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Abstract

Motivated by the question of the relative complexities of the Graph Isomorphism and

the Graph Automorphism problems� we de�ne and study the modular graph automor�

phism problems� These are the decision problems modk�GA which consist� for each

k � �� of deciding whether the number of automorphisms of a graph is divisible by k�

The modk�GA problems all turn out to be intermediate in di�culty between Graph

Automorphism and Graph Isomorphism�

We de�ne an appropriate search version of modk�GA and design an algorithm that

polynomial�time reduces the modk�GA search problem to the decision problem� Com�

bining this algorithm with an IP protocol� we obtain a randomized polynomial�time

checker for modk�GA� for all k � ��

� Introduction

The Graph Isomorphism problem �GI� consists of determining whether two graphs are iso�
morphic� It is well known that GI is in NP� but despite decades of study by mathemati�
cians and computer scientists� it is not known whether GI is in P or whether GI is NP�
complete� Many researchers conjecture that GI�s complexity lies somewhere between P and
NP�complete� Related to GI are several other decision problems �some graph�theoretic and
others group�theoretic in nature� that are similarly not known to be in P or NP�complete�
One such problem which is closely related to GI is Graph Automorphism �GA�� Deciding
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whether a graph has a nontrivial automorphism� Regarding the relative complexities of GA
and GI� it is known that GA is polynomial�time many�one reducible to GI� On the other
hand� GI is not known to be even polynomial�time Turing reducible to GA �see 
	�� for these
and related results�� However� in 
	� it is shown that GI is polynomial�time reducible to
the problem of computing the number of automorphisms of a graph�

The notion of program checking was introduced by Blumand Kannan 
�� as an algorithmic
alternative to program veri�cation� Since then the design of e�cient checkers for various
computational problems has rapidly grown into a discipline of algorithm design 
�� ��� One
of the �rst program checkers in 
�� was a randomized polynomial�time checker for GI� It is
an outstanding open question in the area if NP�complete problems have e�cient program
checkers� This can be construed as another evidence that GI is not NP�complete� Later�
in 
		� it was shown that GA has a nonadaptive checker� In other words� the checker can
make all its queries to the program in parallel� hence enabling it to be fast in parallel �in NC�
to be precise�� It is an open question whether GI too has a nonadaptive checker� and the
apparent bottleneck here is that the search problem for GI is not known to be polynomial�
time truth�table reducible to the decision problem for GI �i�e� the reduction is nonadaptive�
it uses only parallel queries��

Thus� a natural next step in investigating the relationship between GI and GA is to
consider exactly how much we need to know about the number of automorphisms of a graph
in order to solve the Graph Isomorphism problem� This motivates us to de�ne and study
modular graph automorphism problems� Let Aut�G� denote the automorphism group of the
graph G�

De�nition � For any k� let modk�GA � fG � jAut�G�j � � �mod k�g�

We show in Theorems � and � that for any k � 	� GA �p
m modk�GA �p

m GI� thus
the modk�GA problems are intermediate in di�culty between GA and GI� It is an open
question whether any of the modk�GA problems is polynomial�time equivalent to GA or GI�
We conjecture that modk�GA is not polynomial�time equivalent to GA or GI� for any k � 	�
An evidence that some of the modk�GA problems could be actually harder than GA is our
observation that Tournament Isomorphism �graph isomorphism for tournament graphs� is
many�one reducible to mod��GA� This follows from the fact that the automorphism group of
any tournament is of odd size 
	��� which in turn implies that two tournaments are isomorphic
i� the automorphism group of their disjoint union contains an order�two permutation �which
must switch the two graphs��

The layout of the paper is as follows� Section  contains the preliminaries� In Section ��
we prove that the modk�GA problems are located between GA and GI� In Section �� we
show that search is polynomial�time Turing equivalent to decision for modk�GA� and in
Section � we use this result in combination with an IP protocol for modp�GA to obtain an
e�cient program checker for modk�GA� Notice that although both GA and GI have program
checkers �shown in 
		� and 
�� resp�� and modk�GA is intermediate in complexity� it does
not necessarily imply that modk�GA has a program checker 
���





� Preliminaries

In this paper by a graph we mean a �nite directed graph� �see for example 
�� or any other
standard text on graph theory for basic de�nitions�� For a graph G� let V �G� denote its
vertex set and E�G� denote its edge set� A permutation � on the vertex set V �G� of a
graph G is an automorphism of G if �u� v� � E�G� �� ���u�� ��v�� � E�G�� The set
of automorphisms Aut�G�� of a graph G� is a subgroup of the permutation group on V �G��
The identity automorphism of any graph will be denoted by id�

Let X be a list of vertices in V �G� for a given graph G� ByG�X� we mean the graph G with
distinct labels attached to the vertices in X� Given two lists of vertices X�Y � V �G�� the
graphs G�X � and G�Y � have the same labels in vertices occupying the same relative positions
in X and Y � It is not hard to see that in G�X� vertices of X are pointwise �xed in any
automorphism�� Thus Aut�G�X �� is isomorphic to the subgroup of Aut�G� which pointwise
�xes the vertices in X� Furthermore� given an automorphism of Aut�G�X �� the corresponding
automorphism of Aut�G� can be e�ciently �i�e� in polynomial time� constructed�

De�nition � Let G�� � � � � Gn be n graphs�

� Let Pn be a directed simple path of n new vertices v�� v�� � � � � vn� where each vertex vi
is labeled with a single label l� The graph Path�G�� � � � � Gn� is obtained by taking one
copy of each of the graphs G�� � � � � Gn and� for 	 � i � n� attaching all the vertices of
Gi to vi�

� Let Cn denote the directed simple cycle on n new vertices v�� v�� � � � � vn� with each vertex
vi� 	 � i � n� labeled with a single label l� The graph Cycle�G�� � � � � Gn� is obtained by
taking one copy of each of the graphs G�� � � � � Gn and� for 	 � i � n� attaching all the
vertices of Gi to vi�

In both Path�G�� � � � � Gn� and Cycle�G�� � � � � Gn�� since the new vertices v�� v�� � � � � vn
are labeled with l� any automorphism of these graphs must map the set fv�� v�� � � � � vng
onto itself� Consequently� any automorphism of Path�G�� � � � � Gn� �Cycle�G�� � � � � Gn�� when
restricted to fv�� v�� � � � � vng is an automorphism of Pn �Cn� This means that an automor�
phism of Path�G�� � � � � Gn� cannot permute the copies of G�� � � � � Gn� while an automorphism
of Cycle�G�� � � � � Gn� can permute them but only along the cycle Cn�

The reducibilities discussed in this paper are the standard polynomial�time Turing and
many�one reducibilities� Formal de�nitions of these and other standard notions in complexity
theory can be found in 
� 	��

We �nish this section with some complexity�theoretic concepts which will be used later�
A set A � �� is a d�cylinder if there is an FP function OR that takes a list of strings
x�� x�� � � � � xm as argument and produces a string y such that

OR�x�� x�� � � � � xm� � y � A �� 	i � 	 � i � m � xi � A

�In this paper we consider the problems GI� GA� and modk�GA on directed graphs
 However� all results
of this paper hold for these problems on undirected graphs as well


�Each label can be implemented with a graph gadget like a long path such that the overall size of the
graph is still polynomially bounded
 See� e
g
 ����
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Similarly� a set A � �� is a c�cylinder if there is an FP function AND that takes a list of
strings x�� x�� � � � � xm as argument and produces a string y such that

AND�x�� x�� � � � � xm� � y � A �� 
i � 	 � i � m � xi � A

Now� we recall that GI satis�es both properties��

Proposition � 
�� 		� GI is a d�cylinder and a c�cylinder�

The relative complexity of decision and search for NP problems is well studied 
� 	�� For
instance� it is known that search and decision are polynomial�time Turing equivalent for all
NP�complete problems� In particular� we recall that for GI� search is polynomial�time Turing
reducible to decision 
	�� whereas for GA a stronger result holds� search is nonadaptively
polynomial�time reducible to decision 
		��

� Locating the mod k�GA Problems

We show in this section that modk�GA is located between GA and GI� for all k � 	�

Theorem � For all k � 	� GA �p
m modk�GA�

Proof� Given a graph G� we de�ne for every i� j with 	 � i � j � n� the graph Hi�j �
Cycle�G�fig�� G�fjg�� � � � � G�fjg�� which contains one copy of G�fig� and k � 	 copies of G�fjg��
Further� let H be obtained by applying the Path operator to all the graphs Hi�j with 	 �
i � j � n� We claim that G has a nontrivial automorphism if and only if H is in modk�GA�

Suppose that G has a nontrivial automorphism �� There exist two vertices i and j such
that ��i� � j� Notice that Hi�j has the following nontrivial automorphism � that cyclically
permutes the k graphs in Cycle�G�fig�� G�fjg�� � � � � G�fjg�� as follows� The automorphism �
maps the �rst graph G�fig� to G�fjg� by �� It maps each of the �rst k �  copies of G�fjg� to
the next copy of G�fjg� by the identity automorphism� Finally� � maps the last copy of G�fjg�

back to G�fig� by the automorphism ����
The order of � is k since the vertices in Hi�j are moved in a cyclic way through the

di�erent k subgraphs� In fact� the permutation � is a product of a bunch of k�cycles� Thus
Hi�j � modk�GA� Since jAut�H�j �

Q
��i�j�n jAut�Hi�j�j� it follows that H � modk�GA�

For the converse� assume that H � modk�GA� Then� H has a nontrivial automorphism�
say� �� Notice that � must induce an automorphism 	 in one of its subgraphs Hi�j� Since
Hi�j � Cycle�G�fig�� G�fjg�� � � � � G�fjg��� there are two possibilities� either 	 induces a nontrivial
automorphism of G�fig� or G�fjg�� or else 	 maps the copy of G�fig� to some copy of G�fjg�� In
either case� it is clear that we get a nontrivial automorphism of G�

Mathon 
	� has shown that jAut�G�j is polynomial�time computable with GI as oracle�
From this it easily follows that modk�GA �

p
T GI� In the next theorem� we strengthen this to

a �p
m�reduction using some permutation group theory�

�Elsewhere in the literature� e
g
 ����� these properties are called OR and AND functions respectively
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Theorem � For all k � 	� modk�GA �p
m GI�

We need a couple of de�nitions and group�theoretic lemmas before we prove Theorem ��
Let A be a subgroup of Sn and let 
n� denote the set f	� � � � � � ng� A subset X � 
n� is
A�invariant if g�X� � X for all g � A� If X � 
n� is A�invariant then consider the action
of A restricted to X� This gives rise to a subgroup of the symmetric group SX � which we
denote by AX � A useful property that is obvious is that jAXj � jAj� for all A�invariant sets
X�

Lemma � Let A be a subgroup of Sn s�t� jAj � m� Then there exists an A�invariant subset
X � 
n� with jXj � m logm� such that A is isomorphic to AX�

Proof� Consider the following procedure for constructing the set X�

X � �
while 	i �� X � jAXj � jAX�A�i�j do
�� A�i� denotes the orbit of i under A ��
f

Pick such an i�
X � X �A�i�

g

First we claim that� as a loop invariant� X is always an A�invariant subset of 
n�� To see
this� notice that it holds at the beginning when X is empty� and if X is A�invariant then so
is X �A�i� since we are including an entire A�orbit in the set�

Next� suppose X is A�invariant and i �� X is some index� Consider the mapping �
from AX�A�i� to AX which maps an element of AX�A�i� to its restriction to X� Since X is
A�invariant� it is easy to verify that � is a surjective homomorphism from AX�A�i� to AX�
It follows that jAXj divides jAX�A�i�j� Suppose now� at some stage of the while loop� i is an
index such that jAX j � jAX�A�i�j� Then it must hold that jAX j � jAX�A�i�j� Thus we have
argued that every time X increases by including an orbit A�i� in it� the size of the group
AX increases by at least a factor of � Thus the assignment X � X � A�i� is executed at
most logm times� implying also that the procedure must stop� Since the size of any orbit
A�i� is bounded by jAj� it follows that the procedure stops with an A�invariant set X such
that jXj � m logm� Let X be the set computed when the while�loop is exited� To complete
the proof we must show that AX is isomorphic to A� Consider the canonical surjective
homomorphism 
 from A to AX� which maps a given element of A to its corresponding
restriction to X� To show that this homomorphism is an isomorphism we only need to argue
that Ker�
� is �id�� Suppose g � Ker�
� is a nontrivial element� Then there is i �� X such
that g�i� �� i� This in turn implies that the surjective homomorphism � from AX�A�i� to
AX which maps an element of AX�A�i� to its restriction to X� has a nontrivial kernel with
g � Ker���� Consequently� jAXj � jAX�A�i�j� Thus� both X and i satisfy the while�loop
condition contradicting the fact that the while loop has terminated� This completes the
proof of this lemma�
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Lemma 	 Let A be a �nite group� Let X � fa�� a�� � � � � atg and Y � fb�� b�� � � � � btg be two
subsets of A such that hXi � hY i � �id� and aibj � bjai� for 	 � i� j � t� Then jhXij
divides the order of the group hfaibi � 	 � i � tgi�

Proof� Let H denote the subgroup of A generated by faibi j 	 � i � tg� K denote the
subgroup of A generated by fai j 	 � i � tg� and L denote the subgroup of A generated by
fbi j 	 � i � tg� Notice that� since aibj � bjai� for 	 � i� j � t� we have KL � LK and
therefore the set KL is actually a subgroup of A� Next� notice that� by de�nition of H� any
x � H can be written as a product of elements from the generator set faibi j 	 � i � tg�
Using aibj � bjai� for 	 � i� j � t as a rewrite rule� this product of generators expressing
x can be rewritten as ay� where a � K and y � L� It follows that H � KL� Consider the
following map 
 from the group H to the group K de�ned as follows�


x � H � 
�x� � a where x � ay� with a � K and y � L

We claim that 
 is a well�de�ned surjective homomorphism from H to K� We �rst
show that 
 is well�de�ned� Suppose there are two distinct elements a� a� � K such that
x � ay � a�y� for elements y� y� � L� This implies� by cancelation laws� that a��a� � yy����
which belongs to both K and L� Since K �L � �id�� we have a � a�� Thus 
 is well�de�ned�
To see that 
 is a homomorphism is routine� we can easily check that 
�xx�� � 
�x�
�x��
and that 
�x��� � �
�x���� hold using the rewrite rules aibj � bjai� for 	 � i� j � t� To see
that 
 is surjective� let a � K be any element� We can express a as a product ���r�mair for
indices ir � 
t�� Consider the element x � ���r�mairbir � H� It is easy to see that 
�x� � a�

Thus by the fundamental theorem of homomorphisms it follows that H�Ker�
� is iso�
morphic to K� Therefore� jH�Ker�
�j � jKj� It follows that jKj divides jHj which proves
the lemma�

Proof of Theorem �

First� we argue that it su�ces to show that modpl�GA �p
m GI for all prime p and l � ��

To see this� let
Q

��j�r p
lj
j be the prime factorization of k� Clearly� a graph G � modk�GA

i� G �
T
��j�r mod

p
lj
j

�GA� Thus� if mod
p
lj
j

�GA �p
m GI for 	 � j � r� it follows that

modk�GA �p
m GI� since GI is a c�cylinder�

We �rst prove a useful group�theoretic claim� Let G be a graph on n vertices and f
be a partial permutation on 
n� �i�e� f is de�ned on a subset of the domain 
n� and can be
extended to a permutation in Sn�� Then we call f a partial automorphism of G if f can be
extended to an automorphism of G�

Claim
 Let p be a �xed prime and l � �� A graph G on n vertices is in modpl�GA if and
only if there exist a set X � 
n� with jXj � pl�log pl� and a subgroup K � fa�� a�� � � � � aplg
of SX such that each ai � K is a partial automorphism of G�

Proof� Let G � modpl�GA be an n vertex graph� Since pl divides jAut�G�j� by Sylow�s
theorem Aut�G� has a subgroup A of size pl� By Lemma � there is an A�invariant set
X � 
n� with jXj � pl�log pl�� such that AX is isomorphic to A� Let AX � fa�� a�� � � � � aplg�
Furthermore� it also follows that AX is a subgroup of SX where each ai � AX is a partial

�



automorphism of G� Conversely� suppose there is X � 
n� with jXj � pl�log pl� and a
subgroup K � fa�� a�� � � � � aplg of SX where each ai � K is a partial automorphism of G�
Then for each i with 	 � i � pl� there is a bi � S�n��X such that aibi � Aut�G�� We can now
apply Lemma � to the elements faig��i�pl and fbig��i�pl� since the required conditions are
ful�lled� Consequently� jhfaibi � 	 � i � plgij is divisible by pl� Since hfaibi � 	 � i � plgi is
a subgroup of Aut�G�� it follows that pl divides jAut�G�j�

Now� note that the language B � f�G� f� � f is a partial automorphism of the graph
Gg is �p

m�reducible to GI �for details see 
	���� We will give a truth�table reduction from
modpl�GA to B� where the truth�table is a disjunction of conjunctions� Since the language
B is �p

m�reducible to GI and since GI is both a c�cylinder and a d�cylinder� it follows that
modpl�GA is �p

m�reducible to GI� We describe below the said reduction of modpl�GA to B
as a logical expression� which is easily seen to describe a disjunction�of�conjunctions kind of
truth�table reduction�

G � modpl�GA �� �	 X � 
n� � jXj � pl log pl�

�	 subgroup K � SX � jKj � pl��
a � K�
�G� a� � B�

This completes the proof of Theorem ��

� Computing Solutions for mod k�GA Instances

The goal of this section is to design a polynomial�time algorithm that reduces the search
problem for modk�GA to the decision problem� Consider modk�GA for an arbitrary k � 	�
Notice that if the prime factorization of k is

Q
��i�m peii � then the natural NP witness of the

membership of a graph G in modk�GA is a collection of m subgroups fA�� A�� � � � � Amg of
Aut�G� where� for each i� Ai is of order p

ei
i � and Ai is listed as a set of permutations� We

consider such a witness as a solution for G for the modk�GA search problem and we design
a polynomial�time algorithm that computes this witness for any given instance of modk�GA
with oracle access to the modk�GA decision problem�

In the following lemma we introduce one of the two last graph gadgets which we will
need in order to prove the main result of this section�

Lemma � Given t graphs G�� G�� � � � � Gt� each with n nodes� we can construct in polynomial
time a new graph Paste�G�� G�� � � � � Gt� such that the following properties hold�

�� A permutation 
 � Sn is an automorphism of Paste�G�� G�� � � � � Gt� i	 there is a
permutation � �

T
��i�t Aut�Gi� such that 
 restricted to Gi is �� for 	 � i � t�


� Let p be a prime� Paste�G�� G�� � � � � Gt� has an automorphism of order p i	 there is
an order�p permutation � �

T
��i�t Aut�Gi��

�� Given 
 � Aut�Paste�G�� G�� � � � � Gt�� we can in polynomial time construct the corre�
sponding � �

T
��i�tAut�Gi��

�



Proof� Notice that parts  and � of the lemma are both direct consequences of part 	� Thus
it su�ces to prove the �rst part� The graph Paste�G�� G�� � � � � Gt� basically consists of one
copy of each of G�� G�� � � � � Gt� Furthermore� for 	 � i � t we color the nodes of the copy
of Gi using color Ci� This forces every automorphism of the new graph to map the copy of
Gi to itself� Next� we use n distinct labeling nodes Lj � 	 � j � n� as follows� from the jth
node of every graph Gi put a long path of some �xed length N to node Lj� This ensures
that for any automorphism of Paste�G�� G�� � � � � Gt�� if node j� is mapped to node j� in Gi

then j� gets mapped to the node j� also for each Gi�� i� �� i� This construction guarantees
the following� given an automorphism 
 of Paste�G�� G�� � � � � Gt�� there is a permutation
� �

T
��i�t Aut�Gi� such that 
 restricted to Gi is �� for 	 � i � t� This proves the lemma�

Before we proceed we need to recall a de�nition�

De�nition � 
�� Let � � Sn be a permutation� The cycle graph of � is the directed graph
G � �
n�� E�� where �i� j� � E i	 ��i� � j�

We next recall a lemma from 
���

Lemma � 
�� If G is the cycle graph of � � Sn then Aut�G� is precisely the set of all
permutations in Sn that commute with ��

The second graph gadget needed is the following�

Lemma �� Let G be a graph on n nodes and S � fg�� g�� � � � � gtg � Sn be a set of permuta�
tions� Further let C � fC�� C�� � � � � Csg � Sn be a set of pairwise disjoint cycles� p be a �xed
prime� and � be a permutation on 
t�� Then we can compute in time polynomial in n a graph
Comb���G� S� C� p� such that Comb���G� S� C� p� � modp�GA i	 one of the following holds�

�� G has a nontrivial automorphism � of order p such that �gi��� � gi� for 	 � i � t�
and such that ��x� � x for all x �

S
��i�s Ci�


� G has a nontrivial automorphism � such that C�� C�� � � � � Cs are cycles of � and such
that �gi��� � g��i�� for 	 � i � t�

Proof� Let the composition C�C� � � �Cs of the cycles of C be denoted by 
 � Sn� Further�
let G� denote the graph obtained from G by coloring each node x �

S
��i�s Ci with a distinct

color nx� Similarly� let G�� denote the graph obtained from G by coloring each node 
�x� �
S

��i�s Ci with the color nx� for each x �where nx is used to color node x in G���
Now� let H � Paste�G�� G�� G�� � � � � Gt�� where Gi is the cycle graph of gi� for 	 � i � t�

Similarly� let K � Paste�G��� G����� G����� � � � � G��t��� Finally� we put one copy of H and p�	
copies of K together to build the graph Cycle�H�K� � � � �K� �in which we have p� 	 copies
of K�� This graph Cycle�H�K� � � � �K� is de�ned to be Comb���G� S� C� p��

Suppose Comb���G� S� C� p� � modp�GA� Now� suppose the �rst of the above two prop�
erties does not hold for G� We will prove that the second property must hold� Let  be
an order�p automorphism of the graph Comb���G� S� C� p�� Since the �rst property does not
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hold� notice that the order�p automorphism  of the graph Cycle�H�K� � � � �K� cannot map
H to itself and each copy of K to itself� Therefore� since p is prime�  must permute the
p graphs in the list �H�K� � � � �K� by a p�cycle� More precisely�  can be seen as a p�tuple
��� �� � � � � p� of permutations i � Sn� 	 � i � p� where � maps the copy of H into a
copy of K� and the permutations ��� � � �p�� map a copy of K into a fresh copy of K� and
�nally p maps a copy of K back to H� Recall that H � Paste�G�� G�� G�� � � � � Gt� and
K � Paste�G��� G����� G����� � � � � G��t��� and observe that �� which maps H to K� is forced
due to the color labels to map G� to G�� and to map Gi to G��i� for each i� 	 � i � t� Thus�
� is an automorphism of G that has C�� C�� � � � � Cs as its cycles� and gi�g

��
i � g��i�� for

	 � i � t as claimed by the second property�
For the converse implication� suppose the �rst property holds� Let � be an order�p au�

tomorphism of G satisfying the �rst property� Consider the permutation � of the nodes
of the graph Comb���G� S� C� p�� where the copy of H and each copy of K is mapped to
itself under �� Clearly� � is an order�p automorphism of Comb���G� S� C� p�� Next� suppose
that the �rst property fails and the second property holds� Again� let � denote the auto�
morphism of G satisfying the second property� Consider the permutation � of the nodes
of Comb���G� S� C� p�� which maps the copy of H into the �rst copy of K according to ��
and then successively maps the �rst p �  copies of K by the identity permutation into the
corresponding next copy of K in the cyclic order� and �nally maps the last copy of K to H
according to ���� Observe that the permutation � is in fact a product of disjoint p�cycles�
the p�cycles are the orbits of vertices of H� It follows that � is an order�p automorphism of
Comb���G� S� C� p��

The next theorem is the main result of this section� Its proof draws on group�theoretic
results concerning p�groups�

Theorem �� For any prime p� there is a polynomial�time algorithm Ak with modp�GA
as oracle such that given a graph G � modpk �GA as input� the algorithm Ak lists out the
elements of an order�pk subgroup of Aut�G��

We will prove Theorem 	 by induction on k� We �rst take care of the base case �when
k � 	� in the following lemma�

Lemma �� For any prime p� there is a polynomial�time algorithm A� with modp�GA as
oracle such that given a graph G � modp�GA as input� the algorithm A� outputs a cyclic
group of order p contained in Aut�G��

Proof� For any list of vertices X � fi�� � � � � img� let r�X� be a right shift of X� this is
r�X� � fim� i�� � � � � im��g� Consider the following algorithm� which computes an order�p
automorphism of an input graph G � modp�GA�

Algorithm A��

input G�
if G �� modp�GA then stop�
X � �

�



for i � 	 to jV �G�j do
if G�X�fig� � modp�GA then X � X � fig�

S � V �G��X�
C � �
G� � G�X�� G�� � G�X��
for each p�cycle C � S �

S
D�CD do

if Cycle�G�
�C�� G

��
�r�C��� � � � � G

��
�r�C��� � modp�GA then

�� There are p� 	 copies of G��
�r�C�� in the above Cycle de�nition ��

f
G� � G�

�C�� G
�� � G��

�r�C���

C � C � fCg
g�

output the order�p automorphism consisting of p�cycles C and �xed�point set X

We now prove the correctness of the above algorithm� Notice that the �rst for�loop takes
G � modp�GA as input and computes the graph G�X � � modp�GA with X as its set of �xed
points �such that no more points can be �xed preserving membership in modp�GA�� We have
to show that when the algorithm stops it outputs an order�p automorphism which has C as
its collection of p�cycles and X as its �xed�point set� To begin with� notice that any order�p
automorphism with X as its �xed�point set is a product of disjoint p�cycles and 	�cycles
�corresponding to elements of X��

We will prove this by showing as loop invariant that at each stage there is an order�p
automorphism of G that contains C among its p�cycle set and containsX in its �xed point set�
Clearly� before the loop is entered� there is an order�p automorphism of G�X � with C �  as
subset of its p�cycle set� Suppose this property holds at the beginning of some iteration of the
for�loop� Suppose in the next iteration a new p�cycle C gets included in C� We have to show
that there is an order�p automorphism of G with X as �xed�point set and such that C�fCg is
contained in its p�cycle set� Consider Cycle�G�

�C�� G
��
�r�C��� � � � � G

��
�r�C���� which is in modp�GA�

Notice that the corresponding order�p automorphism 
 of Cycle�G�
�C�� G

��
�r�C��� � � � � G

��
�r�C���

cannot map the copy of G�
�C� to itself since G

�
�C� cannot have order�p automorphisms �because

it forces G to have order�p automorphisms with X � C as �xed points�� Thus 
 must map
the p graphs in Cycle�G�

�C�� G
��
�r�C��� � � � � G

��
�r�C��� by a p�cyclic rotation� In particular� it implies

that 
 maps G�
�C� to some copy of G��

�r�C��� Hence� 
 restricted to the nodes of G yields an
automorphism � of G with X as �xed�point set and such that C � fCg is contained in the
p�cycle set of ��

By induction� it follows that when the loop is exited we have an order�p automorphism
which is completely speci�ed� C is its collection of p�cycles and X is the �xed point set�

Proof of Theorem ��

We will prove the theorem by induction on k� Notice that the base case for k � 	 is
proven in Lemma 	�� More precisely� the induction hypothesis is the following�
Suppose that we have a polynomial time algorithmAk�� with oracle modp�GA that computes
an order�pk�� subgroup of Aut�G� given a graph G � modpk���GA as input�

We now prove the induction step by designing a polynomial�time algorithm with oracle
modp�GA that� given as input a graph G � modpk �GA� computes the elements of an order�pk
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subgroup of Aut�G�� The induction hypothesis gives us the algorithm Ak�� using which we
can compute in polynomial time an order�pk�� subgroup of Aut�G� �call it Sk���� Let

Sk�� � fg�� g�� � � � � gpk��g

We �rst recall the following result from the theory of p�groups �for instance� it is well�
known consequence of Sylow�s theorems� 
���

Proposition �� If A is a �nite group such that pk divides jAj for some prime p� then for
every subgroupH of A such that jHj � pk�� there exists a subgroupK of A such that jKj � pk

and H is a normal subgroup of K�

Let now G be a graph such that G � modpk �GA� Furthermore� let Sk�� be a subgroup
of Aut�G� such that jSk��j � pk��� An immediate consequence of this proposition is the
following fact�

Fact �� There is a subgroup Sk of Aut�G� of order pk such that Sk�� is a normal subgroup
of Sk�

The quotient group Sk�Sk�� has p elements� more explicitly we can write it as

Sk�Sk�� � fSk��g� � � � � Sk��g
p � Sk��g� for some g � Sk

As a �rst step to designing the required algorithm for computing Sk we prove the following
claim�

Claim
 G � modpk �GA i	 there exists g � Aut�G� such that the following hold

�� g �� Sk���


� o�g� � pl for some l � k�

�� Sk��g � gSk��

Proof� Clearly the forward direction of the claim is the fact stated above� To prove the
reverse implication suppose there exists g � Aut�G� satisfying the above three conditions�
Consider the group H generated by the set Sk�� � fgg� Since Sk��g � gSk�� it follows that
Sk�� is a normal subgroup of H� Notice that the quotient group H�Sk�� is the cyclic group
generated by Sk��g and therefore its order is a power of p �more precisely� it is pj for some
j � l�� Since p must divide jH�Sk��j it follows that pk divides jHj and thus it also divides
jAut�G�j proving the claim�

Observation �� Notice that if we compute an element g described in the above claim� we
can compute �in polynomial time� by brute�force listing the subgroup H generated by the
set Sk�� � fgg� Applying Proposition �� we know that there is a subgroup Sk of H such
that jSkj � pk and Sk�� is normal in Sk� Since H has at most p�k elements� we can do a
brute�force search for Sk in polynomial time�

		



It remains to show how� given an input graph G � modpk �GA and Sk��� we can compute
with a modp�GA oracle an element g satisfying the properties of the above claim� Let

Sk�� � fg�� g�� � � � � gpk��g

For 	 � i � pk�� let Fi � fj � 
n� � gi�j� � jg and Mi � 
n�� Fi�
For simplicity we explain the rest of the algorithm in two phases� In the �rst phase of

the algorithm we check if there is an automorphism of order pl� for l � k� that �xes some
xi �Mi for all i � 
pk��

Phase � of Algorithm Ak�

for each choice fxi �Mig��i�pk�� do

for each p�cycle P � Sn disjoint from fxig��i�pk�� do

f
C � f�x��� �x��� � � � � �xpk���� Pg�
�� Strictly speaking� in C there are no repetitions of the ��cycles ��
for each permutation � of 
pk��� do

if Comb���G� Sk��� C� p� � modp�GA then

f
Use Algorithm A� of Lemma 	� to compute an
order�p automorphism � of Comb���G� Sk��� C� p��
Applying Lemma 		� from � we compute an
order�p automorphism � of G�

g
g

To see the correctness of Phase 	 let Comb���G� Sk��� C� p� � Cycle�H� K� � � � �K� as in
Lemma 		� with p � 	 copies of K� where H and K are appropriately de�ned� Suppose
� maps H to itself and each copy of K to itself� Then � projected to H gives an order�p
automorphism of G that �xes all points in fxig��i�pk�� as well as all points in P � On the
other hand� if � cyclically rotates the p graphs �H�K� � � � �K� then by Lemma 		 we get an
automorphism 
 of G that has a p�cycle P and �xes all points in fxig��i�pk�� � We can easily
compute the order o�
� � pr� If we choose � � 
r we get the desired order�p automorphism
of G�

Thus� in either case if Phase 	 succeeds it outputs an order�p automorphism � �� Sk��

such that �Sk�� � Sk���� Given this element � we can compute an order�pk subgroup
of Aut�G� �which contains Sk��� by a brute�force search for it in the group generated by
Sk�� � f�g�

The algorithm goes to the second phase if the �rst phase does not succeed� In the second
phase of the algorithm we check if there is an automorphism of G of order pl� for some l � k�
that di�ers from all automorphisms in Sk��� In this phase� the correctness relies on the fact
that Phase 	 has not succeeded�

	



At this point we introduce some notation� Let M denote M��� � ��Mpk��� Let C�� � � � � Ct

be a collection of t cycles such that for 	 � i � t jCij � pei and � � ei � k� We say that the
above collection C�� � � � � Ct of cycles is good w� r� t� S � 
pk���� �l�� l�� � � � � lpk��� � M � and
�f � ffj � Fj � j � Sg if

�f � �t
i��Ci� and lj � �

t
i��Ci for 	 � j � pk��

Phase � of Algorithm Ak�

for each S � 
pk��� do

for each tuple �l � �l�� l�� � � � � lpk��� �M do

for each set �f � ffj � Fj � j � Sg do
for t � 	 to pk�� do

for each cycle collection fC�� � � � � Ctg that is good w� r� t� S� �l� and �f do

f
For each j � S check that C�C� � � �Ct�lj� � gj�lj��
For each j �� S check that C�C� � � �Ct�lj� �� gj�lj��
For each j � S check that C�C� � � �Ct does not �x fj�
if all the above three checks succeed then

f
C � fC�� � � � � Ctg�
for each permutation � � Spk�� do

if Comb���G� Sk��� C� p� � modp�GA then

f
�� At this point there is g � Aut�G� of order pl that satis�es conditions of the Claim ��

Construct such an automorphism g by adaptively querying modp�GA for
Comb���G� Sk��� fCg � C� p�
for di�erent cycles C of size p� for � � k� and
including C in C if Comb���G� Sk��� fCg � C� p� � modp�GA�
if the above construction succeeds then

output a desired automorphism g of G and stop

g
g

g

To see the correctness� we use the fact that the algorithm enters Phase  only if Phase
	 is completed unsuccessfully� Now� if Comb���G� Sk��� C� p� � modp�GA it is not possible
that the witnessing order�p automorphism of Comb���G� Sk��� C� p� � Cycle�H�K� � � � �K�
maps the copy of H and each copy of K to themselves� Otherwise we would have an order�pl

�for some l � k� automorphism of G that commutes with Sk�� and �xes each point in a
collection li � Mi� 	 � i � pk��� contradicting Phase 	�s failure� Thus� it follows that the
order�p automorphism of Comb���G� Sk��� C� p� must cyclically permute the copy of H and
p � 	 copies of K� Hence C�� � � � � Ct are cycles of the corresponding order�pl automorphism
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of G� which is computed in the last step of the algorithm� Observe that the three checks
made in Phase  guarantee that the sought for automorphism with C�� � � � � Ct as a subset
of its cycles is not in Sk��� Now� it is not hard to see that if pk divides jAut�G�j then� an
element g promised by the Claim is computed either in Phase 	 or in Phase �

We can compute an order�pk subgroup of Aut�G� �which contains Sk��� by a brute�force
search for it in the group generated by Sk�� � fgg�

Notice the following immediate consequence of Theorem 	� Interestingly� it is analogous
to the well�known result that ModpP and ModpkP are identical� However� technically the
proof of Theorem 	 is very di�erent in nature�

Corollary �	 For any prime p and any k � �� modp�GA and modpk �GA are polynomial�
time Turing equivalent�

Another consequence of Theorem 	 is that search is polynomial�time Turing reducible
to decision for modk�GA� for a search problem such as the one de�ned at the beginning of
this section�

Corollary �� For each k � 	� search is polynomial�time Turing reducible to decision for
modk�GA�

� A Program Checker for mod k�GA

The goal of this section is to show that for each k � 	 the decision problem modk�GA has a
program checker in the sense of 
��� We �rst recall the de�nition of program checkers�

De�nition �� 
�� A program checker CA for a decision problem A is a �probabilistic algo�
rithm that for any program P �supposedly for A that halts on all instances� for any instance
x	 of A� and for any positive integer k �the security parameter presented in unary�

�� If P is a correct program� that is� if P �x� � A�x� for all instances x� then with proba�
bility � 	� �k� CA�x	� P� k��Correct�


� If P �x	� �� A�x	� then with probability � 	 � �k � CA�x	� P� k��Incorrect�

The probability is computed over the sequences of coin �ips that CA could have tossed� Also
CA is allowed to make queries to the program P on some instances�

Before we proceed we also need the de�nition of IP protocols which was �rst introduced
in 
���

De�nition � An interactive proof system consists of a prover�veri�er pair P � V � The
veri�er V is a probabilistic polynomial time machine and the prover P is� in general� a
machine of unlimited computational power which shares the input tape and a communication
tape with V �

P � V is an interactive �i�e� IP protocol for a language L� if for every x � ���

x � L � Prob
P makes V accept � � ����

x �� L � 
 provers P � � Prob
P � makes V accept � � 	���
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The design of our checker for modk�GA is based on the following theorem 
���

Theorem �� 
�� If a decision problem A and its complement have both interactive proof
systems� in each of which the honest prover can be simulated in polynomial time with queries
to A� then A has a polynomial�time program checker�

We will �rst provide a program checker for modp�GA� for any prime p� Notice that
Lemma 	� already gives an IP protocol formodp�GA with the prover polynomial�timeTuring
reducible to modp�GA� Thus� it su�ces to design an IP protocol for modp�GA with the
requisite properties�

Lemma �� For any prime p� there is an IP protocol for modp�GA in which the honest
prover is polynomial�time Turing reducible to modp�GA�

Proof� We rewrite the de�nition of modp�GA as follows� modp�GA � fG � G has no
automorphism with a p�cycleg� Given an input graph G� the aim is to design an IP protocol
which accepts G with high probability if G has no automorphism with a p�cycle� and which
rejects G with high probability otherwise� Notice that since the prime p is a constant� the
total number of p�cycles in Sn is bounded by qnp� where q is a constant� We will build the
desired IP protocol from an IP protocol for the following related language L � f�G�C� �
jV �G�j � n� C � Sn is a p�cycle and G has no automorphism with C as one of its cycles g�

��round IP Protocol for L�

input �G�C��
Y � 
n�� fi � i � Cg�
�
 Veri�er�

Pick a permutation 
 � SY uniformly at random�
Pick a random bit b � f�� 	g�
if b � � then

send G� � 
�G� to the Prover
else

send G� � 
 � C�G� to the Prover
�
 Prover�

if there exists permutation � � SY such that ��G� � G� then

send back a bit c � �
else

send back a bit c � 	
if c � b then

Veri�er accepts
else

Veri�er rejects

We �rst show that if the prover is honest then the protocol accepts an input �G�C� � L
with probability 	� Suppose b took the value � and the graph 
�G� � G� was sent to the
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prover� Then clearly� the prover will �nd a permutation� namely 
� such that 
�G� � G� and
send back c � � leading to the acceptance of the input� Next� suppose b took the value 	� In
that case we claim that there does not exist any permutation � � SY such that ��G� � G��
Suppose there exists such a �� Then� since ��G� � 
 � C�G�� it follows that �����
 � C is
in Aut�G�� which contradicts the assumption that �G�C� � L� In this case the prover will
send back c � 	 and the veri�er will again accept�

Now� to prove the soundness of the protocol� we must show that for an input �G�C� �� L�
the veri�er will reject the input with probability at least 	�� for any prover� We �rst need
the following claim� In the sequel we use X to denote the set fi � i � Cg and Y to denote

n��X�

Claim A
 If G has an automorphism � with C as one of its cycles then the random graphs

�G� and 
 � C�G� are identically distributed� where 
 is picked uniformly at random from
SY �

Proof� Let � �  � C� where  � SY � From  � C�G� � G it is not hard to see that for any
graph H

	� � SY 
��G� � H� �� 		 � SY 
	 � C�G� � H�

Thus for any graph H

Prob�
��G� � H� � � �� Prob�
	 � C�G� � H� � �

where � and 	 are picked uniformly at random from SY �
Now� since ��G� � H i� � � C�G� � H� it is straightforward to derive that the set of

permutations f	 � SY � 	 �C�G� � Hg is precisely �Aut�G�X �� which is of size jAut�G�X��j�
Therefore�

Prob�
	 � C�G� � H� � jAut�G�X ��j��n� p��

where 	 is picked uniformly at random from SY �

It follows from Claim A that if �G�C� �� L the prover cannot distinguish between whether
G� came from the case b � � or from b � 	� In fact� whether b � � or b � 	 the prover
will �nd a � � SY such that ��G� � G�� Therefore� the bit c that is sent back by any
�even cheating� prover can agree with b with probability at most 	�� Consequently� the
veri�er will reject an input �G�C� �� L with probability at least 	�� We now describe the
IP protocol for modp�GA�

IP Protocol for modp�GA�

input G� �� G has n nodes ��
bool � true�
for each p�cycle C � Sn do

if the IP protocol for L rejects �G�C� then
bool � false�

if bool�true then Veri�er accepts else Veri�er rejects
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Since G � modp�GA i� �G�C� � L for every p�cycle C� and since the IP protocol for L
has one�sided error it easily follows that the above IP protocol accepts G � modp�GA with
probability 	 and rejects G � modp�GA with probability at least 	�� The error probability
can be made exponentially small �say �n� in the above protocol by repeating the protocol

 �in parallel or sequentially��

The following claim completes the proof of the lemma�

Claim B
 There is an honest prover that is polynomial�time Turing reducible to modp�GA
for the above IP protocol for modp�GA�

Proof� First we observe that in bounding the complexity of the honest prover we are
concerned about inputs G � modp�GA� More precisely� we must show that there is a
polynomial�time algorithm with modp�GA as oracle that can simulate the honest prover
correctly for inputs G � modp�GA� Notice that the honest prover of the overall IP protocol
must actually simulate the honest prover of the IP protocol for L for each input in the set
f�G�C� � C is a p�cycle in Sng� where G � modp�GA� The honest prover in the protocol for
L is supposed to try and compute a permutation � � SY such that ��G� � G�� We have
already argued in the correctness proof that for G � modp�GA such a permutation � exists
if and only if the outcome of b is � and G� � 
�G� for the random permutation 
 � SY �
The honest prover constructs the graph G�� � Cycle�G�X�� G

�
�X �� � � � � G

�
�X ��� with p � 	 copies

of G�
�X�� Using algorithm A� of Lemma 	� the honest prover computes an automorphism of

G�� of order p if it exists� Notice that if there is a permutation � � SY such that ��G� � G�

then there is a permutation �� such that ���G�X�� � G�
�X �� Hence we can �nd an order�p

automorphism of G�� which cyclically permutes the p graphs in G��� by mapping the copy of
G�X � to the �rst copy of G�

�X � by ��� and each of the �rst p �  copies of G�
�X� are mapped

to the next copy of G�
�X � by the identity permutation� and �nally� the last copy of G�

�X� is

mapped back to G�X � by ����� It is easy to see that this is an automorphism of G�� of order
p� Conversely� suppose that G�� has an order�p automorphism � computed by the honest
prover� Since G �� modp�GA and G� �� modp�GA� the p graphs de�ning G�� must be rotated
in some p�cyclic order by the automorphism � � It follows that the copy of G�X � is mapped
by � to some copy of G�

�X �� Let �� be the projection of � to these two copies� We have
���G�X �� � G�

�X �� From �� we can easily recover a permutation � � SY such that ��G� � G��
Thus the honest prover �nds an order�p automorphism � of G�� i� there exists � � SY such
that ��G� � G�� and moreover� from such a � the corresponding � is easily computed� Hence�
the honest prover is polynomial�time Turing reducible to modp�GA�

We can now conclude that� for any prime p� modp�GA has an e�cient program checker�

Theorem �� For any prime p� modp�GA has a polynomial�time program checker�

Proof� Note that from Lemma 	� we get an IP protocol for modp�GA with the prover
polynomial�time Turing reducible to modp�GA and that by Lemma  an IP protocol with

�With some modi�cations we can easily get a constant round IP protocol
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requisite properties exists for modp�GA� Now� Theorem 	 proves the existence of an e�cient
checker for modk�GA�

Now it is easy to provide a checker for any modk�GA problem�

Theorem �� For each k � 	� modk�GA has a polynomial�time program checker�

Proof� Let
Q

��i�m p
ei
i be the prime factorization of k� Because the class of checkable sets

is obviously closed under join and under Turing equivalence 
��� by Theorem � it su�ces to
show that modk�GA �p

T modp��GA� � � � �modpm �GA� Observe that a graph G belongs to
modk�GA if and only if �
i � m�
G � modpei

i
�GA�� Since� by Corollary 	�� modpei

i
�GA �p

T

modpi�GA for each i� we have modk�GA �p
T modp��GA� � � � � modpm �GA� It is easy to

prove that modpi�GA �p
T modk�GA for each i� Therefore� modp��GA� � � � �modpm�GA �p

T

modk�GA as well�

� Concluding Remarks

In this paper we de�ne modular graph automorphism problems �modk�GA� and locate them
between GA and GI� We also design an e�cient program checker for modk�GA based on an
algorithm that reduces search to decision for modk�GA and an IP protocol for modk�GA�
The bottleneck in making our checker nonadaptive is essentially the following� can search
be reduced to decision via parallel queries for modp�GA� for prime p 

Indeed� our initial motivation in studying the modk�GA problems was to understand the
di�erence between GI and GA by introducing problems of intermediate di�culty� In this
context� a challenging question is whether search reduces to decision via parallel queries for
GI �hence yielding nonadaptive checkers for GI�� We believe that as a �rst step this question
must be answered for modp�GA�
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