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Abstract

We consider the computational complexity of eva-
luating nested counterfactuals over a propositional
knowledge base. Counterfactual implication p > ¢
models a statement "if p, then q," where p is known
or expected to be false, and is different from mate-
rial implication p = g. A nested counterfactual is
a counterfactual statement where the conclusion q is
a (possibly negated) counterfactual. Statements of
the form p; > (p2 > ---(pn > ¢)--) intuitively cor-
respond to hypothetical queries involving a sequence
of revisions. We show that evaluating such state-
ments is Il.f-complete, and that this task becomes
PSPACE-cornplete if negation is allowed in the ne-
sting. We also consider nesting a counterfactual in
the premise, i.e. {p > g} > r and show that evalua-
ting such statements is most likely much harder than
evaluating p > (g > r).

1 Introduction

A counterfactual is a conditional statement "if p, then
q" where the premise p is either known or expected to be
false [Ginsberg, 1986], e.g. "If the electricity hadn't fai-
led, dinner would have been ready on time". This is cu-
stomarily written as ‘p > ¢’ to distinguish it from mate-
rial implication ‘p = ¢’, which is trivially true if p is false
in the current context. The evaluation of a counterfac-
tual in a certain context, which is described by a know-
ledge base, can be done using the Ramsey Test, which
roughly states that g > ¢ is true if the minimal change to
accept p requires accepting q. Counterfactual reasoning
is nonmonotonic in the sense that by augmenting the
knowledge base a previously valid counterfactual may
become false. The relevance of counterfactual reasoning
to a number of Al applications was first demonstrated
in [Ginsberg, 1986], to which (and to [Gardenfors, 1988;
Nebel, 1991; Grahne, 1991]) the reader is referred for a
background.

In this paper we mainly deal with nested counterfac-
tuals, i.e., counterfactuals where the conclusion can be
a counterfactual itself instead of a plain propositional

*This is a short version containing only proof sketches.

An extended report containing full proofs and more results
is in preparation.
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sentence. Nested counterfactuals are often used in real-
life contexts and are an important principle of common-
sense reasoning.

Example 1: The statement "If you would have bought
a painting by Botticelli from John and you would notice
it is a fake, you would still remain a client of John"
corresponds to a nesting of counterfactuals of the form

buy botticelli_from_john > (fake > chent_of gohn).

The value of this counterfactual depends, of course, on
the given knowledge base. It is intuitively clear that the
counterfactual will evaluate to false on a large number
of reasonable knowledge bases. According to Ramsey's
rule, the evaluation of this nested counterfactual over a
given knowledge base T amounts to check whether

(T' o buy-botticelli from-john) o fake) = client-of-john

for a suitable revision operator "o0". This example also
shows that nesting a counterfactual in the conclusion is
different from strengthening the premise, i.e., (g > (¢ >
r)) is different from pAg¢ > r. Indeed, the conjunction of
buy-botticelli-from_john and fake, is semantically incon-
sistent (because a Botticelli is not a fake), and therefore
the sentence would be vacuously true for each knowledge
base. D

More generally, a nested counterfactual of the form
m>(pa>. .. (...>(pn > q))... ) is true over a know-
ledge base T it Topiepu...op, = ¢, i.c., iff T revised
by p\, revised by p,, revised by p; etc. implies q. For
this reason, the complexity results we will derive for ne-
sted counterfactuals are equally relevant to the problem
of inferencing after iterated knowledge base revisions.

The complexity of evaluating unnested counterfac-
tuals over propositional knowledge bases, i.e. finite pro-
positional theories, was considered in [Nebel, 1991;
Grahne, 1991; Eiter and Gottlob, 1992]. In this paper,
we deal with evaluating nested counterfactuals based on
Ginsberg's approach [Ginsberg, 1986] which uses the me-
thod by Fagin, Ullman and Vardi [Fagin et al., 1983] for
incorporating changes to a knowledge base. Such state-
ments intuitively correspond to hypothetical queries in-
volving a sequence of revisions, and are naturally rele-
vant to planning and reasoning about actions (cf. [Gins-
berg and Smith, 1988; Winslett, 1988]), for instance.



Our study also includes allowing negation in nesting
counterfactuals, i.e. statements like p > ~{g > r). This
is motivated by natural relevance.

Example 2: Imagine atwo person game and that player
one wants to know whether every possible choice for his
next move (m;) does not result in a forced win for player
two, i.e. player two does not win regardless of his next
move (={mz > wsy)}. This question amounts to m; >
~(mz > wq). O

The alternative to nesting counterfactuals into the
consequence is nesting into the premise, i.e. a nesting
(p > q) > r. Intuitively, (p > q) > r means "Would r
be true in the closest context where p > q is true". Note
this is different from "if p > ¢, then r", which is true
ifp>gqisfalse. N e s (p>g¢)>rr e relevant to
practice, as the following example shows.

Example 3: Imagine a system is error detecting if the
occurrence of an error (e) is displayed (d) on some special
device. The question whether a module m must occur
in the system if its current state is changed to be error
detecting amounts to (¢ > d) > m. O

The complexity of evaluating a single counterfactual
in the propositional case was studied in [Nebel, 1991;
Eiter and Gottlob, 1992], where it was shown that this
problem is II°,-complete. In the present paper we study
the complexity of checking nested counterfactuals over
propositional knowledge bases. Our main results are
summarized as follows. First, we show that deciding
nested counterfactuals of the form py > {pz > -- - {pn >
q) * * *) is lI°,-complete. This is rather surprising and can
be viewed as a positive result. It has an interesting conse-
quence for the two basic approaches to cope with iterated
KB-revisions. The first incorporates each revision into
the KB and needs in general exponential space and time,
while the second stores the initial KB and the syntactic
sequence [p1,P2,....,Pn] of revisions separately and ac-
counts for it in query answering. Our result guarantees
that the second approach does not get substantially (i.e.
exponentially) harder when the sequence of revisions in-
creases, which strongly favors this approach. Second,
we show that things get more complicated (PSPACE-
complete) if negated counterfactuals can appear in ne-
stings (see Example 2). Third, we consider nested coun-
terfactuals of type (p > q) > r, i.e. the nesting occurs
in the premise, and show that checking validity of such
formulas is 1§ -complete.

The rest of this paper is organized as follows. Sec-
tion 2 introduces concepts and reviews previous results.
In Sections 3 and 4 investigate into the complexity of
evaluating counterfactuals nested in the conclusion wi-
thout and with negation, respectively, while Section 5
deals with nesting in the premise. Section 6 gives some
conclusions. Due to space limitations, we provide here
for some results merely detailed proof sketches.

2 Definitions and previous results

We assume that the reader knows about the basic con-
cepts of NP-completeness, the polynomial hierarchy,
and PSPACE, rf. [Garey and Johnson, 1979]. Briefly,

PSPACE is the class of problems decidable in polynomial
space, and the classes Al ©F and 1T of the polvnomial
hierarchy are defined as follows: AY = T8 = §§ = ¥
and for & > 0, Af“ = PEL ¥, = NPE:’_ ﬂf“ =
coXf,,. In particular, AT = P, Zf = NP, and
N7 = coNP. Clearly £f c funf c af, c=f |
but for & > 1 any equality is considered very unlikely
similar as P = NP. The canonical PSPACE-complete
problem is deciding the validity of a quantified Boolean
formula (QBF) & = @ya1Q2az - - QnanE, where each
quantifier Q; € {3,V} ranges over {true, false} and E is
a Boolean formula built on variables a,, ..., a,. Denote
by QBFy 3 (resp. QBF, v) the valid QBFs @ with j quan-
tifier alternations and @, = 3 (Q, = V), where ¢ has a
“quantifier alternation” for Q; and every i > 1 with
Qi # Qi—1. Deciding if & € QBF, 3 (resp. ® € QBF; y)
is complete for L‘f (Hf)

Let £ be the language of propositional logic over some
sel of atoms. “T” and “L" are constants for truth and
faisity, respectively. We assume the usual convention on
the binding of the logical conneclives. A knowledge base
is a finite subset of £. Knowledge bases are denoted by
letters ST, ..., lormulas from £ by p.¢,..., and atoms
by a,b etc. A hieral is an atom or the negation of an
atotrl.

r > g denotes the counterfaciual “If p, then ¢”. The
formal semantics of p > ¢ 15 as follows. Let

Wip.S5)Y={TCS: Tl TCUCS=U I -p}
be the “possible worlds for p” [Ginsberg, 1986], and let

Fp.S)y={Tu{p}: T e W(pT)}
Then, p > g has value frue over knowledge base 5 (in
symbols, § = p > g) if for every T € F(p,5), T E ¢,
and value false otherwise (S p > ¢).

F{p,8) had been earlier proposed as an operator for
updating logical databases in [Fagin et al., 1983], where
the databases in F(p, 5) are considered to be indepen-
dent possible outcomes of an updale by p.

As shown in [Nebel, 1991; Eiter and Gottlob, 1992),
evaluating a counterfactual is most likely much harder
than any NP-complete problem.

Proposition 2.1 [Nebel, 1991; Eiter and Gottiob,
1992) Deciding whether S &= p > ¢ is 0 -complele.

The nested counterfactyals are the smallest formula set
C that contains all counterfactuals p > ¢ and satisfies the
following properties:

(I)ifeeCandpe L, thenp>c€C.

(2) feel, then =c € (.

We also write p # ¢ for =(p > ¢). The unique sequence
$,,87,...,8nhb = c suchthat 8, = p >qands,;, 2<i<
n, resulls from s;_; by (1) or (2) is referred to as the
structural sequence of c. Each s; is said to occur in c.

Example 4. The structural sequence of p; > (p2 # ¢)
sp>a p2pap>(p2¥q) 0

We now give a precise scinantics to nesied counterfac-
tuals. The truth value of a (poseibly nested) © € € over
a knowledge-base S is recursively defined as follows. ¢
has value {rue over S (in symbols, S = ¢)
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siffezp>ce, cde€Cand T forevery T €
F(p.S).

s if c = ¢, ¢ €C, and ¢ has value folse over 5.

and has value false otherwise (5 | ¢).

The knowledge bases that are relevant for s, from the
structural sequence 8,83, ...,8, of c are determined by
& and the premises of 8,4, .. We refer 1o these
knowledge bases as the contezt of s;, which 15 forinally
defined as follows:

Cn(s,,c,5) =

-

{‘g}v
Urecnes, e.sy F(r.7T)

ifs, =p>6.

and for 2 <7 < n,

C'n(s;_,.¢, 5)

H

{’n(s;.c, 5)

i s, = 8,4

The {ollowing proposition is immediate fron: the defim-
tion.

Proposition 2.2 Lelc=p> ¢, ¢ €. Then, SE ¢
if & E ' for every 5' € Cn(c’, ¢, 5).

3 Right-nested counterfactuals

We start with Lhe evaluation of nested counterfactuals
where no negation occurs in the nesting. In the spi-
rit of [Rabin and Scott, 1959] (cf also [Vardi, 1984:
Kautz and Selman, 1991]), we describe a nondetermini-
stic algorithmn for proving S fEp1 > (pe> - (pu>¢) -2

ND-ALGORITHM RNCF(S.m, .-, Prrg)
input: finite S C £, formulas p;, ..., Pu.g €L
output: “no” T S Ep1>(pe > (pn>¢) )

begin
W’l = 1“:

Guess Wi, ... Wi CSU{p1,...,pn} such that

W, CW_iu{pa}and poyeW, for2<r<n+ 13

for : =2 to n+1 do begin
if (W, |z 1) then stops;
for each r € (W,_; - W) do
if (W0 {r] j& 1} then stopy
end;
if (Wn41 B g) then output “no™;
end.

Proposition 3.1 RNCF(S,p, ..
WSEn>Pp> - (pa>g))
Proof. {Sketch) Let ¢|,...,cq be the structural se-
quence of ¢ = py > (p2 > - - {pn > ¢)--+). Notice thal
€p=pp>qand ¢, =po_jy; >0, 2< i<

One can show by induction on n that 5 | ¢ iff there
exist W € Cn(cy,c,5) and W' € Flp,, W) such that
W’ i ¢. It foliows from the definition of C'n that W is
in the context of c; iff there exist W, , Wy, ... W, =W
such that W, € Cnlen-it1.¢,5), e Wiy € Fp:, Wi)
for # < n. Now consider RNCF. It can be easily shown
that the computation does not stop in the for-leop iff
Wos1 € F(pn, Wa), where W, € Crlc),c,5). Thus
RNCEF correctly outputs “no”. Conversely, RNCF out-
puts “no” in some computation if S £ e. D

< Pn. ) oulpuis “ne”
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Corollary 3.2 Giwven a knowledge base S andc=p, >
(pa> - (pa>q)--), deciding f S = c 15 i 15,
From Proposition 2.1, we thus obtain the following.

Theorem 3.3 (fiven a knowledge base S end ¢ = py >
(p2>(pn>q) ), deciding if S = ¢ 15 OF -complete.

This result apphies Lo knowledge bases that may con-
tamn arbitrary propositional formulas. ln practice, know-
ledge Lases are often sets of Horn clauses, i.e. disjunc-
tions of literals of which al meost one is an atom. It is
well-known that deciding S = p 1s polynomial if p and
every ¢ € S are Horn clauses.

Theorem 3.4 Let 5 be a knowledge base and ¢ = p; >
(pe> - (pn>q)---), where ¢ and all p; as well as all
p € 8§ are Horn clauses. Deciding if § k= ¢ is coNP-
complete.

Proof. Uf pis a Horn clause, then every 7' € F(p, 5) 18
a set of Horn clauses. It follows that each classical infe-
renee test in RNCF can be done in polynomial time, and
hence RNCF can be reforimulated as an NP-algorithm.
Consequently, deading if 5 | ¢ is in coNP. Hardness
for coNP follows for ¢ = p; > ¢ {rom [Eiter and Gottlob,
1992, Theorem 8.5], even if p; and ¢ are literals. O

We rematk that [Fagin et al., 1983] and [Nebel, 1991]
consider a refinetnent of the operator F(p, 5) by the in-
troduction of priorities. This does not only nol increase
the complexity (deciding S k= p > ¢ is still in 117, but
imakes complexity decrease when S is totally ordered (the
problem is easily shown to be in AF). Theorems 3.3
and 3.4 remain valid for the obvious generalization of
priorities 1o nested counterfactuals. Moreover, if § is to-
tally ordered and all formulas arc Horn, we obtain the
optimistic resull that evaluating a nested counterfactual
over S s polynomial.

4 Right-nested counterfactuals with
negation

We consider now evaluation of countetfactuals with ne-
gation in the nesting. It appears that negation has a dra-
stic offect on the complexity of evaluating nested coun-
terfactuals. Negating each counterfactual occurring in
o> (e >q) ) leads to £ _hardness if k is a
constant and to PSPACE-hardness if k 1s not bounded.
We show this in the sequel by a transformation of QBFs
into nested counterfactuals. Let

¢ = (g, HWQz2as) - (QkHQH-l YE(a,,... ;Ej).
where Q) = g, @ # Qi- ), for i > 1 and where g; =
@1,....@in, 15 agroup of n; > | variables and (Qg;)
stands for Qa1 - Qitin,, 1 << k+ 1.
Let ¢ be a new variable, and let &;,...,8; be groups
of new variables, where §; = b;,, ..., b.-n_, Then,
o p; = [a;, #£ 4], for | < i<k, where g; # b, is short
for Ajzy iy # by
o 3 = p{®}, and p(®) 15, depending on Qryy, the
following formula:

PP) = Afile 2 LIAE@) VA (e 2 guy),

where E(®) = =E if Qyyy = ¥V and E(®) = Eif
Qi41 = 3, and ¢ = g, ,, stands for c = /\j Gig1,i-



® g =
Define a knowledge base S(®) and a counlerfactual
c(P) = c(P) as follows:

S(¢) = {ﬂ]!k]v'-
Fork>i>1,

'}ﬂkthkt"‘ak-l-l.l!‘ CE _'ak+1.ﬂk+1v_‘c}

. ] pkmiveia(@), Qe =¥

ci(®) = { Pr—i # "Ca'l-l(‘l’), if @y, =3
_tm¥te Qe =V

a(®) = { P> g i Quyr = 3

Note that for every &, S{®) and c{®) can be computed
in polynomial time.

Intuitively, the c;/(®)’s represent the (possibly nega-
ted) subformulas of @ on the quantified variable groups
B _ig1r-- -1 gy where all remaining variables (i.e, those
ing,,...,a;_,;) are replaced in £ with T or L according
to a truth value assignment. Kvery such assignment is
encoded by a context knowledge base (7 of ¢;(®). The
value of variable a;, i true if it occurs hiterally mn ¢’
and otherwise false {in this case, b, ; 1s 10 () Testing
if C E ci(®) impletuents a test if @ is valid (or not)
for the encoded truth assignment and quantification of
Gkiv1r-- By With Q1. Qiy 1. Thus checking
S | cp(®), 1.c. 5 |= cf{?), implements a test 1f the for-
mula ¢ s vahd.
Example 5: Consider ¢ = YayJag13ay 2Vay £,
E = Lﬂ.] A gy = Ay Vgl

¢ is rewritten as (Va, W(3a,)(Vay) &, where gy = ay, g, =

ay,1,03232, and g3 = az. Applying the transformation
fk+1=23 Q) =V¥)we gt

S = {“1‘51.ﬂ'.*,‘n“:e.;r,f'u,i‘b'.',z.ﬁ“u-ﬁf'}-

m o= a #hy

pr = larZb)Alaa) Fbag]Afazs #Fbus] A

(—EVe)Afe = aa),
g = o
c(®) = pz ¥y, cx(®) = g > {p2 Fq)

Verify that & 1s valid and that 5 |= e{®). O
Theorem 4.1 S(®) k= c($) of and only if D 15 vald.

Before sketching a proof of this theorein, we note some
useful lemmata.
Lemma 4.2 Fork+ 1 =2 and §;, =V, 5(P) E ¢(P)
lﬂ(P [ QBFg.v.

Proof. (Sketch) Imimediate from the proof of [Eiter and
Gottlob, 1992, Lemma 6.2]. O

Lemma 4.3 Let § and 57 be knowledge bases such that
5" £ L aend no atom eccurring in any p € 5’ occurs m
any g€ S orinc. Then, SEc iff SUS Ec. and for
each 8; from the struclural sequence 8(,...,8; of ¢,

T € Cn(s;,c, )< TUS' € Cn(s;,c, SUS).

Proof. (Sketch) Can be shown by induction on k. D

Lemma 4.4 Let S be o knowledge base and lets, ... 8
be the structural sequence of ¢, and denate by o[c'} the
counlerfactual oblamned 1f 5, 15 replaced 1n ¢ by the coun-
tevfactual c’. If for all ' € (Un(sy,c,S) it holds thal
TeEs ff TR, then Sk e f S efef)

Proof. (Sketch) By inductioun on k& {use Proposi-
uen 2.2). O

Proof sketeh of Theorem 4.1 Proof by induction on
the number k41 of quantifier alternations of $.

(Basis) £+ | = 2. By Lemmna 4.2, il remains to
consider @ = (3a,}{¥a,)E. Since & = ~F for ¢ =
(Va,)(3a,)-F, @ is valid iff S(¥") ¥ {®’), which can
he shown Lo he equivalent to S(®) E ¢(¢).

(Induction). Consider k + 2, ie. & = (Gha) -
(Qi 4284 42} F has k + 2 quantifier allernations. There
are two cases for Q1
1. €@y = V- In this case, ® is valid iff for every
truth assignment ¢ to g,, the formula &, = (3a,) -
(Qny18,4,)Ey 18 vahid, where g 1s obtained from ¢ by
replacing in E each occurrence of a;, by T if ¢(a;,) =
{ruc aid by 1 otherwise, for all 1. Applying the hypo-
thesis for k + 1, $4 is valid iff § |= ¢, where § = S(®y)
amt € = ¢{dy). Define

{ay; s dar ;) = frue, 1< 3 <n}U
{bry :dloi;) = false, 1 < j<n}U{a #4)

P’ = L'Zl;b.l]’\“'/\[gk+1$ﬁi+l]/\
{E(®)Ve)A{e = g4yy),

S,

and let s = p(®,) > ¢ be the first counterfactual in
the struetural sequence of ¢. It can be shown using
Lemma 4.3 that S E e iff S U5, k¢ and that

TeCn(s), e,5) e TUSy € Cn{s;.c,SUS,).

I can be further shown that for every 7€ Cn(s;,c,5U
ST s T EP > ¢ It follows from Lemma 4.4
that SUS, E e (te., S E)ITSUS, E c)p’ > ¢
Consequently, S | ¢ iff S(P)U S, &= c[p’ > ¢]. Now
ohserve that p’ = p(®} and ¢c[p’ > ¢] = cx(®). 1t follows
that @ is valid iff S(®}U S5, = ce(P) for every ¢. Since
Crp1(P) = e{®) and

Ca(ce{®). e(®), S(P)) = {SUS, : ¢ a truth ass. to g, }.
Proposition 2.2 implies that ¢ is valid if S(®) = c($).

2. h = 3 Since @ = -9 for ¢ = (Va,}3a,} -
(Qh 4 28k42)F, using case 1.) it is not hard to show
that the statement holds for k+ 2. O

We obtain Lthe main results of this section.

Theorem 4.5 Lel § be a knowledge base andc = p) }
(p2® - lpx #9)---), Jor constant k > 1. Decrding 3f
Sk e s Bp, -complele.

Proof. (Sketch} Membership in Efﬂ can be shown by
induction on &. For k = 1, this holds by Proposition 2.1;
for & > 1, by the hypothesis a guess for W € F{p;, 5}
with Wl ps ¥ (- (pe # 4} --) can be verified in po-
fynomial time with a £f oracle. £, -hardness follows
from Theorem 4.1. O
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Theorem 4.6 Given a knowledge base 5 and ¢ € C,
deciding if S |= ¢ is PSPACE-complete. Hardness for
PSPACE holds if ¢ has form py R (p2 - - (pnF0) ).

Proof. It is straightforward to design a procedure for
deciding S f= ¢ in polynomial space. PSPACE-hardness
follows from Theorem 4.1. O

Since evaluating nested counterfactuals is in PSPACE,
it is straightforward that evaluating a formula buili using
the standard propositional connectives from propositio-
nal atoms and nested counterfactuala over a knowledge
base ia in PSPACE, too.

5 Left-nested counterfactuals

We consider in this section evaluation of counterfactuals
nested in the premise, i.e. (p > ¢) > r. A formal seman-
tics for {p > ¢) > r using the “possibie worlds approach”
can be defined as follows. Define

F(p>¢S) = {TCS:TEp¥y,
TCUCS=UkEp#q)

Notethat T E p > ¢ for every T' € F{p > ¢,5). Now
define that (p > ¢) > r has over S value frue (in symnbols,
SE{(p>q>r)if T rforevery T € F(p > ¢.5)
and haa value false otherwise (S (p > ¢) > r).

This definition can be extended to iterated nestings
in the premise. Such stalements are conceplually quite
involved, however, and their relevance seems questiona-
ble; we do not know of an intuitive example. Future
work will investigate into a semantics, though, which fo-
resees besides removal also addition of formulas to reach
from the relevant knowledge base a “possible world” of
a repeatedly left-nested counterfactual.

Consider the following nondeterministic algorithm,
where CF(p,¢,S)=true if S =p> ¢

ND-ALGORITHM LNCF(S,p,q,7)

input: finite SC £, formulas p, g, r € £
output: “no” if SE(P>q) >

begin
Guess §' C §;
if ~CF(8'.p,¢) or (5' |=r} then stop
else
foreach 7, 8" C 7T C S do
if CF(T,p, g} then stop;
output “no™;
end.

Proposition 5.1 S |£ (p > ¢) > r iff LNCF oulputs

«° n

RO,

LNCF has exponential worsl case runtime even mo-
dulo the CF calls and $' | r. An improvemenl Lo po-
lynomial runtime seems hard to achieve. In particular,
the exponential candidate space for T in the for-loop,
which tests whether S is closest to § such that p > ¢
holds, can most likely not be reduced efficiently to a
small subset {cf. Lemma 5.3). This may be explained by
nonmonotony of counterfactuals,
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1t is easily seen that a proof for S’ ¢ F(p > ¢,5) can
be given nondelerminisiically in polynomial time with an
otacle for classical and counterfactual inference. Asa ﬂ,
oracle is suitable for that, deciding if ' ¢ F(p > ¢,5) is
in £§ . Clearly, a proof for § |£ (p > ¢) > r can be given
nondeterministically in polynomial time with an oracle
for 5 ¢ F(p > gq) and classical inference. Thus,

Theorem 5.2 Given S and (p>gq)>r, deciding sf S |=
(p>q)>r is in 1T,

Lemma 5.3 Let 8" Ep> g fora 8 C S, Given &
and p > q, deciding whether T E p > q for any T,
S'cTCS, is £F -hard.

Proof. (Sketch) We transform deciding the validity of

¢ = (Hal)(Vag)(Elg_a)E into this problem, where g, =
Let ¢ be a new atom and

a.l,,. a,,,., i= 1223

let @ =a},,. . .,a},,, 4 =af,, . . ,4af, 6 and g =

a3y, 83, be groups of new atoms. Define

S = {g293.¢h

S5 = a,.4},8;,495.¢},

p o= [eANL (marg A —va';_,-)\a'i",-)] v
[A; ][(aliAa]l:_'()A(allval|aa ]]A
Adilezs Zaz)Ale= E) ],

g = PAAS la'l:

Notice that 5%, S, p and ¢ are constructible in polyno-
raial time. [t is not hard to see that &' = p > q. Mo

reover, it can be shown that there exists T, ' C T C 5,
such that T Ep > ¢ iff @ is valid. O

Theorem 5.4 Dennding if S = (p>q)>r from S and
(p>¢)>r is N -hard

Proof. (Sketch) The proof is an extension of the trans-
forrnation in the proof of Lemma 5.3. Let

@ = (V0")(3g,)(Va,)(3a3) E,

B = bib, and et b= bibany, ¥ =
i, ... by, b b = by,...,b%,, using new atoms. Define
$ = Sufbl),
po= A6 AbL = o) A (B VL = B AR,
¢ = A?:; B AN (B = bnyas) Aan,
ro= /\;";1(“2.1Aa’z,j}/\cﬁv::l(al.iv“'l,s)-

where S (resp. py, ¢;) is constructed as § (resp. p,¢q) in
the proof of Lemma 5.3. 1. can be shown that § = (p >
g)>riff & is valid. O

Corollary 5.5 Deciding if SE(p>4q) > r from S and
(p>q) >r is I -complete.

8 Related work and conclusion

Complexity characterizations of evaluating counterfac-
tuals are given in [Winslett, 1990; Nebel, 1991; Grahne,
1991; Grahne and Mendelzon, 1991]. Grahne and Men-
delzon [Grahne and Mendelzon, 1991) considered sub-
Junctive queries in a different framework, where the



knowledge base is given by a set of models and updates
are performed according to Winslett's method [Wins-
lett, 1988]. In particular, [Grahne and Mendelzon, 1991,
Corollary 4.2] implies that evaluating nested counterfac-
tuals under this update semantics is PSPACE-complete.

Our work contributes to the recent effort in giving a
precise complexity characterization of nonmonotonic re-
asoning in the full propositional context, cf. [Niemela,
1991; Winslett, 1990; Nebel, 1991; Rutenburg, 1991;
Eiter and Gottlob, 1992; Stillman, 1992] (see [Cadoli
and Schaerf, 1992] for an overview), extending previ-
ous results for restricted contexts, e.g. [Kautz and Sel-
man, 1991; Stillman, 1990; Selman and Levesque, 1990;
Cadoli and Lenzerini, 1990; Provan, 1990]. Such a cha-
racterization supports a better understanding of the
computational relationships between various forms of
nonmonotonic reasoning, e.g. efficient intertranslatabi-
lity. Furthermore, the precise complexity of a problem
gives us a clue of its computational difficulty and may
provide insight to sources of complexity. For counter-
factuals, these sources are classical inference {5 = p)
and the many knowledge bases that are possible af-
ter incorporating a change. Fortunately, a sequence
of changes is not a source of complexity. Since — __
complete problems are most likely much harder than
NP-compiete problems, our results suggest that methods
such as GSAT [Selman et al., 1992] for efficient handling
of NP-complete problems are most likely not applicable
to nested counterfactuals. However, GSAT can be fruit-
fully applied for proving S Epi>(p2>- - {pa>q)--)
if all propositional formulas are Horn clauses.
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