
Discrete Comput Geom 5:197-216 (1990) 

G 6i  try 
© 1990 Sprlnser-Verlag New York Inc. 

The Complexity of Many Cells in Arrangements of Planes and 
Related Problems* 

Herbe r t  Ede l sb ru n n e r ,  1 L e o n i d a s  G u i b a s ,  2'3 a n d  M i c h a  Sha r i r  4,s 

1 Computer Science Department, University of Illinois at Urbana-Champaign, 
Urbana, IL 61801, USA 

2 Computer Science Department, Stanford University, Stanford, CA 94305, USA 

3 DEC Systems Research Center, 130 Lytton Avenue, Palo Alto, CA 94301, USA 

4 Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, 
New York, NY 10012, USA 

5 School of Mathematical Sciences, Tel Aviv University, 69978 Tel Aviv, Israel 

Abstract. We consider several problems involving points and planes in three 

dimensions. Our  main results are: (i) The maximum number  of faces bounding m 

distinct cells in an arrangement of n planes is O(m2/an log n + n2); we can calculate m 

such cells specified by a point in each, in worst-case time O(m2/3n log 3 n + n 2 log n), 

(ii) The maximum number  of incidences between n planes and m vertices of their 

arrangement is O(m2/3n log n + n2), but this number is only O(m 3/s-6n4/s + 2~ + m + 

n log m), for any g > 0, for any collection of points no three of which are collinear. 

(iii) For  an arbitrary collection of m points, we can calculate the number  of in- 

cidences between them and n planes by a randomized algorithm whose expected time 

complexity is O((m3/4-6n a/4+36 + m) log 2 n + n log n log m) for any 6 > 0. 

(iv) Given m points and n planes, we can find the plane lying immediately below each 

point in randomized expected time O([m3/'t-6n3/4+ 36 + m] log 2 n + n log n log m)for 

any 6 > 0. (v) The maximum number  of facets (i.e., (d - 1)-dimensional faces) 

bounding m distinct cells in an arrangement of n hyperplanes in d dimensions, d > 3, is 

O(m21an 't/3 log n + n a- I). This is also an upper bound for the number  of incidences 

between n hyperplanes in d dimensions and m vertices of their arrangement. The 

combinatorial bounds in (i) and (v) and the general bound in (ii) are almost tight. 
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1. Introduction 

In this paper we extend the techniques developed in a companion paper [EGS] to a 

variety of problems involving arrangements of planes in three dimensions or 

hyperplanes in higher dimensions, as listed in the abstract. Problems of this kind, in 

particular those involving incidences between points and lines, or hyperplanes, or 

various other types of curves or surfaces, were considered for a long time as key 

problems in combinatorial geometry (see I-PE] for a survey). A major break- 

through was achieved by Szemerrdi and Trotter [ST] who showed that the 

maximum number of incidences between m points and n lines in the plane is 
O(m2/an2/3 + m + n). Edelsbrunner and Welzl [EW] extended the lower bound to 

apply also to the complexity of m distinct cells in an arrangement of n lines in the 

plane (see also [Ca]), and also obtained a weaker upper bound for that complexity. 

These lower bound and weak upper bound were later extended to three and higher 

dimensions by Edelsbrunner and Haussler [EH] and by Edelsbrunner [Eli ,  who 

showed that the maximum complexity of m distinct cells in an arrangement of n 
hyperplanes in d > 3 dimensions is ['~(m2/3nd/3-.I-n d- l )  and O(ml/2nd/2+ ha- l ) ;  

here the complexity of a cell is the number of facets (i.e., (d - l)-dimensional faces) 

bounding it. The lower bound is derived by a fairly easy "lifting" of the two- 

dimensional construction of [ST] and [EW-J to higher dimensions. 

Recent progress was achieved by the authors in two companion papers [CEG*], 

lEGS]. These papers introduce a new technique, whose aim is to decompose 

problems, such as the above, into several subproblems of smaller size; such a 

decomposition is achieved by drawing a random sample either of the given points 

or of the given lines or curves, and then by splitting the collection of points and 

curves into subcollections according to their interaction with the sample objects. 

This decomposition leads to a recurrence formula for the desired quantity which is 

then solved to yield improved upper bounds. This approach led to a tight bound 

O(m2/3n 2/3 + n) on the complexity of m distinct cells in an arrangement of n lines in 

the plane, and to several other improved upper bounds for the maximum number 

of incidences between points and curves, as well as for the maximum complexity of 

many cells in arrangements of curves, where the curves are either line segments, or 

circles, or pseudolines. 
These techniques were also adapted to yield comparably efficient randomized 

algorithms for calculating m cells in a given arrangement or for finding all 

incidences between given points and curves (see, e.g., [EGH*]). Very recently, 

improved deterministic algorithms of this kind were obtained by Agarwal [A]. 

In this paper we extend these recent techniques to three and higher dimensions, 

to obtain the results stated in the abstract. The bounds that we obtain (for cases (i), 

(v), and the general bound in (ii)) are almost tight, apart for a logarithmic factor, as 

follows from [EH] and [Eli. Our techniques rely heavily on the bounds obtained 

for the corresponding two-dimensional problems. In certain cases (notably in cases 

(i) and (v)) our decomposition strategy is considerably simpler than the one used in 

the two-dimensional cases, mainly because the bounds we want to establish are 

larger; in the other cases, we use a more complex decomposition strategy which is a 

generalization of the strategies used in the two-dimensional problems. 



The Complexity of Many Cells in Arrangements of Planes and Related Problems 199 

The paper is organized as follows. In Section 2 we analyze the complexity of 

many cells in arrangements of planes in three dimensions. Section 3 presents an 

efficent worst-case algorithm for their calculation. In Section 4 we consider the 

"simpler" problems (ii)-(iv) for three-dimensional arrangements of planes, and in 

Section 5 we generalize the analysis of Section 2 to higher dimensions. 

2. The Complexity of Many Cells in Arrangements of Planes 

Let II = {nl, . . . ,  nn} be a collection ofn planes in three dimensions, and let ct, . . . ,  

cm be m distinct cells of the arrangement A = A(H) of these planes. (We assume 

familiarity of the reader with the notion of arrangements; see [El ]  for basic 

information concerning arrangements.) The complexity of a cell is the number of 

(two-dimensional) faces bounding the cell (by Euler's formula, this complexity also 

bounds, up to a constant factor, the number of vertices and edges of the cell). Our 

goal is to obtain a sharp upper bound on the sum K(m, n) of the complexity of m 

such cells. A lower bound K(m, n) = ~(m2/3n q- n 2) has been established in [EH] 

(see also [Eli) .  Here we prove an almost matching upper bound of the form 

K(m, n) = O(m2/3n log n + n2). 

If is convenient to reformulate the problem as the following one. Let p~ . . . . .  pm 

be m given points. Our task is to analyze the complexity of the cells of A(II) that 

contain these points, where any such cell, even if it contains more than one point, is 

to be counted just once. We will however assume that no point lies on any plane, 

and that initially no two of these points lie in the same cell. (The problem is 

formulated in a more general way, because our analysis will break the problem 

recursively into subproblems where cells may contain more than one point.) 

The analysis uses the following straightforward divide and conquer approach. 

We first partition H into two subsets II~, H 2, each containing roughly n/2 planes; 

we refer to the planes in these subsets as the red planes and the blue planes, 

respectively. We next calculate recursively the cells containing the points Pt in each 
of the subarrangements A(H1), A(II2), and then intersect these cells to obtain the 

desired cells of A(H). Note that if a point p lies in a red cell R and in a blue cell B, 

then the final cell E containing p is simply R n B, and, since all these cells are 

convex polyhedra, the complexity of E is bounded by the sum of the complexities of 

R and of B. However, R (or B) might contain more than one point Pi, in which case 

we would not want to use the entire complexity of R in bounding the complexity of 

each of the final cells containing these points, as this duplication might result in an 

unacceptably high bound. This major technical difficulty is dealt with in the 

following subsection, and its solution (the "combination lemma") then enables us 

to complete our analysis of K(m, n). 

2.1. The Combination Lemma for Planes in Three-Dimensional Space 

Let Pt . . . . .  Pm be m points. We are given two arrangements of planes, the red 

arrangement, consisting of nr red planes, and the blue arrangement, consisting of nb 



200 H. Edelsbrunner, L. Guibas, and M. Sharir 

blue planes. Let n = n~ + nb. Let R 1 . . . . .  R s be the cells in the red arrangement 

containing the points Pi (where a celt can contain more than one point), and let 

BI . . . . .  Bt be the blue cells containing these points. For each Pt let E i = R~, c~ Bt, be 

the "purple" cell containing pi (where R~,, B,, are the red and blue cells containing 

that point). By considering only a subset of the points p~, if necessary, we can 

assume, without loss of generality, that all the cells E~ are distinct, and thus have 

pairwise disjoint interiors. (While this assumption explicitly holds at the first level 
of recursion, further levels will generally have more than one point in the cells Ei; to 

enforce the above property, we simply choose one representative point out of each 

cell E~ and (temporarily) ignore the others.) Let p, fl denote the total number of 

faces on the boundaries of the red cells and the blue cells, respectively. Our goal is 

to obtain a sharp upper bound, in terms ofp and//,  on the total number of faces on 

the boundaries of the purple cells E~. 
Similar to the two-dimensional case I-EGS], and as noted above, it is easily 

verified that if each red cell and each blue cell contains just a single point, then the 

desired purple complexity is at most p + ft. The main step in bounding the purple 

complexity will thus aim to partition each red cell that contains more than one 

point into subcells, each containing only a single point, using (portions of) the blue 

planes, and to obtain a symmetric partitioning of the blue cells. 

We consider the blue planes in a fixed sequence, and add them to the red 

arrangement one at a time. We use each of them to decompose further as many red 

cells as necessary into subcells, called "red-blue" cells, as follows. Let R = Ri be a 

fixed red cell which contains mi > 1 points. Originally, all these points lie in a single 

red-blue cell, namely R itself. As some blue planes are added, they partition R into 

subcells; the subcells that still contain at least one of those points are the current 

red-blue subcells of R. This decomposition is applied simultaneously to all red 

cells. After adding all blue planes, the final red-blue cells coincide with the desired 

purple cells E~. 
What we want to estimate is the "red complexity" of the red-blue cells, namely 

the number of red (sub)faces bounding these cells (so the blue faces along their 

boundaries are ignored); more precisely, we want to estimate the number of 

additional red subfaces generated by the intersections of each blue plane with the 

current set of red-blue cells. 
Consider the cell decomposition caused by the ith blue plane n~. Let R~ be a red 

cell that has already been decomposed into a number of red-blue subcells, and 

assume that ni passes through some of them. For each red-blue subcell c crossed by 

ni one of the following two cases arises: either rc i splits c into two red-blue subcells, 

because it splits the set of points contained in c into two nonempty subsets, or it 

cuts off a "useless" portion of c that contains none of the points, so there results 

only one new red-blue cell. Note that in the latter case, the red complexity of the 

new red-blue cell cannot be larger than the red complexity of c, so this case does 

not cause an increase in the red complexity of red-blue cells, and we can ignore it. 

Let k~ denote the number of red-blue subcells that were split into two red-blue 

subcells by n~. Since this split must be accompanied by a corresponding split of a 

subset of the given points into two nonempty subsets, we must have ~ ks < m. 

Let c be red-blue subcell that has been split by rq (in the above sense). The 
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increase in the red complexity of c caused by this split is equal to the number of red 

edges bounding the convex polygon c c~ rq. But this polygon is a face in the planar 

arrangement A~, formed in the plane nl by its intersection with all red planes and 

with all previously added blue planes. It follows that the overall increase in the red 

complexity of red-blue ceils caused by n~ is bounded by the maximum complexity 

ofki faces in the arrangement A~. Since A i is formed by at most n lines, the results of 

I-CEG*] imply that this increase is at most O(k2/Sn2/3 + n). Summing this over all 

blue planes lti, we obtain 

nb 

O(k2/an 2/3 + n) = 
i = l  

But 

~, k 2/3 < k, 
i=1 \ i = 1  / 

because ~ k i < m, as noted above. Hence the total increase in the red complexity is 

at most 

O(m2/an + nZ). 

We now obtain in a completely symmetric manner a decomposition of the blue 

cells into a collection of "blue-red" subcells, each containing just a single point, 

and derive a symmetric bound on their overall "blue" complexity. As observed, ifa 

point Pi lies in a red-blue subcell c i and in a blue-red subcell ct, then these two cells 
coincide with the final purple cell Ei containing p~, so the number of faces of E~ is 

obviously equal to the red complexity of ci plus the blue complexity of ci. 

Putting everything together, we finally obtain 

1.emma 2.1 (Combination Lemma for Arrangements of Planes). Given an 

arrangement of n r red planes, another arrangement of  n b blue planes, and m points not 

lyin41 on any of these planes, the total number of faces bounding the "purple" cells 

containing these points, in the arrangement formed by all n = nr + nb planes, is at 

most 

p q- fl + O(m2/an -1- n2), 

where p (resp. fl) is the total number of faces bounding the cells of the red (resp. blue) 

arrangement containing these points. 

2.2. The Complexity o f  Many Cells 

We now return to our analysis of K(m, n). Applying the combination lemma to the 

two subarrangements A(1-I x), A(II2), we can readily obtain a recurrence of the form 

K(m, n) = 2K(m, n/2) + O(m2/an + n2). 
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However, we do not continue this recursive process all the way down. When n first 

becomes smaller than or equal to m 1/3 we use the trivial bound K(m, n) = O(n 3) = 

O(m). Since when this happens we have m < (2n) 3, it follows that m = m2/Sm 1/a = 

O(m2/3n). It is now easy to verify that the solution to the above recurrence is 

K(m, n) = O(m2/3n log n + n2). 

(Note that the factor log n enters the formula for K(m, n) because in the recurrence 
relation the term O(m2/3n) is linear in n.) 

We have thus shown 

Theorem 2.2. The complexity of m distinct cells in an arrangement of n planes in 

three dimensions is O(m2/an log n + n2). 

Corollary 2.3. The maximum number of incidences between n planes in three 

dimensions and m vertices of their arrangement is O(m2/3n log n + n2). 

Proof. We use the following well-known argument (see [EW] and [Eli) .  Replace 

each plane by two parallel planes translated a small distance away in both 

directions. If all these translation distances are equal and sufficiently small, each 

vertex p of the arrangement of the original planes will lie in a distinct cell of the new 

arrangement, whose complexity is 2d, where d is the number of original planes 

incident to p. Thus the maximum number of incidences between m points and n 

planes as above is bounded by ½K(m, 2n), which completes the proof of the 
corollary. [] 

Remarks. (1) The proof of Theorem 2.2 is significantly simpler than the elaborate 

proof of the corresponding bound in two dimensions (see [CEG*] and lEGS]), 

and of the simpler variants of the three-dimensional problem analyzed in the 

following section. This is because (i) we have already made strong use of the results 

of the two-dimensional problem in the proof of the combination lemma, and (ii) the 

weaker bound in three dimensions allows a straightforward divide-and-conquer 

strategy, which cannot be used to derive the smaller bound in two dimensions (or 

the smaller bounds for the variant problems given below). 

(2) The bound given in Corollary 2.3 almost matches the lower bound 

D,(m2/3n + n 2) given in [EH] and [El i .  It is interesting to note that the lower 

bound construction in [EH] is a fairly trivial extension of the two-dimensional 

lower bound for incidences between points and lines. Thus the main tools used in 

the derivations of both the lower and upper bounds for the case of planes are 

principally based on results on two-dimensional arrangements. 

(3) A direct proof of Corollary 2.3 could also be given, without reducing 

incidences to the complexity of many cells. One such direct proof is an easy 

modification of the proof given above, including a modified combination lemma 

for "merging incidences" between a set of points and two collections of red and of 
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blue planes. As a hint to the interested reader, who may wish to work out the 

details of this modified proof, we note that the main technical difficulty that arises is 

that the given points are assumed to be vertices of the overall arrangement, but 

they need not be vertices of the blue or of the red subarrangements. A combination 

lemma is then needed to handle points of this sort (which generally lie on an edge of 

one arrangement and on a plane of the other). 

(4) An obvious open problem is whether the upper bounds in Theorem 2.2 or in 

Corollary 2.3 can be tightened to match the corresponding lower bounds, i.e., 

whether the log n factor can be removed. This factor is just an artifact of our simple- 

minded divide-and-conquer strategy, and we would hope that better strategies 

might get rid of this factor. 

(5) The technique presented in this section has recently been generalized (and 

somewhat simplified) in [AS] to obtain sharp upper bounds on the complexity 

of cells in an arrangement of n (possibly intersecting) triangles in 3-space. 

For example, it is shown there that the total complexity of all nonconvex cells in 

such an arrangement is O(n7/3~(n) 2/'3 log 4/3 n), which is almost tight in the worst 

case. 

(6) It would be interesting to extend these results to arrangements of other 

surfaces (e.g., spheres) in three dimensions. Since the analysis given above strongly 

uses the straightness of planes and convexity, new techniques will be required to 

handle curved surfaces. 

3. Calculating Many Cells 

Next we sketch an algorithm for efficient calculation of m cells in an arrangement of 

n planes in time O(m2/an log 3 n + n 2 log n). 

The algorithm relies on the following operation. Suppose we are given two 

intersecting convex polyhedra P and Q in three dimensions, of size p and q, 

respectively. We are told that P and Q intersect and we are furthermore given a 

point x in their intersection. Our goal is to construct R = P c~ Q in time 

proportional to r, the size of R, times a logarithmic factor in p, q, and r. (We think of 

p as representing the number of faces of P, which is linearly related to the number of 

edges and the number of vertices of P; similarly for q and r.) 

In order to do this we first develop a subroutine that intersects a planar convex 

polygon with a convex polyhedron in three dimensions within an analogous time 

bound. So let C be a convex polygon of size c, and let Q and q be as above. Again, 

we assume that we are given a point z in the intersection S of C and Q, where S is a 

planar convex polygon of size s. 

It is actually instructive to go down in dimension one more time and consider 

how to intersect two convex polygons in output-sensitive time. A straightforward 

technique for doing so is described in [EGS] and is based on "shooting." The idea 

is that we find a point on the boundary of the intersection and then walk along this 

boundary by shooting from the current edge of the inner polygon toward the outer 

one, in order to find the next vertex of the intersection. There are two cases. It may 

happen that the inner polygon edge finishes before it exits the outer polygon, in 
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which case we move to the next edge of the inner polygon and repeat the process. 

Or we may encounter the outer polygon before the inner polygon edge finishes, in 

which case we have a new vertex of the intersection polygon and the roles of the 

inner and outer polygons are swapped. Since shooting a ray in a convex polygon 

takes logarithmic time, the whole intersection procedure can be done in time 

proportional to the size of the intersection times a logarithmic factor. Note that 

logarithmic shooting within a convex polygon can be done without any prepro- 

cessing, provided we store the polygon vertices in an array or a binary tree in their 

order along the polygon. 

We now discuss how to "lift" this argument to three dimensions and solve our 

subproblem. Note first that ray shooting in a convex polyhedron can also be done 

in logarithmic time, for example by using a Dobkin-Kirkpat r ick  style [DK]  

hierarchical representation (see also Section 9.5 of I-E 1]). So we proceed as follows. 

From our given point z in the intersection of C and Q shoot any ray in the plane of 

C and find its nearest intersection point v with C or Q. We now implement a "walk- 

around" procedure similar to the one outlined above. If v is on C, then we shoot 

along the current edge of C to see if we exit Q. As long as we have not, we just keep 

walking around C. If we do exit Q, then we have a new vertex w of S, lying in some 

face f of Q. Now things are more interesting, because we need to shoot from w in 

both C and the face f of Q in order to find the next vertex of S. It is still true, 

however, that both of these shots can be accomplished in logarithmic time, and this 

remains so as we go around along the surface of Q. So the polygon-polyhedron 

case is only slightly more complex than the polygon-polygon case. The intersection 

S can again be computed in time proportional to s times a logarithmic factor. 

We now go back to the original polyhedron-polyhedron problem. From the 

common point x of P and Q let us shoot an arbitrary ray and let the nearest face hit 

be C, say it is a face of P. (Since our polyhedra could be unbounded, it is advisable 

to choose this initial ray to connect x to a point on some face of P or of Q; 

otherwise we might not hit any face at all.) Then we can apply the above procedure 

to intersect C with Q and obtain S, a face of the desired intersection output R. Now 

let e be an edge of S. We claim that our subprocedure above can be used to 

compare the face T of R adjacent to S along e. There are three cases. If  e is a 

subedge of an edge of P, then we simply take the other face of P along that edge and 

intersect it with Q to get T. If e is a subedge of an edge of Q we do the symmetric 

operation. Finally if e is an edge arising out of the intersection of a face (in this case 

C) of P with a face D of Q, then we simply switch the roles of P and Q (inner with 

outer) and now intersect polygon D with polyhedron P. If we repeat this process we 

will eventually discover all the faces of the intersection polyhedron R. It is clear that 

the cost of the computat ion is proportional  to the number of edges of R, times a 

factor which is the cost of shooting, paid a constant number of times per edge. 

Overall this gives us the desired output-sensitive algorithm for polyhedral intersec- 

tion: 

Lemma 3.1. Given two convex polyhedra P and Q in three dimensions, of size p 

and q, respectively, which have already been preprocessed for logarithmic-time 
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ray shooting queries, as in I-DK], we can compute their intersection R in time 

O(r log(p + q)), where r is the size of R. 

We now apply this lemma to compute the m desired cells in an n plane 

arrangement. The cells are assumed to be specified by m points Pl . . . . .  Pro, one 

point lying in the interior of each cell. We apply a divide-and-conquer technique as 

in the proceding proof. That is, we divide the collection of planes into two 

subcollections ("blue" and "red"), each containing roughly n/2 planes, and 

recursively compute the cells containing the given points in the blue and in the red 

subarrangements. We next preprocess each of these convex polyhedral cells, as in 

[DK],  to prepare for logarithmic-time ray shooting inside them. The total cost of 

preprocessing is bounded by O(K(m, n/2)). Then, for each point pj, we apply the 

above polyhedron-polyhedron intersection routine. However, since two of these 

points could lie in the same blue and the same red cell (at least when we are deep 

down the recursive process), we have to exercise some care to make sure that no 

intersection polyhedron is computed more than once. However, two points lie in 

the same intersection cell if and only if they lie in the same red cell and in the same 

blue cell. We can therefore easily partition the points by their red and blue cell 

membership, detect multiply-occurring intersection cells, and choose a single point 

to represent each such cell (this is similar to the technique used in I-EGS] for a 

variant of this problem in two dimensions). With this precaution, the output- 

sensitive behavior of the above routine implies that all desired cells can be 

computed in time O((K(m, n) + m) log n) (including the preprocessing overhead as 

well). Moreover, when rn > n 3, we can simply calculate the entire arrangement in 

time O(n 3) = O(m) (as in [EOS]), and pick out the desired cells. To accomplish this 

last step, we apply the point-location algorithm in I-EOS] (or that in [Ch]) 

to locate each of the given m points in the computed arrangement, in total time 

O(m log 2 n). All these considerations lead to the following recurrence: 

~2T(m, n/2) + O(m2/3n log 2 n + n 2 log n), 

T(m, n) = [O(m log 2 n), 

m ~ n 3, 

m >_ n 3, 

for the maximum time T(m, n) required by the algorithm; this recurrence is easily 

seen to solve to 

T(m, n) = O(m2/3n log 3 n + n 2 log n + m log 2 n). 

Finally, if we wish to calculate m distinct cells in an arrangement of planes, and the 

cells are given by a single point in each, then necessarily m < n a, so that we can 

drop the term O(m log 2 n) because it is then dominated by the first term of this 

bound. (However, when we are not guaranteed that each desired cell contains a 

unique designating point, the last term may become dominant.) We thus conclude 

(the bound on the space complexity of the algorithm is straightforward to verify): 
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Theorem 3.2. We can calculate m distinct cells in an arranoement of n planes in 

3-space, when the cells are desionated by a unique point in each, in time 

O(m 2/3 n log 3 n + n 2 log n) and space O(m2/3n log n + n2). 

4. Simpler Problems Involving Points and Planes 

Let II = {rr 1 . . . . .  n,} be a collection of n planes in three-dimensional space, and let 

pl . . . . .  p,, be m points. In this section we consider several variants of the many-cells 

problem studied above. Specifically, we consider the following problems: 

(a) Determine for each point p~ the plane rt~ lying immediately below it. 

(b) Count the number of incidences between the given points and planes. 

(c) Obtain an upper bound on the number of incidences between these points 

and planes, assuming that no three points are coUinear (or, symmetrically, 

that no three planes pass through a common line). 

Note that problem (a), and, with some extra care, problem (b) as well, can be solved 

by the algorithm of Section 2.3. However, as shown below, these variants (as well as 

problem (c)) admit solutions with bounds that are significantly lower than those 

obtained in the previous section. 

We present in detail a solution to the first problem, comment briefly on the 

modifications necessary to obtain a similar solution to the second problem, and 

then analyze the third problem, which happens to have a better bound than the 

others. 

We use an approach similar to that used in lEGS] for problems involving two- 

dimensional arrangements; this approach involves a divide-and-conquer strategy 

based on random sampling. Specifically, we pass to the dual space (using standard 

duality that preserves above/below relationship; see [El]), so that each plane rt~ is 

transformed to a point n*, and each point p~ becomes a plane p*. 

We choose a random sample of r dual planes p.* (for some large but fixed integer 1 
r), form their arrangement, and decompose its cells into tetrahedra with pairwise 

disjoint interiors; the number of tetrahedra is O(r3). For each resulting tetrahedron 

T we create a recursive subproblem involving the subset II~ of all planes in H whose 

dual points lie in T and the subset P~ of all points of P whose dual planes cut ~. (If 

some dual point n* lies on a tetrahedron boundary, we can assign its corresponding 

plane to any of the adjacent tetrahedra without affecting the behavior of the 

algorithm.) The subproblem associated with • is to determine, for each p in P,, the 

plane in II, lying immediately below p. (For problem (b), the subproblem is to 

count the number of incidences between these points and planes.) 

The ~-net theory of [HW] or the similar probabilistic analysis of Clarkson 

[C12], implies that, with high probability, every such tetrahedron will be cut by at 

most (cm/r) log r dual planes, for some positive constant c. 

We stop the recursion if m, > n~, where m, = IP, I and n, = t I I ,  I. In this case the 

subproblem at ~ is easily solved by constructing the full arrangement of the set He 

and by locating in it each of the rn, points of P,, using the point-location algorithm 

of [EOS] or [Ch]. This can be accomplished in time O(ra, log 2 n,). 
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Otherwise, when m, < n 3, let us denote by B, the set of all points in P whose dual 

planes do not cut r. Let p~ be a point in B,. Then the plane p* passes either above all 

the points n* for rrj e II~ or below all of them. By duality, the point Pi lies either 

above all the planes n ie  FI~ or below all of them. In the latter case, no plane in H, 

can be the plane lying directly below pi, so these points need not be further 

processed at z. Points Pl of the first type lie in the upper unbounded cell c of the 

arrangement A(II,), and the plane of I-I, lying directly below p~ is the one containing 

the face of c lying directly below p~. We thus calculate the cell c in O(n, log n,) time 

(as in [PM]), and then project the boundary of c, as well as all points p~ e B, of the 

first type, onto the xy-plane. We then locate each of these projected points in the 

planar map obtained by vertically projecting the boundary of c, thereby obtaining 

the plane of H, lying directly below p~. Thus this step can be accomplished in 

O((b~ + n,) log n~) time, where b~ is the size of B,. 
After solving all subproblems recursively, and performing the above step for 

each z, we complete the procedure by taking, for each point p~ in P, the highest 

plane among those obtained at each of the tetrahedra z, where at each z we obtain 

such a candidate plane either from the recursive processing at z, if p~ e P,, or from 

the above processing of B,, if pi belongs to that set. This final step can clearly be 

performed in O(m) time. 
Let T(m, n) denote the maximum time required by the algorithm for an input of 

m points and n planes, under the assumption that each recursive random sampling 

step does indeed produce a good partition of the dual space (see below for a 

discussion of this issue). Taking also into account the overhead needed for the 

partitioning (and bearing in mind that r is a constant), we thus obtain the following 

recurrence formula for T(m, n): 

[ a=~ log 2n if rn>_n a, 

T(m, n) < T(ml, n~) + (bin + b'n) log n if m < n 3, 
i 

for some constants a, b, b' > 0 (where b, b' depend on i"), so that, by the preceding 

arguments, the m~, n~, and M can be assumed to satisfy the following three 

conditions: 

(i) M = O(r3); 

(ii) ~/M= 1 n~ _< n; 
(iii) m~ < (cm/r) log r for each i, for some constant c > 0 (independent of r). 

Before stating our results, we need to discuss the probabilistic aspects of the 

above algorithm. Even though there is high probability of choosing a good random 

sample at any single recursive step, the accumulated probability of successful 

drawings at all recursive steps can become small, unless the sample size increases 

from level to level, eventually becoming nonconstant near the bottom of recursion 

and thereby increasing the overhead of processing a single node. An alternative 

approach, which is the one we follow, is to verify, at each step of the algorithm, that 

the currently sampled subset of dual planes p~' is indeed a good sample, namely that 
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no cell in its triangulated arrangement is cut by more than O((m/r) log r) dual 

planes. This can be easily verified in linear time, assuming r to be a constant. Thus, 

with no increase in the asymptotic complexity, we can verify that the sample is 

good. If the sample is bad, we simply discard it and choose another. Again, the 

results of [C12] and [HW] imply that the expected number of draws until a good 

sample is obtained is constant. Employing this approach, we obtain a randomized 

algorithm, whose expected time complexity is proportional to T(m, n) defined 

above, and which has the property that at each recursive step the resulting sample 

and corresponding space partitioning are good. 

Returning to the analysis, we have 

Theorem 4.1. We can determine which of n given planes lies directly below each of m 

given points, using a randomized algorithm whose expected running time is bounded 

by [Dm3/4-an3/4+3a + Am] log 2 n + Bn log n log m, for any ~ > O, where the 

coefficients A, B, D depend on 6. (Here the expectation is over the randomizations 

performed by the algorithm, and does not depend on the input.) 

Proof. If we follow the recurrence given above for T(m, n) through the resulting 

recursion tree, the contribution of the rightmost term b'n~ log n~, over all tetrahedra 

T at the same recursive level, is at most b'n log n (see the analysis in lEGS] for a 

similar argument). Since the tree has only log m levels of recursion, it follows that 

the overall contribution of these terms is O(n log n log m). It is therefore sufficient to 

drop this term from the recurrence defining T(m, n), and prove that the solution T 

of the modified recurrence satisfies T(m, n) < [Dma/4-an a/4+3a + Am] log 2 n for 

any 6 > 0. 

Fix 0 < 6 < ~ and choose r = r(6) to be sufficiently large (how large will be 

apparent from subsequent analysis). 

If m > n 3, then T(m, n) < am log 2 n plainly satisfies the required inequality, 

assuming A > a. So assume m < n a. In this case 

m = In 3/4-'~. m 1/4+~ <_ m314-~n3/4+36. (,) 

By induction hypothesis we then have 

M 

T(m, n) < ~ EDm~/4-an~/4 + 3a + Am.~ log 2 n i + bm log n. 
i = l  

But because of (iii) we have ~.~ mi log 2 ni -< ((Mc/r) log r). m log 2 n, thus 
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Thus, using (.)  and putting d = A(Mc/r) log r + b, we obtain 

3 T(m, n) < D mai/4-6nai/4+36 + dma/4-6n 3/'~+36 log 2 n 

_< LD ~ 1og3/4-6 r .m  3/4-6 1 + log 2 n. 

But since H61der's inequality implies 

1 /,/3/4+36 ~_~ hi) 3/4"+36 M1/4-36 < M1/4-36 /,13/4+36 

and since M < c'r 3 for some constant c', we obtain, for an appropriate constant c", 

T(m, n) < IDc,, l°ga/4-~ r 1 rS 6 ~- d .m314-6n 3/4"+36 log 2 n. 

Thus, if we choose r sufficiently large so as to make the expression in the brackets 

less than D/2 + d, and choose D = 2d, we obtain 

T(m, n) "< Dm3/4-an 3/4+36 log 2 n 

thus establishing the asserted inequality. [] 

Remark. The preceding theorem implies that T(m, n) = O(m3/4-6n 3/4+ 36) for any 

> 0, provided neither m nor n is too small. This is significant because, as shown in 

IEH] and noted in Section 2, the worst-case total complexity of the m cells 
containing the given points can be fl(m2/3n), which is greater than O(m3/4n 3/4) for 

any rn = o(n3). In other words, we have shown that finding just the plane lying 

immediately below each of m given points in an arrangement of n planes can be 

accomplished faster (albeit in a randomized manner) than calculating the entire cell 

around each point. While this result seems intuitively plausible, it is noteworthy 

that in the two-dimensional case no algorithm is known as yet for this seemingly 

simpler task, which is asymptotically faster than the algorithm for calculating the 

entire cells (see lEGS] and [EGH*]). 
We next consider the other problems listed at the beginning of the section. The 

solutions to these problems follow closely that of problem (a) given above, and 

differ from it only in three key substeps: processing the. data at the bottom of 

recursion, processing the sets B,, and combining output from recursive subprob- 

lems to obtain the desired solution for the whole problem. 

Consider problem (b), in which we want to count the number of incidences 

between m given points and n given planes. For a tetrahedron z at the bottom of 

recursion, we calculate the entire arrangement of the planes in II,,  assign to each 
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(zero-, one-, or two-dimensional) face of the arrangement the number of planes 

containing that face (this number is always 1 for two-dimensional faces), and then 

locate in the arrangement the m e points of Pc- If a point happens to lie on a 

low-dimensional face f ,  we add to the total incidence count the number of planes 

containing f .  As above, all this can be accomplished in time O(m, log 2 he). 

When processing a set B~ associated with some tetrahedron z, we calculate the 

upper and lower envelopes of the n e planes in H ,  and project them onto the 

xy-plane to obtain two planar maps M ÷, M - .  We also maintain, for each vertex or 

edge of these maps, the number of planes in 1-I~ passing through that vertex or edge. 

We then project each point p in Be onto the xy-plane and locate its projection p* in, 

say, M ÷. We can then easily determine whether p lies on the corresponding upper 

envelope U or not. If not, p (coupled with the planes in He) contributes nothing to 

the total incidence count. Otherwise, if p lies on a two-dimensional face of U, it 

contributes 1 to the total count; if it lies on an edge or coincides with a vertex of U, 

we add to the total count the number of planes in H e passing through that edge or 

vertex. We repeat this procedure for M - .  It is clear that this processing can be 

accomplished in time O((b~ + n,) log n0. 

Finally, combining the output from the recursive subproblems is trivial. We 

simply add up the incidence counts obtained recursively for each subproblem, as 

well as the incidence counts for points in the corresponding set B e. This takes only 

constant time. 

It can now be easily checked that the time complexity of the resulting algorithm 

obeys the same recurrence as the algorithm for problem (a). Thus problem (b) can 

be solved within the same randomized expected time complexity given in Theorem 

4.1. That is, 

Theorem 4.2. We can count the total number of incidences between m given points 

and n (liven planes in three.dimensional space, in randomized expected time 

O([m314-~n 314+3~ Jr- m~] log 2 n + n log n log re)for any 6 > O. 

Problem (c), namely that of obtaining an upper bound on the number of 

incidences between points and planes, is handled in a way similar to that of 

problem (b), except that now we are not concerned with the time complexity of the 

algorithm, but rather with estimating the incidence count. In addition, the 

assumption that no three points are collinear turns out to be quite strong, and 

yields better bounds than those obtained for the previous problems. (However, 

some assumption like this has to be made to avoid a trivial bound; otherwise we 

could have all of our points lie on a common line and all given planes passing 

through that line, yielding an incidence count of ran, matching the trivial upper 

bound. Note that, in contrast, the counting algorithm presented above will handle 

this case efficiently.) 

As above, we follow a recursive partitioning scheme for the dual points and 

planes, with the difference that the recursion stops this time at, tetrahedra z for 

which m~ _> n e .2 At each such • consider the arrangement A = A(IIe) of the n e planes 

in FI~. If a point p e Pe does not lie on any of these planes it contributes nothing to 

the total incidence count. If it lies in (the relative interior of) a two-dimensional 
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face of A, then it contributes just 1 to that count. Finally, there are O(n 2) 

intersection lines containing all vertices and edges of A, and none of them contains 

more than two of the given points. If such a line I lies in k of the planes of 1"I~, it 

con t r ibu tesa tmos t2k to the inc idencecoun t ,  b u t t h e n w e c a n r e g a r d t a s ( k 2 )  

distinct lines, each formed by the intersection of two of these planes. This (rather 

standard) argument clearly implies that the total incidence count at z is at most 
O(n 2 + m~) = O(mO. 

In processing the set B e of points whose dual planes have missed z, we consider, 

as above, the upper and lower envelopes of the n, planes in I'I~, and project them 

onto the xy-plane to obtain two planar maps M ÷, M- .  Each point p in B, lies 

either on or above the upper envelope M +, or on or below the lower envelope M- .  

Clearly it suffices to consider only points lying on these envelopes. If such a point p 

lies in (the relative interior of) some face of, say M ÷, it contributes just 1 to the total 

incidence count. On the other hand, these envelopes have O(n,) edges (even when 

each edge is counted with multiplicity equal to the number of planes containing it), 

and each can contain at most two points. Thus the overall contribution of B e to the 

incidence count is O(b, + n,), where b e is the cardinality of Be. 

Finally, bounding the overall incidence count is trivially done by summing up 

the incidence counts computed recursively, and adding the contributions to this 

count by points in the sets B,, for the corresponding tetrahedra z. Hence if I(m, n) 

denotes the maximum number of incidences between m points and n planes, with 

no three points collinear, we obtain the following recurrence for l(m, n): 

O(m) if m > n 2, 

I(m, n) = M 
I(m i , n i ) + O ( m + n )  if m < n  2, 

t=1 

where we can assume that the mi, hi, and M satisfy conditions (i)-(iii) given above. 

By modifying the proof of Theorem 4.1, we easily obtain 

Theorem 4.3. The maximum number of incidences between m points and n planes, 

provided no three points are collinear, is o(ma/S-~n4/5 + 26 + m + n log re)for any 

6 > 0 .  

It is interesting to relate the above bound to the O(ma/~n 4/5 + m + n) bound for 

the number of incidences between m points and n circles in the plane [CEG*]. We 

can map points in two dimensions into points in three dimensions, by lifting them 

to the paraboloid z = x 2 + y2, and circles in two dimensions to planes in three 

dimensions, by lifting each circle to the paraboloid and taking the plane passing 

through the lifted circle. This gives an incidence problem for m points (no three 

collinear) and n planes, which shows that the bound in Theorem 4.3 also applies to 

incidences between points and circles in two dimensions. As can be seen, this bound 

is, however, slightly weaker than the bound of [CEG*-I but then it is for a more 

general problem (note that in the above transformation to three dimensions, all 
resulting points lie on the paraboloid z = x 2 + y2). 
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Remark. If, instead of assuming that no three points are collinear, we require that 

no three planes pass through a common line, we can use duality to transform the 

problem to that just studied, resulting in the following: 

Corollary 4.4. The maximum number of incidences between m points and n planes, 

provided no three planes pass through a common line, is O(m4/S+2~na/5-a + 

m log n + n)for any ~ > O. 

5. The Complexity of Many Cells in an Arrangement of Hyperplanes 

In this section we extend the results of Section 2 to arrangements of hyperptanes in 

d dimensions, for any d > 3, obtaining upper bounds on the complexity of m 

distinct cells in arrangements of n hyperplanes. Here the complexity of a cell is 

defined as the number of facets (i.e., (d - 1)-dimensional faces) bounding the cell. 

The bounds that we obtain again almost match the lower bounds given in [El i .  

Specifically, we show 

Theorem 5.1. The complexity of m distinct cells in an arrangement of n hyperplanes 

in d > 3 dimensions is O(m2/3n a/3 log n + n a- 1). 

Proof. The proof proceeds by induction on the dimension d, but is otherwise 

quite similar to the analysis in Section 2. The basis case d = 3 has been established 

in Section 2. Assume that d > 3 and that the claim has been established for all 

d' < d. Let H = {n 1 . . . . .  nn} be a collection of n hyperplanes in d dimensions, and 

let Pl . . . . .  Pm be m points lying in m distinct cells of the arrangement A = A(II) of 

these hyperplanes. As before, our task is to bound the complexity of the cells of 

A(H) that contain these points. 

Again, we partition 1-I into two subsets H1, 1-12, each containing roughly n/2 

hyperplanes, and refer to the hyperplanes in these subsets as the red hyperplanes 

and the blue hyperplanes, respectively. We obtain recursively the cells containing 

the points Pi in each of the subarrangements A(II1), A(rI2), and then intersect these 

cells to obtain the desired cells of A(II). Again, if a point p lies in a red cell R and in 

a blue cell B, then the final cell E containing p is simply R c~ B, and since all these 

cells are convex polyhedra, the complexity of E is bounded by the sum of the 

complexities of R and of B (in d > 3 dimensions, this argument holds only for the 

number of (d - 1)-dimensional faces, which is our  complexity measure). Since R 

(or B) might contain more than one point p~, we again need to establish a 

combination lemma that controls the complexity of the "merged" cells. 

5.1. The Combination Lemma for Hyperplanes 

Lemma 5.2 (Combination Lemma for Arrangements of Hyperplanes). Given an 

arrangement of  n r red hyperplanes in d-dimensional space, d > 3, another arrange- 

ment of  n b blue hyperplanes, and m points not lying on any of  these hyperplanes~ the 

total number of  facets bounding the "purple" cells containing these points in the 
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arrangement formed by all n = n~ + nb hyperplanes, is at most 

p q- fl + O(m2/3n a/3 log n + n d- t), 

where p (resp. fl) is the total number of facets bounding the cells of the red (resp. blue) 

arrangement containing these points. 

Proof. Again we proceed by induction on d, with the basis case d = 3 established 

in Section 2. Let Pl . . . . .  Pm be m points in d-dimensional space. We are given two 

arrangements of hyperplanes, the red arrangement, consisting of nr red hyper- 

planes, and the blue arrangement, consisting of n b blue hyperplanes. Let R~ . . . . .  R s 

be the cells in the red arrangement containing the points Pl (where a cell can 

contain more than one point), and let B1 . . . . .  B t be the blue cells containing these 

points. For each Pi let El = R~, c~ B,, be the "purple" cell containing p~ (where Rs,, 

Bt, are the red and blue cells containing the point p~). By considering only a subset 

of the points p~, if necessary, we can assume, without loss of generality, that all the 

cells E~ are distinct (and thus have pairwise disjoint interiors). 

In complete analogy with the analysis in Section 2, we obtain the purple cells Ei 

by starting with the red cells R j, and by adding the blue hyperplanes in a fixed 

order, thereby decomposing each red cell into "red-blue" subcells that contain the 

given points; when all blue hyperplanes are added, the final red-blue cells are the 

desired cells E t. We apply a symmetric decomposition process starting with the 

blue cells Bj and adding the red hyperplanes, to obtain "blue-red" subcells, which 

again, when all red hyperplanes are added, coincide with the purple cells. The 

complexity of the purple cell is bounded by the "red complexity" of the red-blue 

cells plus the "blue complexity" of the blue-red cells. Again, our task is to bound 

the increase in the red complexity caused by adding the blue hyperplanes, and the 

symmetric increase in blue complexity of blue-red cells. 

Consider the decomposition caused by the ith blue hyperplane rq. Let R i be a 

red cell that has already been split into a number of red-blue subcells, and assume 

that rq splits k of these subcells (in the sense of splitting the sets of points they 

contain). If ~r t intersects a red or red-blue cell but does not split the set of points in 

this cell, then, as argued in Section 2, this intersection cannot cause an increase in 

the red complexity. Since the red-blue subcells are convex polyhedra by construc- 

tion, the intersection of rq with each of them is a convex (d - 1)-polyhedron q 

(where these polyhedra have pairwise disjoint interiors), contained in the intersec- 

tion c = cj = rq c~ Rj which itself is a convex (d - 1)-polyhedron. To each facet f of 

a red-blue subcell which is split into two subfacets by rq, there corresponds a 

(d - 2)-subfacet of some facet of c (which is the intersection o f f  with rq). Thus it 

follows easily that the total increase I in the red complexity of the red-blue subcells 

within R~ as caused by rr i is equal to the number of " red"  facets of the red-blue 

intersection polyhedra q, namely facets that lie along the boundary of c. Let k~ 

denote the number of red-blue cell splitting caused by nt; again we have ~i  kt < m. 

Let A t be the arrangement of the collection of the n r (d - 2)-flats formed by 

intersecting rq with each of the nr red hyperplanes, and of the i - 1 (d - 2)-flats 

formed by intersecting n~ with the preceding i - 1 blue hyperplanes. Let It denote 
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the increase in the red complexity of all ki red-blue cells split by hi. Then the 

preceding argument implies that I~ is equal to the "red complexity" of k~ cells in A t, 

where these cells are the intersections of n~ with the red-blue cells it splits. But the 

red complexity of these cells is bounded by their total complexity. Since this 

arrangement has at most n (d - 2)-flats, it follows, by induction hypothesis on 

Theorem 5.1 in d - 1 dimensions, that the complexity in question is at most 

O(k21/3n(d-1)/3 log n + n d- 2). 

Summing these quantities over all nb blue hyperplanes, the total increase in the red 

complexity is therefore 

0 /3 . n~a-1~/3 log n + n a- 1 
i= 

which, as in Section 2, is 

O(m2/3n a/3 log n + n d- 1). 

We now obtain in a completely symmetric manner a partitioning of the blue 

cells into a collection of "blue-red" subcells, each containing just a single point, 

and derive a symmetric bound on their overall "blue" complexity. Arguing as in 

Section 2, we obtain the assertion of the combination temma. []  

5.2. The Complexity of  Many Cells 

We now continue the proof of Theorem 5.1. Let K(d)(m, n) denote the maximum 

complexity of m distinct cells in an arrangement of n hyperplanes in d dimensions. 

Applying the combination lemma to the two subarrangements A(IIt), A(II2), we 

readily obtain a recurrence of the form 

K(d)(m, n) = 2K(d)(m, n/2) + O(m2:3n a/3 log n + n a- 1). 

Again, we do not continue this recursive process all the way down. When n first 

becomes smaller than m 1/a we use the trivial bound K¢J)(m, n)= O(n d) = O(m). 

When this happens we have m < (2n)~; it follows that m = m2/3m 1/3 = O(m2/3na/3). 

It is now easy to verify that, since d/3 > 1, the solution to the above recurrence is 

K(a)(m, n) = O ( m 2 / 3 n  d/3 log n + n d- 1). 

This completes the inductive proof of Theorem 5.1. [] 

Coro l lary  5.3. The maximum number of incidences between m points and n 

hyperplanes in d dimensions, where it is assumed that each point is a vertex of the 

arranoement of these hyperplanes, is O(m2/3n d/3 log n + n ~ -  1). 

Proof. Identical to that of Corollary 2.3, [] 
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Remarks. ( t)  The bound given in Corollary 5.3 almost matches the lower bound 

~(rn2/3na/3 + rla-1) given in [E l i .  It would be nice to get rid of the log n factor in 

our upper bound; we note that if suffices to do so in three dimensions, since in 

higher dimensions the recurrence for Ktd)(m, n) will not introduce this factor. 

(2) An obvious open problem is whether the bound in Theorem 5.1 also applies 

to the number of faces of any dimension bounding the given m cells. Recent results 

in [E2] lend hope to an affirmative solution to this problem. 

(3) Again, can this analysis be modified to yield an algorithm which actually 

calculates the facets bounding m cells in an arrangement of n hyperplanes in d > 3 

dimensions? This seems to be a considerably more difficult problem than the 

corresponding problem for three dimensions, because it calls, among other things, 

for a procedure which produces the facets bounding the intersection of two convex 

polyhedra in time proportional to the number of output facets, and no such 

procedure seems to be available. 

(4) Note that our divide-and-conquer approach can be made into an efficient 

algorithm for calculating all incidences between m points and n hyperplanes. The 

general recursive step is trivial, since all we need to do is to sum up the incidences 

calculated in the two subproblems. At the bottom of the recursion, when m > n d, we 

need a procedure that finds the incidences between m points and n hyperplanes in 

time close to O(ne). This can be accomplished using Clarkson's randomized 

point-location algorithm in arrangements of hyperplanes (see [CI1]). 
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