
 Open access Journal Article DOI:10.1145/1538902.1538908

The complexity of obstruction-free implementations — Source link

Hagit Attiya, Rachid Guerraoui, Danny Hendler, Petr Kuznetsov

Institutions: Technion – Israel Institute of Technology, École Polytechnique Fédérale de Lausanne,
Ben-Gurion University of the Negev, Deutsche Telekom

Published on: 02 Jul 2009 - Journal of the ACM (ACM)

Topics: Time complexity

Related papers:

 Wait-free synchronization

 Linearizability: a correctness condition for concurrent objects

 Obstruction-free synchronization: double-ended queues as an example

 Impossibility of distributed consensus with one faulty process

 The Art of Multiprocessor Programming

Share this paper:

View more about this paper here: https://typeset.io/papers/the-complexity-of-obstruction-free-implementations-
53jktpmpql

https://typeset.io/
https://www.doi.org/10.1145/1538902.1538908
https://typeset.io/papers/the-complexity-of-obstruction-free-implementations-53jktpmpql
https://typeset.io/authors/hagit-attiya-33zzfgbio7
https://typeset.io/authors/rachid-guerraoui-3ma6nqzypt
https://typeset.io/authors/danny-hendler-5fix8bp821
https://typeset.io/authors/petr-kuznetsov-2ocftu5l29
https://typeset.io/institutions/technion-israel-institute-of-technology-3s7bh4fv
https://typeset.io/institutions/ecole-polytechnique-federale-de-lausanne-3d352jbh
https://typeset.io/institutions/ben-gurion-university-of-the-negev-2goi3hza
https://typeset.io/institutions/deutsche-telekom-3km264lv
https://typeset.io/journals/journal-of-the-acm-buyoi0af
https://typeset.io/topics/time-complexity-2n3x3lor
https://typeset.io/papers/wait-free-synchronization-364u46tm6n
https://typeset.io/papers/linearizability-a-correctness-condition-for-concurrent-1txljssh1u
https://typeset.io/papers/obstruction-free-synchronization-double-ended-queues-as-an-50npjot3q0
https://typeset.io/papers/impossibility-of-distributed-consensus-with-one-faulty-524wcy745h
https://typeset.io/papers/the-art-of-multiprocessor-programming-14heta3pl8
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/the-complexity-of-obstruction-free-implementations-53jktpmpql
https://twitter.com/intent/tweet?text=The%20complexity%20of%20obstruction-free%20implementations&url=https://typeset.io/papers/the-complexity-of-obstruction-free-implementations-53jktpmpql
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/the-complexity-of-obstruction-free-implementations-53jktpmpql
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/the-complexity-of-obstruction-free-implementations-53jktpmpql
https://typeset.io/papers/the-complexity-of-obstruction-free-implementations-53jktpmpql

The Complexity of Obstruction-Free

Implementations

Hagit Attiya

Technion

and

Rachid Guerraoui

EPFL

and

Danny Hendler

Ben-Gurion University

and

Petr Kuznetsov

TU Berlin/Deutsche Telekom Laboratories

Obstruction-free implementations of concurrent objects are optimized for the common case where
there is no step contention, and were recently advocated as a solution to the costs associated with
synchronization without locks. In this paper, we study this claim and this goes through precisely
defining the notions of obstruction-freedom and step contention. We consider several classes
of obstruction-free implementations, present corresponding generic object implementations, and
prove lower bounds on their complexity. Viewed collectively, our results establish that the worst-
case operation time complexity of obstruction-free implementations is high, even in the absence
of step contention. We also show that lock-based implementations are not subject to some of the
time-complexity lower bounds we present.

Categories and Subject Descriptors: D.1.3 [Software]: Programming Techniques—Concurrent
programming; F.1.2 [Theory of Computation]: Computation by Abstract Devices—Modes of
Computation; F.2 [Theory of Computation]: Analysis of Algorithms and Problem Complexity

General Terms: Algorithms, Theory

Additional Key Words and Phrases: shared memory, solo-fast implementations, perturbable ob-
jects, step contention, memory contention, lower bounds

This paper combines results that appeared, in preliminary form, in [Attiya et al. 2005; Attiya
et al. 2006].
H. Attiya is with the Department of Computer Science, Technion; supported by the Israel Science
Foundation (grant number 953/06).
R. Guerraoui is with the School of Computer and Communication Sciences, EPFL; part of this
work was done while the author visited the Computer Science and Artificial Intelligence Labora-
tory, MIT.
D. Hendler is with the Department of Computer Science, Ben-Gurion university; part of this work
was done while the author was a post-doctoral fellow in the Faculty of Industrial Engineering and
Management, Technion; supported by the Israel Science Foundation (grant number 1344/06).
P. Kuznetsov is at the Technische Universität Berlin/Deutsche Telekom Laboratories, part of this
work was done while the author was at the School of Computer and Communication Sciences,
EPFL, and Max Planck Institute for Software Systems.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2009 ACM 0004-5411/2009/0100-0001 $5.00

Journal of the ACM, Vol. V, No. N, April 2009, Pages 1–34.

2 · H. Attiya et al.

1. INTRODUCTION

Major chip manufacturers are changing their focus from improving the speed of
individual processors to increasing parallel processing capabilities. With multi-
core and multi-processor systems becoming commonplace, most computer programs
will be concurrent, in some form or another. A major challenge for the theory of
distributed computing is to devise efficient algorithms to cope with concurrent
accesses to shared data objects. The operations of these objects would typically
be implemented in software, out of more elementary primitives exported by base
objects.

Traditional locking-based techniques are known to scale poorly and may induce
deadlock and fault-tolerance issues. In contrast, implementations of shared objects
that do not use locks require processes to coordinate without relying on mutual
exclusion, thus avoiding the inherent problems of locking. The safety property typ-
ically required from these implementations is linearizability [Herlihy 1991; Herlihy
and Wing 1990]; roughly, every operation on the object should appear to take effect
instantaneously between its invocation and response.

Algorithms that avoid the use of locks are often, however, inefficient. Not sur-
prisingly, the source of the inefficiency stems from handling contended situations.
In fact, it is often argued [Herlihy et al. 2003; Herlihy et al. 2003] that, although
contention should indeed be expected and handled appropriately, it is rare or can
be made so through the use of appropriate mechanisms for managing contention.
It is thus tempting to figure out the extent to which shared object implementations
can exploit this rarity. In short, this would consist in devising shared object im-
plementations that plan for the worst (high contention) and hope for the best (no
contention). A natural way to explore this approach is to look for implementations
that always preserve safety (linearizability) but have their termination depend on
the absence of contention, i.e., ensuring (or expediting) termination when there is
no contention. This paper studies the inherent complexity of such implementations.

In these implementations, fast termination is expected in the absence of step
contention. When there is step contention, termination might not even be ensured.
An operation may return control to a higher-level entity, called a client, which might
decide if and when to retry the operation and may elect to use more sophisticated
base objects. The term obstruction-free [Herlihy et al. 2003] has been used to coin
these implementations. Informally, an implementation is called obstruction-free, “if
it guarantees progress for every thread that eventually executes in isolation. Even
though other threads may be in the midst of executing operations, . . . ” [Herlihy
et al. 2003, Page 522].

Nothing was known on the inherent complexity of such implementations and, in
fact, we are not aware of any attempt to precisely define them.

The first contribution of this paper is to precisely characterize obstruction-free
implementations and this, itself, goes first through formally capturing the very no-
tion of contention. We provide the first formal definition of the concept of step
contention, according to which processes should only be considered contending on
the implemented shared object if they concurrently apply primitive operations on its
base objects. The absence of step contention allows scenarios where other processes
have pending operations on the same implemented object but are not accessing the

Journal of the ACM, Vol. V, No. N, April 2009.

The Complexity of Obstruction-Free Implementations · 3

i r

r′i′

Fig. 1. Operation [i, r] has interval contention 5, point contention 4, and step contention 3;
operation [i′, r′] has interval and point contention 4, and step contention 1 ([i′, r′] is step-contention
free). Square brackets denote invocations and responses, while solid intervals denote steps on base
objects.

base objects of the implementation. This is fundamentally different from alterna-
tive contention metrics: point contention [Attiya and Fouren 2003] and interval
contention [Afek et al. 2002], both counting also failed or swapped-out processes.
(See the scenario presented in Figure 1.)

Unlike interval contention or point contention, a process encounters step con-
tention on an implemented object only if other processes concurrently apply primi-
tive operations on its base objects. Clearly, implementations that would guarantee
termination only in the absence of interval (or point) contention might not be
robust: failed (or swapped-out) processes can be used as an excuse for other pro-
cesses to never terminate. An implementation might not tolerate a single process
failure while being obstruction-free with respect to interval contention for instance.
In short, obstruction-freedom with respect to point or interval contention do not
preclude the use of locking. Our goal is to study the inherent complexity of imple-
mentations that are robust (in particular those who guarantee global progress and
thus preclude locking), yet that exploit the rarity of step contention.

If a client application is not willing to wait indefinitely for operation completion,
it may be beneficial for an obstruction-free implementation to return a fail indica-
tion to the client in the face of step contention. By doing that, the implementation
enables the client to choose whether to re-invoke the same operation or to invoke
another one. We show however, by reduction to the (wait-free) consensus impos-
sibility [?; Loui and Abu-Amara 1987], that there is an inherent uncertainty as to
whether the operation could have had an effect on the object or not (Theorem 1).
When the implementation uses primitives that cannot solve consensus, e.g., reads
and writes, this implies that the implementation cannot be guaranteed to return
either a legal response or a fail indication.1

Several classes of obstruction-free implementations can be considered, and these
differ based on how step contention is handled once detected and what base objects
are available. We precisely define each class, we present corresponding generic
object implementations and we give lower bounds on their complexity.

1The interface between the implementation and the client can be enriched so that an implementa-
tion sometimes return a special pause value, indicating that the client should re-invoke the same
operation (see Appendix A). The notion of linearizability can be extended accordingly so as to
accommodate failed operations and re-invocations of paused operations.

Journal of the ACM, Vol. V, No. N, April 2009.

4 · H. Attiya et al.

To measure the performance of obstruction-free implementations, we study their
step contention-free complexity : this is the number of steps taken by a process run-
ning alone, until it returns a value. By focusing on the cost of the implementations
in executions where no process encounters step contention, we capture here the com-
plexity of obstruction-free implementations in situations where obstruction-freedom
is expected to be especially beneficial.

We first study obstruction-free implementations that are restricted to use only
overwriting or trivial primitives (e.g., write, swap and read). We present a generic
obstruction-free object implementation which has a linear step contention-free com-
plexity and uses a linear number of read/write objects (Theorem 10). We show
that these complexities are asymptotically optimal, by noticing that they are sub-
ject to the lower bound of Jayanti et al. [2000] (Observation 1). This implies that
obstruction-free implementations of perturbable objects, e.g., fetch&add, modulo-b
counter (for b ≥ 2n), b-valued compare&swap (for b ≥ n), and LL/SC bits, using
overwriting or trivial primitives must have Ω(n) step contention-free complexity
and must use Ω(n) base objects.

We then study a class of obstruction-free implementations that are restricted
to use simple primitives when there is no step contention, but might use more
powerful primitives when there is. More specifically, these are wait-free linearizable
object implementations that use only (cheap) overwriting or trivial primitives when
there is no step contention, but may fall back on more powerful (and expensive)
primitives like compare&swap, when step contention occurs. Such implementa-
tions are also called solo-fast in the sense that termination is faster when there
is no step contention. We give a solo-fast implementation of consensus, which we
believe is interesting in its own right, and derive a generic solo-fast implementation
of any object type (Theorem 2). This generic implementation has a linear step
contention-free complexity. We prove that such implementations must indeed have
non-constant step and space complexity, i.e., they are also inherently expensive.
Specifically, an n-process solo-fast implementation of a perturbable object, using
only overwriting or trivial primitives in step-contention free executions, must have
Ω(n) space complexity (Theorem 4) and Ω(log n) step contention-free complexity
(Theorem 5).

We finally consider obstruction-free implementations that use powerful primi-
tives even when there is no step contention. We prove that, for any obstruction-
free implementation of binary consensus, there exist executions where no process
is aware of step contention, in which either some process accesses

√
n distinct base

objects while performing a single operation, or some process incurs
√

n memory
stalls [Dwork et al. 1997] (Theorem 6). The stalls metric captures the fact that
when process p applies a nontrivial primitive to base object r right after k distinct
processes other than p apply nontrivial primitives to r, then p suffers a delay of
length proportional to k. This result holds also for implementations of any per-
turbable object (Theorem 7). Since these results are obtained in executions where
none of the processes is aware of step contention, they hold for any obstruction-
free implementation of these objects, regardless of how processes behave if they
become aware of step contention. We also prove that, in any obstruction-free im-
plementation of a perturbable object in which processes are not allowed to fail their

Journal of the ACM, Vol. V, No. N, April 2009.

The Complexity of Obstruction-Free Implementations · 5

operations, the number of memory stalls incurred by some process that is unaware
of step contention is Ω(n) (Theorem 9). We show that lock-based implementations
of perturbable objects are not subject to these bounds, thus establishing a sep-
aration between the worst-case operation time-complexity of obstruction-free and
lock-based implementations.

To summarize, the contributions of this paper are the following. We define the
notion of step contention and use it to define obstruction-free implementations (Sec-
tion 2), and show that a obstruction-free consensus implementation from registers
cannot return just legal values or fail (Section 3). We then study the complexity of
different classes of obstruction-free implementations that use strong synchroniza-
tion primitives only in the presence of step contention (Section 4) as well those that
can use these primitives even in the absence of step contention (Section 5).

2. MODEL

We use a standard model of an asynchronous shared memory system, in which a
set P of n > 1 processes p1, . . . , pn communicate through shared objects.

2.1 Objects and Implementations

Every object has a type that is defined by a quadruple (Q,O,R, ∆), where Q is a set
of states, O is a set of invocations, R is a set of responses, and ∆ ⊆ Q×O×Q×R is
a relation, known as the sequential specification of the type. This relation specifies
all the sequences of invocation-response pairs allowed by the type.

For example, the compare&swap object is accessed by a C&S (r1, r2, m) opera-
tion; the operation compares the value in memory location m with the content of
local variable r1, and if equal, writes the value of r2 to m. The operation returns
true if the compared values are equal (and the swap succeeds); otherwise, it returns
false. The sequential specification of the compare&swap type includes all sequences
of C&S operations that obey this rule. We assume that a compare&swap object
also supports a read operation.

Another important example is the consensus object. Processes invoke a propose
operation on the consensus object with an argument from some domain V . Pro-
cesses need to agree on a single argument value. More formally, the sequential
specification of consensus consists of all sequences of propose operations such that
(1) all operations return the same value, and (2) the returned value is the argument
of some propose operation.

To implement a (high-level) object from a set B of shared base objects, processes
follow an algorithm, which is a collection of deterministic state machines, one for
each process. The algorithm also assigns initial values to the base objects. To avoid
confusion, we call operations on the base objects primitives, and reserve the term
operations for the objects being implemented. We also say that an operation of an
implemented object is performed and that a primitive is applied to a base object.
No bound is assumed on the size of a base object (i.e., the number of distinct values
the object can take).

We say that a primitive is nontrivial if it may change the value of the base object
to which it is applied, e.g., a write or a read-modify-write, and trivial otherwise.,
e.g., a read. Let o be an object that supports two primitives f and f ′. Following Fich
et al. [1998], we say that f overwrites f ′ on o, if starting from any value v of o,

Journal of the ACM, Vol. V, No. N, April 2009.

6 · H. Attiya et al.

applying f ′ and then f results in the same value as applying just f , using the same
input parameters (if any) in both cases. A set of primitives is called historyless if all
the nontrivial primitives in the set overwrite each other; we also require that each
such primitive overwrite itself. A set that includes the write and swap primitives
is an example of a historyless set of primitives.

In an operation instance Φ = (x,Op, pi, args), process pi performs the operation
Op, with arguments args, on object x.

2.2 Configurations, Executions and Histories

A configuration specifies the value of each base object and the state of each process.
In an initial configuration, all base objects have their initial values and all processes
are in their initial states. A configuration is quiescent if no process is in the middle
of performing an operation instance.

When receiving an invocation (to the high-level object), process pi takes steps
according to its state machine. Each step of pi consists of some local computation
and one shared memory event, which is a primitive applied to a base object. After
each step, pi possibly changes its local state according to its state machine and pos-
sibly returns a response on the pending high-level operation. An event is nontrivial
if it is an application of a nontrivial primitive.

An execution fragment is a (possibly infinite) sequence of events, that result from
interleaving the steps taken by processes, according to their state machines. An
execution is an execution fragment that starts from an initial configuration. For any
finite execution fragment α and any execution fragment α′, the execution fragment
αα′ is the concatenation of α and α′; in this case α′ is called an extension of α. An
execution α is Q-free, for a non-empty set of processes Q ⊂ P, if no events in α is
applied by a process in Q. If Q = {q}, we say that α is q-free instead of Q-free.

If the last event of an operation instance Φ has been applied in an execution α,
we say that Φ completes in α and that Φ returns a response in α.

In an infinite execution, a process is correct if it takes an infinite number of steps
or it has no pending operation; otherwise, it is faulty.

We denote by α|p the subsequence of events of execution α that are applied by
process p. Two executions are indistinguishable to a process p, if p applies exactly
the same sequence of events and gets the same responses from these events in both
executions.

Every execution α induces a history H(α) that includes only the invocations and
responses of the high-level operations. Each invocation or response is associated
with a single process and a single object. A local history of process pj in H, H|j, is
the subsequence of H containing only events of pj . Similarly, H|x is the subsequence
of H of operations on an object x.

A response matches an invocation if they are associated with the same process
and the same object. A local history is well-formed if it is a sequence of matching
invocation-response pairs, except perhaps for the last invocation in a finite local
history. A history H is well-formed if every local history in H is well-formed.

A pair of consecutive invocation and matching response [i, r] is called a complete
operation, and we say that i returns r. An invocation i without a matching response
(in a given history H) is a pending (in H) operation; a completion of a pending
operation (i.e., an invocation) is the invocation followed by a matching response.

Journal of the ACM, Vol. V, No. N, April 2009.

The Complexity of Obstruction-Free Implementations · 7

The fragment of H (or α, its corresponding execution) between the invocation i
and its matching response r (if it exists) is the operation’s interval.

2.3 Properties of Implementations

A history H is sequential if every invocation is immediately followed by its matching
response. A sequential history H is legal if for every object x, H|x is in the sequential
specification of x.

Two different invocations i and i′ on the same object x are concurrent in a history
H, if i and i′ are both pending in some finite prefix of H. This implies that their
intervals overlap. We say that two operations [i, r] and [i′, r′] (or i′ if i′ is pending)
are non-concurrent if their intervals are non-overlapping: Either r appears before
i′ in H, in which case we say that [i, r] precedes [i′, r′], or r′ appears before i in H,
in which case we say that [i, r] follows [i′, r′].

Definition 1. A well-formed history H satisfies extended linearizability [Her-
lihy 1991] (see also [Attiya and Welch 2004, Chapter 10]) if there is a permutation
H ′ containing all the complete operations and completions of a subset of the pend-
ing operations in H, such that (1) H ′ is legal, and (2) H ′ respects the order of
non-concurrent operations in H. H ′ is the linearization of H.

In accordance with the literature, we simply call this property linearizability
below.

A process p is active after execution α if p is in the middle of performing some
operation instance Φ, i.e., p has applied at least one event while performing Φ in
α, but Φ does not complete in α. If p is not active after α, we say that p is idle
after α.

2.4 Step contention and obstruction-freedom

The step contention of an execution fragment α is the number of processes that
take steps in α. We say that α is step-contention free for p if the events of α|p
are contiguous in α. Also, α is step-contention free if α is step-contention free for
all processes. An operation Φ is eventually step-contention free in α, if either Φ
completes in α or if there is a suffix of α that consists only of the events of Φ; in
other words, starting from some point in α, Φ runs solo.

An implementation is called obstruction-free “if it guarantees progress for every
thread that eventually executes in isolation. Even though other threads may be in the
midst of executing operations, . . . ” [Herlihy et al. 2003, Page 522]. This requirement
is actually equivalent to solo termination [Fich et al. 1998], and it echoes the liveness
correctness conditions stated for Paxos-style consensus algorithms in the context of
state-machine replication [Lamport 1998]. Using our terminology, this leads to the
following definition.

Definition 2. An implementation is obstruction-free if every operation that is
eventually step-contention free eventually returns.

3. OBSTRUCTION-FREE IMPLEMENTATIONS USING ONLY READS AND WRITES

Obstruction-freedom is a very weak liveness condition, and it requires the operation
to return only under very restricted conditions. In all other circumstances, we only

Journal of the ACM, Vol. V, No. N, April 2009.

8 · H. Attiya et al.

Shared variables: register X, initially ⊥, and wait-free consensus object with fails C

Code for process p0:

1: upon propose(v0) do

2: d0 ← C.propose(v0)
3: if d0 = ∅ then

4: d0 ← X

5: return d0

Code for process p1:

6: upon propose(v1) do

7: X ← v1

8: repeat

9: d1 ← C.propose(v1)
10: until d1 6= ∅
11: return d1

Fig. 2. Wait-free consensus from wait-free consensus with fails

require that an operation’s response is legal (i.e., that it does not violate the safety
properties of the implementation), if it returns a response at all.

We extend the interface of the implementation with a special fail value ∅. This
value can only be returned when an operation cannot return a legal response and
the implementation is certain that the failed operation is not going to influence the
responses of concurrent or subsequent operations. When the client of the imple-
mentation (i.e., the higher-level entity that invokes operations on it and receives
its responses) obtains a fail response, it is allowed to abort its current operation
and invoke any other operation instead. This enables the client to avoid waiting
indefinitely for the operation to complete in high step contention scenarios.

For this purpose, we add to the set R of object responses a special fail value ∅ /∈ R.
The definition of linearizability is also extended so that invocations returning fail
are removed from the linearized history. To rule out trivial solutions, we require
implementations to be valid : ∅ can only be returned if the corresponding operation
is not step-contention free.

Note that allowing an implementation to return fail responses in case of step
contention weakens the requirements from the implementation, and can potentially
allow us to devise implementations that are impossible to devise otherwise. For
instance, we could presumably implement a wait-free two-process consensus object
from registers that is allowed to return ∅ in case of step contention to indicate that
an operation did not take effect. We show, however, that this is impossible.

Theorem 1. There is no wait-free valid implementation of consensus with fails
from registers.

Proof. Suppose by way of contradiction that such an implementation exists. We
show that it is then possible to implement wait-free consensus for two processes, p0

and p1, using one such consensus object, denoted C, and one register X, that can
be written by p1 and read by p0. But this contradicts [Loui and Abu-Amara 1987].

The algorithm, described in Figure 2, is asymmetric: Process p0 invokes a propose
operation on C. If a non-∅ value v is returned, p0 decides on v; otherwise, p0 decides
on the value it reads from the shared register X. Process p1 starts by writing its
value to X; then, p1 repeatedly proposes in C, until it obtains a non-∅ value v, and
decides on it.

To see why a value returned has been proposed, note that the algorithm returns
either a non-∅ value obtained from the embedded consensus object C, or a value

Journal of the ACM, Vol. V, No. N, April 2009.

The Complexity of Obstruction-Free Implementations · 9

read from X. In the first case, from the validity property of C, the value has
been proposed. Otherwise, p0 obtains a ∅ value from C. This can only occur if p0

encounters step contention because of the steps of p1. In this case, it is guaranteed
that p1 has previously written its input to X, which is the value p0 decides on.

Clearly, the processes do not return different values when they both decide on a
value returned from C; the only other case is when p0 obtains ∅ from C, in which
case, p0 decides on p1’s input (which it reads from X); in this case, since p0’s
propose on C fails, C can return only p1’s input, implying that p1 can only decide
on its own value.

Finally, to show that the algorithm is wait-free, note that p0 performs a constant
number of steps, and that p1 eventually runs in the absence of step contention, and
decides.

Theorem 1 implies that any implementation of consensus from registers has exe-
cutions in which it does not terminate, even if it is allowed to return ∅ when step
contention is encountered. On the other hand, it is straightforward to implement
an obstruction-free consensus object from registers (see Appendix B). By replac-
ing wait-free consensus objects in the universal construction of Herlihy [1991] with
obstruction-free ones, we obtain a generic obstruction-free implementation of any
object from registers.

The generic implementation uses O(n) registers and ensures that every step
contention-free operation terminates in O(n) steps. In fact, linear time and space
complexity is asymptotically optimal for implementations of a large class of per-
turbable objects. This class, originally defined by Jayanti et al. [2000], includes
counters, fetch&add and compare&swap objects; see Definition 3 in Section 4.2
below. Jayanti et al. [2000] show that any implementation of a perturbable object
that satisfies the solo termination property has an execution in which a solo opera-
tion (i.e., an operation that does not observe step contention) takes n − 1 or more
steps and accesses n − 1 or more different base objects. Since any obstruction-free
implementation ensures the solo termination property, we immediately have the
next observation.

Observation 1. Let A be an obstruction-free implementation of a pertubable
object using only overwriting or trivial primitives. A has an execution in which a
step-contention free operation takes n− 1 or more steps and accesses n− 1 or more
different objects.

In Appendix A, we further extend the interface between a client and linearizable
implementations with a special pause value. Pauses can only be returned if (1)
there is step contention, and (2) the invoked operation might have taken effect (in
a strict sense). We show that every object has an implementation from registers
that provides the extended interface and always returns.

4. OBSTRUCTION-FREE IMPLEMENTATIONS THAT ARE SOLO-FAST

We call an implementation solo-fast if it only applies primitives from some histo-
ryless set of primitives in step-contention free executions but can apply additional
primitives upon encountering step contention. In this section, we present a generic
(wait-free) solo-fast implementation from registers and C&S objects, and prove

Journal of the ACM, Vol. V, No. N, April 2009.

10 · H. Attiya et al.

complexity lower bounds for solo-fast implementations.

4.1 Generic Object Implementation

Figure 3 presents a solo-fast consensus implementation. The algorithm proceeds
in rounds (lines 13–24). Starting the algorithm, every process pi first computes in
line 3 the smallest round ki in which a value can be fixed, i.e., returned in line 19
(we say that pi joins in round ki). More precisely, pi joins in minimal round k such
that the registers A1, . . . , An contain no values with timestamps higher than k and
no different values with timestamp k. In every round, starting from round ki, pi

tries to fix its current decision estimate vi. The algorithm ensures that if no other
process tries to fix concurrently any value in a higher round, or a different value in
the current round, then the estimate is fixed. If pi is not able to fix the estimate
in round k (we say that pi loses round k), which can only happen when there is
step contention, it updates the estimate using a C&S operation and goes to round
k + 1. If no process joins in round k + 1, then pi fixes its estimate in round k + 1
(the use of C&S ensures that no two processes that lost round k try to fix different
values in round k + 1). We show that no process can join in round n or later, and
thus pi fixes its estimate in round k ≤ n. The algorithm is solo-fast, since a process
does not lose a round (and thus fall back to using a C&S object) in the absence of
step contention.

Theorem 2. There is a solo-fast consensus implementation from registers and
C&S objects, which takes O(n) steps in the absence of step contention.

Proof. The algorithm clearly implies that only a proposed value can be re-
turned.

We say that a process pi reaches round k if it reaches line 13 with ki = k; pi

participates in an execution if it reaches some round k ≥ 1. A process pi joins in
round k if k is the first round pi reaches. We say that the result V of a collect
of A1, . . . , An or B1, . . . , Bn is k-lost if V contains values with timestamps higher
than k or two different values with timestamp k.

Claim 1. For all k ≥ 2, if no process joins in round k or later, then A1, . . . , An

contain no (k′, v′) such that k′ > k and no two (k, v′) and (k, v′′) such that v′ 6= v′′.

Proof. If no process joins in round k or later (k ≥ 2), then every process that
reaches round k previously completed round k − 1 and invoked Ck−1.C&S(⊥, vi)
to update its current estimate (line 23). If Ck−1.C&S(⊥, vi) fails, then the process
adopts the value of Ck−1 as its current estimate. Otherwise, the process keeps
its estimate unchanged. Thus, all processes that reach round k have identical
estimates. By the algorithm, a process can lose round k only if it reads (k′, v′) such
that k′ > k. Since no process joins in round k or later, this value can be written
only by a process that previously lost round k. Thus, no process can lose round k
and write a value (k′, v′) such that k′ > k in A1, . . . , An.

Claim 2. Let k ≥ 2 be the number of processes that participate in the algorithm.
No process joins in round k or later.

Proof. By induction on k. If there is only one participant, then it trivially joins
and returns in round 1.

Journal of the ACM, Vol. V, No. N, April 2009.

The Complexity of Obstruction-Free Implementations · 11

Shared variables:
Registers {Aj}, {Bj}, j ∈ {1, 2, . . . , n}, initially ⊥
C&S C1, . . . Cn−1, initially ⊥

1: upon propose(inputi) do

2: V ← collect A1, . . . , An // ⊥’s are ignored in each collect

3: ki ← min{k ≥ 1 |∀(k, v), (k′, v′) ∈ V : k′ < k ∨ (k′ = k ∧ v = v′)}
// Select a round to join

4: if ∃(ki, v) ∈ V then

5: vi ← v

6: else

7: V ′ ← collect B1, . . . , Bn

8: if V ′ 6= ∅ then

9: vi ← the highest timestamped value in V ′

10: else

11: vi ← inputi
12: while (true) do

13: Ai ← (ki, vi)
14: V ← collect A1, . . . , An

15: if ∀(k′, v′) ∈ V : k′ < ki ∨ (k′ = ki ∧ v′ = vi) then

16: Bi ← (ki, vi)
17: V ← collect A1, . . . , An

18: if ∀(k′, v′) ∈ V : k′ < ki ∨ (k′ = ki ∧ v′ = vi) then

19: return vi

20: V ′ ← collect B1, . . . , Bn

21: if V ′ 6= ∅ then

22: vi ← the highest timestamped value in V ′

23: if ¬Cki
.C&S(⊥, vi) then vi ← Cki

24: ki ← ki + 1

Fig. 3. An n-process solo-fast consensus: code for process pi

Assume now that the claim holds for all k′, 2 ≤ k′ ≤ k, and consider any execution
with k + 1 participants. Let pi be the last process that joins in that execution.
Consider a prefix α of the execution in which pi just completed executing line 3.
Let V be the result of the collect taken by pi in line 2. Since pi does not write in
α, the other (at most k) participants cannot distinguish α from an execution with
at most k participants. By the induction hypothesis, no process joins in round k
or later in α. By Claim 1, V contains no (k′, v′) such that k′ > k and no two pairs
(k, v′) and (k, v′′) such that v′ 6= v′′. By the algorithm (line 3), pi joins in round k
or earlier and the claim follows.

Since there are at most n participants, Claim 2 implies that no process joins in
round n or later. By Claim 1, in any execution, A1, . . . , An contain no (k′, v′) such
that k′ > n and no two (n, v′) and (n, v′′) such that v′ 6= v′′. It follows that any
process that reaches round n will pass the “if” clauses in lines 15 and 18 and return
in line 19. Thus, every process decides in round n or earlier.

Claim 3. Assume process pi returns v in round k. A1, . . . , An contain no (k′, v′)
such that v′ 6= v and k′ ≥ k + 1 and B1, . . . , Bn contain no (k′, v′) such that v′ 6= v

Journal of the ACM, Vol. V, No. N, April 2009.

12 · H. Attiya et al.

and k′ ≥ k .

Proof. Assume pi returns v in round k. By the algorithm, it has previously
written (v, k) in Ai and Bi. First, we observe that, for all k, if a process pj writes
(k′, v′) in Aj and then (k′, v′′) in Bj , then v′ = v′′.

We proceed by induction on m, the number of processes that reach round k + 1
or higher. Let m = 0, i.e., no process reaches any round k′ ≥ k + 1. Trivially,
no value with timestamp k′ ≥ k + 1 can be written in A1, . . . , An and B1, . . . , Bn.
To obtain a contradiction, assume that some process pj writes (k, v′) with v′ 6= v
in Bj . Thus, pj previously wrote (k, v′) in Aj , and then pj did not read (k, v) in
Ai (otherwise, pj would not pass the “if” clause in line 15). Hence, pi has written
(k, v) in Ai after pj has written (k′, v′) in Aj . But then pi would necessarily read
(k, v′) (or a value with a higher timestamp) in Aj and would not pass the“if” clause
in line 15—a contradiction.

Now assume that, for some m ≥ 0, the claim holds for every execution in which
at most m processes reach round k + 1 or higher. Consider an execution in which
m + 1 processes reach round k + 1 or higher. Let pj be any process to reach round
k+1 or higher in that execution. By the algorithm pj collects A1, . . . , An and joins
in the minimal round k′ such that the result of the collect operation is not k′-lost,
i.e., pj found no values with timestaps higher than k′ and no different values with
timestamps k′. When process pj joins, at most m processes reached round k +1 or
higher. We consider the two possible cases:

(1) pj joins in round k + 1 or higher.
By the algorithm, before joining, pj collects A1, . . . , An in line 2 and then
collects B1, . . . , Bn in line 7. Let V and V ′ be the results of these two collects.
Since pj joins in round k + 1 or higher, V is k-lost. But since pi returns v in
round k, it previously wrote (k, v) in Bi and then collected A1, . . . , An, so that
the result V ′′ of the last collect is not k-lost. Thus, pj read Bi in its collect
of B1, . . . , Bn after pi wrote (k, v) in it. Otherwise, since the timestamps of
values written in the same register grow monotoncally, V ′′ would also be k-lost,
and pi would not be able to return in round k. Hence, V ′ contains (k, v).
Further, by the induction hypothesis, V contains no value v′ 6= v timestamped
with k + 1 or higher and V ′ contains no value v′ 6= v timestamped with k or
higher. Thus, if pj finds a value with timestamp k′ ≥ k + 1 in V , then this
value is v, and pi adopts v as its estimate (line 5). Otherwise, pj adopts the
value with the highest timestamp in V ′ (line 9), and, since (k, v) ∈ V ′ and no
value different from v has timestamp k + 1 or higher in V ′, pj adopts v.
Finally, in round k′, pj writes (k′, v) in Aj .

(2) pj participates in round k.
Thus, in round k, pj collects A1, . . . , An so that the result of the collect oper-
ation was k-lost (line 14 or line 17), and then collects B1, . . . , Bn in line 20.
Let V and V ′ be the results of these two collects. Again, since pi returns v
in round k, pi wrote (k, v) in Bi before pj read Bi in its collect of B1, . . . , Bn.
Hence, V ′ contains (k, v). By the hypothesis, when pj completes the second
collect operation, at most m processes reached round k+1 or higher, and, thus,
V contains no value v′ 6= v timestamped with k′ ≥ k + 1, and V ′ contains no
value v′ 6= v timestamped with k′ ≥ k. By the algorithm, pj adopts the highest

Journal of the ACM, Vol. V, No. N, April 2009.

The Complexity of Obstruction-Free Implementations · 13

timestamped value in V ′ (if any) in line 22. Thus, any process that accesses the
C&S object Ck previously adopted v as its estimate. If pj fails when invoking
Ck,C&S(⊥, v), then it reads v from Ck. In both cases, when pj begins round
k + 1, vj = v.
Finally, in round k + 1, pj writes (k + 1, v) in Aj .

In both cases, when pj reaches its first round higher than k, it cannot write a
value different from v , implying the inductive claim.

Let k be the first round in which some process pi decides some value v. By the
algorithm, if a process pj decides v′ in a round k′, then it previously wrote (k′, v′)
in Bj (line 16). By Claim 3, no process pj writes (k′, v′) such that v′ 6= v and
k′ ≥ k. Thus, no process decides v′ 6= v, implying that processes do not decide on
different values.

Finally, we need to show that the implementation is solo-fast. Assume that a
process pi joins in round k. The only reason for pi to lose that round is to observe
a value timestamped with k′ > k or two different values timestamped with k in
A1, . . . , An (line 15 or 18). But pi previously observed the opposite in line 3 and
adopted the value timestamped with k found in A1, . . . , An (if any) in line 5. Thus,
pi can lose round k only when some other process pj concurrently writes (k′, v′) in
Aj such that k′ > k∨(k′ = k∧v′ 6= v), i.e, when there is step contention. Clearly, if
pi does not lose round k, then it takes a linear number of read and write operations.

Theorem 2 and the fact that the universal construction of Herlihy [1991] uses
only reads and writes, in addition to consensus objects, immediately imply:

Corollary 3. Every sequential type has a solo-fast implementation from regis-
ters and C&S objects.

4.2 Time and Space Lower Bounds

In this section, we prove time and space lower bounds for solo-fast implementa-
tions, showing that the non-constant step contention-free complexity and space
complexity of our implementations are unavoidable.

One may be tempted to think that the linear lower bounds on the space and step
complexity of solo-fast implementations follow from the results of Jayanti et al.
[2000]. This is not true due to the following reason: their results are obtained
by constructing executions in which processes continue executing their operations,
using reads and writes only, even after they encounter step contention. Contrary
to that, solo-fast implementations are allowed to apply stronger synchronization
primitives in the face of step contention.

Our lower bounds hold for implementations of perturbable objects, a wide class
of objects defined next; the following definition is equivalent to Definition 3.1 of
Jayanti et al. [2000], when restricted to consider only deterministic implementa-
tions.

Definition 3. An object O is perturbable if there is an operation instance opn

by process pn, such that for any pn-free execution αλ where no process applies more
than a single event in λ and for some process pl 6= pn that applies no event in
λ, there is an extension of α, γ, consisting of events by pl, such that pn returns

Journal of the ACM, Vol. V, No. N, April 2009.

14 · H. Attiya et al.

different responses when performing opn by itself after αλ and after αγλ. We say
that opn witnesses the perturbation of O.

The following technical definition is required for our proofs. Note that if a process
is active in the configuration resulting from a finite execution α, then the process
has exactly one enabled event, i.e., the event the process is about to apply in the
configuration. If a process is idle but has begun a new operation-instance, then the
first event of that operation-instance is enabled; otherwise, it has no enabled event.

Definition 4. A base object o is covered after an execution α if the set F of all
the primitives applied to o in α is historyless, and there is a process pn that has,
after α, an enabled event e about to apply a nontrivial primitive from F to o. We
also say that e covers o after α.
An execution α is k-covering if:

—α is step-contention free,

—there exists a set of processes {pj1 , . . . , pjk
} that does not contain process pn,

such that all the events of α are applied by processes in this set and each of the
processes in the set has an enabled nontrivial event that covers a distinct base
object after α.

We call the set {pj1 , . . . , pjk
} a covering set of α.

The second condition in Definition 4 implies that if an implementation has a
k-covering execution, then its space complexity is at least k. We now prove a linear
lower bound on the space complexity of any obstruction-free solo-fast implementa-
tion.

Theorem 4. Let A be an n-process solo-fast obstruction-free implementation of
a perturbable object O. The space complexity of A is at least n − 1.

Proof. Since A is solo-fast, there exists a historyless set of primitives S such
that any process p can apply only primitives from S in executions that are step-
contention free for p.

Let opn be the operation instance that witnesses the perturbation of O. We prove
the theorem by showing that A has an (n − 1)-covering execution.

The proof goes by induction. The empty execution is vacuously a 0-covering
execution. Assume that αi, for i < n − 1, is an i-covering execution with covering
set {pj1 , . . . , pji

}. Let λi be the execution fragment that consists of the nontrivial
events by processes pj1 . . . pji

that are enabled after αi, arranged in some arbitrary
order.

By Definition 3, there is an execution fragment γ by some process pji+1
/∈

{pn, pj1 , . . . , pji
} such that opn returns different responses after executions αiλi

and αiγλi. We claim that γ contains a nontrivial event that accesses a base object
not covered after αi. Assume otherwise to obtain a contradiction. Since all events
in executions αiλi and αiγλi apply primitives from a historyless set, every non-
trivial primitive applied to a base object in γ is overwritten by some event in λi.
Thus, the values of all base objects are the same after αiλi and after αiγλi. This
implies that opn must return the same response after both αiλi and αiγλi, which
is a contradiction.

Journal of the ACM, Vol. V, No. N, April 2009.

The Complexity of Obstruction-Free Implementations · 15

We extend αi by letting pji+1
execute the shortest prefix of γ at the end of which

it has an enabled nontrivial event about to access an object o not covered after αi.
We denote this prefix of γ by γ′. We define αi+1 to be αiγ

′. Thus, at the end of
αi+1, pji+1

has an enabled nontrivial event that accesses o. As none of the processes
pj1 , . . . pji

apply events in γ′, we have that αi+1 is a step-contention free execution,
after which processes pj1 , . . . pji+1

have enabled events that cover distinct objects.
Hence αi+1 is an (i+1)-covering execution. It follows that A has an (n−1)-covering
execution.

Next we prove a logarithmic lower bound on the step contention-free complexity
of solo-fast implementations of perturbable objects. As the proof is quite involved,
we first provide an informal description of its technique and structure.

Our goal is to construct a scenario in which process pn has to access a large
number of base objects as it runs solo while performing an operation. To that end,
our proof constructs longer and longer r-covering executions. The construction
proceeds in phases. After each phase r of the construction, we consider the path
that pn will take if it runs solo after we ‘unfreeze’ the pending covering events (but
we don’t actually unfreeze these events). We denote this path by πr. Note that
some of the objects along this path may already be covered after phase r.

To construct phase r +1, we deploy a ‘free’ process, pjr+1
, and let it run solo. As

processes can only apply primitives from a historyless set, and as the implemented
object is perturbable, we know that pjr+1

will eventually be about to write to an
uncovered object, O, along πr. This, however, may have the undesirable effect
(from the perspective of an adversary) of making πr+1 shorter than πr: pn may
read the information written by pjr+1

to O (if we unfreeze its pending covering
event) and not access some other objects farther along πr!

Note, however, that objects that are part of πr will be absent from πr+1 only if
O precedes them in πr. Thus the set of objects along πr+1 that are covered (after
phase r + 1) is ‘closer’, in a sense, to the beginning of the path. It follows that if
there are many phases r such that |πr| decreases, then one of the paths πr must be
‘long’.

To capture this intuition, we define Ψ, a monotonically-increasing progress func-
tion of the phase numbers. Ψr is a (log n)-digit binary number defined as follows.
Bit 0 (the most significant bit) of Ψr is 1 if and only if the first object in πr is
covered; bit 1 of Ψr is 1 if and only if the second object in πr exists and is covered,
and so on. Note that we do not need to consider paths that are longer than log2 n.
If such a path exists, the lower bound clearly holds.

As mentioned before, to construct phase r + 1, we deploy a free process, pjr+1
,

and let it run solo until it is about to write to an uncovered object, O, along πr.
In terms of Ψ, this implies that the covering event of pjr+1

might flip some of the
digits of Ψr from 1 to 0. But O corresponds to a more significant digit, and this
digit is flipped from 0 to 1, hence Ψr+1 > Ψr must hold. As we have n−1 processes
to deploy, Ψr must increase n − 1 times and eventually it equals n − 1. When it
does, the length of πr is exactly log2 n. The formal proof follows.

Theorem 5. Let A be an n-process solo-fast obstruction-free implementation of
a perturbable object O. A has a step-contention free execution in which a process
accesses at least log2 n distinct base objects in the course of performing a single

Journal of the ACM, Vol. V, No. N, April 2009.

16 · H. Attiya et al.

operation instance.

Proof. Since A is solo-fast, there exists a historyless set of primitives S such
that any process p can apply only primitives from S in executions that are step-
contention free for p.

If there is an execution in which a process accesses more than log2 n distinct base
objects in the course of performing a single operation instance in a step-contention
free manner then we are done. Assume otherwise. We construct a step-contention
free execution in which a process accesses exactly log2 n distinct base objects in the
course of performing a single operation instance.

The construction proceeds in at most n phases. In phase r ≥ 0, we construct an
execution αrδrφr with the following structure:

—αr is an r-covering execution with a covering set pj1 , . . . , pjr
,

—in δr, each of the processes pj1 , . . . , pjr
applies a nontrivial event to an object

that is covered after αr, and

—in φr, process pn runs solo after αrδr until it completes the operation instance
opn.

Let C(αr) denote the set of base objects that are covered after αr. Let πr =
O1

r . . . Oir

r denote the sequence of all distinct base objects accessed by pn in φr

(after αrδr) indexed according to the order in which they are first accessed by pn.
Also let Sπr

denote the set of these base objects.
In execution αrδrφr, pn accesses ir distinct base objects. Thus, it suffices for the

proof to construct such an execution with ir = log2 n. For j ∈ {1, . . . , ir}, we let
bj
r be the indicator variable whose value is 1 if Oj

r ∈ C(αr) and 0 otherwise. We
associate an integral progress parameter, Ψr, with each phase r ≥ 0, defined as
follows:

Ψr =

ir∑

j=1

bj
r · 2log2 n−j . (1)

As we assume that ir ≤ log2 n for all r, Ψr can be viewed as a log2 n-digit number
in base 2 whose j’th most significant bit is 1 if the j’th object in πr exists and is
in C(αr), or 0 otherwise. This implies that the number of base objects in πr that
are covered after αr equals the number of 1-bits in Ψr.

We now describe our construction. Let α0 and δ0 denote the empty execution; let
φ0 denote the solo execution that results when pn performs the operation instance
opn starting from an initial configuration, and let i0 denote the number of distinct
objects accessed in φ0. Since C(α0) = ∅, we have Ψ0 = 0. Suppose that, for some
r, 0 ≤ r < n − 1, we have constructed αrδrφr and Ψr < n − 1.

As O is perturbable with operation instance opn witnessing that, there is an
execution fragment γr+1 by some process pjr+1

/∈ {pn, pj1 , . . . , pjr
} such that opn

returns different responses to pn after executions αrδr and αrγr+1δr. We claim that,
in γr+1, pjr+1

applies a nontrivial event to an object in Sπr
\ C(αr). Assume that

γr+1 contains no nontrivial events to objects in Sπr
\C(αi) to obtain a contradiction.

As αrγr+1 is step-contention free, all the events of γr+1 either access base objects
not in Sπr

or are overwritten by the events of δr. It follows that αrγr+1δrφr is
also an execution of A and that αrδrφr and αrγr+1δrφr are indistinguishable to pn.

Journal of the ACM, Vol. V, No. N, April 2009.

The Complexity of Obstruction-Free Implementations · 17

This implies that opn must return the same responses after both executions, which
is a contradiction.

Let γ′

r+1 be the shortest prefix of γr+1 after which pjr+1
has an enabled event,

e, about to apply a nontrivial event to a base object Ok
r ∈ Sπr

\ C(αr). Define
αr+1 = αrγ

′

r+1, δr+1 = δre and let φr+1 denote the execution fragment in which
pn applies events by itself after αr+1δr+1 as it performs the operation instance opn

to completion. It is easily verified that αr+1 is an (r + 1)-covering execution and
that C(αr+1) = C(αr) ∪ Ok

r .
We claim that Ψr+1 > Ψr holds. As Ok

r /∈ C(αr), we have bk
r = 0. As the

values of objects O1
r · · ·Ok−1

r are the same after αrδr and αr+1δr+1, it follows that
bj
r = bj

r+1 for j ∈ {1, . . . , k − 1}. This implies, in turn, that Ok
r = Ok

r+1. As
Ok

r+1 ∈ C(αr+1), we have bk
r+1 = 1. We get:

Ψr+1 =
∑ir+1

j=1 bj
r+1 · 2log2 n−j

=
∑k−1

j=1 bj
r+1 · 2log2 n−j + 2log2 n−k+∑ir+1

j=k+1 bj
r+1 · 2log2 n−j

=
∑k−1

j=1 bj
r · 2log2 n−j + 2log2 n−k+∑ir+1

j=k+1 bj
r+1 · 2log2 n−j

≥ ∑k−1

j=1 bj
r · 2log2 n−j + 2log2 n−k

>
∑k−1

j=1 bj
r · 2log2 n−j +

∑ir

j=k+1 bj
r · 2log2 n−j

= Ψr.

By definition, we have 0 ≤ Ψr ≤ n − 1 for all r. Furthermore, just a single
process joins the execution in each phase. As we have shown that Ψ is monotonically
increasing with r, this implies that we eventually reach a phase r∗ with Ψr∗ = n−1,
i.e., ir∗ = log2 n.

5. OBSTRUCTION-FREE IMPLEMENTATIONS USING ARBITRARY PRIMITIVES

In the previous sections, we considered obstruction-free implementations that can
only apply synchronization primitives from a restricted set—either in all executions
or just in step-contention free executions; the metric that we used counted the
worst-case number of steps made by a process in step-contention free executions.
However, the number of steps performed is not the only factor that contributes
to the time complexity of concurrent objects. In practice, the performance of
concurrent objects is influenced by the extent to which multiple processes access
widely-shared memory locations simultaneously.

In 1993, Dwork et al. [1997] introduced a formal model to capture the phe-
nomenon of memory contention in shared memory machines. Their model takes
into consideration both the number of steps taken by a process and the num-
ber of stalls it incurs as a result of memory contention with other processes. In
this section, we investigate obstruction-free implementations that can use arbitrary
primitives even in step contention free executions. We analyze the worst-case step-
and stall-complexities of these implementations. The definition of stalls that we
use is similar to that used by Hendler and Shavit [2008] and Fich et al. [2005].
It is stricter than that used by Dwork et al. [1997] since we only count memory
stalls caused by contention in writing, whereas Dwork et al. [1997] also count mem-

Journal of the ACM, Vol. V, No. N, April 2009.

18 · H. Attiya et al.

ory stalls due to contention in reading. This definition captures the fact that when
multiple processes apply nontrivial primitive operations simultaneously to the same
base object, these operations are being serialized.

Definition 5. Let e be an event applied by a process p to base object r, as it
performs an operation instance Φ in execution α. Let α = α0e1 · · · ekeα1, where
α0 and α1 are execution fragments and e1 · · · ek is a maximal sequence of k ≥ 1
consecutive nontrivial events, by distinct processes other than p, that access r. Then
we say that Φ incurs k memory stalls in α on account of e. The number of memory
stalls incurred by Φ in α is the sum of memory stalls Φ incurs in α over all the
events of Φ in α.

Let p be a process and consider the set of executions Ep that are indistinguishable
to p from an execution that is step-contention free to p. This includes all the
executions that are step-contention free to p. From obstruction freedom, p must
make progress in any execution of Ep. Let α ∈ Ep be an execution and let e be an
event of p that is enabled after α. We say that e is issued while p is unaware of step
contention. It might be that p becomes aware of step contention when it receives
the response of e. Nevertheless, the delay incurred by p until it becomes aware of
step contention includes the delay it incurs on account of e.

In a similar manner, we let E denote the set of executions that are indistin-
guishable to all processes from a step-contention free execution. Let α ∈ E be an
execution and let e be an event that is enabled after α. We say that e is issued
while no process is aware of step contention.

In the proofs that follow we consider the worst-case time complexity incurred by
processes on account of the events they issue while being unaware of step contention.

5.1 Binary Consensus and Perturbable Objects

In this section we consider obstruction-free implementations of binary consensus
and perturbable objects. We prove a tradeoff between the worst case operation
step-complexity and stall-complexity of these implementations. More specifically,
we prove that each such implementation has an execution in which no process is
aware of step contention, such that either a process accesses at least

√
n distinct

base objects in the course of performing a single operation or some process incurs
at least

√
n stalls on account of a single event. This bound holds for all obstruction-

free implementation of these objects, regardless of how processes behave when they
encounter step contention. It implies that, for these implementations, a process
can be made to incur a delay of length Ω(

√
n) before any process becomes aware

of step contention.
A one-shot binary consensus object restricts the argument to the propose oper-

ation to be in the domain {0, 1}; each process calls propose at most once.

Theorem 6. Let A be an n-process obstruction-free implementation of binary
consensus. There is an execution α of A in which no process is aware of step
contention and a process p such that either p accesses at least

√
n distinct base

objects in α or it incurs at least
√

n stalls on account of an event it applies in α.

Proof. Consider executions of A in which processes p1, . . . , pn−1 invoke propose
with input 0 and process pn invokes propose with input 1. Let φ be the execution

Journal of the ACM, Vol. V, No. N, April 2009.

The Complexity of Obstruction-Free Implementations · 19

in which, starting from the initial configuration, pn performs its propose instance
to completion. Let B denote the set of base objects that are accessed in φ. If
|B| ≥ √

n then we are done.
Otherwise, we construct a pn-free execution at the end of which there is a sub-

set of processes S ⊂ {p1, · · · , pn−1} of size exactly
√

n, all the processes of which
have enabled nontrivial events about to access the same object in B. The execu-
tion is constructed inductively in at most n − 1 phases. We denote the execution
constructed in phases 1, · · · , i by αi. Our construction maintains the following
invariants for all i ≤ n − 1:

—αi is step-contention free,

—all the events of αi are applied by processes in {p1, . . . , pi},
—αi does not contain any nontrivial event applied to an object in B, and

—each of the processes p1, · · · , pi covers a base object in B after αi.

We let α0 denote the empty execution. It is easily verified that the above invari-
ants are vacuously met by α0. Assume we have constructed αi, for i < n − 1, and
that the number of enabled nontrivial events about to access any single object in
B at the end of αi is less than

√
n. We now describe the construction of αi+1. We

let process pi+1 perform its instance of propose by itself after αi until it either has
an enabled nontrivial event about to access an object in B, or its propose instance
completes.

We show that the latter cannot occur, by way of contradiction. The sequential
specification of the consensus object imply that pn’s instance of propose returns 1
in φ. Let σi+1 be the execution in which pi+1 performs its propose instance after
αi until it completes. As αiσi+1 is pn-free, the propose operation of pi+1 returns 0
in αiσi+1.

By the induction hypothesis on αi, and as we assume that no nontrivial event was
applied to an object in B in σi+1, αiσi+1φ is an execution that is indistinguishable
from φ to pn. It follows that the responses of the instances of propose by pi+1 and
pn in αiσi+1φ are 0 and 1, respectively. This contradicts the requirement that all
processes decide on the same value.

Thus, at the end of αi+1, process pi+1 has an enabled nontrivial event about to
access a base object in B. By the induction hypothesis on αi, we get that at the
end of αi+1, each of p1, · · · , pi+1 has an enabled nontrivial event about to access
an object in B, and that αi+1 is a step-contention free execution that contains no
nontrivial event applied to an object in B.

As |B| <
√

n, there is a phase j, j ≤ n− 1, such that after αj there exist at least√
n processes, all of which have enabled nontrivial events about to access the same

object o ∈ B. Let α be some ordering of these events. Also let β be the longest
prefix of φ that does not access o, and let e be pn’s enabled event after β. Then
pn incurs at least

√
n memory stalls in αjβαe. To conclude the proof, we note

that αjβ is step-contention free and that each of the events in αe is by a different
process. Thus all the events of αjβαe are issued while no process is aware of step
contention.

The proof of the following theorem follows the lines of that of Theorem 6.

Journal of the ACM, Vol. V, No. N, April 2009.

20 · H. Attiya et al.

Theorem 7. Let A be an n-process obstruction-free implementation of a per-
turbable object. There is an execution α of A in which no process is aware of step
contention and a process p such that either p accesses at least

√
n distinct base

objects in α or it incurs at least
√

n stalls on account of an event it applies in α.

Proof. Let opn be the operation instance that witnesses the perturbation of O.
Let φ be the execution of A in which, starting from the initial configuration, pn

performs opn until it completes it. Let B denote the set of base objects that are
accessed in φ. If |B| ≥ √

n then we are done. Assume otherwise.
We construct a pn-free execution at the end of which there is a subset of processes

S ⊂ {p1, · · · , pn−1} of size exactly
√

n, all the processes of which have enabled
nontrivial events about to access the same object in B. The execution is constructed
inductively in at most n−1 phases. We denote the execution constructed in phases
1, . . . , i by αi. Our construction maintains the following invariants for all i ≤ n−1:

—αi is step-contention free,

—αi does not contain any nontrivial event applied to an object in B, and

—there exists a set of processes {pj1 , . . . , pji
} that does not contain pn, such that

—each of these processes has an enabled nontrivial event about to access a base
object in B after α, and

—none of the events of αi are applied by processes not in {pj1 , . . . , pji
}.

We let α0 denote the empty execution. It is easily verified that the above invari-
ants are vacuously met by α0. Assume we have constructed αi, for i < n − 1, and
that the number of enabled nontrivial events about to access any single object in
B at the end of αi is less than

√
n. We now describe the construction of αi+1. By

the induction hypothesis on αi, no process has applied a nontrivial event in αi to
an object in B.

Let δ denote the execution fragment that consists of the events by {pj1 , . . . , pji
}

that are enabled after αi. As O is perturbable with operation instance opn witness-
ing that, there is an execution fragment γ by some process pji+1

/∈ {pn, pj1 , . . . , pji
}

such that opn returns different responses to pn after executions αiδ and αiγδ. We
claim that pji+1

applies in γ a nontrivial event to an object in B. Assume otherwise
to obtain a contradiction. Then from the induction hypothesis and our assumption,
αiγδφ is an execution that is indistinguishable to pn from αiδφ. It follows that the
responses of opn are the same in αiγδφ and αiδφ. This is a contradiction.

Let γ′ be the shortest prefix of γ after which pji+1
has an enabled nontrivial event

about to access a base object in B. We let αi+1 be αiγ
′. Thus, from the induction

hypothesis applied to αi, we get that at the end of αi+1 each of pj1 , · · · , pji+1
has

an enabled nontrivial event about to access an object in B, and that αi+1 is a step-
contention free execution that contains no nontrivial event applied to an object in
B.

As |B| <
√

n, there is a phase k, k ≤ n−1, such that after αk there exist at least√
n processes, all of which have enabled nontrivial events about to access the same

object o ∈ B.
Let α be some ordering of these events. Also let β be the longest prefix of φ that

does not access o, and let e be pn’s enabled event after β. Then pn incurs at least√
n memory stalls in αkβαe on account of e. To conclude the proof, we note that

Journal of the ACM, Vol. V, No. N, April 2009.

The Complexity of Obstruction-Free Implementations · 21

αkβαe and αkαβe are indistinguishable to pn and that αkαβe is step-contention
free for pn. Thus all the events of αkβαe are issued while no process is aware of
step contention.

Theorems 6 and 7 establish the existence of executions in which a single opera-
tion incurs a tradeoff between step-complexity and stall-complexity. It is easy to
construct executions in which the tradeoffs of Theorems 6 and 7 hold for multiple
operations. This can be done by simply extending the executions constructed by
these theorems until a quiescent configuration is reached and then repeating the
construction.

5.2 A Linear Lower Bound for Non-Failing Implementations

We say that an obstruction-free implementation is non-failing if processes are not
allowed to fail their operations when they become aware of step contention. For such
implementations we obtain a lower bound that is stronger than the one obtained
in Section 5.1.

Fich et al. [2005] prove a lower bound of n− 1 on the worst-case number of stalls
incurred by a process as it performs a single operation instance. This bound holds
for non-failing obstruction-free implementations of objects in a class G, that includes
counter and single-writer snapshot objects. It can be shown that the same lower
bound holds for any perturbable object. In the following, we prove that this bound
holds in an execution in which all the events of the process whose operation instance
incurs the linear complexity are issued while it is not aware of step contention.

The following definition of k-stall-execution is taken from [Fich et al. 2005] with
minor terminology adaptation.

Definition 6. An execution ασ1 · · ·σi is a k-stall execution for process p if

—α is p-free,

—there are distinct base objects O1, . . . , Oi and disjoint sets of processes S1, . . . , Si

whose union does not include p and has size k such that, for j = 1, . . . , i,

—each process in Sj has an enabled nontrivial event about to access Oj after α,
and

—in σj, process p applies events by itself until it is first about to apply an event
to Oj, then each of the processes in Sj applies an event that accesses Oj, and,
finally, p applies an event that accesses Oj,

—all processes not in S1 ∪ · · · ∪ Si are idle after α,

—p starts at most one operation instance in σ1 · · ·σi, and

—in every ({p} ∪ S1 ∪ · · · ∪ Si)-free extension of α, no process applies a nontrivial
event to any base object accessed in σ1 · · ·σi.

In a k-stall execution for process p, p incurs k stalls, since it incurs |Sj | stalls
when it applies its first event to Oj , for j = 1, . . . i. The results of Fich et al.
[2005] are obtained by proving that non-failing obstruction-free implementations of
objects such as those mentioned above have n − 1 stall executions for any process.
Our contribution lies in the following technical lemma. It shows that a process p is
not aware of step contention in a k-stall execution for p.

Journal of the ACM, Vol. V, No. N, April 2009.

22 · H. Attiya et al.

Lemma 8. Let α be a k-stall execution for process p. Then all of p’s events in
α are issued while p is unaware of step contention.

Proof. Let ασ1 . . . σi be a k-stall execution for process p for some k > 0. For
j = 1, . . . , i, let Sj and Oj be as in Definition 6. For an execution σ, let σ|p be the
subsequence of events in σ that are applied by processes other than p.

We prove that the sequence of events θ = α(σ1|p) · · · (σi|p) (σ1|p) · · · (σi|p) is
an execution and that it is indistinguishable from ασ1 . . . σi to all processes. Since
θ is step-contention free for p, this will establish that all of p’s events in ασ1 . . . σi

are issued while p is unaware of step contention.
The proof goes by double induction. For l = 0, . . . , i, let αl = ασ0 . . . σl.

The outer induction is on the executions αl. We prove that, for l = 0, . . . , i,
θl = α(σ1|p) · · · (σl|p)(σ1|p) · · · (σl|p) is an execution that is indistinguishable to all
processes from αl. The claim holds vacuously for l = 0. For l < i, assume that θl

is an execution that is indistinguishable from αl to all processes.
Consider the sequence of events σl+1|p. By Definition 6, these events are enabled

at the end of αl. Consequently, from outer induction hypothesis, they are also
enabled at the end of θl. As all the events of (σ1|p) · · · (σl|p) are applied by p, the
events of σl+1|p are enabled at the end of α(σ1|p) · · · (σl|p). Additionally, as each
of the events of σl+1|p is applied by a distinct process in Sl+1, α(σ1|p) · · · (σl+1|p)
is an execution.

By the induction hypothesis, all processes in S1 ∪ · · · ∪ Sl apply the same events
and get the same responses in α(σ1|p) · · · (σl|p) and αl. As all the events of σl+1|p
access Ol+1 and none of the events of σ1 · · ·σl accesses Ol+1, it follows that all
processes in S1 ∪ · · · ∪ Sl+1 apply the same events and get the same responses in
αl+1 and in α(σ1|p) · · · (σl+1|p), and hence also in θl+1.

We next show that θl+1 is an execution and that p gets the same responses from
the events it applies in it as in αl+1. We show this by inner induction on the number
of events, m, applied by p in (σ1|p) · · · (σl+1|p).

The claim is obvious for m = 0. Assume that (σ1|p) · · · (σl+1|p) consists of m > 0
events and that the claim holds for the first m − 1 events. Let e be the m’th
event. Two cases exist. If e accesses a base object O /∈ {O1, . . . , Ol+1}, then, from
Definition 6, O is not accessed in ασ1 · · ·σl+1 by any process other than p. Thus,
from the inner induction hypothesis, O has the same value when e accesses it in
both αl and θl. Otherwise, suppose that O = Oj for some j ∈ {1, . . . , l + 1}. The
subsequence of events that precede e in accessing Oj is (σj |p) in both αl+1 and
θl+1. Consequently, from inner and outer induction hypotheses, O has the same
value when accessed by e in both αl+1 and θl+1. It follows that, in both cases, e
returns the same response in αl. Hence also p applies the same events, and gets
the same responses from these events, in both αl and θl.

As all processes apply the same events, and get the same responses from these
events in both αl and θl, and as αl is an execution, it follows that θl is also an
execution. This concludes the proof of the lemma.

The proof of Theorem 6 of Fich et al. [2005] can be used to establish that any
non-failing obstruction-free n-process implementation of a perturbable object has an
(n− 1)-stall execution for any process that shares the implementation. Combining
that with Lemma 8 gives the following.

Journal of the ACM, Vol. V, No. N, April 2009.

The Complexity of Obstruction-Free Implementations · 23

Theorem 9. Let A be an n-process non-failing obstruction-free implementation
of a perturbable object. Then for any process p there is an execution α of A such
that p incurs in α at least n− 1 stalls on account of events that it issues while it is
unaware of step contention, as it performs a single operation instance.

Theorem 9 constructs an execution in which a single operation incurs a linear
number of stalls. An executions in which this complexity is incurred by multi-
ple operations can be constructed by simply extending the execution constructed
by the theorem until a quiescent configuration is reached and then repeating the
construction.

5.3 Lock-Based Implementations

The time-complexity results we presented in this section establish that, for any
obstruction-free implementation of a large class of objects, a single operation may
incur a delay of length Ω(

√
n) in an execution in which no process is aware of step

contention, regardless of how processes proceed when they do become aware of step
contention. Moreover, if processes are not allowed to fail their operations even in
the face of step contention, then any process can be made to incur a delay of at
least n − 1 stalls on account of an event it issues while not being aware of step
contention.

A natural question that arises is whether lock-based implementations of such
objects exist that are not subject to these lower bounds. In other words, is there a
separation in terms of worst-case operation time complexity between obstruction-
free and lock-based implementations? We now show that this is indeed the case.
Consider an implementation of a perturbable or binary consensus object that is
guarded by a lock; that is, only the process that holds the lock can invoke an opera-
tion on the object. The lock can be implemented by using a binary tournament-tree
implementation of mutual exclusion, employing read and write operations, such as
the tournament tree algorithm due to Peterson and Fischer [1977]. The operations
of capturing the lock and releasing it access O(log n) distinct base objects and incur
O(log n) stalls. Hence there are lock-based implementations that do not incur the
complexities of Theorems 6, 7 and 9.

One may argue that this complexity separation is artificial, since processes may
perform an unbounded number of steps while they wait for a lock. This is only
true, however, if processes busy-wait. If processes signal each other by using
semaphores [Dijkstra 2002] or condition variables [Lea 1999] instead of employing
busy-waiting, then they can indeed avoid the high worst-case complexities incurred
by obstruction-free implementations.2

6. DISCUSSION

This paper studies obstruction-free implementations by defining their specification,
presenting generic object implementations, and proving lower bounds on their com-
plexity. Our lower bounds concentrate on the cost in uncontended executions (which

2Whether or not semaphores should be used instead of busy-waiting in practice obviously depends
on system parameters, such as the actual level of contention for the lock and the context-switch
time.

Journal of the ACM, Vol. V, No. N, April 2009.

24 · H. Attiya et al.

are argued to be the most frequent in practice); some of them do not restrict the
behavior of the processes in contended situations where processes might be using
locks, randomization or other expensive mechanisms. By measuring the complexity
of the weakest form of implementations that do not use locks known to date, our
results capture the seemingly inherent cost of avoiding locking.

We have established tight bounds on the cost of generic obstruction-free imple-
mentations. There might be more efficient obstruction-free solutions for specific
problems. For obstruction-free consensus, for example, an Ω(

√
n) lower bound on

the number of registers (or historyless objects) was proved by Fich et al. [1998].
There is however a gap since the upper bound is O(n); moreover, these results
do not bound the step contention-free complexity of obstruction-free consensus. It
would be interesting to close the gap between these upper bounds and the logarith-
mic lower bound we prove for the step contention-free complexity of any generic
solo-fast implementation.

Luchangco et al. [2003] presented a generic object implementation that uses only
constant number of reads and writes when an operation runs in the absence of
point contention. Unfortunately, in their implementation this also means lack of
pending operations; moreover, an operation invoked after a prefix with point con-
tention may have to apply C&S primitives, even if it does not encounter any point
contention itself. In this paper, we gave a generic solo-fast implementation. Our
solo-fast implementation performs O(n) reads and writes, even in the absence of
step contention. By employing adaptive collect [Afek et al. 1999; Attiya and Fouren
2003], the step complexity can be made to depend only on the point contention,
so it is constant when there is no point contention. By employing adaptive collect
for unbounded concurrency [Gafni et al. 2001], it can be made independent of the
number of processes.

Aguilera et al. [2006] proposed the concept of abortable objects that are, at first
glance, similar to our obstruction-free objects. Abortable objects are live: opera-
tions on them return either matching responses or a predefined ⊥ value. To prevent
trivial implementations and ensure some level of progress in face of failures, they
satisfy an additional non-triviality requirement that ⊥ can only be returned in the
presence of interval contention, and in the eventual absence of step contention,
repeated invocations may return ⊥ only finitely many times. As a result, a sus-
pended operation may prevent a concurrent operation from making progress only for
a bounded period of time. Aguilera et al. [2006] argue that if ⊥ is allowed to be out-
put only in the presence of step contention, then the resulting implementations may
not preserve correctness under composition: by replacing base object of a correct
(linearizable, live and non-trivial) implementation with its correct implementation
from some finer base objects, we may not obtain a correct implementation from the
finer base objects. As we show in the appendix, composability can be achieved at
the expense of a slightly stronger definition of obstruction-freedom based on step
contention. We propose a definition of a live object that is only allowed to return ⊥
in the presence of step contention with an additional guarantee that an operation
may only take effect within the interval of one of its occurrences. We also provide
a generic implementation of such objects from read-write objects.

Journal of the ACM, Vol. V, No. N, April 2009.

The Complexity of Obstruction-Free Implementations · 25

ACKNOWLEDGMENTS

We would like to thank Partha Dutta, Ron Levy, and Eric Ruppert for important
discussions on the topic of this paper, and Eshcar Hillel and the referees for helpful
comments on an earlier draft.

REFERENCES

Afek, Y., Stupp, G., and Touitou, D. 1999. Long-lived adaptive collect with applications.
In Proceedings of the 40th Annual Symposium on Foundations of Computer Science (FOCS).
IEEE Computer Society, Washington, DC, USA, 262–272.

Afek, Y., Stupp, G., and Touitou, D. 2002. Long-lived adaptive splitter and applications.
Distributed Computing 15, 2, 67–86.

Aguilera, M. K. and Frølund, S. 2003. Strict linearizability and the power of aborting. Tech.
Rep. HPL-2003-241, HP Laboratories Palo Alto. Dec.

Aguilera, M. K., Frolund, S., Hadzilacos, V., Horn, S. L., and Toueg, S. 2006. Abortable
shared objects. In Proceedings of the 20th International Symposium on Distributed Computing
(DISC). Springer-Verlag, Berlin / Heidelberg, 534–536.

Aspnes, J. and Herlihy, M. 1990. Fast randomized consensus using shared memory. J. Algo-
rithms 11, 3, 441–461.

Attiya, H. and Fouren, A. 2003. Algorithms adapting to point contention. J. ACM 50, 4,
444–468.

Attiya, H., Guerraoui, R., Henlder, D., and Kouznetsov, P. 2006. Synchronizing without
locks is inherently expensive. In Proceedings of the 25th Annual ACM Symposium on Principles
of Distributed Computing (PODC). ACM, New York, NY, USA, 300 – 307.

Attiya, H., Guerraoui, R., and Kouznetsov, P. 2005. Computing with reads and writes in the
absence of step contention. In Proceedings of the 19th International Symposium on Distributed
Computing (DISC). Springer-Verlag, Berlin / Heidelberg, 122–136.

Attiya, H. and Welch, J. L. 2004. Distributed Computing: Fundamentals, Simulations and
Advanced Topics, 2nd ed. John Wiley & Sons, Hoboken, New Jersey.

Boichat, R., Dutta, P., Frølund, S., and Guerraoui, R. 2003. Deconstructing Paxos. ACM
SIGACT News Distributed Computing Column 34, 1 (March), 47 – 67. Revised version of
EPFL Technical Report 200106, January 2001.

Dijkstra, E. W. 2002. Cooperating sequential processes. In The origin of concurrent program-
ming: from semaphores to remote procedure calls. Springer-Verlag New York, Inc., New York,
NY, USA, 65–138.

Dwork, C., Herlihy, M., and Waarts, O. 1997. Contention in shared memory algorithms.
Journal of the ACM 44, 6, 779–805.

Fich, F., Herlihy, M., and Shavit, N. 1998. On the space complexity of randomized synchro-
nization. J. ACM 45, 5, 843–862.

Fich, F. E., Hendler, D., and Shavit, N. 2005. Linear lower bounds on real-world implemen-
tations of concurrent objects. In Proceedings of the 46th Annual Symposium on Foundations
of Computer Science (FOCS). IEEE Computer Society, Washington, DC, USA, 165–173.

Gafni, E., Merritt, M., and Taubenfeld, G. 2001. The concurrency hierarchy, and algorithms
for unbounded concurrency. In Proceedings of the 20th Annual ACM Symposium on Principles
of Distributed Computing (PODC). ACM, New York, NY, USA, 161–169.

Hendler, D. and Shavit, N. 2008. Solo-valency and the cost of coordination. Distributed
Computing 21, 1, 43–54.

Herlihy, M. 1991. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems 13, 1 (January), 124–149.

Herlihy, M., Luchangco, V., and Moir, M. 2003. Obstruction-free synchronization: Double-
ended queues as an example. In Proceedings of the 23rd IEEE International Conference on
Distributed Computing Systems (ICDCS). IEEE Computer Society, Washington, DC, USA,
522–529.

Journal of the ACM, Vol. V, No. N, April 2009.

26 · H. Attiya et al.

Herlihy, M., Luchangco, V., Moir, M., and Scherer III, W. N. 2003. Software transactional
memory for dynamic-sized data structures. In Proceedings of the 22nd Annual ACM Symposium
on Principles of Distributed Computing (PODC). ACM, New York, NY, USA, 92–101.

Herlihy, M. and Wing, J. M. 1990. Linearizability: a correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems 12, 3 (June), 463–492.

Jayanti, P., Tan, K., and Toueg, S. 2000. Time and space lower bounds for nonblocking
implementations. SIAM Journal on Computing 30, 2, 438–456.

Lamport, L. 1998. The part-time parliament. ACM Transactions on Computer Systems 16, 2
(May), 133–169.

Lea, D. 1999. Concurrent Programming in Java(TM): Design Principles and Patterns, 2nd ed.
Addison-Wesley, Boston, MA, USA.

Loui, M. C. and Abu-Amara, H. H. 1987. Memory Requirements for Agreement Among Unre-
liable Asynchronous Processes. JAI Press, Greenwich, Conn., 163–183.

Luchangco, V., Moir, M., and Shavit, N. 2003. On the uncontended complexity of consensus. In
Proceedings of the 17th International Symposium on Distributed Computing (DISC). Springer-
Verlag, Berlin / Heidelberg, 45–59.

Peterson, G. L. and Fischer, M. J. 1977. Economical solutions for the critical section problem
in a distributed system (extended abstract). In Proceedings of the 9th annual ACM symposium
on Theory of computing (STOC). ACM, New York, NY, USA, 91–97.

Yang, J., Neiger, G., and Gafni, E. 1998. Structured derivations of consensus algorithms
for failure detectors. In Proceedings of the 17th Annual ACM Symposium on Principles of
Distributed Computing (PODC). ACM, New York, NY, USA, 297–306.

A. EXTENDED INTERFACE OF OBSTRUCTION-FREE OBJECTS

In this section, we explore the possibility of enriching the interface of an obstruction-
free implementation with an additional pause repsonse ⊥. As we observed (The-
orem 1), a consensus implementation from read-write registers cannot be made
wait-free even if operations are allowed to return failure response in the face of
step contention. Thus allowing an implementation to return a fail indication in the
face of step contention does not guarantee wait-freedom in general. This may be
inconvenient if we want every invocation to eventually return control to the client.

We therefore consider an extended interface between clients and implementations
that guarantees that every invocation eventually returns. In the extended interface,
each operation should either return a legal response for the invoked operation, or, if
there is step contention, one of two special values ⊥ and ∅. If the implementation is
certain that the operation did not have an effect, ∅ is returned, indicating that the
client is free to invoke any operation it wishes. Otherwise, a special pause value ⊥ is
returned, and the client must re-invoke the same operation until a non-⊥ response
is received. To make sure that the implementation does not always fall back to
outputting ⊥, we require that ⊥ can only be returned if the invoked operation can
take effect in some extension of the current execution in which that operation is
not re-invoked.

A.1 Definitions

We extend R, the set of responses of an object, with two special values: a pause
value ⊥ /∈ R and a fail value ∅ /∈ R. The definition of a well-formed local history is
extended to require that if an invocation i is followed by the response ⊥, then the
subsequent event, if one exists, is i.

Journal of the ACM, Vol. V, No. N, April 2009.

The Complexity of Obstruction-Free Implementations · 27

The definition of linearizability is further extended so that invocations return-
ing fail are removed from the linearized history, while at most one of identical
invocations returning pause is considered as one operation.

Specifically, consider an execution α; the corresponding history is obtained as
follows. For every invocation i in α that is not followed by a response in R, we insert
in α a response ⊥ immediately after the last event of the process that invokes i in α.
Now the history H is defined as a subsequence of α that consists of invocation and
response of high-level operations (including ∅ and ⊥ responses). A local history of
α is a subsequence of H consisting of all events of some process p. We only consider
executions α that induce well-formed local histories.

Let H̄ be any local history of α. Let i be an invocation in H̄ on an object x. A
fragment of the form i, r in H̄, where r ∈ R, is called an occurrence of i (returning
r). Since an invocation occurrence may return ⊥ and be re-invoked later, there can
be a number of occurrences of i in a history. Consider the longest fragment of the
form i or i,⊥, i, . . . ,⊥, i in H̄. Recall that we completed every pending invocation
in α with ⊥, so each such fragment in H̄ is followed by a matching response r ∈ R.
If r /∈ {⊥, ∅}, we call i, r or i,⊥, i . . . ,⊥, i, r a complete operation. If r = ∅, we call
i, ∅ or i,⊥, i . . . ,⊥, i, ∅ a failed operation. If r = ⊥, we call i,⊥ or i,⊥, i, . . . ,⊥, i or
i,⊥, i . . . ,⊥, i,⊥ a pending operation. Since H̄ is well-formed, a pending operation
is a suffix of H̄ (⊥ cannot be followed by an invocation other than i).

Now we say that a well-formed history H is linearizable if there is a sequential
history H ′ containing occurrences of all the complete operations in H and a subset
of occurrences of the pending operations in H, with at most one occurrence per
operation, in which each ⊥ is replaced with a matching response r ∈ R − {∅,⊥},
such that H ′ is legal and it respects the order of non-concurrent operation occur-
rences in H. When taken in the context of the extended notions of complete and
pending operations, a history is linearizable if we can assign linearization points to
all complete operations and a subset of pending operations so that the linearization
point assigned to an operation may only belong the interval of one of the operation’s
occurrences.

An implementation is linearizable if it produces only linearizable histories. An
implementation is live if every invocation occurrence i returns in a finite number
of its own steps (although a value in {⊥, ∅} can be returned). A linearizable im-
plementation is valid if (1) an invocation occurrence returns ⊥ only when it is not
step-contention free, (2) an invocation occurrence i returns ∅ only when the corre-
sponding operation (the longest fragment of the form i, ∅ or i,⊥, i, . . . ,⊥, i, ∅ in the
local history) is not step-contention free, and (3) if an invocation i performed by
pi returns ⊥ at the end of an execution α, then i is nontrivial and there exists an
execution α′ that agrees with α on the state of pi, i. e., α|i = α′|i, and i appears
in some linearization of H(α′). The last property provides a non-triviality criterion
on the use of pause responses: an invocation made by a process pi is allowed to
return ⊥ only if the corresponding operation takes effect in some indistinguish-
able (for pi) execution. It is immediate that any live and valid implementation is
obstruction-free.

Note that our definition ensures that in any execution of a linearizable implemen-
tation, every operation takes effect (if it does) within one of its occurrences, and, in

Journal of the ACM, Vol. V, No. N, April 2009.

28 · H. Attiya et al.

particular, before it stops taking steps in that execution. As a result, if a process
fails (stops taking steps) before completing its operation’s occurrence, then the op-
eration takes effect (if it does) before the process fails, making the implementations
strictly linearizable [Aguilera and Frølund 2003].

A.2 Generic Object Implementation

This section presents a generic obstruction-free (live and valid) implementation of
any type. Our generic construction extends the universal nonblocking implemen-
tation of Herlihy [1991] to handle pause and fail responses in the presence of step
contention. By the validity requirement, an operation invoked by a process pi is
only allowed to return ⊥ if its invocation takes effect in some indistinguishable (for
pi) execution. This makes our extension of Herlihy’s construction nontrivial: we
need to carefully account for the cases in which ⊥ cannot be returned.

As in Herlihy’s construction, our implementation is built from consensus objects,
which in our case are obstruction-free.3

The implementation (presented in Figure 4) follows a deterministic sequential
implementation of an object type T . An object is represented as a linked list; an el-
ement of the list represents an operation applied to the object. The list of operations
clearly determines the list of corresponding responses. A process makes an invo-
cation by appending a new element to the end of the list. The algorithm assumes
a function response(invs, inv) that returns the response matching the invocation
inv in a sequential execution of invocations from list invs (under the condition that
inv ∈ invs).

We assume that invocations corresponding to different operations are uniquely
identifiable. The algorithm uses the following shared variables:

– n atomic single-writer, multi-reader registers L1, . . . , Ln. Process pi stores in Li

its last view of the object state in the form of a linked list of operations that pi

observed to have been applied on the object.

– C[] is an unbounded array of obstruction-free (linearizable, live and valid) con-
sensus objects. The array is used to agree on the order in which invocations are
put into the linked list of operations L1, . . . , Ln.

Note that we do not assume that lines of the pseudo-code presented in Figure 4 are
executed atomically. Informally, the algorithm works as follows. When a process
pi executes an invocation inv, it identifies the longest list Lj (line 2). Let k = |Lj |
be the number of operations on the object witnessed by pj . If inv is already
in Lj , the response associated with inv in Lj is returned (line 5). This ensures
that inv takes effect at most once, even if repeated several times. If it is not the
first instance of inv, and k > |Li| (i.e., inv did not “win” any OF Consensus to
which it was proposed), then pi returns ∅ (line 9). Otherwise, pi proposes inv to
C[k + 1] (line 10). If C[k + 1] returns ⊥ (which can happen only if step contention
is detected), then pi returns ⊥ (line 14). If the propose operation (a) returns ∅, or
(b) returns a non-inv response and the current invocation occurrenceis not the first
occurrence of inv (i.e., if repeated is true), then pi returns ∅ (line 19). The condition

3For completeness, a simple linearizable, live and valid implementation of consensus, derived from
Paxos-style consensus algorithms, appears in Appendix B.2.

Journal of the ACM, Vol. V, No. N, April 2009.

The Complexity of Obstruction-Free Implementations · 29

repeated is true in (b) is needed since, otherwise, a non-{inv,⊥, ∅} invocation could
have been returned by C[k] in the absence of step contention.

If C[k+1] returns inv, then pi returns the response associated with inv (line 23).
Otherwise, the procedure is repeated, now at position k + 2. If C[k + 2] returns a
non-{inv,⊥} response, then pi returns ∅ (line 36). The second consensus operation
ensures that the implementation is valid, namely, that (1) ⊥ is never returned if the
corresponding invocation instance is step-contention free, (2) ∅ is never returned if
the corresponding operation is step-contention free, and (3) if ∅ is never returned
if i is nontrivial and there exists an execution α′ that agrees with α on the state of
pi, i.e., α|i = α′|i, and i appears in some linearization of H(α′).

This algorithm implies the next theorem:

Theorem 10. Every sequential type T has a linearizable, live and valid imple-
mentation from registers.

Proof. We immediately observe that the implementation in Figure 4 is live:
it contains no blocking statements and the underlying obstruction-free consensus
objects are live. We prove now that it is valid and linearizable.

Let α be any well-formed finite execution of the implementation in Figure 4. First,
we complete each pending invocation i in α with a ⊥ response put immediately after
the last step of the process that invoked i. Now every invocation i in α is followed
by a matching response.

We say that an invocation inv is fixed at index k in α, and we write fixed(α, inv, k),
if some propose operation on C[k] returns inv in α (in line 10 or 24). Since each
C[k] is a consensus object, at most one invocation can be fixed at every index. We
say that index k is decided in α if there is an invocation ik such that fixed(α, ik, k).
Let k∗ be the highest decided index in α. Since a process only accesses an OF
consensus object C[k + 1] if some process previously obtained a non-{⊥, ∅} from
C[k], we have the following property.

. P1 Each k = 1, . . . , k∗ is decided.

Since each C[k] is a consensus implementation, it is allowed to return at most
one non-{⊥, ∅} value in α. Thus, for each k = 1, . . . , k∗, we can define rk as the
response returned by ik in a sequential order of invocations i1, i2, . . . , ik (according
to the sequential specification of T). Hence, we have the following property:

. P2 For each k = 1, . . . , k∗, if ik returns a non-{⊥, ∅} response, then the response
is rk.

Now we show that α includes no occurrence ik, r (k = 1, . . . , k∗) where r = ∅.
Indeed, ik returns ∅ (i) in lines 9, 19 or 19 only if ik is not fixed in any OF consensus
object to which it was proposed so far (verified in lines 3 and A.2, or line A.2 or
line A.2, respectively), (ii)in lines 16 or 30 only if ik is trivial and object C[k] or
C[k + 1] returns ⊥ (lines A.2 and A.2 or A.2 and A.2, respectively). Thus, given
P2, a fixed invocation can only return ⊥ or rk in α.

Recall that each C[k] is linearizable. For each k = 1, . . . , k∗, some invocation
C[k].propose(ik) takes effect, i.e., C[k].propose(ik) is included in every linearization
of the execution on C[k]. Thus, for each k = 1, . . . , k∗, we can determine ok be the

Journal of the ACM, Vol. V, No. N, April 2009.

30 · H. Attiya et al.

Shared variables:
Register L1, . . . , Ln ← ∅, . . . , ∅
Obstruction-free (live and valid) consensus objects C[]

Local variables:
repeated ← false; dec ← ⊥; invs ← ∅;

1: upon Invoking inv do

2: invs ← longest({L1, . . . , Ln}) // Select the longest invocation list

3: if inv ∈ invs then

4: repeated ← false
5: return response(invs, inv) // Return if inv is already completed

6: k ← |invs|
7: if (k > |Li|) and repeated then

8: repeated ← false
9: return ∅ // Fail the operation

10: dec ← C[k + 1].propose(inv) // The 1st consensus operation

11: if dec = ⊥ then

12: repeated ← true

13: if inv is nontrivial then

14: return ⊥
15: else

16: return ∅
17: if (dec = ∅) or (dec 6= inv and repeated) then

18: repeated ← false
19: return ∅ // Fail the operation

20: invs ← invs · dec; Li ← invs // Update Li

21: if dec = inv then

22: repeated ← false
23: return response(invs, inv) // Return if inv is decided

24: dec ← C[k + 2].propose(inv) // The 2nd consensus operation

25: if dec = ⊥ then

26: repeated ← true
27: if inv is nontrivial then

28: return ⊥
29: else

30: return ∅
31: if dec 6= ∅ then

32: invs ← invs · dec; Li ← invs
33: if dec = inv then

34: repeated ← false
35: return response(invs, inv) // Return if inv is decided

36: return ∅ // Fail if inv is ignored twice

Fig. 4. An obstruction-free implementation of T : code for process pi

Journal of the ACM, Vol. V, No. N, April 2009.

The Complexity of Obstruction-Free Implementations · 31

occurrence ik, r which includes the invocation C[k].propose(ik) that takes effect in
α.

Now we construct a sequential history H ′ = o′1, o
′

2, . . . , o
′

k∗ where for each k =
1, . . . , k∗, o′k = ik, rk. Note that H ′ contains no invocation that returned ∅ in α,
every invocation that returned r /∈ {⊥, ∅}, and a subset of invocations that returned
⊥.

By construction H ′ is legal. To show that α is linearizable, it sufficient to prove
that H ′ preserves the order of non-concurrent occurrences o1, . . . , ok in α.

Indeed, suppose that oℓ precedes om in α. Since the indexes of oks in H ′ are
monotonically increasing it is enough to show that ℓ < k. Suppose, by contradiction,
that ell ≥ m. Since all iks (k = 1, . . . , k∗) are distinct,ell > m. By definition, oℓ

and om contain the linearized invocations C[ℓ].propose(iℓ) and C[m].propose(im),
respectively. By the algorithm (lines 2 and 20), a process pj may only access C[ℓ]
if all k < ℓ are already fixed, i.e., the process previously made sure that for some
Lj ∈ {L1, . . . , Ln}, |Lj | = ℓ − 1. But since C[m] is linearizable, it could not return
rm before it was linearized, i.e., before the beginning of the occurrence om. Thus,
m is not fixed in the shortest prefix of α that includes the invocation of oℓ—a
contradiction.

Finally, we prove that our implementation is valid. Assume that inv returns a
value in {⊥, ∅}. We have the following cases:

(1) ⊥ is returned in line 14 or line 28. Thus, a propose operation on C[k + 1]
or C[k + 2] returned ⊥. This can only happen if the current occurrence of
inv is not step contention-free, nontrivial and there was a concurrent propose
operation on C[k + 1] or C[k + 2]. Since each C[k′], k′ ∈ N, is valid, there is an
execution α′ such that pi cannot distinguish the prefix of α up to returning ⊥
and α′, and fixed(α′, inv, k + 1) or fixed(α′, inv, k + 2). Thus, inv takes effect in
α′ and α′ is indistinguishable from the shortest prefix of α in which inv returns
⊥.

(2) ∅ is returned in line 9. This can only happen when there were at least one prior
occurrence of inv and all previous occurrences of inv returned ⊥. Thus, the
corresponding operation is not step contention-free.
Note that if pi reaches line 10 while repeated is true, then inv is not fixed at
any k′ ≤ k and the last propose(inv) invoked by pi on C[k + 1] returned ⊥.

(3) ∅ is returned in line 16 or line 30. This can only happen if inv is trivial.
Also, similarly to case (2) above, the current invocation of of inv is not step-
contention free.

(4) ∅ is returned in line 19. That is, either C[k + 1] returned ∅, or inv was not
fixed at any k′ ≤ k + 1. Thus, inv did not take effect, and the corresponding
operation was not step-contention free.

(5) ∅ is returned in line 36. That is, inv is not fixed at any index less than k + 2
and C[k + 2] returned either ∅ or a value dec /∈ {⊥, ∅, inv}. In the former case,
since the corresponding propose(inv) operation is allowed to return ∅ only if it
is not step-contention free and it did not take effect, the current instance of inv
is not step-contention free and it did not take effect either.
Now assume that C[k + 2] returned dec /∈ {⊥, ∅, inv} and let pj be the process
that previously proposed dec to C[k + 2]. By the algorithm, before proposing,

Journal of the ACM, Vol. V, No. N, April 2009.

32 · H. Attiya et al.

pj has made sure that for some pl ∈ Π, |Ll| = k +1 (lines 2, 6 and 20). But the
longest list in {L1, . . . , Ln} seen by pi in the beginning of the current instance
of inv had length k (line 6). Thus, pl took steps in the interval of the current
instance of inv, i.e., the instance is not step-contention free. Moreover, inv was
not fixed at any k′ ≤ k + 2, and thus did not take effect.

Thus, the implementation is linearizable, live, and valid.

B. CONSENSUS IMPLEMENTATIONS

In this section, we give two simple implementations of obstruction-free consensus
in the read-write shared memory model: one for the standard interface presented
in Section 3, and one for the extended interface introduced in Appendix A.

B.1 Obstruction-Free Consensus

As suggested by Herlihy et al. [2003], an obstruction-free consensus algorithm can
be derived by “de-randomizing” a randomized consensus algorithm [Aspnes and
Herlihy 1990]. Figure 5 depicts a simple implementation of consensus from registers
that is allowed to block or return fail in case of step contention. For simplicity, we
assume that processes propose distinct values. (This is the way consensus is used
in our paper.)

Our implementation is based on the adopt-commit protocol of Yang et al. [1998].
The one-shot adopt-commit abstraction accepts a value v ∈ V as an argument and
returns a special abort value (abort /∈ V), or a pair (c, v′), where c is a boolean and
v′ ∈ V . If (c, v′) is returned and c = false, we say that v′ is adopted. If (c, v′) is
returned and c = true, we say that v′ is committed. The abstraction guarantees
that (i) every adopted or committed value is an input value of some process; (ii)
no two processes commit on or adopt different values, and (iii) if all inputs are the
same, then no process aborts or adopts a value (every process that returns must
commit). Also, it is easy to observe that the adopt-commit protocol proposed by
Yang et al. [1998] guarantees an additional property: if a process proposes a value
v and obtains abort, then no other process can adopt or commit v.

In the algorithm, every process executes repeated instances of the adopt-commit
protocol with monotonically increasing indexes, accepting all adopted values as its
decision estimates, until some value is committed or abort is returned. Then the
process returns the committed value or ∅ (in case an instance of adopt-commit
returns abort).

Obviously in a step contention-free execution, eventually at most one value will
be proposed to some instance of the adopt-commit protocol, and this value will be
committed. On the other hand, if a value committed in some instance of adopt-
commit, then no process can adopt or commit a different value. If abort is returned
in instance k of adopt-commit, then the proposed value was not committed in any
instance k′ < k and cannot be adopted in instance k.

B.2 Obstruction-Free Consensus with Extended Interface

Here we present a linearizable, live and valid consensus implementation. Inter-
estingly, our algorithm (Figure 6) translates the long-lived ✸Register implementa-
tion [Boichat et al. 2003], from message-passing to read-write shared memory.

Journal of the ACM, Vol. V, No. N, April 2009.

The Complexity of Obstruction-Free Implementations · 33

1: upon propose(v) do

2: vi := v

3: while (true) do

4: r = adopt-commit(vi)
5: if r = (true, v′) then

6: return v′

7: else if r = (false, v′) then

8: vi := v′

9: else return ∅

Fig. 5. Obstruction-free consensus: code for process pi

Every process pi maintains a current estimate of the decision value of the consen-
sus, denoted by vi and initialized to ⊥, and two counters ri and wi, both initialized
to 0. The counter ri denotes the round number adopted by the current operation,
and wi denotes the last round number in which pi “announced” its estimate vi.
Each process pi is designated a single-writer multi-reader register Ri, initialized
to (0, 0,⊥) that is written by pi and read by all processes. A boolean repeated,
initialized to false, indicates whether this is not the first occurrence of the current
operation.

Roughly, the algorithm can be decomposed into two phases. In the first phase,
process pi chooses the highest unique round number, “registers” the round (writes
in Ri, line 5), and collects the shared memory. In the second phase, pi adopts the
value announced in the highest round (or its own proposal if no value is announced
so far) as vi, “announces” it with the current round number, and collects the shared
memory again. If pi observes that some process registered a higher round (which can
occur only when there is step contention) and a value different from vi is announced
in a higher round (which can only happen if the value proposed by pi cannot be
decided), then pi returns ∅ (line 16). If step contention is detected and vi is still
the highest announced value, then pi returns ⊥ (line 19). Otherwise, pi returns vi.
These two phases (register and announce) ensure that once pi returns vi, no process
will ever announce a value different from vi in a higher round. As a result, no two
processes can return different non-{⊥, ∅} values, no value in {⊥, ∅} can be returned
in the absence of step contention, ∅ is never returned if the corresponding operation
took effect, and ⊥ is never returned if there is an indistinguishable execution in
which the operation did take effect.

Theorem 11. There is a linearizable, live and valid consensus implementation
from registers.

Proof. The implementation in Figure 6 is clearly live, since there are no cycles
or wait statements in the code.

Let α be any finite well-formed execution of the algorithm in which some non-
{⊥, ∅} value v is returned by some process. (If there is no such value, the execution is
trivially linearizable.) To prove linearizability of the implementation, it is sufficient
to show that (i) every returned non-{⊥, ∅} value is a previously proposed value,
and (ii) no two processes return different non-{⊥, ∅} values.

We observe that (i) follows directly from the algorithm.
To prove (ii), we first show that if a process pi returns a non-{⊥, ∅} value v in a

Journal of the ACM, Vol. V, No. N, April 2009.

34 · H. Attiya et al.

Shared variables:
Register R1, . . . , Rn ← (0, 0,⊥), . . . , (0, 0,⊥)

Local variables:
ri ← 0; wi ← 0; vi ← ⊥; repeated ← false

1: upon propose(v) do

2: regSet ← {R1, . . . , Rn}
3: mr ← max{r : (r, ∗, ∗) ∈ regSet} // Adopt the highest round number

4: ri ← the smallest integer s.t. ((ri mod n = i) and (ri > mr))
5: Ri ← (ri, wi, vi) // Register the round number

6: regSet ← {R1, . . . , Rn}
7: choose v′ s.t. (∗,mw, v′) ∈ regSet and mw = max{w : (∗, w, ∗) ∈ regSet}

// Choose the “highest” announced value

8: if (v′ 6= ⊥) then vi ← v′ else vi ← v

9: wi ← ri

10: Ri ← (ri, wi, vi) // Announce the current estimate

11: repeated ← true
12: regSet ← {R1, . . . , Rn}
13: if(∃(r, ∗, ∗) ∈ regSet s.t. r > ri) then

14: if (∃(∗, w, val) ∈ regSet s.t. w > ri and val 6= ⊥ and val 6= vi) then

15: repeated ← false
16: return ∅ // Fail if a different value is announced in a higher round

17: else

18: repeated ← true
19: return ⊥ // Pause

20: else

21: repeated ← false
22: return vi // Decide on vi

Fig. 6. Consensus implementation with extended interface: code for process pi

round r, then no process can announce a value different from v in a higher round.
Indeed, let pj be the first process to announce a value v′ in a round r′ > r. We
immediately observe that pj registered r′ (line 5) after pi announced v in round
r (otherwise, pi would see that a round higher than r is registered in line 13 and
return ⊥ or ∅). Thus, when pj collects the shared memory in round r′ (line 6), v
is the value announced in the highest round number. Thus, v = v′. Since before
returning a non-{⊥, ∅} value, every process announces the value, we have (ii).

We conclude by showing that the implementation is valid (recall the definition in
Appendix A.1). Responses in {⊥, ∅} are returned only if step contention is detected
(line 13). Specifically, if ∅ is returned (line 16), then pi made sure that its current
estimate is not the value announced in the highest round (line 14), so the estimate
cannot be decided. That is, the propose(v) operation of pi did not take effect in
the execution. If ⊥ is returned (line 19), then no process has previously announced
a value different from vi in a higher round. Thus, every process returns vi in the
extension of the current execution in which no process writes a value different from
vi in {Rj}.

Received January 2007; revised February 2008; accepted February 2009

Journal of the ACM, Vol. V, No. N, April 2009.

