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Absfrast. In the Multiway Cut problem we are given an edga-

weighted graph and a subset of the vertices called termimds, and

asked for a minimum weight set of edges that separates each ter-

minal from all the others. when the number k of terminals is two,

this is simply the min-cu~ msx-flow problem, and can be solved

in polynomial time. We show that the problem becomes NP-hsrd

as sxrn as k = 3, but ctm be solved in polynomial time for planar

graphs for any fixed k. The planar problem is NP-hsrd however,

if k is not tixad. We also describe a simple approximation slgo-

rithnt for arbkmry graphs that is guaranteed to come within a fsc-

tor of 2– 2/k of the optimal cut weight.

1. Introduction

The Mdtiwwy Cut problem can be defined as follows:

Given a graph G = (V,J??), a set S = {sl ,s2,.,.,s~) of k

specified vertices or termz”nals, and a positive weight w(e)

for each edge e ● E, find a minimum weight set of edges

E’ G E such that the removal of E’ from E discomects

each terminal from all the others.

When k = 2 this problem reduces to the famous ‘ ‘min-

cut/max-flow” problem, a problem of central significance

in the field of eombinatoria.1 optimization due to its many

applications and the fact that it can be solved in polynomial

time (e.g., see [6,14,15,17]). The “k-way cut” problem for

k >2 has been a subject of discussion in the combinatorics

community for years (closely-related variants were pro-

posed as early as 1%9 by T. C. Hu [14,p.150]). A variety

of applications have been suggested, most having to do
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with the minimization of communication costs in parallel

computing systems. In [20], Stone points out how the

problem of assigning program modules to processors can

be formulated in this framework. Other applications

involve partitioning tiles among the nodes of a network,

assigning users to base computers in a multicomputer envi-

ronment, and partitioning the elements of a circuit into the

subcircuits that will go on different chips. It is known that

such problems can become NP-hard even fork = 2 if there

is a constraint imposed on the size of the components into

which the graph is cut [8,9]. In this paper we ask whether

the problem might be tractable without such a constzahtt (as

it is for k = 2),

Our first results concern the planar case. The restriction

to planar graphs, besides its basic graph-theoretic

significance, has potential relevance in the circuit partition-

ing application.

Theorem 1. (a) For k = 3, theplanar Multiway Cut

problem can be solved in time O (n3 logn).

(b) For anyjixedk23, the planar MuMway Cut prob-

lem is solvable in polynow”al time.

The algorithms of Part (b) are, unfortunately, exponen-

k 2k-1 logn).) Thattial in k. (Specifically, they are 0((4k) n

such exponential behavior is likely to be unavoidable fol-

lows horn the next result.

Theorem 2. If k is not@d, the Multiway Cut problem

for planar graphs is NP-hard even if all edge weights are

equal to 1.

For the Multiway Cut problem in arbitrsry graphs, NP-

hardness sets in much earlier.

Theorent 3. The Multiway Cut problem for arbitrary

graphs is NP-hard for alljixed k 23 and all edge weights

equal to 1.

This theorem is proved using a‘ ‘gadget” that has inter-

esting properties on its own (as a counterexample to a con-

jecture about the possible submodularity of 3-Way Cut).

The ttvarem’s negative consequences are partially miti-
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gated by technical lemmas that may yield substantial reduc-

tions in the sizes of instances encountered in practice.

Finally, we have the following two approximation

results, one positive and one negative.

Theorem 4. There is a polynomial-time approximation

algorithm for the Multiway Cut problem that for arbitrary

graphs and arbitrary k is guaranteed to fmd cuts that are

within 2(k - 1)/k of optimal.

Theorem 5. For anyjixedk23, thek-Way Cut prob-

lem is MAX SNP-hard (and hence unlikely to have a poly-

nomial time approximation scheme).

The results presented here can be contrasted to those of

[11,13,19], which concern what might be called the Multi-

way Split problem. In this problem we are given G, k, and

w as above (but not S), and are asked merely for a mini-

mum weight set of edges E’ whose removal separates the

graph into at least k nonempty connected components. It is

reported in [11] that although this problem is NP-hard for

arbitrary k, it is solvable in polynomial time for each fixed

k >2., even for arbitrary graphs. The running time is
O(nk 12-k+ll12

). Fork= 3 and unweighed planar graphs,

a faster O(n 2) algorithm is presented in [13]. Thus the

Multiway Split problem is significantly easier than the

problem we study here, although we note that for fixed

k 26, our planar Multiway Cut algorithm will provide a

better method for solving the planar Multiway Split prob-

lem than will the general Multiway Split algorithms of

[11]: Simply run our algorithm for all possible sets S of k

vertices and take the least-weight solution found. A factor

proportional to nk is added to our running time, but the

resulting time lxmnd is still O (n3k-1 logn). Reference [19]

concerns approximation results for the Multiway Split

problem, showing that the bounds we obtain in Theorem 4

for Multiway Cut can be obtained for Multiway Split with-

out having to apply our result to all possible sets of k ver-

tices.

To avoid bibliographic confusion, we should mention

that, with the exception of ‘Ilmrem 5, the results in the

current paper were first announced in 1983 in an unpub-

lished but widely circulated extended abstract of the same

title [3]. The abstract has since been widely cited, both in

the above-mentioned work on Multiway SpliC and in

follow-up work on the Multiway Cut problem itsek In [1],

Chopra and Rao observe, as we failed to do in our original

abstract, that for trees and 2-rrees, the general k-Way Cut
problem can be solved in linear time by a straightforward

dynamic programming algorithm. (This can be generatizcd

to graphs of bounded tree-width for any fixed bound, by

standard techniques.) The facets of the Multiway Cut poly-

hedron are studied in [1,2], An interesting generalization

of the Muhiway Cut problem, about which we shall have

more to say in our concluding section, is studied in [4,5].

The paper is organized as foltows. In Section 2 we

cover the positive results for the planar case (Theorem la

and lb). Section 3 elaborates on the negative result for the

planar case (Jleorem 2). Section 4 covers our results for

general graphs (Theorems 3,4, and 5 and associated techni-

cal lemmas). A concluding Section 5 discusses additional

variants and generalizations of Multiway Cut to which our

techniques can apply, and points out some of the remaining

open problems in the area. Because of space limitations,

we have omitted most of the proofs in this extended

abstract. A full version of this paper containing all the

proofs is available from the authors.

2. Algorithms for The Planar Case

Our main result for planar graphs (Theorem 1) says that

for all fixed k, the Multiway Cut problem is solvable in

polynomial time. This is in contrast to Theorem 3, which

says that for arbitrary graphs, the problem is NP-hard for

any fixed k 23. The key advantage we gain from planarity

lies in the existence of a planar dual to our given graph G.

We will assume without loss of generality that our graph

G = (V,E) is connected and that we have fixed an embed-

ding of it on the plane. We will use a superscript D to

denote a dual object. Thus GD is the dual graph of G. If F

is a subset of the edges of G, F~ is the corresponding set of

edges of GD. (Nottx FD is not the dual of the subgraph

(V,F) of G.)

We start with Theorem la and the case of k = 3, and

then show how our proof techniques can be generalized to

cover the case of general fixed k (Theorem lb).

2.1. Planar 3-Way Cuts

Figure 1 shows a graph G with a 3-way cut C, together

with the duals GD and CD of each. The thicker edges in

the figure are those of C and CD, respectively. Note that

the edges of CD partition the geometric embedding of GD

into three regions. (In the case of Figure 1, two of these

regions are single faces of GD, but the other is the union of

several faces.) Let us say that a vertex of G is in a given

~gion if the face of GD to which the vertex corresponds is

part of that region. Then observe that in the figure, each of

the terminals of G is in a separate region of CD. This is

clearly a general property C is a 3-way cut of a graph G if

and only if the terminalss 1, S2, S3 are in different regions

of CD. Thus if D is an optimal 3-way cut, CD has exactly

three regions, each one containing a distinct terminat. Fur-

thermore, removing any edge from CD must merge two
tegions, as otherwise the corresponding edge of C is not

needed in the cut.

For a general instance of the 3-way cut problem, there

are two topologically distinct possibilities for an optimal

cut CD.

Cut Type I. CD consists of two edge-disjoint cycles. See

Figure 2a,b. Note that the cycles may have one vertex in

common and/or one cycle may lie inside the other, as in

Figure 2b. They cannot have more than one vertex in com-
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(a) (b)

FIOURE1. A planar3-way cut (a) and its dual (b).

men, however, as this would imply that CD had more than

three regions.

Cut Type II. Each pair of regions of CD shares an edge.

SeeFigure 2c.

For Type I cuts, the cut C consists of hvo edge-disjoint

cuts (corresponding to the two cycles of CD), each isolating

one of the three terminals from the other two. The notion

of such an “isolating cut” will also be of use in treating the

case of Type II cuts. We define it formally (and generalize

it to arbitrary k) as follows.

Definition. For a given tem”nal Si, an isolating cut for

si is any set of edges that cuts all paths between si and all

the other terminals.

Note thata minimum weight isolating cut for si can be

constructed by merging all the terminals other than si into a

special vertex so, and then finding a minimum si - so cut in

the resulting graph by a standard 2-terminal minimum cut

algorithm.

We shall now &scribe how to find an optimal 3-way

cut. We provide procedures that work for each type of cut.

Each procedure either returns the best cut of the corre-

sponding type, or else reports (correctly) that any optimal

cut is of the other type.

Our procedure for Type I cuts is straightforward. We

simply compute the three minimum weight isolating cuts

for s ~, 52, and S3 respectively, Note that a minimum

weight Type I cut must have weight at least as large as the

sum of the weights of the hvo smallest of these the isolat-

ing cuts. If the two smallest are edge-disjoint, then their

union is optimal among all 3-way cuts of Type I. If the two

smallest are not edge-disjoint, then their union is a 3-way

cut that has strictly smaller weight (since all edge weights

are by assumption positive). Consequently, the best 3-way

cut is not of Type I.

Our procedure for Type II cuts is significantly more

complicated. Suppose we have an optimal 3-way cut that is

of Type II. Look again at Figure 2c. The cycle that bounds

each region corresponds to an isolating cut for the terminal

contained in that region, but these isolating cuts are not

necessarily optimal, as they overlap. Consider the two ver-

ti~stitmofde~3tiC~mdwekbld aandbin

the figure. The following lemma allows us to fix one of the

three paths connecting a and b in GD.

Lemma 2.1. Suppose that the dual of an optimal 3-way

cut C is of Type II and a and b are the two vertices of

&gree 3 in CD. Let P be any shortest path from a to b in

GD. Then there is an optimal 3-way cut Co that is of Type

II, has a and b as its two vertices of degree 3 in C~, and

such that P is one of the three paths that join a to b in Cfl.

In light of Lemma 2.1, our procedure for Type II cuts

can work by repeatedly calling a subroutine, once for each

potential pair a,b of degree-3 vertices in CD. The subrou-

tine either constructs a minimum weight 3-way cut C which

is of Type II and has a and b as the two degree-3 vertices in

CD, or reports (correctly) that no minimum weight 3-way

cut has that form. The subroutine proceeds as follows

(a)

iilm
(b) (c)

FIGURE 2. Types of 3-way cuts: Typo I (a) and (b), Type II (c).
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First, construct a shortest path P between a and b in

GD. By Lemma 2.1 we may assume that P is contained in

CD. Delete the edges in G corresponding to the edges of P,

obtaining a new graph H. In the embedding of this new

graph induced by our original embedding of G, all the

regions of G corresponding to vertices on P in GD are

merged into a single region. This corresponds in 11~ to

coalescing all the vertices along the path P from u to b into

a single vertex VP. This coalescence turns CD from a Type

II cut into a Type I cut like the one in Figure 2b in which

the two edge-disjoint cycles shate a common vertex, in this

case Vp. (The two cycles need not however be nested as

they are in the figurq they can have disjoint interiors.)

We can now apply our previously described procedure

for Type I cuts to H, obtaining a Type 1 cut C~, or a report

that the best 3-way cut for His notof Type I. In the latter

case, an optimal 3-way cut for G could not have been of

Type II with the pair a,b as its degree-3 vertices, and we

report this fact. In the former case, the cut C~ will, when

augmented with the edges of G corresponding to the edges

of P in GD, be a 3-way cut for G. It cannot be an optimal

cut, however, unless C% has the &sired form of two edge-

disjoint cycles with Vp as a single common vertex. Other-

wise the edges corresponding to P can be deleted and a

valid (and lighter) 3-way cut for G will remain. Thus if C~

does not have the desired form, we once again report that

no optimal 3-way cut for G is of Type II with a, b as its two

degree-3 vertices.

Our overall algorithm for finding an optimal 3-way cut

Cm thUS proceed as fO1lOwS:

Procedure 3-Way

1. Perform the Type I procedure on G.

If a valid Type I cut is foun~ put it on the list of

potential optima.

2. Construct the dual graph G~ and perform an all-pairs

shortest path computation for G~.

For each pair a,b of vertices in GD, do the following

2.1.

2.2.

2.3

Let P be the shortest path in GD between a and

b as constructed in step 2, and let H be the

graph obtained from G by deleting the edges

corresponding to edges of P.

Perform the Type I procedure on H.

Let Vp be the coateseed vertex in HD corre-

sponding to the path P. If a valid Type I cut

C~ for H is found and has a dual consisting of

two edgedisjoint cycles having VP as their

unique common vertex, do the following

2.3.1 Let C~ be the 3-way cut for G consist-

ing of C~ together with the edges of G

corresponding to the edges of P in G*.

2.3.2 Add Cc to the list of potential optima.

3. Output the lightest 3-way cut on the list of potential

optima.

Theorem la. Given a planar graph G with specijied

ternu”nalss ~, S2, and S3, Procedure 3-Way outputs an opti-

mal 3-way cut, and can be implemented to run in time

0(n3 logn), where n is the number of vertices in G.

2.2. Planar Multiway Cuts

In this section we turn to the case of k-way cuts where

k >3. The algorithm we present will work for all k 23

and will have a running time tha~ although exponential in

k, is polynomial whenever k is fixed. It can be viewed as a

(major) generalization of the algorithm of the previous sec-

tion for the k = 3 case. For our discussion here, it will be

convenient to assume that no two subsets of edges has the

same total weight. (we can make sure that the assumption

is satisfied in various ways. For instance, if A is the weight

of the lightest edge and the edges are ordered

el ,e2,. ... em, we could use the revised edge weights

W’(f3i) = W(ei ) + A/2i.) The key consequence of the

assumption is that optimal cuts, shortest paths, etc. are

unique, so that we can refer to theoptimal cut etc. A less

desirable consequence is that the cost of doing additions

and comparisons of edge weights may go up by a factor of

n, given the large number of bits needed to represent them,

but given that our main goal here is to show that running

times are O(n’~) for some c, a factor of n will not make a

significant difference.

In the k = 3 case, we observed that the dual CD of the

optimal cut was a subgraph of GD that partitioned the

embedding of GD into three regions, each containing a dis-

tinct terminal. We then reduced the problem to the compu-

tation of 2-way cuts and shortest paths by first guessing

(i.e., trying all possibilities for) some information about

CD. In particular, we guessed the topology (whether the

cut consisted of two edge-disjoint cycles or not) and (in the

latter case) the identity of the two degree-3 nodes a and bin

CD.
For general k 23, we follow the same approach.

Assume as before that we have previously decided on some

fixed embedding of G. Suppose C is the optimal k-way cut,

and once again let CD be the dual of C viewed as a sub-

graph of a predetermined planar embedding of GD. Then

CD must partition the embedding of GD into precisely k

regions, each containing a distinct terminal. Our notion of

a topology for CD is derived as followx Consider the con-

nected components of CD, and call such a component com-

plex if it contains more than one vertex that has degree

thr= Or more in CD. Let C~,C~, ..., C: bean enumem-

tion of the complex components of CD, and for each i,

1 <is q, let IVi be the set of vertices with degree three or

more in C?. (Note that we must have q Sk-1, since

every connected component of CD must enclose at least

one terminal, and the infinite region of CD contains one ter-
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N1 = {V2,V~,V~,V~,V~,V~2) N2 = {V~,V~,V~,V~,V~~,V~7,V~9,V2z,V2~

FIOURE3. The dual CD of an optimal cut C and its topology (Nl ,N2 ).

minal.) Let N = U~=lNi. The topology of CD is simply

the (unordered) partition of N given by the sets

N1,N2,. ... Nq. See Figure 3 for an example of a CD and

its topology, consisting of two sets N1 and N2. In the

figure the vertices of degree three or greater are high-

lighted. Note that the degree-6 vertex v lfj does not partici-

pate in the topology because its connected component con-

tains only one vertex of degree three or greater.

Lemma 2.2. If G is a connected planar graph with n

vertices, let C be an optimal k-way cut for G, and let CD be

the planar dual of C, viewed as a subgraph of GD. Then

the number of distinct possibilities for the topology of CD

is O((2n)2k-4).

Our algorithm for the general k-way cut problem will

work by considering in turn each of the possibilities for the

topology of the optimal cut. For each we will invoke a sub-

routine analogous to those used in our 3-way cut algorithm.

The subroutine will either output the shortest cut that has

the given topology, or else report (correctly) that the opti-

mal cut cannot have the given topology. In order to specify

the subroutine, we will need to know some structural

results about the topology of the optimum cut,

So suppose we are given a topology N1 ,N2,..., N~.

If this is the optimal topology, then CD contains connected

components C? ,C~, ..., C~,q’2 q, where for 1 S i <q,

Ni is the setof vertices with degree three or more in C?,

and for q < is q’, C? contains at most one vertex with

degree three or more. The artalogue of Lemma 2.1 for this

general k case is that for each C?, i < q, we can efficiently

identify a subtree T? of C? that spans all the vertices of Ni.

This was the case in Lemma 2.1, where for N1 = {a,b)

(Figure 2c), we identified a path between the two degree-3

vertices a and b by doing a shortest path computation. For

the general case, we shall need both shortest paths and min-

imum spanning trees.

For a given topology, the trees T?, i < q, are con-

structed as follows. We treat the sets Ni, i < q, in turn.

(Order is not important,) Given Ni$ we construct an auxil-

iary weighted complete graph Hi with Ni as its vertex set

and with the weight of the edge linking u and v being the

length of the shortest path in GD between u and v. Com-

pute the minimum spanning ti T[Hi ] of Hi, and let T?

be the subgraph of GD formed by replacing each edge in

T[Hi ] by the corresponding shortest path in GD. We shaIl

call T? the mu”nimum spamu”ng tree of Ni (although note

that it may not even be a tree if CD does not have the given

topology). Figure 4 portrays the CD of Figure 3 with the

trees T? (chosen according to the correct topology) high-

lighted. @or future reference, the figure also indicates

which terminal is contained in which region of CD.) The

next lemma establishes the key properties satisfied by T?

when CD has the given topology.

Lemma 2.3. Let C be the optimal k-way cut and C’D be

its planar dual, viewed as a subgraph of GD. Let C?,

~GUXU34. The dual CD with the trees Tf’ highlighted and the lcwations of terminals indicated.
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~GURE 5. The graph CIO]~ obtained by coalescing the spanning trees ~ in CD.

I < i s q, be & co~lex connected components of CD,

and let Ni be the set of vertices with degree three or

greater in C?, 1 s is q. Then (a) each C?, 15 i S q, con-

tains the m“nimum spanning tree T? for Ni, and (b) no two

of the paths in T? corresponding to edges of T[Hi ] inter-

sect except at a common endpoint (and hence T? is indeed

a tree).

Lemma 2.3 treats the connected components C? of CD

in isolation. Let us now look at how they interact. First

note that the trees T? are all vertex disjoint, since each is a

subgraph of a different connected component of CD. Thus

they constitute a subforest of CD. Let TD represent this

subforest, the union of all the edges in the T?, and let T be

the subset of edges in G whose planar dual is TD. By

Lemma 2.3, the optimal cut C for G will consist of T plus

some additional edges, assuming we chose the correct

topology for C. To find those additional edges, we delete T

from G to obtain a new graph that we shall call GIO].

Assuming we have the correct topology, the optimal cut for

GIO] will be CIO] = C-T.

Let G [O]D be the embedded dual of GIO] obtained by

coalescing all the edges of each T? in G~ to a single poin~

Note that G [0] D remains connected, and has lost none of

the regions from G* since only trees were coalesced

Assuming that we have the optimal topology, CIO]~ will

be a collection of k -1 simple cycles in GIO]D, each of

which is a biconnected component of CIO] D. That is, a

connected component of CIO] D may consist of more than

one cycle, but all such cycles must share a single common

vertex. (In particular, the coalesced vertices corresponding

to the T: will be such common vertices, although there

may be others that were already present in CD.) See Figure

5.

Note that in the embedding of G [0] D, some of the

cycles of C [0] ~ will contain others. An innermost cycle

will constitute the complete boundary of a region in C [0] D,

whereas other regions may have boundaries made up of the

edges of several cycles. We shall show that if one treats the

cycles in an appropriate “inside out” order, each of these

cycles can be viewed as a minimum isolating cut in an

appropriately constructed graph. Let us identify each

region with the termiml si it contains, and construct a par-

tial order <on the terminals as follows: si < Sj if and only

if the outermost cycle bounding si’s region is contained in

the outermost cycle bounding sj’s region. (By convention,

we assume that “the outermost bounding cycle” for the

infinite region contains all other cycles, so that the terminal

contained in the infinite region is > all other terminals.)

Note that by this definition, the outermost bounding cycle

for Si must separate Si from all terminals Sj > Si.

Let z be an ordering of the terminals that is consistent

with this partial order, i.e., if si < sj, then n(i) S z(j). For

instance, for the C [O]D depicted in Figure 5, such an order-

ing WOU1dbe S6, Sl, S4, S7, S5, S2, S1O, S3, Sll, S12, Sg, S15,

s13, s9, S16, S14, s17. We define a sequence of graphs and

isolating cuts as follows. For 1< is k – 1, let A? be the

setof edges in G [0] ~ making up the outer boundary cycle

for the region containing terminal s%(i). Let Ai be the cor-

res onding set of edges in GIO]. Note that CIO] =
l-l

Ui.l Ai. NOW let G[i] & the graph obtained from GIO]

by deleting the edges of u;. ~Aj.

Lemma 2.4. For 1< i S k – 1, A i is a rru”m”mum isolat-

ing cut for term”nal smci) in graph G [i – 1].

Given Lemmas 2.3 and 2.4, the following procedure

will handle any given topology N 1,N2, . . . .N~ appropri-

ately, either outputting the minimum weight cut with that

topology or reporting correctly that the optimal cut cannot

have that topology. Assume that as a preprocessing step

we have constructed our standard embedding of the dual

graph GD and computed all shortest paths between vertices

of GD .

Procedure CheckTopology (N l,Nz, ..., Nq)

1. For 1

1.1

1.2.

< i < q, do the following.

Construct the auxiliary graph Hi, the minimum

spanning tree T[Hi], and the subtree Tf’.

If any two paths in T: corresponding to edges

of T[Hi ] share a vertex other than a common

endpoint, reject the topology.

2. If any two subtrees T? share a common vertex, reject

the topology.

Otherwise, let TD be the union of the edge sets T?,

let G [0] be the graph obtained from G by deleting all

edges in the dual set T.
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3. Let W* = 00 (our initial estimate of the optimal cut

weight),

For all possible permutations Sx(l) ,sn(z,, . . . . sxw

of the terminals, do the following.

3.1. Set C = T.

3.2. For 1 S i < k – 1 do the following:

3.2.1. Find a minimum isolating cut Ai for

~Z(i) in G[i– 1].

3.2.2. Set C = C u Ai, and let G[i] be the

graph obtained by deleting the edges of

Aifiom G[i-l].

3.3. If w(C) < W*, setW* = w(C) and C* = C

(the current best cut with this topology).

4. output c*.

It should be clear from the above discussion that this

subroutine has the desired properties, Its running time is

domimted by that for the minimum isolating cut computa-

tions occurring at Step 3.2.1. As discussed, each such com-

putation can performed using a standard 2-terminal mini-

mum cut algorithm in time O (n2 logn), assuming a

machine model in which additions, subtractions, and com-

parisons take constant time. Given our proposed method

for imposing the restriction that all sets of edges have

unique weights, however, such a model is inappropriate.

Even given the standard assumption that the original

instance has edge weights that fit into a single computer

word, our method for insuring the subset weight uniqueness

restriction gives rise to weights whose binary representa-

tions involve @(n) bits. With such large numbers, the time

bound for the isolating cut computations grows to

0(n3 logn). We perform k – 1 such computations for each

of the k! permutations of the terminals, yielding total of

O(kk ) for each topology.

The overall algorithm then consists of performing Pro-

cedure CheckTopology for each possible topology, of

which there are 0((2n) 2k-4 ) by Lemma 2.2, and out-

putting the best cut found for any non-rejected topology.

Thus we have our claimed result for general fixed k, stated

here in slightly more precise form than given in the intro-

duction:

Theorem lb. Given a planar graph G with n vertices

and k specijied terminals, a minimum k-way cut can be con-

k 2k-1 logn).strutted in time 0((4k) n

Note that if we specialize this result to the previously

considered case of k = 3, the time bound is 0(n5 Iogn),

substantially larger than the O(n 3logn ) of Theorem la,

This is a result of two factors: (1) A factor of n because we

can’t in general find the needed isolating cuts using planar

2-terminal cut algorithms, as we could when k = 3, and so

have to use general 2-terminal cut algorithms. (2) A factor

of n because we needed to operate with @(n)-bit weights in

order to insure that every subset of edges had a unique

weight.

It may well be that more efficient algorithms can be

derived by careful algorithmic design and analysis, but the

bounds we have presented adequately fuliill our goal of

showing that the k-way cut problem can be solved in poly-

nomial time for fixed k and planar graphs. Moreover, as

the NP-completeness result of the next seetion implies, it is

likely that any algorithms for the general problem will have

exponential (or at least super-polynomial) running times.

/.NH Complexity of Planar Multiway Cut

Our proof of NP-completeness for the general planar

multiway cut problem is via a transformation from PLA-

NAR 3-SATISFIABILITY [16], using an elaborate compo-

nent design construction (details in the full paper). The

problem remains NP-complete even if all edge weights are

equal to 1 and no vertex degree exceeds 11 (a degree bound

that should be reducible to 6 by a mom-complicated variant

on our proof). If one allows atlows edge weights to range

over the set (1,2, 3,4, 5) rather than requiring them all to

be equal, the degree bound can be Educed to 3. The prob-

lem is of course trivial if the maximum degree is 2.

3. Multiway Cut for Fixed k and Arbitrary Graphs

This section covers our results about the multiway cut

problem on arbitrary graphs. We begin with our NP-

completeness result for fixed k >3 and then discuss ways

of coping with the implied complexity of the problem.

Note that it suffices to prove the problem NP-complete for

k = 3, since the problem for higher values of k can trivially

be derived from that for k = 3. We discovered the key

“gadget” needed our NP-completeness proof while pursu-

ing what at first seemed like a promising algorithmic

approach to the 3-Way Cut problem, based on results on

submodular set functions by Grotschel, Lovdsz, and Schri-

jver [12].

3.1. Cuts as Submodular Set Functions

In order to understand the results of [12], we first need

some definitions. Let U be a finite set. A function~ defined

on the subsets of U is submodular if for any two subsets X

and Y of U, f(X) + f(Y) > f(X n Y) + f(X U Y).

Grotschel, Lovdsz, and Schrijver [12] show that if a sub-

modular set function~can be computed in polynomial time,

then ~ can also be minimized, i.e., set Y with ~(Y) =

min V(X): X c U) can be found, in polynomial time.

(The algorithm involves an appropriate application of the

ellipsoid method.)

A paradigmatic example of a submodular set function

involves the usual (2-way) minimum cut problem. In this

case, U is the set of nonterminal vertices V – (s 1,s2 ], and

~(X) is the total cost of the edges which have precisely one

endpoint in the set X u {s 1}. The submodularity of this

function is easy to verify, as is the fact that
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min~(X): X G U) is the weight of a minimum 2-way cut.

We of course aheady know how to minimize this function~

in polynomial time without resorting to the ellipsoid

method, but the formulation is suggestive. Could it be pos-

sible that 3-way cuts might also be computable as minima

of a submodukw set function?

It is easy to define a set function for 3-way cuts that is

analogous to the one above for the 2-way case. Let U =

V - (S I ,Sz ,Sq ) be the set of nonterminal vertices. For any

3-way cut E’, let us say that a set X G U is associated with

s ~ under E’ if (1) X contains neither S2 nor S3 and (2) every

edge of G with precisely one endpoint in X u {sl ) belongs

to E’. Note thatif a 3-way cut E’ disconnects some ver-

tices from all three terminals, then more than one set can be

associated withs 1 under E’. (Under a minimum 3-way cut

however, the set associated with s 1 is uniquely deter-

mined.) For any subset X of U, let $(X) be the minimum

cost of a 3-way cut under which X is associated withs 1. It

is easy to see that the minimum value for this function over

all X G U equals the minimum weight for any 3-way cut.

Moreover, we can use a polynomial-time algorithm for the

2-way cut problem to evaluate~ in polynomial time Given

a subset X of U, find a minimum weight cut separating S2

from S3 in the graph obtained by deleting SI and all the

vertices in X from G. Add to the weight of this cut the

weight of all edges with precisely one endpoint in

X u {sl ). Therefore, if~ were submodular (for all graphs),

we could solve the 3-way cut problem in polynomial time.

Unfortunately, this is not the case. Consider the 9-

vertex graph C depicted in Figure 6. Note that in addition

to the three terminals s 1,s2 ,s3, the graph contains two

specified vertices x and y. The 12 edges incident on the ter-

minals have weight 4, as indicated in the figure. The other

6 edges, unlabeled in the figure, have weight 1. Let c* be

the cost of an optimal 3-way cut for C. For each i ,j,

1 <i, j <3, let an i,j-cut be. a s-way cut that leaves vertex

x connected to si and vertex Y comected to sj, and let

4

S1

4

HGURE 6. Graph C: Submodularity counterexsmple

and NP-completeness gadget.

c(i, j) be the cost of a minimum i,j-cut. The sets X and Y

that cause~to violate submodularhy are defined as follows:

Let X be the set of vertices connected tos 1 in an opti-

mal 1,2 cut. (Note that by definition of i,j-cut, x is in X

and y is not.) Let Y be the set of vertices connected tos 1 in

art optimal 2,1 cut. (Note that y is in Y and x is not.) By

definition, we have \(X) = c(1,2) and ~(Y) = c(2, 1).

We also must have ~(X u Y) 2 c(l,l) and ~(X n Y) 2

min{c(2,3) ,c(3,2) ,c(2,2) ,c(3,3)). ~US if ~ were sub-

mochdar, we would need to have c(1,2) + c(2,1) 2

c(l,l) + min{c(2,3),c(3,2 ),c(2,2),c(3,3)). In light of

the following lemma, however, this claii is false.

Lemma 4.1. For the graph C of Figure 6, the follow-

ing properties hold:

(a) c(1,2) = c(2,1) = c*,

(b) c(i,j) 2 c* + 1for all other pairs i, j, and

(c) C(l,l) = C(2,2) = c* + 1.

3.2. The NP-Completeness of 3-Way Cut

As mentioned above, the graph C does more than sim-

ply mle out a promising algorithmic approach. It is the

key gadget in our NP-completeness for 3-WAY CUT, a

local replacement transformation from the SIMPLE MAX

CUT problem [8,9]. One replaces each edge of the original

graph with a copy of C, identifying the vertices x and y

with the edge’s endpoints. Details are in the full paper.

The graph constructed in our proof does not have

bounded vertex degrees. TMs is unavoidable, so long as we

assume all edge weights are equal. If k is fixed, all edge

weights are equal, and there is a bound don vertex degree,

then Muhiway Cut can be solved in polynomial time!

Observe that in thk case the weight of a cut is simply the

number of edges it contains, and an optimal cut can contain

no more than kd edges (since the cut that simply breaks all

the edges incident on each terminal is no bigger than this).

But since k and d are fixed, kd is a constant independent of

n. Consequently, we can use exhaustive search and still

take time that is polynomially bounded inn.

If we ~move the restriction to equal-weight edges,

however, the fixed-k problem becomes NP-complete even

if all vertex degrees are three or less.

3.3. Reducing the Instance Size

The results of Sections 4.1 and 4.2 effectively dash any

hope of finding optimal k-way cuts, k z 3 efficiently by

means of 2-way cut (i.e. max flow) algorithms. Such algo-

rithms may still be useful, however, as we shall see in this

and the next section. Recall that an isolating cut for a ter-

minal si is a set of edges that separates si from the other

two terminals, and that minimum weight isolating cuts can

be found in O (nmlog(n2/nz)) time by performing max

flow computations in a modified graph. The following

Lemma implies that the computation of minimum weight

isolating cuts can be used to reduce the number of vertices
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in an instance. Suppose G = (V,E) is a connected graph

with s~ltied te~mds ~1,$2, ..., sk.

Lemma 4.2. Suppose i = {1,2,...,kJ,k23. Let Ei be

a minimum weight isolating cut for terminal si, and let Vi

be the set of vertices that rew”n connected to si when the

edges of Ei are removedfiom G. Then there exists an opti-

mal k-way cut for G that leaves all the vertices of Vi con-

nected to si.

Using Lemma 4.2, we can reduce the number of ver-

tices in our instance by IVi -1 ~ Simply construct a new

graph in which all the vertices of Vi are merged into the

terminal si. An optimal k-way cut for this shrunken graph

will induce an optimal cut for the original one.

In order to get the maximum effect from applying

Lemma 4.2 in this way, we should start with the minimum

isolating cut for si such that Vi is as big as possible. Let us

say that a set Vi is an isoiation set for a terminal Si if it is

the set of vertices left connected to si by some minimum

weight isolating cu~ Let us call it an optimum isolation set

for si if it has maximum cardinality over all isolation sets

for si. From observations made in [6, pp.10-13], it can be

seen that the optimum isolation set for a given terminal is

unique and contains all other isolation sets for that termi-

nal. It can be found by performing one maximum-flow

computation followed by some linear-time post-processing.

A corollary of the following Lemma is that k optimum iso-

lating set computations suffice to shrink G as far as it can

go.

Lemma 4.3. Let Vi be the optimum isolation set for si,

I < i <k, ad let ~ be the graphobtainedfr~m G by merg-

ing all the vertices of VI into s ~. Then in G the optimum

isolation set for s ~ is {s ~}, and the optimum isolation set

forsiis Vi- V1,2<i <k.

Lemma 4.3 indicates both the efficiency with which we

can apply Lemma 4.2 to reduce the instance size, and the

bounds on how much shrinkage can be obtained. In partic-

ular, k optimum separation set computations suffice to yield

all the shrinkage one can expecc Note that the proof of

Lemma 4.3 would apply just as well if we renamed the ter-

minals in any order. So let GO = G, and inductively obtain

Gi from G i- 1 by performing an optimum isolation set

computation for si and merging all the vertices in the set

obtained into the terminal si. Lemma 4.2 says that an opti-

mal k-way cut in Gi induces one in G i -1 (~d, by induc-

tion, in G), and Lemma 4.3 says that the optimum isolation

set for si in G i is (si ) (and by induction, the optimum iso-

lation set for SA, 1< h S i, is (sA)). Thus in Gk, the opti-

mum isolation set for each terminal consists of the terminal

itself, but a minimum weight k-way cut still induces one in

the original graph G. Thus Gk is a maximally shrunken

graph that can still induce an optimal k-way cut.

3.4. Near-Optimal Multiway Cuts

If one is willing to settle for cuts that are only near-

optimrd, one can exploit a bit further our ability to construct

optimum isolating cuts. Consider the following straightfor-

ward heuristic.

Isolation Heuristic

1. For ~ < i < k construct a minimum weight isolating

cut Ei for terminal si.

2. Determine h such that ~A has maximum weight

among dl the Ei’s.

3. ht ~ be the union of dl cuts ~1 except ~h.

4. Return ~.

Note that the Isolation Heuristic clearly outputs a k-way

cut. Moreover, it can be implemented to run in

0(knmlog(n2/m) time by using the max flow algorithm of

[10] to compute each of the k required isolating cuts. This

is the heuristic to which we referred in Theorem 4 of the

Introduction. A more precise statement of that theorem can

now be given,

Theorem 4. The Isolation Heuristic constructs a k-way

cut whose weight is guaranteed to be no more than

2(k - 1)/k times the optimal weight.

Proof. We first consider the upper bound, Let ~ bt_an opti-

mal k-way, and let W = w(~). For 1 S i < k, let ~i be the

set of vertices left connected to si by ~, and let Ei be the

setof edges in ~ with one endpoint in ~i. Note first that

for ea~h i, the set fii is an isolating cut for si. Hence w(zi)

2 w(Ei). Thus

On the oth~r hand, each edge ~ ~ is in exactly two d~ffer-

ent se~ Ei, and so Z$=lw(Ei) = 2i7. Th~ w(E) S

W(2(k - 1)/k), as claimed. (Note that it is easy to show

that this bound cannot be improved.) ❑

For k = 3, the ratio guaranteed by Theorem 4 is 4/3

and fairly close to 1. An interesting question is whether

there are any polynomial time heuristics that provide better

guarantees. In particular, is it conceivable that we could

guarantee ratios arbitrarily close to 1? Formally, is there a

polynonu”al time approximation scheme for 3-way cut, i.e.,

a sequence of polynomial time algorithms A ~, where A ~ is

guaranteed to find a 3-way cut of weight at most 1 + 1/t

times the optimal weight? (The algorithms need not be

polynomial in t,only in the instance size.)

There is significant evidence that the answer to this

question is no. In particular, our proof of Theorem 3

implies that the 3-Way Cut problem is MAX SNP-hard

[18]. As a consequence, it is no more likely to have a poly-

nomial time approximation scheme than optimization ver-

sions of a variety of other problems for which no such
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schemes are known, such as MAX 3-SAT, the problem of

finding a truth assignment for a (not-necessarily satisfiable)

instance of 3-SAT that maximizes the number of satisfied

clauses. See the full paper for a more-detailed explanation

of these matters.

4. Related Results and Open Problems

Our NP-completeness results in Sections 3 and 4 can be

adapted to several related problems of interest. In 1969, T.

C. Hu [14] raised the question of the complexity of the fol-

lowing problem. Suppose we are given a list of vertex

ptis (Ui, Vi), 1< is k, and are asked to find a minimum

c(u~,u*,...,~&,vl,v2,..o,v~) cut, i.e., a minimum weight

set of edges separating =h pti of vertices ~i, vi,
1< i <k. This is just 2-way Cut when k = 1. The prob-

lem is also polynomial time solvable when k = 2, by using

two applications of a 2-way cut algorithm [21]. Our result

for 3-Way Cut implies that it is NP-hard for arbitrary

graphs when k = 3, even if all edge weights are equak

merely let the three pairs be (S1 ,S2), (S2,S3), and (s3 ,sl).

(If one wants M the ui rind vi to be distinct, the problem

remains NP-hard, as can ke proved via a simple

modification to the input graph.)

Note that for any fixed k the Isolation Heuristic of Sec-

tion 4.4 can be used in the design of a polynomial-time

approximation algorithm for Hu’s problem. For each parti-

tion P of the vertices ul ,uz,...,uk,vl ,vz,...,v~ into sets

s~,..., S Ipl such that no pti (~i ,vi) is in the same S@ let

GP be the graph obtained by merging all the vertices in set

Sj into a single terminal vertex sj$ 1 S j S 1P) Run the

Isolation Heuristic on each such graph Gp, and output the

best cut found. Since the optimal

C(UI ,z42,...,u~,v1 ,v2,.,.,v~) cut must induce one of the

partitions P, and since no partition contains more than 2k

sets, the weight of the cut we output is at most

2(2k - 1)/2k = (2k - 1)/k times optimal by Theorem 4.

The running time is 0(2Uknmlog(n2/m)), which is poly-

nomial for fixed k. The question remains open, however, as

to whether there is a polynomial-time approximation algo-

rithm that works for arbitrary k and provides a similar guar-

antee.

More recently, Erdos and Szdkely in [4,5] proposed the

following generalization of Multiway Cut. Suppose you

are given a graph G = (V,E) weighted edges, and a partial

k-coloring of the vertices, i.e., a subset V’ G V and a func-

tion~:V’ + {1,2 ,... ,k). Can ~ be extended to a total func-

tion such that the total weight of edges that have different

colored endpints is minimized? The k-Way Cut problem

is the special case where IV’ I = k and ~ is 1-1, i.e., each

color is initially assigned to precisely one vertex. It is easy

to see that for general graphs, this problem is in fact equiv-

alent to Multiway cuc simply merge all the vertices with

the same color, call the resulting merged vertices ‘ ‘termin-

als,” and find the minimum weight k-way cut for the

resulting graph. For special classes of graphs, however, the

“Colored Multiway Cut” problem can be more general.

(The above merging trick need not for instance preserve

planarity or acyclicity.) Nevertheless, the dynamic pro-

gramming algorithm mentioned in the Introduction for

MuMway Cut on trees extends in a natural way to the Col-

ored Multiway Cut problem, yielding an O (nk) algorithm,

as Erd6s and Sz4kely observe. This in turn implies that if

G is such that &leting all the terminals renders it acyclic,

then Multiway Cut can itself still be solved in O(nk) time.

(Simply split ~ch terminal si into &gree(si ) separate ver-

tices, one for each edge incident on si, assign color i to all

the derived vertices, and apply the abovementioned algo-

rithm for Colored Multiway Cut on trees to the resulting

graph [5].)

An obvious question is whether our algorithms for pla-

nar graphs also extend to Colored Multiway Cut problem.

The answer is no. Colored Multiway Cut is clearly

polynomial-time solvable if k = 2, even for general gmphs.

For any fixed k 23, however, it remains NP-complete even

for planar graphs and all weights equal to 1. The k = 4

case follows directly from our proof of Theorem 2. For

k = 3, the result can be proved by a transformation from

PLANAR 3-COLORABILITY [8,9], using a local replace-

ment argument in which each edge is replaced by a par-

tially colored structure designed to make it expensive for

the endpoints of the original edge to get the same color.

We leave the details to the enterprising reader. (Note that

this last result provides us with an alternate proof of the

NP-completeness of 3-WAY CUT for general graphs: once

again simply merge all vertices with the same color. The

fact that such an operation may destroy planarity is in this

case irrelevant.)

Returning to the original Multiway Cut problem, in our

opinion the most interesting open problem is whether one

can improve upon the approximation results of Theorem 4.

Although polynomial-time algorithms with worst-case

ratios arbitrarily close to 1 are unlikely in light of Theorem

5, can we do better than the 2(k – 1)/k guarantee we proved

for the Isolation Heuristic? Noga Alon [private communi-

cation, 1991] has observed that for the special cases of

k = 4 and k = 8 improvements can be obtained using a

variant of our approach. For k = 4, the Isolation Heuristic

provides a guarantee of 3/2. An improved guarantee of 4/3

can be obtained as follows For each partition of the termi-

nals into sets S~,S2 of size two, use max flow techniques to

compute the minimum cut that separates the termiruds in S ~

from those in S2. Output the union of the two best such

cuts. The reader can readily verify that this union is a 4-

way cut whose weight is at most 4/3 optimal. Note that

this approach requires only three max flow computations

versus the four needed by the Isolation Heuristic, so it is

faster as well. (Cunningham reports in [2] that F. Zhang

has independently obtained this k = 4 improvement.)

For k = 8, the guarantee of our theorem can be

improved tlom 7/4 to 12/7. Here one computes minimum
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2-way cuts based on partitions of the set of terminals into

sets of size four. It can be shown that the average weight of

these cuts is at most 4/7 times the weight of art optimal 8-

way cut, and that there exists a set of three of these cuts

whose union is art 8-way cut and whose total weight is no

more than average. This yields the claimed bound. More-

over, the running time is once again an improvement on the

Isolation Heuristic, which in this case would require eight

max flow computations. This is because we can show that

it suffices to restrict attention to just seven of the 35 possi-

ble partitions of the eight terminals into sets of size four

(the seven being derived from the rows of a Hadamard

matrix).

Unfortunately, the above approach does not yield

improvements over the Isolation Heuristic for any values of

k other than 4 and 8. Is there some general technique that

will improve on the Isolation Heuristic for arbitrarily large

values of k? What about simply beating our bound for the

caseofk =3?

Turning to our optimization algorithms for the planar

case, the obvious question is whether the running times can

be improved, although for the case of general k the

improvement would have to be substantial to be interesting.

For instance, although we would expect any algorithm to be

exponential in k, the exponent containing k might not have

to be attached to n. Could there be an algorithm whose

running time was ckna, where a was independent of k?
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