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A b s t r a c t .  We study the complexity of finding the values and opti- 

mal strategies of mean payoff games, a family of perfect information 
games introduced by Ehrenfeucht and Mycielski. We describe a pseudo- 

polynomial time algorithm for the solution of such games, the decision 

problem for which is in NP f3 co-NP. Finally, we describe a polynomial 
reduction from mean payoff games to the simple stochastic games stud- 

ied by Condon. These games are also known to be in NP n co-NP, but 

no polynomial or pseudo-polynomial time algorithm is known for them. 

1 I n t r o d u c t i o n  

Let G = (V, E)  be a finite directed graph in which each vertex has at least one 

edge going out of it. Let w : E - ,  { - W , . . . ,  0 , . . . ,  W} be a function that  assigns 

an integral weight to each edge of G. Ehrenfeucht and Mycielski [EM79] studied 

the following infinite two-person game played on such a graph. The game starts 

at a vertex a0 E V. The first player chooses an edge el = (a0, a l )  E E. The 

second player then chooses an edge e2 - (al ,a2) E E, and so on indefinitely. 

The first player wants to maximise lira infn-.oo 1 n ~-]i=l w(ei). The second player 

wants to minimise lim supn_~o o ~ ~i"--1 w(ei). Ehrenfeucht and Mycielski show 

that  each such game has a value v such that  the first player has a strategy 

that  ensures tha t  liminfn_.oo ~ ~-~i"--1 w(ei) > v, while the second player has 
1 n 

a strategy that  ensures that  lira supn_..o o ~ ~-~/=1 w(ei) <_ v. Furthermore, they 

show that  both players can achieve this value using a positional strategy, i.e., 

a strategy in which the next move depends only on the vertex from which the 

player is to move. 

Without  loss of generality, we may assume that  the graph G = (V, E)  on 

which such a game is played is bipartite, with V1 and V2 being the parti t ion of 

the vertices into the two 'sides' and with E = E1 t9 E2 such that  E1 C_ V1 x V2 

and E2 C_ V2 x V1. If the original graph is not bipartite, we simply duplicate the 

set of vertices. 

To obtain their results for the infinite game, Ehrenfeucht and Mycielski 

[EM79] also consider the following finite version of the game. Again the game 

starts at a specific vertex of the graph, which is assumed to be bipartite. The 
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players alternate in choosing successive edges that form a path, but the game 

ends as soon as a cycle is formed. The outcome of the game is then the mean 

weight of the edges on this cycle. The first player wants to maximise and the 

second player to minimise this outcome. This game is a finite perfect-information 

two-person game and so, by definition, has a value. Ehrenfeucht and Mycielski 

[EM79] show that the value v of this finite game is also the value of the infinite 

game described above. Furthermore, they show, surprisingly perhaps, that both 

players have positional optimal strategies for the finite game. The positional op- 

timal strategies of the finite game are also positional optimal strategies for the 

infinite game. 

Ehrenfeucht and Mycielski [EM79] give no efficient algorithm for finding op- 

timal strategies for the finite and infinite games. We complement their work by 

exhibiting an O([Y[ 3. I E[- W) time algorithm for finding the values of the games 

played on a graph G = (V, E). The algorithm finds the values of all the vertices 

of the graph. Games starting at different vertices may have different values, of 

course. We also give an O([Y[ 4. [Ei.log(iEI/]Y D. W) time algorithm for finding 

positional optimal strategies for both players. Our algorithm is polynomial in the 

size of the graph but only pseudo-polynomial in the weights. Our algorithm is 

polynomial if the weights are presented in unary notation. In particular, our al- 

gorithms work in polynomial time if the weights are taken from, say, {-1,  0, +1}. 

This is already a non-trivial case. 

We also consider situations in which one player knows in advance the posi- 

tional strategy to be used by the other player. Using a result of Karp [Kar78] 

we show that an optimal counter-strategy can be found in (strongly) polynomial 

time. This immediately implies that the decision problem associated with the 

game is in NP n co-NP. 

The decision problem corresponding to mean payoff games (MPG's) is thus 

in NP n co-NP as well as in P (pseudo-polynomial time), but is not yet known 

to be in P. This gives the MPG problem a rare status shared only by a few 

number-theoretic problems, such as primality [Pra75]. 

Mean payoff games have been considered independently by Gurvich, Karzanov 

and Khachiyan [GKK88]. They were not aware of the results of Ehrenfeucht and 

Mycielski and gave an alternative proof of the fact that both players in mean 

payoff games, or cyclic games as they call them, have positional optimal strate- 

gies. Gurvich et ai. give an algorithm for finding such optimal strategies, but the 

worst-case complexity of their algorithm is exponential. Further generalisations 

and variants of mean payoff games have also been considered by Karzanov and 

Lebedev [KL93], who also point out that the decision problem corresponding to 

mean payoff games is in NP O co-NP. 

Condon [Con92] has recently studied the complexity of simple stochastic 
games (SSG's) introduced originally by Shapley [Sha53]. Condon shows that the 

decision problem corresponding to SSG's is also in NP O co-NP. While MPG's 

are deterministic, SSG's are games of chance. We describe a simple reduction 

from MPG's to SSG's in two steps. We first describe a reduction from MPG's to 

discounted payoff games (DPG's), and then a reduction from DPG's to SSG's. 



The reduction from MPG's  to SSG's shows that  SSG's are at least as hard 

as MPG's.  We believe that  the MPG problem is strictly easier then the SSG 

problem. As a t tempts  to obtain polynomial t ime algorithms for SSG's have not 

yet borne fruit, it may be interesting to focus at tention on the possibly easier 

problem of obtaining a polynomial time algorithm for MPG's.  

2 F i n d i n g  t h e  v a l u e s  o f  a g a m e  

Let G = (V,E)  be a graph and let w : E -* { - W , . . . , 0 , . . . , W }  be a weight 

function on its edges. Let IV[ : n. We assume that  the graph is bipartite with 

V1 being the set of vertices from which player I is to play, and V2 being the set 

of edges from which player II is to play. 

Our first goal is to find, for each vertex a E V, the value v(a) of the finite 

and infinite games that  start  at a. Recall that  the values of the finite and infinite 

games are equal. If a E V1 then player I (the maximiser) is to play first and if 

a E V2 then the second player (the minimiser) is to play first. 

To reach this goal we consider a third version of the game. This t ime the two 

players play the game for exactly k steps constructing a path of length k, and 

the weight of this path is the outcome of the game. The length of the game is 

known is advance to both players. We let v~(a) be the value of this game started 

at a E V, where player I or II plays first according to whether a E V1 or a E V2. 

T h e o r e m l .  The values t,k(a), for alia E V, can be computed in O(k.lEI) time. 

Proof. The result follows easily from the following recursive relation 

(max(a,b)eE{w(a, b) + t,~_l(b)} i r a  E V1, 

vk(a) = min(a,b)~E{w(a,b) + ~k-l(b))  i f a  E 112, 

along with the initial condition, vo(a) = 0 for every a E V. [] 

It seems intuitively clear that  l imk-.~ vk(a)/k = t,(a), where v(a) is the 

value of the infinite game that  starts at a. The next theorem shows that  this is 

indeed the case. In the proof of this theorem we rely on the result, proved by 

Ehrenfeucht and Mycielski, that  both players have positional optimal strategies. 

A positional strategy for player I is just a mapping 71" 1 -" V1 --+ V2 such that  

(al, 7rl(al)) E E l  for every al  E V1. Similarly, a positional strategy for player H 
is a mapping Ir2 : V2 --+ V1 such that  (a2, r2(a2)) E E2 for every a2 E V2. 

T h e o r e m 2 .  For everya E V we have: k .v(a)-2nW <_ vk(a) <_ k.v(a)+2nW. 

Proof. Let ~rl : V1 --+ V2 be a positional optimal strategy for player I in the finite 

game starting at a. We show that  if player I plays using the strategy 7t" 1 then 

the outcome of a k-step game is at least (k - n) .v(a)-  nW. Consider a game in 

which player I plays according to 7rl. Push (copies of) the edges played by the 

players onto a stack. Whenever a cycle is formed, it follows from the fact that  

~rl is an optimal strategy for player I in the finite game, that  the mean weight 

of the cycle formed is at least v(a). The edges that  participate in that  cycle 



lie consecutively at the top of the stack. They are all removed and the process 

continues. Note that  at  each stage the stack contains at most n edges and the 

weight of each of them is at  least - W .  Player I can therefore ensure that  the 

total weight of the edges encountered in a k-step game starting from a is at  least 

(k - n) .v(a)  - n W .  This is at least k .v (a)  - 2 n W  as ~(a) < W.  

Similarly, if player II plays according to a positional optimal strategy Irz : 

II2 ---, 1/1 of the finite game that  starts at a, she can make sure that  the mean 

weight of each cycle closed is at most t,(a). At most n edges are left on the stack 

and the weight of each of them is at most W. She can therefore ensure that  the 

total weight of the edges encountered in a k-step game starting at a is at most 

(k - n).~(a) + n W  < k.~,(a) + 2nW.  [] 

We can now describe the algorithm for computing the exact values of the 

finite and infinite games. 

T h e o r e m 3 .  Let G = (V ,E )  be a directed graph and let w : E --* { - W , . . . , 0 ,  

. . . , W }  be a weight function on its edges. The value ~(a), for every a �9 V ,  

corresponding to the infinite and finite games that start at all the vertices of V 

can be computed in O(IVI3.1EI.W) time. 

Proof. Compute the values ~k(a), for every a E V, for k = 2nZW. This can be 

done, according to Theorem 1, in O(IV[3.[E[.W) time. For each vertex a e V, 

compute the estimate v '(a)  = vk(a) /k .  By Theorem 2, we get that  

1 2 n W  2 n W  1 

v'(a) n ( n ) 2  --------S- < v ' (a)  - T < u(a) < v '(a)  + ~ < u '(a)  + ) 2  ------~n(n - " 

The value v(a) is a rational number, with an even denominator whose size is at 

most n. The minimum distance between two possible values of v(a) is at least 

2/ (n (n  - 2)). The exact value of v(a) is therefore the unique rational number 

with an even denominator of size at most n that  lies in the interval (~ (a )  - 

n - ' ~ '  u'(a) + n - ~ ) "  This number is easily found. [] 

Slightly less accuracy is needed if we just  want to know whether the value of 

each position is negative, zero or positive. This decision problem can therefore 

be decided more efficiently. 

Theorem 4. Let G and w be as in Theorem 3, and let T be an integer threshold. 

The decision whether v(a) < T,  ~,(a) = T,  or t,(a) > T,  for every a E V, can be 

made in O(IVI2.1EI.W) time. 

Proof. The distance between T and the closest rational number with an even 

denominator of size at  most  n is at  least 1In. It is therefore enough to compute 

the values vk(a) for k = 4n2W,  and this takes only O([VI2.1E[.W) time. [] 



3 F i n d i n g  t h e  o p t i m a l  s t r a t e g i e s  

Given an algorithm for finding the value of any vertex of a graph, positional 

optimal strategies can be found using a simple method. 

T h e o r e m S .  Let G : (V,E)  be a directed graph and let ~v : E ---* { - W , . . . , O ,  

. . . ,  W )  be a weight function on its edges. Positional optimal strategies for both 

players for games played on G can be found in O(IVl4.]E].log(]E]/]V]).W) time. 

Proof. Start by computing the values u(a) for every a E V. If all the vertices 

a E V1 have outdegree one, then player I has a unique strategy and this strategy 

is positional and optimal. Otherwise, consider any vertex a E V1 with outde- 

greed ~ 1. Remove any [d/21 of the edges leaving a, and recompute the value 

of a, v'(a) s~y, for the resulting graph. If ~'(a) - v(a) then there is a positional 

optimal strategy for the player I which does not use any of the removed edges; if 

vt(a) ~ v(a) then there is a positional optimal strategy for this player using one 

of the removed edges. Whichever is the case, we can now restrict attention to a 

suhgraph G' with at least Ld/2J fewer edges. Let d(a) be the initial outdegree 

of a vertex a E V. After O(~a~vl  logd(a)) such experiments we are left with a 

positional optimal strategy for player I. A positional optimal strategy for player 

II is found in a similar way. As ~ a ~ v  logd(a) < ]V[.log(IEI/IVI), we get that 
4 the complexity of this algorithm is O(IV [ .IE].log~[EI/IV[).W), as required. [] 

An interesting open problem is whether finding positional optimal strategies 

is harder than just computing the values of a game. The algorithm we describe 

calls the full value-finding algorithm repeatedly, hut uses only the value at a 

single vertex and ignores any information about the optimal moves of the players 

in the truncated games. Unfortunately, optimal moves in the truncated games 

may not conform to positional strategie s . We think however that it should be 

possible to use the additional information gathered and improve our algorithm. 

4 P l a y i n g  a g a i n s t  a k n o w n  p o s i t i o n a l  s t r a t e g y  

In this section we consider degenerate games in which there is only one edge out 

of each vertex for player II, say. This corresponds, for example, to cases in which 

player I knows in advance the positional strategy according to which player II 

is going to play. An O(iVI" IEI) algorithm of Karp [Kar78] (see also [CLR90], 

p. 548) for finding the maximum (or minimum) mean weight cycle of a weighted 

graph G = (V, E) supplies, almost immediately, an efficient purely combinatorial 

algorithm for such special cases. 

T h e o r e m 6 .  Let G -- (V, E) be a directed bipartite graph wi~h a real weight 

func t ion  w : E ~ R on its edges, and assume that the outdegree of each vertez 

v2 E V2 is ezactly one. Then, the values of all the vertices and a positional 

optimal strategy 7r 1 :V1 ~ V2 for player l can be found in O([V[.[E[) time. 



Could Karp's algorithm be used to obtain a more efficient algorithm for 

the general case? The natural decision problem corresponding to MPG's  is the 

following. Given an MPG G and a number u, is the value of G at least u? As a 

Corollary to Theorem 6 we get the following result. 

T h e o r e m  7. The decision problem corresponding to MPG's is in NP  N co-NP. 

The simple observations of this section were first made by Gurvich, Karzanov 

and Khachiyan [GKK88], and by Karzanov and Lebedev [KL93]. They are in- 

cluded here for completeness. 

5 D i s c o u n t e d  p a y o f f  g a m e s  

In this section we describe a discounted version of mean payoff games. This 

(fourth) variant, which is also interesting in its own right, will serve in the next 

section as a link between mean payoff games and simple stochastic games. 

Let 0 < ~ < 1 be a real number. The weight of the i th edge, ei, chosen by the 

players is now multiplied by (1 - A)~i and the outcome of the game is defined 

to be (1 - A) Y]i~=o )liw(ei). T h e  goal of the first player is again to maximise, 

and of the second player to minimise, this outcome. The number A is called the 

discounting factor of the game. 

Let. G = (V1, V2, E)  be a directed bipartite graph, where V1 = { u l , . . . ,  unl} 

and V2 = { v l , . . . , v n2} .  Let aij be the weight of the edge (ui ,vj) ,  o r - c ~  if 

(ui, vj) ~ E. Similarly, let bji be the weight of the edge (vj, ui), or +c~ if 

(vj, ui) ~ E. Let zi = xi(A) be the value of a discounted game started at ui 

and let yj = yj (A) be the value of a discounted game started at vj. The follow- 

ing theorem is easily verified. Its proof is omitted. 

T h e o r e m  8. The value vectors ( ;g l , . .  , ,  T,n,) and (Yl , . . . ,  yn~) of the discounted 

games played on G = (V1, 1/'2, E)  are the unique solutions of the equations: 

xi = maxl<j<n2{(1 -- ~)aij + ~ y j }  for 1 < i < n l ,  

yj = minl__.i__.,,l{(1 -- ~)bji + ~zi} for 1 < j < n2 �9 

It follows immediately from this theorem that  both players of the discounted 

game again have positional optimal strategies. Let u()~) be the value of the 

discounted game with discounting factor 2. As 2 tends to 1, we expect u(2) to 

tend to u, the value of the non-discounted game. This follows from the next 

theorem whose proof is omitted due to lack of space. 

T h e o r e m  9. Let G = (V, E) be a graph on n vertices, let w : E --* { - W , . . . ,  0, 

�9 . . ,  W }  be a weight function on its edges and let ~ be a real number satisfying 

0 < ~ < 1. Let ~()t) and v be the values @the discounted and mean payoffgames 

played on the gral~h G = (V, E) starting at a E V.  Then, 

u - 2 n ( 1 - A ) W  _< u(A) _< u + 2 n ( 1 - ~ ) W .  

In particular, if we choose A = 1 - 1/(2n3W) then it is easy to verify that  

[u(A) - u[ _< 1/(n(n - 2)), and u can be obtained from u(A) by rounding to the 

nearest rational with an even denominator of at most n, as was done in Section 2. 

We thus obtain a reduction from MPG's  to discounted payoff games (DPG's) .  



6 Reduct ion  to s imple stochast ic  games  

In this section we describe a simple polynomial reduction from discounted payoff 

games (DPG's) to simple stochastic games (SSG's). This reduction, combined 

with the reduction from MPG's to DPG's, shows that SSG's are at least as hard 

as MPG's. We believe that MPG's are in fact easier than SSG's. 

A simple s~oehas~ie game is a two-person game played on a directed graph 

G = (V, E) whose vertex set V is the union of three disjoint sets Vmax, Vmin and 

Yaverage. The graph also contains a special start vertex and two special vertices 

called the 0-sink and the 1-sink. Each edge emanating from an 'average' vertex 

has a rational probability attached to it. The probabilities attached to all the 

edges from each average vertex add up to 1. 

A token is initiMly placed on the start vertex of the graph. At each step of 

the game the token is moved from a vertex to one of its neighbours, according 

to the following rules: 

1. At a max vertex, player I chooses the edge along which the token is moved. 

2. At a min vertex, player II chooses the edge. 

3. At an average vertex, the edge along which the token is moved is chosen 

randomly according to the probabilities attached to the outgoing edges. 

The game ends when the token reaches one of the sink vertices. Player I wins 

if the token reaches the 1-sink and player II wins otherwise, i.e., if the token 

reaches the 0-sink or if the game does not end. The value of such a game is the 

probability that player I wins the game when both players play optimally. As 

was the case for mean payoff games, the two players of a simple stochastic game 

have positional optimal strategies. 

Simple stochastic games were first studied by Shapley [Sha53]. Many vari- 

ants of them have been studied since then (see Peters and Vrieze [PV87] for a 

survey). Condon [Con92] was the first to study simple stochastic games from a 

complexity theory point of view. She showed that the natural decision problem 

corresponding to SSG's (i.e., given a game G and a rational number 0 < c~ < 1, 

is the value of G at least a?) is in NP f3 co-NP. No polynomial time algorithm 

for SSG's is yet known. A subexponential randomised algorithm for SSG's was 

obtained by Ludwig [Lud95]. 

Condon [Con92] actually shows containment in NP f'l co-NP of the decision 

problem that corresponds to SSG's of the following restricted form. The outde- 

gree of each non-sink vertex is exactly two and the probability attached to each 

edge that emanates from an average vertex is 1/2. She then describes a reduction 

from general SSG's to SSG's of this restricted form. Her reduction, however, is 

not polynomial. A general SSG on n vertices in which the denominators of all 

the (rational) probabilities are at most m is transformed into a restricted SSG of 

size polynomial in n and m, rather than in n and log m. Her transformation can 

be easily modified however, as we show next, to yield a polynomial reduction. 

It is easy to transform a SSG into an equivalent SSG in which the outde- 

gree of each non-sink vertex is exactly two. Each vertex of fan-out k is simply 

replaced by a binary tree with k leaves. This increases the size of the graph 
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Fig. 1. Implementing an average vertex with arbitrary probabilities 

(i.e., the number of vertices and edges) by only a constant factor. The remaining 

problem is therefore the simulation of binary average vertices with non-equal 

probabilities. Suppose we want to implement an average vertex u with two ema- 

nating edges (u, vl) and (u, vz), labeled respectively by the probabilities p/q and 

(q - p ) / q ,  where p and q are integers and 2 t-1 _< q < 2*. Let ala2.. .at-la~ and 

blbz.. ,  bt-lb~ be the binary representations of p and q - p  respectively, where 

al  and bx are the most significant digits. We use the construct shown in Fig- 

ure 1. All the vertices used are average vertices with equal probabilities. For 

every 2 < i < t + 1, there are two emanating edges that  are reached from u with 

probability 2 - i .  If ai = 1 then connect one of the edges which has probability 

2 -(i+1) to vl, and ifbi = 1 then connect one of these edges to v2. All the unused 

edges are connected back to u. Is it easy to check that  vl and v2 are eventu- 

ally reached with the appropriate probabilities. The number of vertices used in 

this construction is proportional to the number of bits needed to represent the 

transition probabilities. The reduction is therefore polynomial. 

A simple stochastic game is said to halt with probability 1 if, no matter  how 

the players play, the game ends with probability 1. The proof of the following 

theorem can be found in Condon [Con92]. Note its similarity to Theorem 8. 

Theo r e m 10. Let G = (V, E) be an SSG that halts with probability 1, and let 

p(u, v) denote the probability attached to an edge (u, v) that emanates from an 

average vertez u. The values u(v) of the vertices of G form the unique solution 

to the following set of equations: 

maX(u,v)EEll/(V) } 

U(U)= min(~,~)eE{u(v)} 

along with the conditions that u(O-sink) = 0 and u(1-sink) = 1. 

if u is a maz vertez, 

if u is a rain vertez, 

if u is an average vertez, 

We are finally in a position to describe a reduction from discounted payoff 

games (DPG's) to simple stochastic games (SSG's). Recall that  we have already 

described a reduction from MPG's to DPG's.  

Let G = (V, E) be a DPG with discounting factor A. If we add a constant c 

to all the weights of the game, the value of the game is increased by c. If we 

multiply all the weights of the game by a constant c > 0, the value of the 

game is multiplied by c. We can therefore scale the weights so that  they will 

all be rational numbers in the interval [0, 1]. If  the original weights were in the 
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Fig. 2. Simulating a transition of a discounted payoff game. 

range { - W , . . . ,  0 , . . . ,  W), then the new weights will be rational numbers with 

denominators and numerators in the range {0, 1 , . . . ,  2W}. 

We construct an SSG G' = (V', E'), with the same value as the scaled DPG 

G -- (V, E) with discounting factor ~, in the following way. Each edge (u, v) 

with weight w in G is replaced by the construct shown in Figure 2. The simple 

stochastic game G t halts with probability 1, as in each transition there is a 

probability of 1 - A of reaching a sink vertex. The values of the vertices of 

the discounted payoff game G satisfy the set of equations given in Theorem 8. 

The values of the vertices of the simple stochastic game G ~ satisfy the set of 

equations given in Theorem 10. These two sets of equations become identical 
once the intermediate variables, that correspond to the intermediate vertices 

introduced by the transformation described in Figure 2, are eliminated. As this 

set of equations has a unique solution, the values of the two games are equal. 

The transformation of G to G ~ can clearly be carried out in polynomial time. 

This completes the description of the reduction. 

7 S o m e  a p p l i c a t i o n s  

In this section we briefly mention two applications of mean payoff games. 

Consider a system that can be in one of n possible states. At each time unit, 

the system receives one of k possible requests. The system is allowed to change 

its state and then it has to serve the request. The transition from state i to 

state j costs aij, and serving a request of type t from state i costs bit. What, in 

the worst case, is the average cost of serving a request? 

Borodin, Linial and Saks [BLS92] performed a competitive analysis of such 

systems, which they call on-line metrical task systems. If we look at the worst 

case instead, we get a mean payoff game played between the system and an 

adversary that chooses the requests. 

Consider finite-window on-line string matching algorithms (see [CHPZ95] for 

a definition). What, in the worst case, is the average number of comparisons that 

an optimal algorithm has to perform per text character? The problem can be for- 

mulated as a mean payoff game played between the designer of a string matching 

algorithm and an adversary that answers the queries made by an algorithm. The 

reward (the complement of cost) obtained by the algorithm at each stage is the 

amount by which it can shift its window. For each pattern string and window 

size we obtain a mean payoff game, the solution of which yields an optimal string 

matching algorithm for that pattern and window size. 



]0 

8 Concluding remarks 

Mean payoff games form a very natural class of full-information games and we 

think that resolving their complexity is an interesting issue. We conjecture that  

they lie in P but, since none of the standard methods seems to yield a polynomial 

time algorithm for them, the study of mean payoff games may require new algo- 

rithmic techniques. If such positive approaches are unsuccessful, the example of 

mean payoff games may help in exploring the structure of NP N co-NP. 
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