · · ∀yny

∃z1 · · · ∃znz
E.

We define a PAP P = 〈V,H,M, T 〉 as follows. Let Hx = {x1, x
′
1, . . . , xnx

, x′nx
}, Hy =

{y1, y
′
1, . . . , yny

, y′ny
}, Hz = {z1, . . . , znz

}, Mx = {r1, . . . , rnx
}, My = {w1, . . . , wny

}, and

let p, s, t be new variables. Define

V = Hx ∪Hy ∪Hz ∪Mx ∪My ∪ {p, s, t}

H = Hx ∪Hy ∪ {p, s}

M = Mx ∪My ∪ {t}

T = {¬xi ∨ ¬x′i, xi → ri, x
′
i → ri : 1 ≤ i ≤ nx} ∪

{yi ∧ y
′
i ↔ ¬s, yi ∧ y

′
i → wi, s→ wi : 1 ≤ i ≤ ny} ∪

{¬s ∧ p→ t, ¬E ∧ s→ t}.

Note that T is consistent and constructible in polynomial time. In what follows, let

X = {x1, . . . , xnx
}, Y = {y1, . . . , yny

}.
We first observe that for each S ∈ Sol(P), either xi ∈ S or x′i ∈ S must hold, for

1 ≤ i ≤ nx, since otherwise T ∪ S 6|= ri; consequently, either T ∪ S |= xi or T ∪ S |= ¬xi.
Let φS(X) denote the truth assignment defined this way.

On the other hand, let ψ(X) be any truth assignment and define

Sψ = {xi : ψ(xi) = true, 1 ≤ i ≤ nx} ∪ {x′i : ψ(xi) = false, 1 ≤ i ≤ nx} ∪Hy ∪ {p}.

It is straightforward to verify that Sψ ∈ Sol(P) holds for every ψ(X). Moreover, Sψ ∈
Sol⊆(P) holds. Indeed, T ∪ (Sψ − {p}) is consistent with ¬t, both T ∪ (Sψ − {xi}) and

T ∪ (Sψ − {x′i}) are consistent with ¬ri, for all xi, x
′
i ∈ Sψ, and both T ∪ (Sψ − {yi}),

T ∪ (Sψ − {y′i}) are consistent with ¬wi, for all yi, y
′
i ∈ Sψ.
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Now define two priority levels P = 〈P1, P2〉, where P1 = H − {s} and P2 = {s}. Then,

each Sψ is a maximal solution under ⊆P , that is, no S ∈ Sol(P), S 6= Sψ, satisfies

Sψ ⊆P S. On the other hand, each S ∈ Sol(P) must satisfy S ⊆P SφS
, since if S 6= SφS

,

then S ∩ P1 ⊂ SφS
∩ P1 holds. Note that since SφS

∈ Sol⊆(P), we have that for each

S ∈ Sol(P), s ∈ S holds iff S 6= SφS
.

We claim that for every ψ(X), Sψ ∈ Sol⊆P
(P) iff Φψ = ∀y1 · · · ∀yny

∃z1 · · · ∃znx
Eψ(X) ∈

QBF2,∀ holds.

Assume that Φψ /∈ QBF2,∀. Then, a µ(Y ) exists such that ∀z1 · · · ∀znz
(¬Eψ(X))µ(Y ) ∈

QBF1,∀. Define a set Sψ,µ as follows:

Sψ,µ = {xi : ψ(xi) = true, 1 ≤ i ≤ nx} ∪ {x′i : ψ(xi) = false, 1 ≤ i ≤ nx} ∪

{yi : µ(yi) = true, 1 ≤ i ≤ ny} ∪ {y′i : µ(yi) = false, 1 ≤ i ≤ ny} ∪ {s}.

Then, Sψ,µ ∈ Sol(P) holds. Indeed, T ∪ Sψ,µ is consistent, and T ∪ Sψ,µ logically implies

yi ≡ µ(yi), 1 ≤ i ≤ ny, and xi ≡ ψ(xi), 1 ≤ i ≤ nx; consequently, T ∪Sψ,µ |= ¬E∧s. Thus

it is clear that T ∪Sψ,µ |= M . Note that Sψ,µ 6= Sψ and Sψ,µ ⊆P Sψ; hence, Sψ /∈ Sol⊆P
(P).

Conversely, assume Sψ /∈ Sol⊆P
(P) holds for ψ(X). Let S ∈ Sol(P) such that S 6= Sψ,

S ⊆P Sψ holds. Then clearly, φS(X) is identical to ψ(X); from above, we know s ∈ S.

Hence, {yi, y
′
i} 6⊆ S holds, for 1 ≤ i ≤ ny. Let R = {yi : yi ∈ S, 1 ≤ i ≤ ny}∪

{¬yi : yi /∈ S, 1 ≤ i ≤ ny}. Then, T ∪ S ∪R is consistent, and since s ∈ S, T ∪ S |= t, we

have T ∪ S ∪ R |= ¬E. Let µ(Y ) be defined by µ(yi) = true, yi ∈ R, and µ(yi) = false,

yi /∈ R, 1 ≤ i ≤ ny. Then, we have that (¬EφS(X))µ(Y ), that is (¬Eψ(X))µ(Y ) is a tautology,

hence ∀z1 · · · ∀znz
(¬Eψ(X))µ(Y ) ∈ QBF1,∀. This means, however, that Φψ /∈ QBF2,∀ holds,

and the claim is proved.

From the claim and Sψ ∈ Sol⊆(P), it follows that p is ⊆P -relevant iff Φ ∈ QBF3,∃ holds.

Hence ΣP
3 -hardness of deciding ⊆P -relevance is proved. It is straightforward to verify

that for each S ∈ Sol⊆P
(P), s ∈ S iff p /∈ S. Hence, p is ⊆P -relevant for P iff s is

⊆P -dispensable for P, which proves ΣP
3 -hardness of ⊆P -dispensability checking.

Since we may without loss of generality assume that E is in CNF [72], it is clear that T

can be efficiently rewritten in clausal form. Thus we have the theorem. 2

The results from above suggest that this result could be strengthened to the caseH∪M =

V ; a more involved proof would be necessary, however.

Now let us consider the effect of the method of priorities on ≤. It appears that the com-

plexity of relevance and dispensability checking increases to ∆P
3 [O(logn)]-completeness.

An intuitive explanation for this increase is that checking whether a solution S is a ≤P -

solution requires to compute for each priority group Pi the cardinality of S on this group,

which can be efficiently done using a ΣP
2 oracle. Since the cardinality of S on Pi depends

on the cardinality of S on all Pj with j < i, computing the cardinality of a ≤P -solution

on all priority groups requires in the worst case at least linearly many oracle calls, which

contrasts with the logarithmically many oracle calls for computing the size of a ≤-solution.
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Theorem 4.9 Let P be a PAP and let P = 〈P1, . . . , Pk〉 be a prioritization. Deciding

≤P -relevance as well as ≤P -dispensability of a hypothesis h for P is ∆P
3 -complete. ∆P

3 -

hardness holds even if H ∪M = V and T is in clausal form.

Proof. Note that for S, S ′ ∈ Sol(P), S ≤P S ′ iff S = S ′ or for the least i such that

|S ∩Pi| 6= |S ′∩Pi|, |S ∩Pi| < |S ′ ∩Pi| holds. Membership in ∆P
3 is shown as follows. For

all S, S ′ ∈ Sol≤P
(P) we have |S ∩ Pi| = |S ′ ∩ Pi|, 1 ≤ i ≤ k. Let si = |S ∩ Pi| for such an

S, 1 ≤ i ≤ k. First, s1, . . . , si, . . . , sk are determined in that order, where si is computed

by queries to the ΣP
2 oracle (e.g. in a binary search) whether there exists S ∈ Sol(P) such

that |S ∩ Pj | = sj, for 1 ≤ j < i, and |S ∩ Pi| ≤ r. This can be done with polynomially

many ΣP
2 oracle calls. Then, the ΣP

2 oracle is queried whether there exists S ∈ Sol(P)

such that |S ∩ Pi| = si, 1 ≤ i ≤ k and h ∈ S (resp. h /∈ S). Note that this procedure also

works correctly if Sol(P) = ∅ (s1, . . . , sk can be arbitrary).

Let 〈x1, . . . , xnx
〉 be in lexicographical order. Then, ∆P

3 -hardness is shown by a reduction

from deciding whether the with respect to 〈x1, . . . , xnx
〉 lexicographically maximum truth

assignment φ(X), X = {x1, . . . , xnx
}, such that Φφ = ∀y1 · · · ∀yny

Eφ(X) ∈ QBF1,∀ satisfies

φ(xnx
) = true (where such a φ(X) is known to exist).

Define a PAP P = 〈V,H,M, T 〉 as follows. Let X = {x1, . . . , xnx
}, X ′ = {x′1, . . . , x

′
nx
},

Y = {y1, . . . , yny
}, U = {u1, . . . , unx

}, and let s be an additional variable. Define

V = X ∪X ′ ∪ Y ∪ U ∪ {s}

H = X ∪X ′

M = U ∪ Y ∪ {s}

T = {¬xi ∨ ¬x′i, xi → ui, x
′
i → ui : 1 ≤ i ≤ nx} ∪

{E → s ∧ y1 ∧ · · · ∧ yny
, s→ y1 ∧ · · · yny

}

Note that P is close to the PAP in the proof of Theorem 4.2. Let for every truth assignment

φ(X),

Sφ = {xi : φ(xi) = true, 1 ≤ i ≤ nx} ∪ {x′i : φ(xi) = false, 1 ≤ i ≤ nx}.

Then, Sol(P) = {Sφ : ∀y1 · · · ∀yny
Eφ(X) ∈ QBF1,∀}. This can be shown easily along the

line of the proof of Theorem 4.2.

Define a prioritization P = 〈P1, . . . , P2nx
〉 as follows: P2i−1 = {x′i}, P2i = {xi}, for

1 ≤ i ≤ nx. P prefers every Sφ with x1 ∈ Sφ (i.e. φ(x1) = true) over every Sψ with x1 /∈ Sψ
(ψ(x1) = false) etc. Therefore, Sol≤P

(P) = {Sφm
}, where φm(X) is with respect to

〈x1, . . . , xnx
〉 the lexicographically maximum φ(X) such that ∀y1 · · · ∀yny

Eφ(X) ∈ QBF1,∀.

Therefore, xnx
is ≤P -relevant (and x′nx

is ≤P -dispensable) for P iff φm(xnx
) = true. Since

we may assume without loss of generality that E is in DNF [44], T can be rewritten in

clausal form in polynomial time (to rewrite {E → s∧ y1 · · · ∧ yny
, s→ y1 ∧ · · · ∧ yny

}, see

proof of Theorem 4.2). Since P, P are polynomial-time constructible and H ∪M = V ,

we thus have the theorem. 2
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Penalization

Yet another variant of solution preference, but not completely unrelated to the methods

from above, is minimization of solution penalty. The method of penalties works as follows.

Each hypothesis h has attached a penalty p(h) (a positive integer), and the penalty p(S)

of a solution S ∈ Sol(P) is defined as p(S) =
∑

h∈S p(S), the sum of the penalties of its

hypotheses. The solutions S with smallest penalty, i.e. for which p(S) is a minimum, are

accepted. Thus, solution preference by penalties defines a kind of weighted abduction, cf.

[34].

Definition 4.2 Let P = 〈V,H,M, T 〉 be a PAP, and let p : H → {1, 2 . . .} be a penalty

attachment, which is extended to 2H by p(H ′) =
∑

h∈H′ p(h), for all H ′ ⊆ H. The

preference relation ⊑p on Sol(P) is defined by S ⊑p S
′ iff p(S) ≤ p(S ′).

Clearly, ⊑p is a preorder and hence admissible as solution preference criterion. It appears

that ⊑p-preference is a generalization of the smallest cardinality preference ≤. Indeed, ≤
is obtained if p(h) = p(h′), for all h, h′ ∈ H . It turns out that ⊑p-preference also covers

the method of priorities applied to ≤-preference. To see this, let P = 〈V,H,M, T 〉 and

assume a prioritization P = 〈P1, . . . , Pk〉. An equivalent penalty attachment pP can be

defined as follows. Let d = 1+max{|Pi| : 1 ≤ i ≤ k}, and let pP (h) = dk−i, where h ∈ Pi,

for each h ∈ H . Then,

Proposition 4.10 Sol⊑
pP

(P) = Sol≤P
(P).

Proof. For 1 ≤ i ≤ k, it holds that pP (Pi∪· · ·∪Pk) ≤ (d−1)
∑k
j=i d

k−j = dk−i+1−1 <

pP (h), for each h ∈ P1 ∪ · · · ∪ Pi−1. Hence if si denotes |Pi ∩ S|, 1 ≤ i ≤ k, for some

S ∈ Sol≤P
(P), then it is straightforward to show that for each S ∈ Sol⊑

pP
(P), and

1 ≤ i ≤ k, |Pi ∩ S| = si holds, from which the proposition follows immediately. 2

If numbers are represented in binary, we get thus the following result.

Theorem 4.11 Let P = 〈V,H,M, T 〉 be a PAP and p be a penalty attachment to H,

which is part of the input. Deciding whether h is ⊑p-relevant (resp. ⊑p-dispensable) is

∆P
3 -complete. ∆P

3 -hardness holds even if H ∪M = V and T is in clausal form.

Proof. The minimum solution penalty s = min{p(S) : S ∈ Sol(P)} is computable by

binary search in O(n) steps with a ΣP
2 oracle, where n is the input size. Then, a single

query to the ΣP
2 oracle whether there exists S ∈ Sol(P), such that |S| = s and h ∈ S

(resp. h /∈ S) decides the problem. Again, this procedure works correctly if Sol(P) = ∅.
Hence the problem is in ∆P

3 . Hardness for ∆P
3 under the indicated restrictions follows from

Theorem 4.9 and, if numbers are represented in binary, the polynomial time computability

of pP from a prioritization P . 2

Note that if numbers are required to be in unary (tally) notation, then O(logn) oracle

calls suffice to determine the minimum solution penalty s. In that case, the problems fall

back to ∆P
3 [O(logn)] and are complete for this class.
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5 Horn abduction

So far, we have considered abduction in the full propositional case, that is, the theory

T may contain arbitrary propositional formulas. In many cases, however, the possible

formulas in T may be restricted to a certain formula class. One of the most important

restriction on formulas is the Horn property, that is the formula is a clause with at most

one positive literal. It is well-known that the co-NP-complete implication problem T1 |= T2

for arbitrary propositional theories becomes polynomial if T1 and T2 are Horn theories,

i.e. contain only Horn clauses.

As a further restriction, it is sometimes postulated that Horn clauses are definite, that

is each clause has exactly one positive literal. Note that this restriction is of particular

interest for modeling abduction problems, since formulas of type c1 ∧ · · · ∧ cn → e are

often adequate to describe interrelationships between causes and effects.

Definition 5.1 A PAP P = 〈V,H,M, T 〉 is Horn (resp. definite Horn) iff T is a set of

Horn clauses (resp. definite Horn clauses).

This section is devoted to the complexity of PAPs in the Horn case and the definite Horn

case. We consider the effect of these restrictions to �-relevance and �-dispensability

checking under the various preference orders � considered in the previous section.

Generally spoken, it turns out that the complexity of those problems is lowered at least

by one level of PH. This is due to the elimination of one source of intractability.

Proposition 5.1 If P = 〈V,H,M, T 〉 is a Horn PAP, checking S ∈ Sol(P) for S ⊆ H is

polynomial.

Proof. Indeed, e.g. by the results in [19], deciding whether T ∪ S is consistent and

T ∪H |= M holds is polynomial. 2

The benign properties of definite Horn theories allow additional complexity reduction to

tractability in some cases, while in the remaining cases the complexity compared to the

general Horn case is not affected. Some of the intractability results of this section appear

in other contexts [6, 69, 4] with different proofs.

Deciding Sol(P) 6= ∅

Theorem 5.2 [69] Let P = 〈V,H,M, T 〉 be a Horn PAP. Deciding Sol(P) 6= ∅ is NP-

complete. NP-hardness holds even if H ∪M = V .

Proof. (Sketch) Membership of this problem in NP is clear since a guess for S ∈ Sol(P)

is verifiable in polynomial time.

We show NP-hardness by a transformation from the well-known satisfiability prob-

lem (SAT), cf. [29]. Let C = {C1, . . . , Cm} be a set of propositional clauses on X =
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{x1, . . . , xn}. Let X ′ = {x′1, . . . , x
′
n}, G = {g1, . . . , gm}, Z = {z1, . . . , zn} be sets of new

variables. Then, the PAP P = 〈V,H,M, T 〉, where

V = X ∪X ′ ∪G ∪ Z, H = X ∪X ′, M = G ∪ Z,

T = {¬xi ∨ ¬x′i, xi → zi, x
′
i → zi : 1 ≤ i ≤ n} ∪

m
⋃

i=1

({xj → gi : xj ∈ Ci} ∪ {x′j → gi : ¬xj ∈ Ci}),

has a solution iff C is satisfiable. Note that H ∪ M = V ; since P is polynomial time

constructible, we have the result. 2

It is well-known that deciding Sol(P) 6= ∅ for a definite Horn PAP P is possible in

polynomial time, which follows immediately from the following property.

Proposition 5.3 [28, 6] Let P = 〈V,N,M, T 〉 be a definite Horn PAP. Then, S ∈ Sol(P)

implies S ′ ∈ Sol(P), for all S ⊆ S ′ ⊆ H.

Corollary 5.4 If P = 〈V,H,M, T 〉 is a definite Horn PAP, then Sol(P) 6= ∅ iff H ∈
Sol(P); hence by Proposition 5.1 deciding Sol(P) 6= ∅ is polynomial.

Relevance, dispensability, and ⊆-preference

Theorem 5.5 Deciding if h is relevant (resp. dispensable) for a Horn PAP P is NP-

complete, and the same holds in case of ⊆-preference. In all cases, this may be strength-

ened to the case where H ∪M = V .

Proof. Membership in NP is clear since verifying S ∈ Sol(P) and S ∈ Sol⊆(P) is

possible in polynomial time (Propositions 2.1 and 5.1).

NP-hardness under the restriction is immediate by the construction of the PAP P ′ from P
in the proof of Theorem 4.3. If P is a Horn PAP, then P ′ is easily transformed into a Horn

PAP. Recall that h is relevant for P ′ iff h′ is dispensable for P ′ iff Sol(P) 6= ∅; this carries

over to ⊆-relevance of h and ⊆-dispensability of h′ for P ′ (see proof of Theorem 4.4);

whence the theorem. 2

In case of a definite Horn PAP, the following holds.

Proposition 5.6 [28, 6] Let P = 〈V,H,M, T 〉 be a definite Horn PAP. Then, deciding

whether a hypothesis h is relevant (resp. dispensable, ⊆-dispensable) for P is possible in

polynomial time.

Proof. Indeed, by Proposition 5.3, h is in this case relevant iff H ∈ Sol(P), and h is

dispensable as well as ⊆-dispensable iff H − {h} ∈ Sol(P). Thus by Proposition 5.1 the

proposition follows. 2

Testing whether h is ⊆-relevant is intractable even for definite Horn PAPs, however.
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Theorem 5.7 [28] Deciding if h is ⊆-relevant for a definite Horn PAP P is NP-complete.

NP-hardness holds even if H ∪M = V .

Proof. (Sketch) The problem is clearly in NP. NP-hardness is shown in [28] by a

straightforward ≤p
m-reduction of the problem PRIME ATTRIBUTE NAME [29, p. 233].

We sketch here a simple ≤p
m-reduction from SAT. Let C = {C1, . . . , Cr} be a set of

propositional clauses on variables x1, . . . , xn. Let literals correspond to hypotheses (xi and

¬xi to hi and h′i, respectively) and clauses Cj to manifestations mj . Include an additional

hypothesis h∗ and an additional manifestation m∗, i.e. H = {h1, h
′
1, . . . , hn, h

′
n, h

∗} and

M = {m1, . . . , mr, m
∗}. Let T consist of the following clauses:

• hi ∧ h
′
i → m, for each i, 1 ≤ i ≤ n, and m ∈M ;

• hi → mj (resp. h′i → mj) for each i and j, 1 ≤ i ≤ n, 1 ≤ j ≤ r, such that xi (resp.

¬xi) appears in Cj;

• h∗ → m∗.

Now h∗ is in a ⊆-minimal solution of the PAP P = 〈H ∪M,H,M, T 〉 if and only if C is

satisfiable. Otherwise, only {hi, h
′
i} for each i with 1 ≤ i ≤ n are ⊆-minimal solutions.

Hence the result follows. 2

≤-preference

The smallest cardinality criterion makes both checking for dispensability and relevance

become more complex, even for definite Horn PAPs.

In the proof of the next result, we refer to the following lemma, which is proved in the

appendix.

Lemma 5.8 Let C = {C1, . . . , Cm} be a clause set on variables X and let k ∈ {1, . . . , m}.
Call a truth assignment φ(X) csat-maximum for C iff φ(X) satisfies a maximum number

of clauses in C. Then, deciding if every csat-maximum φ(X) for C fulfills Vφ(Ck) = true

is ∆P
2 [O(logn)]-complete.

Theorem 5.9 Let P = 〈V,H,M, T 〉 be a Horn PAP. Deciding if h is ≤-dispensable

(resp. ≤-relevant) for P is ∆P
2 [O(logn)]-complete. ∆P

2 [O(logn)]-hardness holds even if P
is definite Horn and H ∪M = V .

Proof. Membership in ∆P
2 [O(logn)] is shown for both problems analogous to the full

propositional case (see proof of Theorem 4.6); since by Proposition 5.1 checking S ∈ Sol(P)

is polynomial, an NP oracle replaces the ΣP
2 oracle.

We show hardness for ∆P
2 [O(logn)] under the restriction to definite Horn PAPs by a

≤p
m-reduction from the problem in Lemma 5.8. Let C = {C1, . . . , Cm}, X = {x1, . . . , xn},
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and k ∈ {1, . . . , m}. We define a definite Horn PAP P = 〈V,H,M, T 〉 as follows. Let X i =

{xi1, . . . , x
i
m}, X

′i = {x′i1 , . . . , x
′i
m}, 1 ≤ i ≤ n, W = {w1, . . . , wn}, G = {g1, . . . , gm+1},

F = {f1, . . . , fm+1} be sets of new variables. Define

V = X1 ∪X ′1 · · · ∪Xn ∪X ′n ∪W ∪G ∪ F

H = X1 ∪X ′1 · · · ∪Xn ∪X ′n ∪ F

M = W ∪G

T = {xi1 ∧ · · · ∧ xim → wi, x
′i
1 ∧ · · · ∧ x′im → wi : 1 ≤ i ≤ n} ∪

{fi → gi : 1 ≤ i ≤ m+ 1} ∪ {fk → gm+1}
m
⋃

j=1

{xi1 ∧ · · · ∧ xim → gj : xi ∈ Cj, 1 ≤ i ≤ n} ∪

m
⋃

j=1

{x′i1 ∧ · · · ∧ x′im → gj : ¬xi ∈ Cj, 1 ≤ i ≤ n}.

For every truth assignment φ(X), let

Sφ = {xi1, . . . , x
i
m : φ(xi) = true, 1 ≤ i ≤ n} ∪ {x′i1 , . . . , x

′i
m : φ(xi) = false, 1 ≤ i ≤ n} ∪

{fi : Vφ(Ci) = false, 1 ≤ i ≤ m}.

Note that Sφ ∪ {fm+1} ∈ Sol(P), and, if Vφ(Ck) = false, Sφ ∈ Sol(P). Furthermore, if

s denotes the minimum solution size, then nm + 1 ≤ s ≤ n(m + 1) holds. Indeed, for

each S ∈ Sol(P) and 1 ≤ i ≤ n, X i ⊆ S or X ′i ⊆ S must hold, and since fk ∈ S or

fm+1 ∈ S, s ≥ nm + 1 follows. On the other hand, Sφ ∪ {f1, . . . , fm} ∈ Sol(P) for each

φ(X), hence s ≤ n(m+ 1). Consequently, each S ∈ Sol≤(P) fulfills S ∩ (X i ∪X ′i) = X i

or S ∩ (X i ∪X ′i) = X ′i, for 1 ≤ i ≤ n (if X i ∪X ′i ⊆ S, then |S| ≥ n(m+ 1) + 1); let for

S the truth assignment φS(X) be defined by φS(xi) = true if X i ⊆ S and φS(xi) = false

if X ′i ⊆ S, 1 ≤ i ≤ n. Clearly, A ⊇ SφA
holds for each A ∈ Sol≤(P).

It holds that fm+1 is ≤-relevant for P if and only if each csat-maximum φ(X) for C

fulfills Vφ(Ck) = true.

Assume fm+1 is ≤-irrelevant for P, that is, each S ∈ Sol≤(P) satisfies fm+1 /∈ S. Now

φS(X) must be csat-maximum for C: If ψ(X) satisfies more clauses in C than φS(X),

then |Sψ ∪ {fm + 1}| ≤ |S| and consequently Sψ ∪ {fm + 1} ∈ Sol≤(P) holds, which

contradicts to the ≤-irrelevance of fm+1. Thus φS(X) is csat-maximum for C, and since

fk ∈ S, we obtain VφS
(Ck) = false.

Conversely, assume some ψ(X) such that Vψ(Ck) = false is csat-maximum for C. Then,

Sψ ∈ Sol≤(P) holds, since Sψ ∈ Sol(P) and |Sφ| ≥ |Sψ| for all truth assignments φ(X)

and A ⊇ SφA
for each A ∈ Sol≤(P). Now assume that there exists S ∈ Sol≤(P) such

that fm+1 ∈ S; then, |S| = |Sψ| entails that |S ∩ {f1, . . . , fm}| < |Sψ ∩ {f1, . . . , fm}|,
which means φS(X) satisfies more clauses in C than ψ(X), which contradicts to the

csat-maximality of ψ(X). Consequently, fm+1 is ≤-irrelevant for P.
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It is easily verified that fm+1 is ≤-relevant for P iff fk is ≤-dispensable for P. Since P
is constructible in polynomial time and H ∪M = V , we have the theorem. 2

Prioritization

Now let us consider the effect of priority groups. Not much surprisingly, the method

of priorities makes ⊆ and ≤ harder also in the full Horn case, such that the problems

reside in PH one level below the general propositional case. The same holds in case of

definite Horn PAPs, except for ⊆-relevance checking, which is not affected by the method

of priorities.

The upper bound for �-dispensability and �-relevance checking for general preference

orders � is one level below that general propositional case.

Lemma 5.10 Let P = 〈V,H,M, T 〉 be a Horn PAP and � be a polynomial-time decidable

preference order. Then, deciding �-relevance and �-dispensability is in ΣP
2 .

Proof. The proof is essentially the same as for Lemma 4.7. Since checking S ∈ Sol(P)

and � are polynomial, verifying a guess for S ∈ Sol�(P) such that h ∈ S (resp. h /∈ S) is

in ∆P
2 . Hence membership in ΣP

2 follows. 2

Priority groups on ⊆-preference lift the problems for Horn PAPs from the first up to the

second level of PH.

Theorem 5.11 Let P be a Horn PAP and P = 〈P1, . . . , Pk〉 be a prioritization. Deciding

whether h is ⊆P -relevant (resp. ⊆P -dispensable) for P is ΣP
2 -complete. ΣP

2 -hardness holds

even if k = 2 and H ∪M = V .

Proof. Since ⊆P is polynomial, by Lemma 5.10 it remains to show the hardness part.

We show ΣP
2 -hardness by a ≤p

m-reduction of deciding Φ ∈ QBF2,∀ for a QBF Φ =

∀x1 · · · ∀xn ∃xn+1 · · · ∃xmE, 1 ≤ n < m, to deciding ⊆P -irrelevance (resp. ⊆P -necessity)

of a hypothesis for a Horn PAP P = 〈V,H,M, T 〉. We may assume that E = C1 ∧ · · ·∧Cl
is a conjunction of clauses Ci, cf. [72]. Now let X = {x1, . . . , xm}, X

′ = {x′1, . . . , x
′
m},

R = {r1, . . . , rm}, G = {g1, . . . , gm}, and let h, h′, t be additional variables. Define

V = X ∪X ′ ∪R ∪G ∪ {h, h′, t}

H = X ∪X ′ ∪ {h, h′}

M = R ∪G ∪ {t}

T = {¬xi ∨ ¬x′i, xi → ri, x
′
i → ri : 1 ≤ i ≤ m} ∪

l
⋃

j=1

({xi → gj : xi ∈ Cj, 1 ≤ i ≤ n} ∪ {x′i → gj : ¬xi ∈ Cj , 1 ≤ i ≤ n})

∪{h→ gi : 1 ≤ i ≤ m} ∪ {¬h ∨ ¬h′, h→ t, h′ → t},

29



and let P = 〈P1, P2〉, P1 = {x1, x
′
1, . . . , xn, x

′
n, h}, P2 = H − P1.

We first observe that each solution S ∈ Sol(P) must satisfy either xi ∈ S, T ∪ S |= xi
or x′i ∈ S, T ∪ S |= ¬xi, for all 1 ≤ i ≤ m; denote by φS(X) the corresponding truth

assignment to X. Moreover, either h or h′ must be in S. Let for every truth assignment

φ(X),

Sφ = {xi : φ(xi) = true, 1 ≤ i ≤ m} ∪ {x′i : φ(xi) = false, 1 ≤ i ≤ m}.

Then,

Sol(P) = {Sφ ∪ {h} : φ = φ(X)} ∪ {Sφ ∪ {h′} : Eφ(X) is true }.

Let Xn = {x1, . . . , xn}. Then, S, S ′ ∈ Sol(P ′) satisfy S ⊆P S
′ or S ′ ⊆P S only if φS(X)

and φS′(X) are identical over Xn. Since eliminating h has higher priority than eliminating

h′, it is straightforward to verify that for every truth assignment ψ(Xn), all S ∈ Sol⊆P
(P)

such that φS(X) is on Xn identical to ψ(Xn) satisfy h /∈ S (and hence EφS(X) is true,

h′ ∈ S) iff ∃xn+1 · · · ∃xmEψ(Xn) ∈ QBF1,∃ holds.

Consequently, h is ⊆P -irrelevant for P iff Φ = ∀x1 · · · ∀xn∃xn+1 · · · ∃xmE ∈ QBF2,∀ holds.

Furthermore, it is clear that h is ⊆P -irrelevant for P iff h′ occurs in every ⊆P -solution of

P, i.e. h′ is ⊆P -necessary for P.

Clearly, P, P can be constructed in polynomial time. Since H ∪M = V , we thus have

the theorem. 2

In case of definite Horn PAPs, we have the following results.

Theorem 5.12 Let P = 〈V,H,M, T 〉 be a PAP and let P = 〈P1, . . . , Pk〉 be a prioritiza-

tion on V . Deciding whether a hypothesis is ⊆P -relevant is NP-complete. NP-hardness

holds even if H ∪M = V .

Proof. As checking whether S ⊆ H satisfies S ∈ Sol⊆P
(P) is possible in polynomial

time, membership in NP follows. Indeed, S ∈ Sol(P) fulfills S ∈ Sol⊆P
(P) iff for each

h ∈ S ∩ Pi, it holds that S ∪ Pi+1 ∪ · · · ∪ Pk − {h} /∈ Sol(P), for 1 ≤ i ≤ k. NP-hardness

under the restriction follows by Theorem 5.7. 2

Theorem 5.13 Let P = 〈V,H,M, T 〉 be a definite Horn PAP and P = 〈P1, . . . , Pk〉 be a

prioritization. Deciding if h is ⊆P -dispensable is NP-complete. NP-hardness holds even

if k = 2 and H ∪M = V .

Proof. A guess for S ∈ Sol⊆P
(P) such that h /∈ S can be verified in polynomial time

(cf. proof of Theorem 5.12), hence the problem is in NP.

We show NP-hardness by a ≤p
m-reduction of deciding whether h is ⊆P -relevant for a def-

inite Horn PAP P = 〈V,H,M, T 〉 to this problem. Let h′, m /∈ V be additional variables.

Define P ′ = 〈V ′, H ′,M ′, T ′〉 where V ′ = V ∪ {h′, m}, H ′ = H ∪ {h′}, M ′ = M ∪ {m},
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and T ′ = T ∪ {h → m, h′ → m}. We observe that each S ∈ Sol(P) must contain

h or h′. It is easily verified that for each S ∈ Sol⊆(P) such that h ∈ S, it holds

that S ∈ Sol⊆(P ′) and S − {h} ∪ {h′} /∈ Sol⊆(P ′); if h is ⊆-irrelevant for P, then

Sol⊆(P ′) = {S ∪ {h}, S ∪ {h′} : S ∈ Sol⊆(P)}.
Now define a prioritization P = 〈V ′ − {h′}, {h′}〉. Note that ⊆P prefers those solutions

that do not contain h (and hence contain h′). Thus it is not hard to see that h′ is ⊆P -

dispensable for P ′ iff h is ⊆-relevant for P. Since by Theorem 5.12 we may assume that

H ∪M = V , we get H ′ ∪M ′ = V ′, and hence the theorem follows. 2

Since in the definite Horn case priority groups on ⊆-preference do not affect the com-

plexity of the problems, it remains to consider whether there is some polynomial time

decidable preference � such that checking �-relevance and �-dispensability is at the

second level of PH. It is not hard to find such a order, however.

Theorem 5.14 Let P be a definite Horn PAP and � be an arbitrary polynomial-time

decidable solution preference. Deciding whether h is �-relevant (resp. �-dispensable) is

ΣP
2 -complete.

Proof. By Lemma 5.10 it remains to show ΣP
2 -hardness. Let P = 〈V,H,M, T 〉 be a

Horn PAP and P = 〈P1, . . . , Pk〉 be a prioritization of H . Let Td ⊆ T be the definite Horn

clauses in T , and let v /∈ V be a distinguished variable. Define P ′ = 〈V ′, H,M, T ′〉, where

V ′ = V ∪ {v}, T ′ = Td ∪ {C ∪ {v} : C ∈ T − Td} ∪ {{¬v}}. Clearly, Sol(P) = Sol(P ′).

Define the definite Horn PAP P ′′ = 〈V ′, H,M, T ′ − {{¬v}}〉, and let � on 2H be defined

by

A � B iff B /∈ Sol(P ′) ∨ (A,B ∈ Sol(P ′) ∧A ⊆P B).

Clearly, � is a polynomial time decidable preorder. Then, Sol�(P ′′) = Sol⊆P
(P ′) =

Sol⊆P
(P) holds if Sol(P) 6= ∅, and in this case h is �-relevant (resp. �-dispensable) for

P ′′ iff h is ⊆P -relevant (resp. ⊆P -dispensable) for P, for each h ∈ H . Since the latter

problems are ΣP
2 -hard if Sol(P) 6= ∅ (see proof of Theorem 5.11), we have the theorem. 2

Theorem 5.15 Let P = 〈V,H,M, T 〉 be a Horn PAP, and let P = 〈P1, . . . , Pk〉 be a

prioritization. Deciding whether h is ≤P -relevant (resp. ≤P -dispensable) for P is ∆P
2 -

complete. ∆P
2 -hardness holds even if P is definite Horn and H ∪M = V .

Proof. Membership in ∆P
2 can be shown analogous to membership of the problems in

the full propositional case in ∆P
3 (proof of Theorem 4.9), where a NP oracle replaces the

ΣP
2 oracle.

We show this by a ≤p
m-reduction of the following ∆P

2 -complete problem [37, 43]: Given

a satisfiable clause set C = {C1, . . . , Cm} on X = {x1, . . . , xn}, decide whether the with

respect to 〈x1, . . . , xn〉 lexicographically maximum φ(X) satisfying C, which we denote

by φm(X), fulfills φm(xn) = true.
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Let X ′ = {x′1, . . . , x
′
n}, X

′′ = {x′′1, . . . , x
′′
n}, R = {r1, . . . , r2n}, G = {g1, . . . , gm}, and

define a definite Horn PAP P = 〈V,H,M, T 〉 by

V = X ∪X ′ ∪X ′′ ∪ R ∪G

H = X ∪X ′ ∪X ′′

M = R ∪G

T = {xi → ri, xi → rn+i : 1 ≤ i ≤ n} ∪ {x′i → ri, x
′′
i → rn+i : 1 ≤ i ≤ n} ∪

m
⋃

j=1

({xi → gj : xi ∈ Cj} ∪ {x′i → gj : ¬xi ∈ Cj}),

and define a prioritization P = 〈P1, . . . , Pn+1〉 by P1 = X∪X ′, and Pi+1 = {x′′i }, 1 ≤ i ≤ n.

Let for any truth assignment φ(X) be

Hφ = {xi : φ(xi) = true, 1 ≤ i ≤ n} ∪ {x′i, x
′′
i : φ(xi) = false, 1 ≤ i ≤ n}.

Then, Hφ ∈ Sol(P) holds if and only if φ(X) satisfies C. Now verify that each S ∈ Sol(P)

must contain xi or x′i, x
′′
i , for 1 ≤ i ≤ n; otherwise T ∪S 6|= ri or T ∪S 6|= rn+i would hold.

Consequently, since C is satisfiable, S ∈ Sol≤P
(P) holds only if S = Sφ for some φ(X).

Since P prefers solutions that do not contain x′′1 (and hence contain x1) over solutions

that contain x′′1 etc, it is clear that for distinct truth assignments φ(X), ψ(X) satisfying

C, we have Hφ ≤P Hψ iff φ(X) is with respect to 〈x1, . . . , xn〉 lexicographically greater

than ψ(X). Consequently, Sol≤P
(P) = {Hφm

} must hold.

Hence, xn is ≤P -relevant (resp. x′n is ≤P -dispensable) for P iff φm(xn) = true holds.

Since P, P can be constructed in polynomial time and H ∪M = V , the theorem follows.

2

Penalization

For solution preference based on penalties, the problems reside for the Horn and the

definite Horn case, as is expected, in PH one level below the full propositional case.

Theorem 5.16 Let P = 〈V,H,M, T 〉 be a Horn PAP and let p be a penalty attachment

to H, which is part of the input. Deciding if h is ⊑p-relevant (resp. ⊑p-dispensable) for

P is ∆P
2 -complete. ∆P

2 -hardness holds even if P is definite Horn and H ∪M = V .

Proof. Membership in ∆P
2 is shown analogous to the full propositional case (proof

of Theorem 4.11), where a NP oracle replaces the ΣP
2 oracle. ∆P

2 -hardness under the

restrictions follows immediately by Theorem 5.15 and the ≤p
m-reduction from ≤P to ⊑p

applied in the proof of Theorem 4.11. 2

Recall the convention that numbers are binary. With unary notation, ⊑p-relevance and

⊑p-dispensability are ∆P
2 [O(logn)]-complete in the Horn and definite Horn case.
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6 Computation of solutions

In this section, we briefly address the problem of computing an acceptable solution. The

complexity of this task is important if the solutions are computed incrementally one by

one, and also for credulous reasoning. By this method, an arbitrary solution S ∈ Sol�(P)

is computed and considered as the only solution of the problem; all other solutions are

neglected. Besides finding a solution to a PAP, we consider the case of ⊆- and ≤-solutions.

Computing a solution is a search problem (see [35]); notice that functions are search

problems with a unique solution.

It can be seen that computing a solution to a PAP P = 〈V,H,M, T 〉 is, under a suitably

generalized notion of polynomial-time Turing reducibility (cf. [26]) complete for the class

of multivalued search problems solvable by nondeterministic Turing machines with NP

oracle access in polynomial time (this class is termed NPMVNP in [26]). The same holds

for computing a ⊆-solution, since a guessed ⊆-solution may be verified in polynomial

time with an NP oracle. In the Horn case, we get analogous completeness results for

nondeterministic Turing machines without oracle access. And, recall that finding any as

well as any ⊆-solution for a definite Horn PAP is polynomial.

In case of ≤-preference, a simple completeness result for any well-known complexity

class lacks at present. In the general case, the problem is solvable with O(|H|) queries

to a ΣP
2 oracle. It is unclear, however, whether this bound can be substantially improved

(e.g. to logarithmically many oracle calls in the input size). In the Horn case, we get an

analogous result where an NP oracle replaces the ΣP
2 oracle.

Computing a ≤-solution for a definite Horn PAP is, although this is easily shown NP-

hard, especially interesting since finding any solution is polynomial. The computational

cost of this problem can be characterized e.g. in terms of the recently introduced class

NPOP (NP optimization problems) [12], which is concerned with actually computing

optimal solutions rather than with determining the optimal solution cost (cf. the class

OptP in [43]). Since the problem can easily be shown to be in NPOP, it follows by results

of Chen and Toda in [12] that a polynomial-time randomized algorithm using one free

evaluation of parallel queries to NP sets can be described that finds a ≤-solution to any

Horn PAP P with probability ≥ 1 − 2−e(n), where n is the instance size of P and e(n)

is any given polynomial. Notice that this result is relevant for parallel computation of

a ≤-solution. On the other hand, computing a ≤-solution for a definite Horn PAP can

be readily shown to be a hard NPOP problem, which suggests that the problem is not

solvable in polynomial time with one free evaluation of a sublinear number of parallel

queries to NP oracle sets.
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7 Conclusion

We have studied the complexity of logic-based abduction in the propositional context. To

summarize, we first adopted a model of propositional abduction and solution preference,

and then we considered the three main decision problems of abductive reasoning: does an

abduction problem have a solution; does a hypothesis contribute to an acceptable solution

(relevance), and; does a hypothesis occur in all acceptable solutions (necessity).

Our study has included several preference orders and has paid attention to syntactical

restrictions on the underlying theory; the main results, together with previously known

results, are compactly presented in Tables 1-3. Note that we dealt with deciding �-

dispensability rather than with deciding �-necessity, which is the complementary problem.

Notice that all classes of the polynomial hierarchy PH, refined by adopting ∆P
k [O(logn)]

classes, from P up to ΣP
3 and ΠP

3 are covered by our results, and that except for one

case, deciding �-necessity is as complex as the complement of deciding �-relevance. The

results of main interest are ΣP
2 -completeness of deciding whether a propositional abduction

problem has any solution and that deciding �-relevance or �-necessity of a hypothesis

is complete for any class at the second level of PH in case of no preference (=), in case

of preference of irredundant solutions (⊆), and in case of preference of minimum-sized

solutions (≤). The method of priorities (⊆P ,≤P ) leads to a complexity increase except

for ⊆P -relevance in the case of definite Horn theories. For ⊆P the increase reaches the

upper complexity bound for polynomial decidable preference orders, which is at the third

level of PH (� in P). Under ≤P -preference, which is “easier” than ⊆P -preference, the

problems are still at the second level, and are as hard as under preference by penalty

attachments (⊑p).

If the underlying theory is Horn, then the complexity of the problems is always lowered by

one level of PH. A further restriction to definite Horn theories only affects the complexity

of the set-inclusion based preference methods (⊆,⊆P ), and lowers the complexity of the

problems, except for one case, by another level of PH.

We have finally addressed in brief the issue of computing a solution for a propositional

abduction problem.

Unless PH collapses – what we assumed to be false – abduction is much harder than

classical consequence |=, which is co-NP-complete, and cannot be solved in deterministic

polynomial time even if an oracle for |= is available. Besides |=, the number of candidates

S ⊆ H for a solution S is a second source of complexity that lifts abduction to the second

level of PH. The ⊆-minimality measure is not a source of additional complexity, as testing

both whether S is a solution or a ⊆-solution is in ∆P
2 . In contrast to ⊆-minimality,

the minimum cardinality measure is a source of additional complexity, which may be

explained by the fact that testing whether S is a ≤-solution is ΠP
2 -hard and ΣP

2 -hard (this

follows from Theorem 4.6) and hence most likely not in ΣP
2 or ΠP

2 . However, this source of

complexity is “weaker” in a sense, since abduction with the minimum cardinality measure
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P = 〈V,H,M, T 〉 general case T in clausal form T is Horn T is definite Horn

Deciding Sol(P) 6= ∅ Σ2
P Σ2

P NP
[69]

in P
[4]

Table 1: Complexity results for propositional abduction (≤p
m-completeness)

Propositional Abduction Deciding whether h ∈ H is �-relevant for P

P = 〈V,H,M, T 〉 = ⊆ ≤ ⊆P ≤P ⊑p � in P

general case Σ2
P Σ2

P ∆3
P [O(log n)] Σ3

P ∆3
P ∆3

P Σ3
P

T is in clausal form Σ2
P Σ2

P ∆3
P [O(log n)] Σ3

P ∆3
P ∆3

P Σ3
P

T is Horn NP
[69]

NP
[69]

∆2
P [O(log n)] Σ2

P ∆2
P ∆2

P Σ2
P

T is definite Horn in P
[28, 4]

NP
[28]

∆2
P [O(log n)] NP ∆2

P ∆2
P Σ2

P

Table 2: Complexity results for propositional abduction, contd.

Propositional Abduction Deciding whether h ∈ H is �-necessary for P

P = 〈V,H,M, T 〉 = ⊆ ≤ ⊆P ≤P ⊑p � in P

general case Π2
P Π2

P ∆3
P [O(log n)] Π3

P ∆3
P ∆3

P Π3
P

T is in clausal form Π2
P Π2

P ∆3
P [O(log n)] Π3

P ∆3
P ∆3

P Π3
P

T is Horn co-NP co-NP ∆2
P [O(log n)] Π2

P ∆2
P ∆2

P Π2
P

T is definite Horn in P
[28, 4]

in P
[28, 4]

∆2
P [O(log n)] co-NP ∆2

P ∆2
P Π2

P

Table 3: Complexity results for propositional abduction, contd.
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is still at the second level of PH.

The method of priorities is another source of complexity for both the ⊆-minimal mea-

sure and the minimum cardinality measure. For a ⊆-solution S, which is a potential

candidate for a ⊆P -solution, exponentially many other candidates S ′ such that S ′ ⊆P S

may exist. Unless PH collapses, ⊆-minimality combined with the method of priorities is

not polynomial even if an oracle for ⊆-minimal abduction is available.

In the case of minimum cardinality solutions, the method of priorities moves abduction

from ∆P
3 [O(logn)] to the class of ∆P

3 -complete problems, which are considered to be more

difficult than the problems in ∆P
3 [O(logn)]. Penalization is in this case a “weaker” source

of complexity, however, since it does not scale abduction up to the third level of PH.

An intuitive explanation for the complexity increase is that computing the size of a ≤P -

solution on the priority groups, which seems to be an implicit task in solving the problem,

needs probably about as many ΣP
2 oracle calls as H contains hypotheses in the worst case,

while computing the size of a minimum cardinality solution is possible with a logarithmic

number of oracle calls.

The method of penalties is a “weak” source of complexity since it does not increase the

complexity of abduction by another level of PH. The computational effect of this method

is equivalent to the combined effect of the minimum cardinality measure and the method

of priorities, and the complexity increase has the similar intuitive explanation by the ΣP
2

oracle calls made in computing the minimum penalty value for a solution.

In the case of Horn theories, classical inference is polynomial and hence eliminated as

a source of complexity. As the different preference orders have the same effect as in the

general propositional case, this explains the decrease of the complexity of abduction by

one level of PH in the Horn case. Under the further restriction to definite Horn theories,

the structure of the set of solutions (S ⊆ H ∈ Sol(P) implies S ′ ∈ Sol(P), for S ⊂ S ′ ⊆ H)

reduces the search space such that in some cases polynomial time algorithms are known.

Related results

We note that, more recently, similar complexity results have been derived for other forms

of non-classical reasoning (see [7] for a survey of the field):

Nonmonotonic Logics. Gottlob [32] has shown that several reasoning tasks in a number

of nonmonotonic propositional logics are complete for a certain class of the second level

of PH. In particular, he showed that in Reiter’s default logic [66], in McDermott and

Doyle’s nonmonotonic logic [49, 48], in Moore’s autoepistemic logic [51], and in Marek

and Truszczyński’s nonmonotonic logic N [47] (which all have a fixed point semantics),

deciding whether a fixed point exists is ΣP
2 -complete; deciding whether a formula belongs

to some fixed point is ΣP
2 -complete; and deciding whether a formula belongs to all fixed

points is ΠP
2 -complete. Stillman [71] and Papadimitriou and Sideri [55] found the same

results independently for default logic.
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Knowledge Base Update and Counterfactuals. A number of methods for revising or

updating knowledge bases (theories) have been proposed in the literature which handle

inconsistent update knowledge appropriately. This makes those methods applicable for

evaluating counterfactuals, which are conditional statements of the form “if F , then G”,

where F is assumed to be false in the current knowledge base [30]. Nebel [53] and Eiter

and Gottlob [22] have shown that for almost all update operators ◦, deciding whether

a knowledge base T updated, according to ◦, with formula F implies the formula G is

ΠP
2 -complete or “mildly” harder.

Closed World Reasoning and Circumscription. Eiter and Gottlob [21] have shown that

inferencing from a propositional theory under various forms of the closed world assumption

and under circumscription is at the second level of PH. In particular, deciding whether

the circumscription CIRC (F ), i.e. the minimal models of a propositional formula F imply

a formula G, is shown to be ΠP
2 -complete.

TMS. Rutenburg [68] has shown that for a certain variant of truth maintenance system

(TMS), deciding whether a “nogood” of certain size exists is ΣP
2 -complete.

This list may be extented by results for yet different forms of nonmonotonic reasoning,

e.g. inheritance networks.

All these results document that most of the popular forms of non-classical propositional

logic are most likely much harder than classical propositional logic. Unless the polynomial

hierarchy collapses, there is no polynomial algorithm for any of those ΣP
2 -hard or ΠP

2 -hard

problems, even if an NP oracle is provided; that is, deciding classical inferences is, modulo

polynomiality, for free. On the other hand, most of the logics are roughly of the same

computational complexity.

As an important side result, completeness of problems in two logics for the same class

entails that the problems are polynomial time transformable into each other. For exam-

ple, a number of problems in non-classical logics can be polynomially transformed into

testing necessity of a hypothesis for a propositional abduction problem. Conversely, the

necessity test can be polynomially transformed into a circumscriptive inference problem,

for instance.

Discussion and future work

Let us conclude this paper by a number of comments which also hint at further issues to

study in the context of logic-based abduction. Our results clearly show that the major

variants of logic-based abduction are very hard — in most cases even harder than classical

propositional reasoning. Hence, there is no hope for complete and efficient algorithms that

solve these problems. Similar observations on the other formalizations of abduction were

made in [6], where an interesting discussion on the consequences these rather discouraging

results is given. We fully agree with the conclusions drawn in [6]. Based on the ideas in

[6] and our own work and experience, we can identify four possible directions to follow
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both to handle concrete abduction and to do further research on logic-based abduction.

Use tractable restrictions of the abduction problems. We already stated in Section 1

that in several cases less complicated approaches such as the set-covering approach are

more appropriate than logic-based abduction. Several reasoning tasks are solvable in

polynomial with such models. If one has to build an abductive reasoner in a certain

domain, one should always first look if a simple approach is sufficient for the particular

purpose. Even for logic-based abduction several tractable subclasses have been identified,

cf. [28, 4, 24]. We believe that it is worthwhile to explore additional and as large as possible

tractable subclasses. However, we feel that further work in this direction should take into

account the specific characteristics of particular application domains. For instance in

the field of databases, one has to face large quantities of factual data and only few rules.

Nevertheless, for several applications, it will just be impossible to find a suitably restricted

version of abduction in order to gain tractability.

Give up minimality or completeness of solutions. If it is impossible to efficiently com-

pute minimal solutions that explain all manifestations, one may choose to cope with

explanations of lower quality. In a first step, one may renounce to minimality of solu-

tions. Unfortunately, this is beneficial only in the case of a definite Horn theory T (see

Tables 2 and 3), where the complexity is lowered from NP to P due to monotonicity. In

all other cases, the complexity remains unaffected.

A more profitable idea may be to give up on solution completeness and accept approxi-

mate solutions, i.e., explanations that do not explain all manifestations, but only relevant

parts of the present manifestations. This idea is fostered in [6] where also other relevant

references on this issue are provided. It is a challenge for future theoretical research to see

whether there exist polynomial algorithms generating approximate solutions to abduction

problems for a suitable notion of approximation. Note that some NP-complete problems

can be approximately solved in polyonmial time while others can not (for an overview,

see [39]). Similar results for problems at higher levels of the polynomial hierarchy are

currently not known.

Note also that polynomial algorithms for inductive concept learning have been presented

[2] which produce approximate solutions (concepts) under a statistical notion of approxi-

mation. Since inductive learning can be conceived as a form of abduction (set examples =

manifestations, concepts = hypotheses), it would be interesting to see whether this form

of approximate reasoning can be adapted to abduction problems.

Other relevant methods of approximative reasoning that may be fruitfully applied to

abduction have been introduced by Cadoli and Schaerf [8].

Note that partial or approximate explanations are often sufficient in order to cure a mal-

function or to repair a faulty system. To give a simple example, a minimal diagnosis for the

symptom high blood pressure is {excessive salt consumption, genetic predisposition}.
A therapy in this case would usually consist in prescribing the patient a diet in order to
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invalidate the single hypothesis excessive salt consumption, thus making the symptom

disappear. A more formal definition of therapy as opposed to diagnosis and a polynomial

algorithm for computing therapies can be found in [28].

Use heuristic knowledge to control and simplify the search process. Our results sug-

gest that the general formulation of a logic-based abduction problem does not encode

knowledge that makes search efficient. In domain-specific abductive expert systems, such

knowledge may be represented and used at a higher level. For an excellent discussion of

this point, the reader is referred to [6, Section 7].

Give up on correctness and completeness of the search algorithm. One may use polyno-

mial algorithms that are not guaranteed to be complete or correct, but which are known

to compute the correct result with very high probability. Such algorithms for solving

NP-complete problems have been studied in the recent literature [70, 41]. It remains to

see if algorithms of this type also exist for problems that are complete for classes at higher

levels of the polynomial hierarchy.
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A Appendix

Lemma 5.8 Let C = {C1, . . . , Cm} be a set of clauses on variables X and let k ∈
{1, . . . , m}. Call a truth assignment φ(X) csat-maximum for C iff φ(X) satisfies a max-

imum number of clauses in C. Then, deciding if every csat-maximum φ(X) for C fulfills

Vφ(Ck) = true is ∆P
2 [O(logn)]-complete.

Proof. Membership of the problem in ∆P
2 [O(logn)] is clear since the maximum number

s of simultaneously satisfiable clauses in C can be computed in O(logm) steps with an

NP oracle, and then one query to an NP oracle finds the answer.

We show hardness for ∆P
2 [O(logn)] by a ≤p

m-reduction from the ∆P
2 [O(logn)]-complete

problem UOCSAT [37]: Given a set C = {C1, . . . , Cm} of clauses on variables X =

{x1, . . . , xn}, decide if the maximum simultaneously satisfiable set of clauses in C is

unique.

Our transformation is as follows. In what follows, let for every clause set C denote

msc(C) the maximum number of simultaneously satisfiable clauses in C. Let X1, . . . , Xm,

X i = {xi1, . . . , x
i
n+1}, 1 ≤ i ≤ m be disjoint variable sets, and define clause sets C1, . . . , Cm

by Ci = Ci,1 ∪ Ci,2, 1 ≤ i ≤ m, where Ci,1 = {Ci
1, . . . , C

i
n} is a copy of C in which xij is
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substituted for xj, 1 ≤ j ≤ n, and

Ci,2 = {Ci
i ∪ {¬xin+1}} ∪ {{xin+1,¬x

i
j} : xij ∈ Ci

i} ∪ {{xin+1, x
i
j} : ¬xij ∈ Ci

i}.

Ci,2 is satisfiable, and each truth assignment φ(X i) such that Vφ(C
i,2) = true fulfills

φ(xin+1) = Vφ(C
i
i). It is easily verified that a truth assignment φ(X i) is csat-maximum

for Ci iff Vφ(C
i,2) = true and φ(X i) restricted to X i − {xin+1} is csat-maximum for Ci,1.

Now let Cm+1, . . . , C2m be copies of C1, . . . , Cm, respectively, on sets of new variables

Y 1, . . . , Y m similar to the X1, . . . , Xn, where in Ci, m < i ≤ 2m, the variable yij is

substituted for xij , for all j. Let a1, . . . , am be additional new variables, and define clause

sets Di on V i = X i ∪ Y i ∪ {ai}, 1 ≤ i ≤ m, by

Di = Ci ∪ Cm+i ∪ {{xin+1, y
i
n+1,¬ai}, {¬x

i
n+1,¬y

i
n+1,¬ai}, {ai}}.

The following is not hard to show: φ(ai) = true for every csat-maximum φ(V i) for Di iff

there exist csat-maximum truth assignments ψ(X), µ(X) for C such that Vψ(Ci) 6= Vµ(Ci).
Let E = D1 ∪ · · · ∪ Dm, V = V 1 ∪ · · · ∪ V m. From the properties of the Di’s, the

following is easily obtained: There exists i ∈ {1, . . . , m} such that φ(ai) = true for every

csat-maximum φ(V ) for E iff there exist csat-maximum truth assignments ψ(X), µ(X)

for C such that Vψ(Ci) 6= Vµ(Ci).
Now let b be a new variable and define

F = E ∪ {{¬ai,¬b} : 1 ≤ i ≤ m} ∪ {{b}}, W = V ∪ {b}.

Then, msc(E) +m ≤ msc(F ) ≤ msc(E) +m+ 1 holds.

Now consider msc(F ) = msc(E) + m + 1. This is clearly the case if and only if there

is some csat-maximum φ(W ) for E such that φ(ai) = false, for 1 ≤ i ≤ m. By the

properties ofE, it follows thatmsc(F ) = msc(E)+m+1 if and only if every csat-maximum

φ(X), ψ(X) for C fulfill Vφ(Ci) = Vψ(Ci), for 1 ≤ i ≤ m, i.e. the maximum simultaneously

satisfiable subset of C is unique. It is obvious that msc(F ) = msc(E)+m+1 iff each csat-

maximum truth assignment φ(W ) for F satisfies φ(b) = true. Therefore, the maximum

simultaneously satisfiable subset of C is unique iff for every φ(W ) that is csat-maximum

for F , φ({b}) = true holds. Since F is polynomial-time constructible from C, the lemma

follows. 2
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