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Abstract

We give nearly matching upper and lower bounds on the oracle complexity of finding ǫ-stationary

points (∥∇F (x)∥ ≤ ǫ) in stochastic convex optimization. We jointly analyze the oracle complexity

in both the local stochastic oracle model and the global oracle (or, statistical learning) model. This

allows us to decompose the complexity of finding near-stationary points into optimization complexity

and sample complexity, and reveals some surprising differences between the complexity of stochastic

optimization versus learning. Notably, we show that in the global oracle/statistical learning model,

only logarithmic dependence on smoothness is required to find a near-stationary point, whereas

polynomial dependence on smoothness is necessary in the local stochastic oracle model. In other

words, the separation in complexity between the two models can be exponential, and the folklore

understanding that smoothness is required to find stationary points is only weakly true for statistical

learning.

Our upper bounds are based on extensions of a recent “recursive regularization” technique

proposed by Allen-Zhu (2018). We show how to extend the technique to achieve near-optimal rates,

and in particular show how to leverage the extra information available in the global oracle model.

Our algorithm for the global model can be implemented efficiently through finite sum methods, and

suggests an interesting new computational-statistical tradeoff.

Keywords: stationary point, sample complexity, oracle complexity, stochastic optimization, non-

convex optimization.

1. Introduction

Success in convex optimization is typically defined as finding a point whose value is close to the

minimum possible value. Information-based complexity of optimization attempts to understand

the minimal amount of effort required to reach a desired level of suboptimality under different
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oracle models for access to the function (Nemirovski and Yudin, 1983; Traub et al., 1988). This

complexity—for both deterministic and stochastic convex optimization—is tightly understood across

a wide variety of settings (Nemirovski and Yudin, 1983; Traub et al., 1988; Agarwal et al., 2009;

Braun et al., 2017), and efficient algorithms that achieve optimal complexity are well known.

Recently, there has been a surge of interest in optimization for non-convex functions. In this case,

finding a point with near-optimal function value is typically intractable under standard assumptions,

both computationally and information-theoretically. For this reason, a standard task in non-convex

optimization is to find an ǫ-stationary point, i.e., a point where the gradient is small (∥∇F (x)∥ ≤ ǫ).
In stochastic non-convex optimization, a number of recent results provide provable guarantees for

finding near-stationary points (Ghadimi and Lan, 2013, 2016; Reddi et al., 2016; Allen-Zhu, 2017;

Lei et al., 2017; Jin et al., 2017; Zhou et al., 2018; Fang et al., 2018). However, the stochastic oracle

complexity of finding near-stationary points is not yet well understood, so we do not know whether

existing algorithms are optimal, or how we hope to improve upon them.

Carmon et al. (2017a,b) have established tight bounds on the deterministic first-order oracle

complexity of finding near-stationary points of smooth functions, both convex and non-convex. For

convex problems, they prove that accelerated gradient descent is optimal both for finding approximate

minimizers and approximate stationary points, while for non-convex problems, gradient descent is

optimal for finding approximate stationary points. The picture is simple and complete: the same

deterministic first-order methods that are good at finding approximate minimizers are also good at

finding approximate stationary points, even for non-convex functions.

However, when one turns their attention to the stochastic oracle complexity of finding near-

stationary points, the picture is far from clear. Even for stochastic convex optimization, the oracle

complexity is not yet well understood. This paper takes a first step toward resolving the general case

by providing nearly tight upper and lower bounds on the oracle complexity of finding near-stationary

points in stochastic convex optimization, both for first-order methods and for global (i.e., statistical

learning) methods. At first glance, this might seem trivial, since exact minimizers are equivalent

to exact stationary points for convex functions. When it comes to finding approximate stationary

points the situation is considerably more complex, and the equivalence does not yield quantitatively

optimal rates. For example, while the stochastic gradient descent (SGD) is (worst-case) optimal for

stochastic convex optimization with a first-order oracle, it appears to be far from optimal for finding

near-stationary points.

1.1. Contributions

We present a nearly tight analysis of the local stochastic oracle complexity and global stochastic

oracle complexity (“sample complexity”) of finding approximate stationary points in stochastic

convex optimization. Briefly, the highlights are as follows:

• We give upper and lower bounds on the local and global stochastic oracle complexity that

match up to log factors. In particular, we show that the local stochastic complexity of finding

stationary points is (up to log factors) characterized as the sum of the deterministic oracle

complexity and the sample complexity.

• As a consequence of this two-pronged approach, we show that the gap between local stochastic

complexity and sample complexity of finding near-stationary points is at least exponential in

the smoothness parameter.
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Table 1: Upper and lower bounds on the complexity of finding x such that ∥∇F (x)∥ ≤ ǫ for convex

problems with H-Lipschitz gradients, where σ2 is a bound on the variance of gradient

estimates.

• We obtain the above results through new algorithmic improvements. We show that the recursive

regularization technique introduced by Allen-Zhu (2018) for local stochastic optimization can

be combined with empirical risk minimization to obtain logarithmic dependence on smoothness

in the global model, and that the resulting algorithms can be implemented efficiently.

Complexity results are summarized in Table 1. Here we discuss the conceptual contributions in more

detail.

Decomposition of stochastic first-order complexity. For stochastic optimization of convex func-

tions, there is a simple and powerful connection between three oracle complexities: first-order

deterministic, first-order stochastic, and global stochastic. For many well-known problem classes,

the stochastic first-order complexity is equal to the sum (equivalently, maximum) of the deterministic

first-order complexity and the sample complexity. This decomposition of the local stochastic com-

plexity into an “optimization term” plus a “statistical term” inspires optimization methods, guides

analysis, and facilitates comparison of different algorithms. It indicates that “one pass” stochastic

approximation algorithms like SGD are optimal for stochastic optimization in certain parameter

regimes, so that we do not have to resort to sample average approximation or methods that require

multiple passes over data.

We establish that the same decomposition holds for the task of finding approximate stationary

points. Such a characterization should not be taken for granted, and it is not clear a priori that

it should hold for finding stationary points. Establishing the result requires both developing new

algorithms with near-optimal sample complexity in the global model, and improving previous local

stochastic methods (Allen-Zhu, 2018) to match the optimal deterministic complexity.
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Gap between sample complexity and stochastic first-order complexity. For non-smooth convex

objectives, finding an approximate stationary point can require finding an exact minimizer of the

function (consider the absolute value function). Therefore, as one would expect, the deterministic and

stochastic first-order oracle complexities for finding near-stationary points scale polynomially with

the smoothness constant, even in low dimensions. Surprisingly, we show that the sample complexity

depends at most logarithmically on the smoothness. In fact, in one dimension the dependence on

smoothness can be removed entirely.

Improved methods. Our improved sample complexity results for the global stochastic oracle/statis-

tical learning model are based on a new algorithm which uses the recursive regularization (or,

“SGD3”) approach introduced by Allen-Zhu (2018). The new method iteratively solves a sequence of

subproblems via regularized empirical risk minimization (RERM). Solving subproblems through

RERM allows the method to exploit global access to the stochastic samples. Since the method

enjoys only logarithmic dependence on smoothness (as well as initial suboptimality or distance

to the optimum), it provides a better alternative to any stochastic first-order method whenever the

smoothness parameter is large relative to the variance in the gradient estimates. Since RERM is a

finite-sum optimization problem, standard finite-sum optimization methods can be used to implement

the method efficiently; the result is that we can beat the sample complexity of stochastic first-order

methods with only modest computational overhead.

For the local stochastic model, we improve the SGD3 method of Allen-Zhu (2018) so that the

“optimization” term matches the optimal deterministic oracle complexity. This leads to a quadratic

improvement in terms of the initial distance to the optimum (the “radius” of the problem), ∥x0 − x∗∥.
We also extend the analysis to the setting where initial sub-optimality F (x0) − F (x∗) is bounded

but not the radius–a common setting in the analysis of non-convex optimization algorithms and a

setting in which recursive regularization was not previously analyzed.

2. Setup

We consider the problem of finding an ǫ−stationary point in the stochastic convex optimization

setting. That is, for a convex function F ∶ Rd ↦ R, our goal is to find a point x ∈ Rd such that

∥∇F (x)∥ ≤ ǫ, (1)

given access to F only through an oracle.1 Formally, the problem is specified by a class of functions

to which F belongs, and through the type of oracle through which we access F . We outline these

now.

Function classes. Recall that F ∶ Rd → R is is said to H-smooth if

F (y) ≤ F (x) + ⟨∇F (x), y − x⟩ + H

2
∥y − x∥2 ∀x, y ∈ Rd, (2)

and is said to be λ-strongly-convex if

F (y) ≥ F (x) + ⟨∇F (x), y − x⟩ + λ

2
∥y − x∥2 ∀x, y ∈ Rd. (3)

We focus on two classes of objectives, both of which are defined relative to an arbitrary initial point

x0 provided to the optimization algorithm.

1. Here, and for the rest of the paper, ∥⋅∥ is taken to be the Euclidean norm.
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1. Domain-bounded functions.

Fd
DB[H,λ;R] = ⎧⎪⎪⎪⎨⎪⎪⎪⎩F ∶ R

d → R

RRRRRRRRRRRRRR
F is H-smooth and λ-strongly convex

argminx F (x) ≠ ∅∃x∗ ∈ argminx F (x) s.t. ∥x0 − x∗∥ ≤ R
⎫⎪⎪⎪⎬⎪⎪⎪⎭. (4)

2. Range-bounded functions.

Fd
RB[H,λ;∆] = ⎧⎪⎪⎪⎨⎪⎪⎪⎩F ∶ R

d → R

RRRRRRRRRRRRRR
F is H-smooth and λ-strongly convex

argminx F (x) ≠ ∅
F (x0) −minx F (x) ≤∆

⎫⎪⎪⎪⎬⎪⎪⎪⎭. (5)

We emphasize that while the classes are defined in terms of a strong convexity parameter, our main

complexity results concern the non-strongly convex case where λ = 0. The strongly convex classes

are used for intermediate results. We also note that our main results hold in arbitrary dimension, and

so we drop the superscript d except when it is pertinent to discussion.

Oracle classes. An oracle accepts an argument x ∈ Rd and provides (possibly noisy/stochastic)

information about the objective F around the point x. The oracle’s output belongs to an information

space I . We consider three distinct types of oracles:

1. Deterministic first-order oracle. Denoted O∇F , with I ⊆ Rd × (Rd)∗. When queried at a

point x ∈ Rd, the oracle returns

O∇F (x) = (F (x),∇F (x)). (6)

2. Stochastic first-order oracle. Denoted Oσ
∇f , with I ⊆ R

d × Rd. The oracle is specified

by a function f ∶ Rd × Z → R and a distribution D over Z with the property that F (x) =
Ez∼D[f(x; z)] and supx[Ez∼D ∥∇f(x; z) − F (x)∥2] ≤ σ2. When queried at a point x ∈ Rd,

the oracle draws an independent z ∼ D and returns

Oσ
∇f(x) = (f(x; z),∇f(x; z))z∼D. (7)

3. Stochastic global oracle. Denoted Oσ
f , with I ⊆ (Rd ↦ R). The oracle is specified by

a function f ∶ Rd × Z → R and a distribution D over Z with the property that F (x) =
Ez∼D[f(x; z)] and supx[Ez∼D ∥∇f(x; z) − F (x)∥2] ≤ σ2. When queried, the oracle draws

an independent z ∈ D and returns the complete specification of the function f(⋅, z), specifically,

Oσ
f (x) = (f(⋅, z))z∼D. (8)

For consistency with the other oracles, we say that Oσ
f accepts an argument x, even though

this argument is ignored. The global oracle captures the statistical learning problem, in which

f(⋅; z) is the loss of a model evaluated on an instance z ∼ D, and this component function is

fully known to the optimizer. Consequently, we use the terms “global stochastic complexity”

and “sample complexity” interchangeably.

For the stochastic oracles, while F itself may need to have properties such as convexity or smoothness,

f(⋅; z) as defined need not have these properties unless stated otherwise.
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Minimax oracle complexity. Given a function class F and an oracle O with information space I ,

we define the minimax oracle complexity of finding an ǫ-stationary point as

mǫ(F ,O) = inf{m ∈ N ∣ inf
A∶⋃t≥0 It↦Rd

sup
F ∈F

E ∥∇F (xm)∥ ≤ ǫ}, (9)

where xt ∈ Rd is defined recursively as xt ∶= A(O(x0), . . . ,O(xt−1)) and the expectation is over the

stochasticity of the oracle O.2

Recap: Deterministic first-order oracle complexity. To position our new results on stochastic

optimization we must first recall what is known about the deterministic first-order oracle complexity

of finding near-stationary pointst. This complexity is tightly understood, with

mǫ(FDB[H,λ = 0;R],O∇F ) = Θ̃(√HR/√ǫ), and mǫ(FRB[H,λ = 0;∆],O∇F ) = Θ̃ (√H∆/ǫ) ,
up to logarithmic factors (Nesterov, 2012; Carmon et al., 2017b). The algorithm that achieves these

rates is accelerated gradient descent (AGD).

3. Stochastic First-Order Complexity of Finding Stationary Points

Interestingly, the usual variants of stochastic gradient descent do not appear to be optimal in the

stochastic model. A first concern is that they do not yield the correct dependence on desired station-

arity ǫ. As an illustrative example, let F ∈ FDB[H,λ = 0;R] and let any stochastic first-order oracleOσ
∇f be given. We adopt the naive approach of bounding stationarity by function value suboptimality.

In this case the standard analysis of stochastic gradient descent (e.g., Dekel et al. (2012)) implies that

after m iterations, E ∥∇F (xm)∥ ≤ O(√H(EF (xm) − F (x∗))) ≤ O (√H(HR2/m + σR/√m)),
and thus

mǫ(FDB[H,λ = 0;R],Oσ
∇f) ≤ O (H2R2

ǫ2
+ H2R2σ2

ǫ4
) .

The dependence on ǫ−4 is considerably worse than the ǫ−2 dependence enjoyed for function subopti-

mality.

In recent work, Allen-Zhu (2018) proposed a new recursive regularization approach and used this

in an algorithm called SGD3 that obtains the correct ǫ−2 dependence.3 For any F ∈ FDB[H,λ = 0;R]
and Oσ

∇f , SGD3 iteratively augments the objective with increasingly strong regularizers, “zooming

in” on an approximate stationary point. Specifically, in the first iteration, SGD is used to find x̂1,

an approximate minimizer of F (0)(x) = F (x). The objective is then augmented with a strongly-

convex regularizer so F (1)(x) = F (0)(x) + λ ∥x − x̂1∥2. In the second round, SGD is initialized

at x̂1, and used to find x̂2, an approximate minimizer of F (1). This process is repeated, with

F (t)(x) ∶= F (t−1)(x) + 2t−1λ ∥x − x̂t∥2 for each t ∈ [T ]. Allen-Zhu (2018) shows that SGD3 find

an ǫ-stationary points using at most

m ≤ Õ (HR

ǫ
+ σ2

ǫ2
) (10)

2. See Section 3 for discussion of randomized algorithms.

3. Allen-Zhu (2018) also show that some simple variants of SGD are able to reduce the poor ǫ−4 dependence to, e.g.,

ǫ−5/2, but they fall short of the ǫ−2 dependence one should hope for. Similar remarks apply for F ∈ FRB[H,λ = 0;∆].
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local stochastic oracle queries. This oracle complexity has a familiar structure: it resembles the

sum of an “optimization term” (HR/ǫ) and a “statistical term” (σ2/ǫ2). While we show that the

statistical term is tight up to logarithmic factors (Theorem 2), the optimization term does not match

the Ω(√HR/ǫ) lower bound for the deterministic setting (Carmon et al., 2017b).

Algorithm 1 Recursive Regularization Meta-Algorithm

Input: A function F ∈ F[H,λ], an oracle O and an alloted number of oracle accesses m, an initial

point x0, and an optimization sub-routine A, with A = A[O, m

⌊log2(Hλ )⌋
].

F (0) ∶= F , x̂0 ∶= x0, T ← ⌊log2(Hλ )⌋.
for t = 1 to T do

x̂t is output of A used to optimize F (t−1) intitialized at x̂t−1
F (t)(x) ∶= F (x) + λ∑t

k=1 2
k−1∥x − x̂k∥2

end for

return x̂T

Our first result is to close this gap. The key idea is to view SGD3 as a template algorithm, where

the inner loop of SGD used in Allen-Zhu (2018) can be swapped out for an arbitrary optimization

method A. This template, Algorithm 1, forms the basis for all the new methods in this paper.4 To

obtain optimal complexity for the local stochastic oracle model we use a variant of the accelerated

stochastic approximation method (“AC-SA”) due to Ghadimi and Lan (2012) as the subroutine.

Pseudocode for AC-SA is provided in Algorithm 2. We use a variant called AC-SA2, see Algorithm 3.

The AC-SA2 algorithm is equivalent to AC-SA, except the stepsize parameter is reset halfway through.

This leads to slightly different dependence on the smoothness and domain size parameters, which is

important to control the final rate when invoked within Algorithm 1.

Toward proving the tight upper bound in Table 1, we first show that Algorithm 1 with AC-SA2

as its subroutine guarantees fast convergence for strongly-convex domain-bounded objectives.

Theorem 1 For any F ∈ FDB[H,λ;R] and any Oσ
∇f , Algorithm 1 using AC-SA2 as its subroutine

finds a point x̂ with E ∥∇F (x̂)∥ ≤ ǫ using

m ≤ O⎛⎜⎝
√

H

λ
log (H

λ
) +
√

HR

ǫ
log (H

λ
) + (√Hσ√

λǫ
)

2

3

log (H
λ
) + σ2

ǫ2
log3 (H

λ
)⎞⎟⎠

total stochastic first-order oracle accesses.

The analysis of this algorithm is detailed in Appendix A and carefully matches the original

analysis of SGD3 (Allen-Zhu, 2018). The essential component of the analysis is Lemma 8, which

provides a bound on ∥∇F (x̂)∥ in terms of the optimization error of each invocation of AC-SA2 on

the increasingly strongly convex subproblems F (t).
Our final result for non-strongly convex objectives uses Algorithm 1 with AC-SA2 on the

regularized objective F̃ (x) = F (x) + λ
2
∥x − x0∥2. The performance guarantee is as follows, and

concerns both domain-bounded and range-bounded functions.

4. The idea of replacing the sub-algorithm in SGD3 was also used by Davis and Drusvyatskiy (2018), who showed that

recursive regularization with a projected subgradient method can be used to find near-stationary points for the Moreau

envelope of any Lipschitz function.
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Algorithm 2 AC-SA

Input: A function F ∈ FDB[H,λ;R], a stochastic first-order oracle Oσ
∇f , and an alloted number of

oracle accesses m

x
ag
0 = x0

for t = 1,2, . . . ,m do

αt ← 2
t+1

γt ← 4H
t(t+1)

xmd
t ← (1−αt)(λ+γt)

γt+(1−α2

t )λ
x
ag
t−1 + αt((1−αt)λ+γt)

γt+(1−α2

t )λ
xt−1∇f(xmd

t ; zt)← Oσ
∇f(xmd

t )
xt ← αtλ

λ+γtx
md
t + (1−αt)λ+γt

λ+γt xt−1 − αt

λ+γt∇f(xmd
t ; zt)

x
ag
t ← αtxt + (1 − αt)xagt−1

end for

return x
ag
m

Corollary 1 For any F ∈ FDB[H,λ = 0;R] and any Oσ
∇f , Algorithm 1 with AC-SA2 as its sub-

routine applied to F (x) + λ
2
∥x − x0∥2 for λ = Θ (min{ ǫ

R
, Hǫ4

σ4 log4(σ/ǫ)}) yields a point x̂ such that

E ∥∇F (x̂)∥ ≤ ǫ using

m ≤ O⎛⎝
√

HR

ǫ
log (HR

ǫ
) + σ2

ǫ2
log3 (σ

ǫ
)⎞⎠

total stochastic first-order oracle accesses.

For any F ∈ FRB[H,λ = 0;∆] and anyOσ
∇f , the same algorithm with λ = Θ (min{ ǫ2

∆
, Hǫ4

σ4 log4(σ/ǫ)})
yields a point x̂ with E ∥∇F (x̂)∥ ≤ ǫ using

m ≤ O (√H∆

ǫ
log(√H∆

ǫ
) + σ2

ǫ2
log3 (σ

ǫ
))

total stochastic first-order oracle accesses.

This result follows easily from Theorem 1 and is proven in Appendix A. Intuitively, when λ is

chosen appropriately, the gradient of the regularized objective F̃ does not significantly deviate from

the gradient of F , but the number of iterations required to find an O(ǫ)-stationary point of F̃ is still

controlled.

We now provide nearly-tight lower bounds for the stochastic first-order oracle complexity. A

notable feature of the lower bound is to show that some of the logarithmic terms in the upper

bound—which are not present in the optimal oracle complexity for function value suboptimality—are

necessary.

Theorem 2 For any H,∆,R, σ > 0, any ǫ ≤ HR
8

, the stochastic first-order oracle complexity for

range-bounded functions is lower bounded as

mǫ(FDB[H,λ = 0;R],Oσ
∇f) ≥ Ω⎛⎝

√
HR

ǫ
+ σ2

ǫ2
log (HR

ǫ
)⎞⎠ .
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Algorithm 3 AC-SA2

Input: A function F ∈ FDB[H,λ;R], a stochastic first-order oracle Oσ
∇f , and an alloted number of

oracle accesses m

x1 ← AC-SA(F,x0, m2 )
x2 ← AC-SA(F,x1, m2 )
return x2

For any ǫ ≤ √H∆
8

, the stochastic first-order complexity for domain-bounded functions is lower

bounded as

mǫ(FRB[H,λ = 0;∆],Oσ
∇f) ≥ Ω(

√
H∆

ǫ
+ σ2

ǫ2
log (H∆

ǫ2
)) .

The proof, detailed in Appendix C, combines the existing lower bound on the deterministic

first-order oracle complexity (Carmon et al., 2017b) with a new lower bound for the statistical

term. The approach is to show that any algorithm for finding near-stationary points can be used to

solve noisy binary search (NBS), and then apply a known lower bound for NBS (Feige et al., 1994;

Karp and Kleinberg, 2007). It is possible to extend the lower bound to randomized algorithms; see

discussion in Carmon et al. (2017b).

4. Sample Complexity of Finding Stationary Points

Having tightly bounded the stochastic first-order oracle complexity of finding approximate stationary

points, we now turn to sample complexity. If the heuristic reasoning that stochastic first-order

complexity should decompose into sample complexity and deterministic first-order complexity

(mǫ(F ,Oσ
∇f) ≈ mǫ(F ,O∇F ) + mǫ(F ,Oσ

f )) is correct, then one would expect that the sample

complexity should be Õ(σ2/ǫ2) for both domain-bounded and range-bounded function. A curious

feature of this putative sample complexity is that it does not depend on the smoothness of the function.

This is somewhat surprising since if the function is non-smooth in the vicinity of its minimizer, there

may only be a single ǫ-stationary point, and an algorithm would need to return exactly that point

using only a finite sample. We show that the sample complexity is in fact almost independent of

the smoothness constant, with a mild logarithmic dependence. We also provide nearly tight lower

bounds.

For the global setting, a natural algorithm to try is regularized empirical risk minimization

(RERM), which returns x̂ = argminx
1
m ∑m

i=1 f(x; zi) + λ
2
∥x − x0∥2.5 For any domain-bounded

function F ∈ FDB[H,λ = 0;R], a standard analysis of ERM based on stability (Shalev-Shwartz et al.,

2009) shows that E ∥∇F (x̂)∥ ≤ E

√
2H(F (x̂) − F ∗) + λR ≤ O(√H3R2/λm + λR). Choosing

m = Ω((HR)3/ǫ3) and λ = Θ(ǫ/R) yields an ǫ-stationary point. This upper bound, however, has

two shortcomings. First, it scales with ǫ−3 rather than ǫ−2 that we hoped for and, second, it does

not approach 1 as σ → 0, which one should expect in the noise-free case. The stochastic first-order

algorithm from the previous section has better sample complexity, but the number of samples still

does not approach one when σ → 0.

5. While it is also tempting to try constrained ERM, this does not succeed even for function value suboptimality

(Shalev-Shwartz et al., 2009).
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We fix both issues by combining regularized ERM with the recursive regularization approach,

giving an upper bound that nearly matches the sample complexity lower bound Ω(σ2/ǫ2). The key

tool here is a sharp analysis of regularized ERM—stated in the appendix as Theorem 10—that obtains

the correct dependence on the variance σ2. As in the previous section, we first prove an intermediate

result for the strongly convex case. Unlike Section 3, where F was required to be convex but the

components f(⋅; z) were not required to be, we must assume here either that f(⋅; z) is convex for all

z.6

Theorem 3 For any F ∈ F[H,λ] and any global stochastic oracle Oσ
f with the restriction that

f(⋅; z) is convex for all z, Algorithm 1 with ERM as its subroutine finds x̂ with E ∥∇F (x̂)∥ ≤ ǫ using

at most

m ≤ O (σ2

ǫ2
log3 (H

λ
))

total samples.

The proof is given in Appendix B. As before, we handle the non-strongly convex case by applying

the algorithm to F̃ (x) = F (x) + λ
2
∥x − x0∥2.

Corollary 2 For any F ∈ FDB[H,λ = 0;R] and any global stochastic oracleOσ
f with the restriction

that f(⋅; z) is convex for all z, Algorithm 1 with ERM as its subroutine, when applied to F̃ (x) =
F (x) + λ

2
∥x − x0∥2 with λ = Θ(ǫ/R), finds a point x̂ with E ∥∇F (x̂)∥ ≤ ǫ using at most

m ≤ O (σ2

ǫ2
log3 (HR

ǫ
))

total samples.

For any F ∈ FRB[H,λ = 0;∆] and any global stochastic oracle Oσ
f with the restriction that f(⋅; z)

is convex for all z, the same approach with λ = Θ(ǫ2/∆) finds an ǫ-stationary point using at most

m ≤ O (σ2

ǫ2
log3 (√H∆

ǫ
))

total samples.

This result follows immediately from Theorem 3 by choosing λ small enough such that ∥∇F (x)∥ ≈∥∇F̃ (x)∥. Details are deferred to Appendix B. With the new sample complexity upper bound, we

proceed to provide an almost-tight lower bound.

Theorem 4 For any H,∆,R, σ > 0, ǫ ≤ min{HR
8
,
√

H∆
8
, σ
4
}, the sample complexity to find a

ǫ-stationary point7 is lower bounded as

mǫ(FDB[H,λ = 0;R] ∩FRB[H,λ = 0;∆],Oσ
f ) ≥ Ω(σ2

ǫ2
) .

6. We are not aware of any analysis of ERM for strongly convex losses that does not make such an assumption. It is

interesting to see whether this can be removed.

7. This lower bound applies both to deterministic and randomized optimization algorithms.
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This lower bound is similar to constructions used to prove lower bounds in the case of finding

an approximate minimizer (Nemirovski and Yudin, 1983; Nesterov, 2004; Woodworth and Srebro,

2016). However, our lower bound applies for functions with simultaneously bounded domain and

range, so extra care must be taken to ensure that these properties hold. The lower bound also ensures

that f(⋅; z) is convex for all z. The proof is located in Appendix C.

Discussion: Efficient implementation. Corollary 2 provides a bound on the number of samples

needed to find a near-stationary point. However, a convenient property of the method is that the ERM

objective F (t) solved in each iteration is convex, (H + 2tλ)-smooth, (2tλ)-strongly convex, and

has finite sum structure with m/T components. These subproblems can therefore be solved using at

most O ((m
T
+

√
m(H+λ2t)

Tλ2t
) log HR

ǫ
) gradient computations via a first-order optimization algorithm

such as Katyusha (Allen-Zhu, 2017). This implies that the method can be implemented with a

total gradient complexity of O ((σ2

ǫ2
+

σ3/2
√
H

ǫ3/2
) log4 (HR

ǫ
)) ≤ Õ(σ2

ǫ2
+

H2R
ǫ
) over all T iterations,

and similarly for the bounded-range case. Thus, the algorithm is not just sample-efficient, but also

computationally efficient, albeit slightly less so than the algorithm from Section 3.

Removing smoothness entirely in one dimension. The gap between the upper and lower bounds

for the statistical complexity is quite interesting. We conclude from Corollary 2 that the sample

complexity depends at most logarithmically upon the smoothness constant, which raises the question

of whether it must depend on the smoothness at all. We now show that for the special case of

functions in one dimension, smoothness is not necessary. In other words, all that is required to find

an ǫ-stationary point is Lipschitzness.

Theorem 5 Consider any convex, L-Lipschitz function F ∶ R→ R that is bounded from below,8 and

any global stochastic oracle Oσ
f with the restriction that f(⋅; z) is convex for all z. There exists an

algorithm which uses O (σ2 log(L
ǫ
)

ǫ2
) samples and outputs a point x̂ such that E[infg∈∂F (x̂) ∣g∣] ≤ ǫ.

The algorithm calculates the empirical risk minimizer on several independent samples, and then

returns the point that has the smallest empirical gradient norm on a validation sample. The proof uses

the fact that any function F as in the theorem statement has a single left-most and a single right-most

ǫ-stationary point. As long as the empirical function’s derivative is close to F ’s at those two points,

we argue that the ERM lies between them with constant probability, and is thus an ǫ-stationary

point of F . We are able to boost the confidence by repeating this a logarithmic number of times. A

rigorous argument is included in Appendix B. Unfortunately, arguments of this type does not appear

to extend to more than one dimension, as the boundary of the set of ǫ-stationary points will generally

be uncountable, and thus it is not apparent that the empirical gradient will be uniformly close to the

population gradient. It remains open whether smoothness is needed in two dimensions or more.

The algorithm succeeds even for non-differentiable functions, and requires neither strong con-

vexity nor knowledge of a point x0 for which ∥x0 − x∗∥ or F (x0) − F ∗ is bounded. In fact, the

assumption of Lipschitzness (more generally, L-subgaussianity of the gradients) is only required to

get an in-expectation statement. Without this assumption, it can still be shown that ERM finds an

ǫ-stationary point with constant probability using m ≤ O(σ2

ǫ2
) samples.

8. This lower bound does not enter the sample complexity quantitatively.
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5. Discussion

We have proven nearly tight bounds on the oracle complexity of finding near-stationary points in

stochastic convex optimization, both for local stochastic oracles and global stochastic oracles. We

hope that the approach of jointly studying stochastic first-order complexity and sample complexity

will find use more broadly in non-convex optimization. To this end, we close with a few remarks and

open questions.

1. Is smoothness necessary for finding ǫ-stationary points? While the logarithmic factor separat-

ing the upper and lower bound we provide for stochastic first-order oracle complexity is fairly

inconsequential, the gap between the upper and lower bound on the sample complexity is quite

interesting. In particular, we show through Theorem 4 and Corollary 2 that

Ω(σ2

ǫ2
) ≤ mǫ (FRB[H,λ = 0;∆],Oσ

f ) ≤ O (σ2

ǫ2
log3 (√H∆

ǫ
)) ,

and similarly for the domain-bounded case. Can the polylog(H) factor on the right-hand side

be removed entirely? Or in other words, is it possible to find near-stationary points in the

statistical learning model without smoothness?9 By Theorem 5, we know that this is possible

in one dimension.

2. Tradeoff between computational complexity and sample complexity. Suppose our end goal

is to find a near-stationary point in the statistical learning setting, but we wish to do so

efficiently. For range-bounded functions, if we use Algorithm 1 with AC-SA2 as a subroutine

we require Õ(√H∆
ǫ
+ σ2

ǫ2
) samples, and the total computational effort (measured by number

of gradient operations) is also Õ(√H∆
ǫ
+ σ2

ǫ2
). On the other hand, if we use Algorithm 1 with

RERM as a subroutine and implement RERM with Katyusha, then we obtain an improved

sample complexity of Õ(σ2

ǫ2
), but at the cost of a larger number of gradient operations:

Õ(σ2

ǫ2
+ √H3∆

ǫ
). In summary, when faced with functions with poor smoothness, the latter

algorithm is superior statistically, with similar but larger computation. Tightly characterizing

such computational-statistical tradeoffs in this and related settings is an interesting direction

for future work.

3. Complexity of finding stationary points for smooth non-convex functions. An important open

problem is to characterize the minimax oracle complexity of finding near-stationary points for

smooth non-convex functions, both for local and global stochastic oracles. For a deterministic

first-order oracle, the optimal rate is Θ̃(H∆
ǫ2
). In the stochastic setting, a simple sample

complexity lower bound follows from the convex case, but this is not known to be tight.
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9. For a general non-smooth function F , a point x is said to be an ǫ-stationary point if there exists v ∈ ∂F (x) such that

∥v∥
2
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Appendix A. Proofs from Section 3: Upper Bounds

Theorem 6 (Proposition 9 of Ghadimi and Lan (2012)) For any F ∈ FDB[H,λ;R] and anyOσ
∇f , the AC-SA algorithm returns a point x̂T after making T oracle accesses such that

E[F (x̂T ) − F (x∗)] ≤ 2HR2

T 2
+ 8σ2

λT
.

Lemma 7 For any F ∈ FDB[H,λ;R] and any Oσ
∇f , the AC-SA2 algorithm returns a point x̂ after

making T oracle accesses such that

E[F (x̂) − F (x∗)] ≤ 128H2R2

λT 4
+ 256Hσ2

λ2T 3
+ 16σ2

λT
.
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Proof By Theorem 6, the first instance of AC-SA outputs x̂1 such that

E[F (x̂1) − F (x∗)] ≤ 8HR2

T 2
+ 16σ2

λT
, (11)

and since F is λ-strongly convex,

λ

2
E∥x̂1 − x∗∥2 ≤ E[F (x̂1) − F (x∗)] ≤ 8HR2

T 2
+ 16σ2

λT
. (12)

Also by Theorem 6, the second instance of AC-SA outputs x̂2 such that

E[F (x̂2) − F (x∗)] = E[E [F (x̂2) − F (x∗) ∣ x̂1]] (13)

≤ E[8H∥x̂1 − x∗∥2
T 2

+ 16σ2

λT
] (14)

≤ 128H2R2

λT 4
+ 256Hσ2

λ2T 3
+ 16σ2

λT
. (15)

Lemma 8 (Claim 6.2 of Allen-Zhu (2018)) Suppose that for every t = 1, . . . , T the iterates of

Algorithm 1 satisfy E[F (t−1)(x̂t) − F (t−1)(x∗t−1)] ≤ δt where x∗t−1 = argminx F
(t−1)(x), then

1. For all t ≥ 1, E[∥x̂t − x∗t−1∥]2 ≤ E[∥x̂t − x∗t−1∥2] ≤ δt

2t−2λ
.

2. For every t ≥ 1, E[∥x̂t − x∗t ∥]2 ≤ E[∥x̂t − x∗t ∥2] ≤ δt

2tλ
.

3. For all t ≥ 1, E[∑T
t=1 2tλ∥x̂t − x∗T ∥] ≤ 4∑T

t=1
√
2tλδt.

Theorem 1 For any F ∈ FDB[H,λ;R] and any Oσ
∇f , Algorithm 1 using AC-SA2 as its subroutine

finds a point x̂ with E ∥∇F (x̂)∥ ≤ ǫ using

m ≤ O⎛⎜⎝
√

H

λ
log (H

λ
) +
√

HR

ǫ
log (H

λ
) + (√Hσ√

λǫ
)

2

3

log (H
λ
) + σ2

ǫ2
log3 (H

λ
)⎞⎟⎠

total stochastic first-order oracle accesses.

Proof As in Lemma 8, let E[F (t−1)(x̂t) − F (t−1)(x∗t−1)] ≤ δt for each t ≥ 1. The objective in the

final iteration, F (T−1)(x) = F (x) + λ∑T−1
t=1 2t−1 ∥x − x̂t∥2, so

E[∥∇F (x̂T )∥] = E[∥∇F (T−1)(x̂T ) + λ T−1∑
t=1

2t(x̂t − x̂T )∥] (16)

15
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≤ E[∥∇F (T−1)(x̂T )∥] + λ T−1∑
t=1

2tE[∥x̂t − x̂T ∥] (17)

≤ E[∥∇F (T−1)(x̂T )∥] + λ T−1∑
t=1

2tE[∥x̂t − x∗T−1∥ + ∥x̂T − x∗T−1∥] (18)

≤ 2E[∥∇F (T−1)(x̂T )∥] + λ T−1∑
t=1

2tE[∥x̂t − x∗T−1∥] (19)

≤ 2E[∥∇F (T−1)(x̂T )∥] + 4 T−1∑
t=1

√
λ2tδt (20)

≤ 4√H E[F (T−1)(x̂T ) − F (T−1)(x∗T−1)] + 4 T−1∑
t=1

√
λ2tδt (21)

≤ 4√HδT + 4 T−1∑
t=1

√
λ2tδt (22)

≤ 4 T∑
t=1

√
λ2t+1δt. (23)

Above, (17) and (18) rely on the triangle inequality; (19) follows from the (λ∑T−1
t=1 2t)-strong

convexity of F (T−1); (20) applies the third conclusion of Lemma 8; (22) uses the fact that F (t−1) is

H + λ∑T−1
t=1 2t <H + λ2T =H + λ2⌊logH/λ⌋ ≤ 2H-smooth; and finally (23) uses that H ≤ λ2T+1.

We choseA(F (t−1), x̂t−1) to be AC-SA2 applied to F (t−1) initialized at x̂t−1 using m/T stochas-

tic gradients. Therefore,

δt ≤ 128H2
E ∥x̂t−1 − x∗t−1∥2

2t−1λ(m/T )4 + 256Hσ2

22t−2λ2(m/T )3 + 16σ2

2t−1λ(m/T ) . (24)

Using part two of Lemma 8, for t > 1 we can bound E ∥x̂t−1 − x∗t−1∥2 ≤ δt−1
2t−1λ

, thus

δt ≤ 128H2δt−1
22t−2λ2(m/T )4 + 256Hσ2

22t−2λ2(m/T )3 + 16σ2

2t−1λ(m/T ) . (25)

We can therefore bound

8
T∑
t=1

√
λ2t−1δt ≤ 8

¿ÁÁÀ128H2 ∥x0 − x∗∥2(m/T )4 + 256Hσ2

λ(m/T )3 + 16σ2

(m/T ) (26)

+ 8 T∑
t=2

¿ÁÁÀ 128H2δt−1
2t−1λ(m/T )4 + 256Hσ2

2t−1λ(m/T )3 + 16σ2

(m/T )

≤ 8
¿ÁÁÀ128H2 ∥x0 − x∗∥2(m/T )4 + 8

¿ÁÁÀ 256Hσ2

λ(m/T )3 + 8
¿ÁÁÀ 16σ2

(m/T ) (27)

+ 8 T∑
t=2

¿ÁÁÀ 128H2δt−1
2t−1λ(m/T )4 +

¿ÁÁÀ 256Hσ2

2t−1λ(m/T )3 +
¿ÁÁÀ 16σ2

(m/T )
16
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= 64
√
2H ∥x0 − x∗∥T 2

m2
+ 128

√
HσT 3/2√
λm3/2

T∑
t=1

1√
2t−1

(28)

+ 32σT 3/2√
m

+ 128HT 2

m2

T∑
t=2

√
δt−1
2t−2λ

≤ 64
√
2H ∥x0 − x∗∥T 2

m2
+ 512

√
HσT 3/2√
λm3/2 (29)

+ 32σT 3/2√
m

+ 128HT 2

m2

T∑
t=1

√
δt

2t−1λ

≤ 64
√
2H ∥x0 − x∗∥T 2

m2
+ 512

√
HσT 3/2√
λm3/2 (30)

+ 32σT 3/2√
m

+ 128HT 2

λm2

T∑
t=1

√
λ2t−1δt.

Above, we arrive at (26) by upper bounding each δt via (25); (27) follows from the fact that for

a, b ≥ 0,
√
a + b ≤√a +√b; (29) uses the fact that ∑T

t=1
1√
2t−1
≤ 4 and

√
δT

2T−1λ
≥ 0; and finally, (30)

follows by multiplying each non-negative term in the sum by 2t−1. Rearranging inequality (30) and

combining with (23) yields

E ∥∇F (x̂T )∥ ≤ ⎛⎝ 1

1 − 16HT 2

λm2

⎞⎠(64
√
2H ∥x0 − x∗∥T 2

m2
+ 512

√
HσT 3/2√
λm3/2 + 32σT 3/2√

m
) . (31)

Choosing m > 8T√H
λ

ensures that the first term is at most 2, and then solving for m such that the

second term is O(ǫ) completes the proof.

Lemma 9 For any F , define F̃ (x) = F (x) + λ
2
∥x − x0∥. Then

1. F ∈ FDB[H,λ = 0;R] Ô⇒ F̃ ∈ FDB[H + λ,λ;R] and ∀x ∥∇F (x)∥ ≤ 2 ∥∇F̃ (x)∥ + λR.

2. F ∈ FRB[H,λ = 0;∆] Ô⇒
F̃ ∈ FDB[H + λ,λ;R =√2∆/λ] and ∀x ∥∇F (x)∥ ≤ 2 ∥∇F̃ (x)∥ +√2λ∆.

Proof Let x̃∗ ∈ argminx F̃ (x). Since ∇F̃ (x) = ∇F (x) + λ(x − x0),
∥∇F (x)∥ ≤ ∥∇F̃ (x)∥ + λ ∥x − x0∥ (32)

≤ ∥∇F̃ (x)∥ + λ ∥x0 − x̃∗∥ + λ ∥x − x̃∗∥ (33)

≤ 2 ∥∇F̃ (x)∥ + λ ∥x0 − x̃∗∥ , (34)
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where we used the λ-strong convexity of F̃ for the last inequality. Similarly, 0 = ∇F̃ (x̃∗) =∇F (x̃∗) + λ(x̃∗ − x0). Therefore,

λ ∥x0 − x̃∗∥2 = ⟨∇F (x̃∗), x0 − x̃∗⟩ (35)= ⟨∇F (x̃∗), x0 − x∗⟩ + ⟨∇F (x̃∗), x∗ − x̃∗⟩ (36)≤ ⟨∇F (x̃∗), x0 − x∗⟩ (37)= ⟨λ(x0 − x̃∗), x0 − x∗⟩ (38)≤ λ ∥x0 − x̃∗∥ ∥x0 − x∗∥ . (39)

The first inequality follows from the convexity of F and the second from the Cauchy-Schwarz

inequality. When F ∈ FDB[H,λ = 0;R], then ∥x0 − x̃∗∥ ≤ R, which, combined with (34) proves the

first claim.

Alternatively, when F ∈ FRB[H,λ = 0;∆]
F (x0) = F̃ (x0) ≥ F̃ (x̃∗) = F (x̃∗) + λ

2
∥x0 − x̃∗∥2 . (40)

Rearranging,

∥x0 − x̃∗∥ ≤
√

2(F (x0) − F (x̃∗))
λ

≤
√

2(F (x0) − F (x∗))
λ

≤
√

2∆

λ
. (41)

This, combined with (34), completes the proof.

Corollary 1 For any F ∈ FDB[H,λ = 0;R] and any Oσ
∇f , Algorithm 1 with AC-SA2 as its sub-

routine applied to F (x) + λ
2
∥x − x0∥2 for λ = Θ (min{ ǫ

R
, Hǫ4

σ4 log4(σ/ǫ)}) yields a point x̂ such that

E ∥∇F (x̂)∥ ≤ ǫ using

m ≤ O⎛⎝
√

HR

ǫ
log (HR

ǫ
) + σ2

ǫ2
log3 (σ

ǫ
)⎞⎠

total stochastic first-order oracle accesses.

For any F ∈ FRB[H,λ = 0;∆] and anyOσ
∇f , the same algorithm with λ = Θ (min{ ǫ2

∆
, Hǫ4

σ4 log4(σ/ǫ)})
yields a point x̂ with E ∥∇F (x̂)∥ ≤ ǫ using

m ≤ O (√H∆

ǫ
log(√H∆

ǫ
) + σ2

ǫ2
log3 (σ

ǫ
))

total stochastic first-order oracle accesses.

Proof We use Algorithm 1 with AC-SA2 as its subroutine to optimize F̃ (x) = F (x) + λ
2
∥x − x0∥2.

Our choice of λ = 256H log2(m2)
m2 ≤ O(H) ensures that F̃ is H + λ ≤ O(H)-smooth and λ-strongly

convex; that
16(H+λ) log2(H+λ

λ
)

λm2 ≤ 1
2

; and finally that H
λ
≤m2. Therefore, by Theorem 1, in particular,

(31), the output satisfies

E ∥∇F̃ (x̂)∥ ≤ O (H ∥x0 − x̃∗∥ log2 (H/λ)
m2

+ √Hσ log3/2 (H/λ)√
λm3/2 + σ log3/2 (H/λ)√

m
) (42)
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≤ O (H ∥x0 − x̃∗∥ log2 (m)
m2

+ σ log3/2 (m)√
m

) , (43)

where x̃∗ = argminx F̃ (x). For F ∈ FDB[H,λ = 0;R], by part one of Lemma 9, ∥x0 − x̃∗∥ ≤ R and

E ∥∇F (x̂)∥ ≤ O (HR log2 (m)
m2

+ σ log3/2 (m)√
m

) . (44)

Solving for m such that this expression is O(ǫ) completes the first part of the proof. For this m,

λ = Θ(min{ ǫ

R
,

Hǫ4

σ4 log4 (σ/ǫ)}) . (45)

For F ∈ FRB[H,λ = 0;∆], by part two of Lemma 9, ∥x0 − x̃∗∥ ≤√2∆/λ and

E ∥∇F (x̂)∥ ≤ O (√H∆log (m)
m

+ σ log3/2 (m)√
m

) . (46)

Solving for m such that this expression is O(ǫ) completes the the proof. For this m,

λ = Θ(min{ǫ2
∆
,

Hǫ4

σ4 log4 (σ/ǫ)}) . (47)

Appendix B. Proofs from Section 4: Upper Bounds

Theorem 10 For any F ∈ F[H,λ] and anyOσ
f with the restriction that f(x; z) is λ-strongly convex

with respect to x for all z, define the empirical risk minimizer via

x̂ = argmin
x∈Rd

1

m

m∑
t=1

f(x; zt).
Then the empirical risk minimizer enjoys the guarantee

E∥x̂ − x∗∥2 ≤ 4σ2

λ2m
. (48)

Proof Let F̂m(x) = 1
m ∑m

t=1 f(x; zt) be the empirical objective. Since f(x; zt) is λ-strongly convex

for each zt, F̂m is itself λ-strongly convex, and so we have

⟨∇F̂m(x⋆), x̂ − x∗⟩ + λ

2
∥x̂ − x∗∥2 ≤ F̂m(x̂) − F̂m(x∗).

Since, x̂ is the empirical risk minimizer, we have F̂m(x̂) − F̂m(x∗) ≤ 0, and so, rearranging,

λ

2
∥x̂ − x∗∥2 ≤ ⟨∇F̂m(x∗), x̂ − x∗⟩ ≤ ∥∇F̂m(x∗)∥∥x̂ − x∗∥.
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If x̂ − x∗ = 0, then we are done. Otherwise,

∥x̂ − x∗∥ ≤ 2

λ
∥∇F̂m(x∗)∥.

Now square both sides and take the expectation, which gives

E∥x̂ − x∗∥22 ≤ 4

λ2
E∥∇F̂m(x∗)∥2.

The final result follows by observing that E∥∇F̂m(x∗)∥2 ≤ σ2

m
.

Theorem 3 For any F ∈ F[H,λ] and any global stochastic oracle Oσ
f with the restriction that

f(⋅; z) is convex for all z, Algorithm 1 with ERM as its subroutine finds x̂ with E ∥∇F (x̂)∥ ≤ ǫ using

at most

m ≤ O (σ2

ǫ2
log3 (H

λ
))

total samples.

Proof Consider the function F (T )(x) = F (x) + λ∑T
t=1 2t−1 ∥x − x̂t∥2. Then

∥∇F (x̂T )∥ = ∥∇F (T )(x̂T ) + λ T∑
t=1

2t(x̂t − x̂T )∥ (49)

≤ ∥∇F (T )(x̂T )∥ + λ T−1∑
t=1

2t ∥x̂t − x̂T ∥ (50)

≤ ∥∇F (T )(x̂T )∥ + λ T−1∑
t=1

2t (∥x̂t − x∗T ∥ + ∥x̂T − x∗T ∥) (51)

≤ 2 ∥∇F (T )(x̂T )∥ + λ T−1∑
t=1

2t ∥x̂t − x∗T ∥ (52)

≤ 6H ∥x̂T − x∗T ∥ + λ T−1∑
t=1

2t ∥x̂t − x∗T ∥ (53)

≤ 12λ T∑
t=1

2t ∥x̂t − x∗T ∥ . (54)

Above, (50) and (51) rely on the triangle inequality; (52) follows from the (λ∑T
t=1 2t)-strong

convexity of F (T ); (53) uses the fact that F (T ) is H+λ∑T
t=1 2t <H+λ2T+1 =H+2λ2⌊logH/λ⌋ ≤ 3H-

smooth.

Define Pk = ∑k
t=1 2t ∥x̂t − x∗k∥ for 1 ≤ k ≤ T with P0 = 0. Note that our upper bound (54) is

equal to 12λPT = 12λ∑T
k=1(Pk − Pk−1), so we will estimate the terms of this sum.

Pk − Pk−1 = 2k ∥x̂k − x∗k∥ + k−1∑
t=1

2t (∥x̂t − x∗k∥ − ∥x̂t − x∗k−1∥) (55)

≤ 2k ∥x̂k − x∗k∥ + k−1∑
t=1

2t ∥x∗k − x∗k−1∥ (56)
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≤ 2k (∥x̂k − x∗k∥ + ∥x∗k − x∗k−1∥) (57)

≤ 2k (2 ∥x̂k − x∗k∥ + ∥x̂k − x∗k−1∥) . (58)

Above, we used the reverse triangle inequality to derive (56). By optimality of x∗k−1 and x∗k,

∥x̂k − x∗k−1∥2 − ∥x̂k − x∗k∥2 = F (k)(x∗k−1) − F (k)(x∗k) + F (k−1)(x∗k) − F (k−1)(x∗k−1)
2k−1λ

≥ 0. (59)

Thus ∥x̂k − x∗k∥ ≤ ∥x̂k − x∗k−1∥ and, combining (54) and (58) yields

∥∇F (x̂T )∥ ≤ 36λ T∑
t=1

2t ∥x̂t − x∗t−1∥ . (60)

Since x̂t is the output of ERM on the 2t−1λ-strongly convex function F t−1 using m/T samples, by

Theorem 10, E ∥x̂t − x∗t−1∥ ≤ 2σ
√
T

2t−1λ
√
m

and

E ∥∇F (x̂T )∥ ≤ 36λ T∑
t=1

2tE ∥x̂t − x∗t−1∥ (61)

≤ 36λ T∑
t=1

2t
σ
√
T

2t−2λ
√
m

(62)

= 144σT 3/2√
m

. (63)

Solving for m such that the expression is less than ǫ completes the proof.

Corollary 2 For any F ∈ FDB[H,λ = 0;R] and any global stochastic oracleOσ
f with the restriction

that f(⋅; z) is convex for all z, Algorithm 1 with ERM as its subroutine, when applied to F̃ (x) =
F (x) + λ

2
∥x − x0∥2 with λ = Θ(ǫ/R), finds a point x̂ with E ∥∇F (x̂)∥ ≤ ǫ using at most

m ≤ O (σ2

ǫ2
log3 (HR

ǫ
))

total samples.

For any F ∈ FRB[H,λ = 0;∆] and any global stochastic oracle Oσ
f with the restriction that f(⋅; z)

is convex for all z, the same approach with λ = Θ(ǫ2/∆) finds an ǫ-stationary point using at most

m ≤ O (σ2

ǫ2
log3 (√H∆

ǫ
))

total samples.

Proof The objective function F̃ (x) = F (x)+ λ
2
∥x − x0∥2 is (H +λ)-smooth and λ-strongly convex.

Thus by Theorem 3, in particular (63), the output of the algorithm satisfies

E ∥∇F̃ (x̂)∥ ≤ 144σ log3/2 (H+λ
λ
)√

m
. (64)
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For F ∈ FDB[H,λ = 0;R], with λ = Θ(ǫ/R) and m = Ω (σ2

ǫ2
log3 (HR

ǫ
)) and using part one of

Lemma 9 we conclude

E ∥∇F (x̂)∥ ≤ O(ǫ + λR) ≤ O(ǫ), (65)

which completes the first part of the proof.

Similarly, for F ∈ FRB[H,λ = 0;∆], with λ = Θ(ǫ2/∆) and m = Ω (σ2

ǫ2
log3 (√H∆

ǫ
)), by part

two of Lemma 9 we conclude

E ∥∇F (x̂)∥ ≤ O (ǫ +√λ∆) ≤ O(ǫ), (66)

which completes the proof.

Theorem 5 Consider any convex, L-Lipschitz function F ∶ R→ R that is bounded from below,10 and

any global stochastic oracle Oσ
f with the restriction that f(⋅; z) is convex for all z. There exists an

algorithm which uses O (σ2 log(L
ǫ
)

ǫ2
) samples and outputs a point x̂ such that E[infg∈∂F (x̂) ∣g∣] ≤ ǫ.

Proof Our algorithm involves calculating the ERM on several independent samples, evaluating the

gradient norm at these ERMs on a held-out sample, and returning the point with the smallest gradient

norm.

Let ∇−F (x) denote the left-derivative of F at x, and let ∇+F (x) denote the right-derivative.

Since F is bounded from below, limx→−∞∇−F (x) ≤ 0 and limx→∞∇+F (x) ≥ 0, thus there exists

at least one ǫ-stationary point for F . Consequently, there is a unique a ∈ R ∪ {−∞} for which

∇+F (a) ≥ −ǫ and ∀x < a ∇+F (x) < −ǫ. The point a is the left-most ǫ-stationary point. It is possible

that a = −∞, in which case there are no x < a. Similarly, there is a unique b ∈ R ∪ {∞} for which

∇−F (b) ≤ ǫ and ∀x > b ∇−F (x) > ǫ. The point b is the right-most ǫ-stationary point. It is possible

that b =∞, in which case there are no x > b.
By convexity, ∀x < y ∇−F (x) ≤ ∇+F (x) ≤ ∇−F (y) ≤ ∇+F (y). Therefore, x < a Ô⇒

infg∈∂F (x) ∣g∣ ≥ ∣∇+F (x)∣ > ǫ and x > b Ô⇒ infg∈∂F (x)∣g∣ ≥ ∣∇−F (x)∣ > ǫ. Therefore, [a, b] ≡{x ∶ infg∈∂F (x)∣g∣ ≤ ǫ}. Consequently, all that we need to show is that our algorithm returns a point

within the interval [a, b].
Let F̂ (x) = 1

m ∑m
i=1 f(x; zi) be the empirical objective function and let x̂ be any minimizer of F̂ .

Consider first the case that a > −∞, we will argue that x̂ ≥ a. Observe that if ∇−F̂ (a) < 0, then since

F̂ is convex, it is decreasing on [−∞, a] and thus x̂ ≥ a. Since a > −∞, ∇−F (a) ≤ −ǫ, so the value

∇−F̂ (a) = 1
m ∑m

i=1∇−f(a; zi) is the sum of i.i.d. random variables that have mean ∇−F (a) ≤ −ǫ
and variance σ2. By Chebyshev’s inequality, the random variable ∇−F̂ (a) will not deviate too far

from its mean:

P[∇−F̂ (a) ≥ 0] ≤ σ2

mǫ2
. (67)

Similarly,

P[∇+F̂ (b) ≤ 0] ≤ σ2

mǫ2
. (68)

10. This lower bound does not enter the sample complexity quantitatively.
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Therefore, with probability at least 1 − 2σ2

mǫ2
, the minimum of F̂ lies in the range [a, b] and thus the

ERM x̂ is an ǫ-stationary point of F .

Consider calculating k ERMs x̂1, . . . , x̂k on k independent samples of size m. Then with

probability at least 1 − ( 2σ2

mǫ2
)k, at least one of these points is an ǫ-stationary point of F .

Now, suppose we have km additional heldout samples which constitute an empirical objective F̂ .

Since the ERMs x̂i are independent of these samples,

E[max
i∈[k]
∥∇F̂ (x̂i) −∇F (x̂i)∥2] ≤ k∑

i=1
E[∥∇F̂ (x̂i) −∇F (x̂i)∥2] ≤ kσ2

km
= σ2

m
. (69)

Condition on the event that at least one of the ERMs is an ǫ-stationary point of F and denote one

of those ERMs as x̂i∗ . Denote this event E. Let î ∈ argmini ∥∇F̂ (x̂i)∥ where we abuse notation

and say ∥∇F̂ (x̂i)∥ ∶= infg∈∂F̂ (x̂i)∣g∣ for cases where F̂ is not differentiable at x̂i. Then

E[∥∇F (x̂î)∥∣E] ≤ E[∥∇F̂ (x̂î)∥∣E] +E[max
i∈[k]
∥∇F̂ (x̂i) −∇F (x̂i)∥∣E] (70)

≤ E[∥∇F̂ (x̂î)∥∣E] +
√

σ2

m
(71)

≤ E[∥∇F̂ (x̂i∗)∥∣E] +
√

σ2

m
(72)

≤ E[∥∇F (x̂i∗)∥∣E] +E[max
i∈[k]
∥∇F̂ (x̂i) −∇F (x̂i)∥∣E] +

√
σ2

m
(73)

≤ ǫ + 2
√

σ2

m
. (74)

The event that one of the ERMs is an ǫ-stationary point happens with probability at least 1 − ( 2σ2

mǫ2
)k.

Choosing m = Ω (σ2

ǫ2
) and k = Ω (log L

ǫ
) ensures 1 − ( 2σ2

mǫ2
)k ≥ 1 − ǫ

L
. Therefore,

E[∥∇F (x̂î)∥] = P[E]E[∥∇F (x̂î)∥∣E] + P[Ec]E[∥∇F (x̂î)∥∣Ec] (75)

≤ (1 − ǫ

L
)⎛⎝ǫ + 2

√
σ2

m

⎞⎠ + ( ǫL)(L) (76)

≤ O(ǫ). (77)

This entire algorithm required O(km) = O (σ2 log(L
ǫ
)

ǫ2
) samples in total, completing the proof.
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Appendix C. Proofs for the Lower Bounds

Theorem 4 For any H,∆,R, σ > 0, ǫ ≤ min{HR
8
,
√

H∆
8
, σ
4
}, the sample complexity to find a

ǫ-stationary point11 is lower bounded as

mǫ(FDB[H,λ = 0;R] ∩ FRB[H,λ = 0;∆],Oσ
f ) ≥ Ω(σ2

ǫ2
) .

Proof For a constant b ∈ R to be chosen later, let

f(x; z) = σ ⟨x, z⟩ + b

2
∥x∥2 . (78)

The distribution D of the random variable z is the uniform distribution over {z1, . . . , zm} where the

vectors zi ∈ Rd are orthonormal (d ≥m). Therefore,

F (x) = E[f(x; z)] = σ ⟨x, 1
m

m∑
i=1

zi⟩ + b

2
∥x∥2 . (79)

This function is clearly convex, b-smooth, and attains its unique minimum at x∗ = − σ
bm ∑m

i=1 zi which

has norm ∥x∗∥2 = σ2

b2m
, so choosing b ≥ σ

R
√
m

ensures ∥x∗∥2 ≤ R2. Furthermore, F (0) − F (x∗) =
σ2

2bm
, so choosing b ≥ σ2

2∆m
ensures F (0)−F (x∗) ≤∆. Choosing b =max{ σ

R
√
m
, σ2

2∆m
} ensures both

simultaneously. Finally, E ∥∇f(x; z) − ∇F (x)∥ = 1
m ∑m

i=1 ∥σzi − σ
m ∑m

j=1 zj∥2 = σ2 (1 − 1
m
) ≤ σ2.

Therefore, F ∈ FDB[H,λ = 0;R] ∩ FRB[H,λ = 0;∆] and f,D properly define a Oσ
∇f . Suppose, for

now, that x is a point such that ⟨x, vi⟩ ≥ − σ
8bm

for all i ≥m/2. Then

∥∇F (x)∥2 = σ2

m
+ b2 ∥x∥2 + 2σb

m

m∑
i=1
⟨x, vi⟩ (80)

≥ σ2

m
+ b2 ∑

i<m/2
⟨x, vi⟩2 + 2σb

m
∑

i<m/2
⟨x, vi⟩ − σ2

4m
(81)

≥ 3σ2

4m
+min

y∈R
b2m

2
y2 + σby (82)

= σ2

4m
. (83)

Therefore, for all such vectors x, ∥∇F (x)∥ ≥ σ
2
√
m

. This holds for any b ≥ 0 and set {z1, . . . , zm}.
From here, we will argue that any randomized algorithm with access to less than m/2 samples fromD is likely to output such an x. We consider a random function instance determined by drawing the

orthonormal set {z1, . . . , zm} uniformly at random from the set of orthonormal vectors in R
d. We

will argue that with moderate probability over the randomness in the algorithm and in the draw of

z1, . . . , zm, the output of the algorithm has small inner product with zm/2, . . . , zm. This approach

closely resembles previous work (Woodworth and Srebro, 2016, Lemma 7).

Less than m/2 samples fix less than m/2 of the vectors zi; assume w.l.o.g. that the algorithm’s

sample S = {z1, . . . , zm/2−1}. The vectors zi are a uniformly random orthonormal set, therefore

11. This lower bound applies both to deterministic and randomized optimization algorithms.
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for any i ≥m/2, zi∣S is distributed uniformly on the (d −m/2 + 1)-dimensional unit sphere in the

subspace orthogonal to span (z1, . . . , zm/2−1). Let x̂ be the output of any randomized algorithm

whose input is S. If ∥x̂∥ ≥ 2σ
b
√
m

then it is easily confirmed that ∥∇F (x̂)∥ ≥ σ2

m
. Otherwise, we

analyze

P [⟨x̂, vi⟩ < − σ

8bm
∣ S, x̂] ≤ P [∣⟨x̂, vi⟩∣ ≥ σ

8bm
∣ S, x̂] (84)

≤ P [ 2σ

b
√
m
∣⟨ x̂∥x̂∥ , vi⟩∣ ≥ σ

8bm
∣ S, x̂] (85)

= P [∣⟨ x̂∥x̂∥ , vi⟩∣ ≥ 1

16
√
m
∣ S, x̂] . (86)

This probability only increases if we assume that x̂ is orthogonal to span(z1, . . . , zm/2−1), in which

case we are considering the inner product between a fixed unit vector and a uniformly random unit

vector. The probability of the inner product being large is proportional to the surface area of the “cap”

of a unit sphere in (d −m/2 + 1)-dimensions lying above and below circles of radius
√

1 − 1
256m

.

These end caps, in total, have surface area less than that of a sphere with that same radius. Therefore,

P [⟨x̂, vi⟩ < − σ

8bm
∣ S, x̂] ≤

¿ÁÁÀ(1 − 1

256m
)d−m

2

(87)

= ⎛⎝1 −
d

512m
− 1

1024
d
2
− m

4

⎞⎠
d
2
−m

4

(88)

≤ exp( 1

1024
− d

512m
) . (89)

This did not require anything but the norm of x̂ being small, so for d ≥ m
2
+ 512m log(2m), this

ensures that

P [⟨x̂, vi⟩ < − σ

8bm
∣ S, ∥x̂∥ < 2σ

b
√
m
] ≤ 1

2m
. (90)

A union bound ensures that either ∥x̂∥ ≥ 2σ
b
√
m

or ⟨x̂, vi⟩ ≥ − σ
8bm

for all i ≥ m/2 with probability

at least 1/2 over the randomness in the algorithm and draw of z1, . . . , zm, and consequently, that

Ex̂ ∥∇F (x̂)∥2 ≥ σ2

8m
. Setting m = ⌊ σ2

8ǫ2
⌋ ensures this is at least ǫ. For this m, b =max{ σ

R
√
m
, σ2

2∆m
} ≤

4ǫ
R
+ 4ǫ2

∆
which must be less than H , so this lower bound applies for ǫ ≤min{HR

8
,
√

H∆
8
}.

Theorem 11 For any H,R,σ > 0 and any ǫ ∈ (0, σ/2), there exists a F ∶ R → R ∈ FDB[H,λ =
0;R] and a Oσ

∇f , such that for any algorithm interacting with the stochastic first-order oracle, and

returning an ǫ-approximate stationary point with some fixed constant probability, the expected number

of queries is at least Ω (σ2

ǫ2
⋅ log (HR

ǫ
)). Moreover, a similar lower bound of Ω (σ2

ǫ2
⋅ log (H∆

ǫ2
))

holds if the radius constraint R is replaced by a suboptimality constraint ∆.

Proof We prove the lower bound by reduction from the noisy binary search (NBS) problem: In this

classical problem, we have N sorted elements {a1, . . . , aN}, and we wish to insert a new element

25



THE COMPLEXITY OF MAKING THE GRADIENT SMALL

e using only queries of the form “is e > aj?” for some j. Rather than getting the true answer, an

independent coin is flipped and we get the correct answer only with probability 1
2
+ p for some fixed

parameter p. Moreover, let j∗ be the unique index such that aj∗ < e < aj∗+112. It is well-known (see

for example Feige et al. (1994); Karp and Kleinberg (2007)) that in order to identify j∗ with any

fixed constant probability, at least Ω(log(N)/p2) queries are required.

Let us first consider the case where the radius constraint R is fixed. We will construct a convex

stochastic optimization problem with the given parameters, such that if there is an algorithm solving

it (with constant probability) after T local stochastic oracle queries, then it can be used to solve

an NBS problem (with the same probability) using 2T queries, where p = ǫ/σ and13 N = HR/4ǫ.
Employing the lower bound above for NBS, this immediately implies the Ω (σ2

ǫ2
⋅ log (HR

ǫ
)) lower

bound in our theorem.

To describe the reduction, let us first restate the NBS problem in a slightly different manner.

For a fixed query budget T , let Z be a T ×N matrix, with entries in {−1,+1} drawn independently

according to the following distribution:

Pr(Zt,j = 1) = ⎧⎪⎪⎨⎪⎪⎩
1
2
− p j ≤ j∗

1
2
+ p j > j∗ .

Each Zt,j can be considered as the noisy answer provided in the NBS problem to the t-th query,

of the form “is e > aj” (where −1 corresponds to “true” and 1 corresponds to “false”). Thus, an

algorithm for the NBS problem can be seen as an algorithm which can query T entries from the

matrix Z (one query from each row), and needs to find j∗ based on this information. Moreover, it

is easy to see that the NBS lower bound also holds for an algorithm which can query any T entries

from the matrix: Since the entries are independent, this does not provide additional information, and

can only “waste” queries if the algorithm queries the same entry twice.

We now turn to the reduction. Given an NBS problem on N =HR/4ǫ elements with p = ǫ/σ and

a randomly-drawn matrix Z, we first divide the interval [0,R] into N equal sub-intervals of length

R/N each, and w.l.o.g. identify each element aj with the smallest point in the interval. Then, for

every (statistically independent) row Zt of Z, we define a function f(x,Zt) on R by f(0, Zt) = 0,

and the rest is defined via its derivative as follows:

f ′(x,Zt) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−2ǫ x < 0
2ǫ x ≥ R
x−aj
R/N σZt,j+1 + (1 − x−aj

R/N )σZt,j x ∈ [aj , aj+1) for some j < N .

Note that by construction
x−aj
R/N ∈ [0,1] and Zt,j ∈ {−1,+1}, so ∣f ′(x,Zt)∣ ≤ max{2ǫ, σ} ≤ σ.

Moreover, since the expected value of σZt,j is σ ⋅ (−2p) = −2ǫ if j ≤ j∗, and σ ⋅ 2p = 2ǫ if j > j∗, it

is easily verified that

EZt
[f ′(x,Zt)] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−2ǫ x < aj∗
2ǫ x ≥ aj∗+1
−2ǫ + 4ǫ

x−aj
R/N x ∈ [aj∗ , aj∗+1)

.

12. This is w.l.o.g., since if e < a1 or e > aN , we can just add two dummy elements smaller and larger than all other

elements and e, increasing N by at most 2, hence not affecting the lower bound.

13. For simplicity we assume that HR/4ǫ is a whole number – otherwise, it can be rounded and this will only affect

constant factors in the lower bound.
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Noting that 4ǫ
x−aj
R/N = H(x − aj) ∈ [0,4ǫ] in the above, we get that F (x) ∶= EZt

[f(x,Zt)] is a

convex function with H-Lipschitz gradients, with a unique minimum at some x ∶ ∣x∣ < R, and with∣F ′(x)∣ ≤ ǫ only when x ∈ [aj∗ , aj∗+1). Overall, we get a valid convex stochastic optimization

problem (with parameters H,R,σ as required), such that if we can identify x such that ∣F ′(x)∣ ≤ ǫ,
then we can uniquely identify j∗. Moreover, given an algorithm to the optimization problem, we

can simulate a query to a local stochastic oracle (specifying an iterate t and a point x) by returning

f ′(x,Zt) as defined above, which requires querying at most 2 entries Zt,j and Zt,j+1 from the matrix

Z. So, given an oracle query budget T to the stochastic problem, we can simulate it with at most 2T

queries to the matrix Z in the NBS problem.

To complete the proof of the theorem, it remains to handle the case where there is a suboptimality

constraint ∆ rather than a radius constraint R. To that end, we simply use the same construction as

above, with R = ∆
2ǫ

. Since the derivative of F has magnitude at most 2ǫ, and its global minimum

satisfies ∣x∗∣ ≤ R, it follows that F (0) − F (x∗t) ≤ 2ǫR =∆. Plugging in R = ∆
2ǫ

in the lower bound,

the result follows.

Theorem 2 For any H,∆,R, σ > 0, any ǫ ≤ HR
8

, the stochastic first-order oracle complexity for

range-bounded functions is lower bounded as

mǫ(FDB[H,λ = 0;R],Oσ
∇f) ≥ Ω⎛⎝

√
HR

ǫ
+ σ2

ǫ2
log (HR

ǫ
)⎞⎠ .

For any ǫ ≤ √H∆
8

, the stochastic first-order complexity for domain-bounded functions is lower

bounded as

mǫ(FRB[H,λ = 0;∆],Oσ
∇f) ≥ Ω(

√
H∆

ǫ
+ σ2

ǫ2
log (H∆

ǫ2
)) .

Proof By Theorem 11, Ω(σ2/ǫ2) log (HR/ǫ) and Ω(σ2/ǫ2) log (H∆/ǫ2) oracle calls (samples) are

needed to find an ǫ-stationary point. Furthermore, a deterministic first-order oracle is a special case

of a stochastic first-order oracle (corresponding to the case σ = 0). Therefore, lower bounds for

deterministic first-order optimization apply also to stochastic first-order optimization. Therefore, the

lower bound of Carmon et al. (2017b) (Theorem 1) completes the proof.
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