N

THE COMPLEXITY OF PARALLEL COMPUTATIONS

by

James C. Wyllie
Ph.D. Thesis

TR 79-387

THE COMPLEXITY OF PARALLEL COMPUTATIONS

A Thesis
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment for the Degree of

Doctor of Philosophy

by -
James Christopher Wyllie

August 1979

THE COMPLEXITY OF PARALLEL COMPUTATIONS

James Christopher Wyllie, Ph.D.
Cornell University 1979

Recent advances in microelectronics have brought closer
to feasibility the construction of computers containing
thousands (or more) of processing elements. This thesis ad-
dresses the question of effective utilization of such process-
ing power. We study the computational complexity of synchro-
nous pSrallel computations using a model of computation based
on random access machines operating in parallel and sharing a
common memory, the P-RAM, Two main areas within the field of
parallel computational complexity are investigated. First, we
explore the power of the P-RAM model viewed as an abstract
computing device. Later, we study techniques for developing
efficient algorithms for parallel computers.

We are able to give concise characterizations of the
power of deterministic and nondeterministic P-RAMs in terms of
the more widely known space and time complexity classes for
multi-tape Turing machines. Roughly speaking, time-bounded
deterministic P-RAMs are equivalent in power to (can accept
the same sets as) space-bounded Turing machines, where the
time and space bounds differ by at most a polynomiai. In the
context of comparing models of computation, we consider such

polynomial differences in resources to be insignificant. Ad-

ding the feature of nondeterminism to the time-bounded P-RAM
changes its power to that of a nondeterministic Turing machine
with an exponentially higher running time.

The later sections of the thesis examine algorithm design
technigues for parallel computers. We first develop efficient
procedures for some common operations on linked lists and ar-
rays. Given this background, we introduce three technigues
that permit the design of parallel algorithms that are effi-
cient in terms of both their time and processor requirements.
We illustrate the use of these techniques by presenting time
and processor efficient parallel algorithms for three prob-
lems, in each case improving upon the best previously known
parallel resource bounds. We show how to compute minimum
string edit distances, using the technique of pairwise func-
tion composition. We describe an algorithm for the off-line
MIN that organizes its computation in the form of a complete
binary tree. Finally, we present an algorithm for undirected
graph connectivity that relies on redundancy in its represen-

tation of the input graph.

To my parents

Acknowledgments

I wduld like to thank my thesis advisor, John Hopcroft,
for his encouragement of the research that led to this thesis.
without his support, there can be no doubt that this thesis
never would have been written.

The Computer Science Department of Cornell University
provides a fertile research environment, and I would like to
thank its members, both students and faculty, for their valu-
able ideas and insights that have immensely broadened my edu~
cation. Particular thanks éo to Steve Fortune, who had the
patience to read an early draft of this thesis and suggest
many improvements.

Finally, I must thank Dianne Deters (now Dianne Wyllie)
for her unfailing encouragement, support, patience, and love

throughout my years at Cornell.

1.

Table of Contents

Introduction . ¢ . ¢« ¢ . 4 4t 4 e e e o o o

Models of Parallel Computation &

2.1
2.2
2.3
2.4
The

3.1

Existing parallel computers . . « . . .«
The parallel random access machine model
variations on the P-RAM model
Parallel pidgin AJgol . .+ v « & « o o« o o
Computational Power of Parallel Computers
Deterministic and nondeterministic P-RAMs
3.1.1 Proof of Theorem 3.1.1 &«
3.1.2 Proof of Theorem 3.1.2 « .
Memory limited computations
Network connected parallel computers . .
3.3.1 Deterministic N-RAMs

3.3.2 Nondeterministic N-RAMs

Computational Structures . . . - . o « « &« o &«

4.1

Basic computational structures
4.1.1 Computing the sum of n numbers . .
4.1.2 Counting the number of elements in

linked list . + ¢ ¢ ¢ o o & »

4.1.3 Converting from a linked list to an array

.

.

4.1.4 Deleting elements from a linked list .

4.1.5 Compressing a sparse arcay . . «

4.1.6 1Initializing a block of storage .

Algorithms using basic computational structures

4,2.]1 Tree traversals . . ¢ o« « o o o «

—-y-

.

o 0 &

13
22
29
30
32
36
38
42
45
46
56
56

57

58
61
61
65
67
68
68

4.2,2 Parallel pipelined MIN .

5. Parallel Algorithms for Some Representative Problems

5.1 String edit distances

5.2 Off-line MIN . . . ¢« ¢« « & o &

5.3 Connectivity of undicrected graphs

6. Conclusions . . 4 &+ + o o o o o o
6.1 SUMMACLY « o = o o o o o o o o &
6.2 Future research .« « « « o « o o

References . « « o « o« o o« o« o o « o o

-y f-

.

.

-

72
76
76
86
95
108
108
111
114

Chapter 1

Introduction

The speed of serial computers has increased enormously
over the past decade. Unfortunately, due to ultimate physical
limitations, this increase cannot continue indefinitely. How-
ever, by performing some or all of a desired computation in
parallel, greater execution speed can be obtained. One need
only look at the proceedings of the most recent computer ar-
chitecture conference [S4] to detect the degree of interest in
parallelism arong computer designers; over half the papers are
concerned with some aspect of parallelism.

This thesis approaches the study of parallelism from a
different direction, namely computational complexity. As used
here, the term computational complexity will mean the quanti-
tative study of the computational resources required for the
solution of somc problem or class of problems. The two compu-
tational resources that figure most prominently in classical
complexity thecory are time and space. In extending the clas~-
sical theory to accomodate parallelism, other resources must
be considered, including the degree of parallelism, the degree
of communication among the processors cooperating in the solu-
tion of the problem, and so on. The advantage of the computa-
tional complexity viewpoint is that its results will not be
made obsolete by the next advance in computer hardware; the

asymptotic analyses here are approximately valid over a wide

-2-

range of computer performance.

The goal, then, of our study of parallel computational
complexity is to provide parallel analogs for some of the ma-~
jor results of sequential computational complexity and to oc~
ganize these results in a manner that will permit them to be
applied towards the desiqgn and programming of parallel compui-
ers, Specific areas of study might include techniques for
deriving upper and lower bounds for particular probleas, com-
plete problems for various resource classes, and the fundamen-
tal relationships between the resource requirements of sequen-
tial veérsus parallel impleméntations of algorithms for prob-
lems of interest. The remaining chapters of the thesis will
address some of these questions, providing partial answers to
some of them.

In order to study the complexity of parallel computa-
tions, a specific model must be agreed upon. All of the
results to follow will be stated relative to this model, in
order to facilitate comparisons. There are a number of axes
along which parallel models can be classified. The discussion
of most of, these is deferred to Chapter 2, but the choices
between synchronous versus .asynchronous and bounded versus un-
bounded parallel models are crucial enough that they will be
justified here in the introductory section.

By a synchronous model we mean one in which there is a

known, well-defined relationship among the processing speeds
and instruction timings of the processors executing the pieces

of the parallel computation. An example of a synchronous

~3-

parallel computer would be an array of microcomputers driven
by a common clock signal. An asynchronous model is one in
which there is no such relationship among the execution
speeds, where in fact processors can proceed at differirg and
time-varying rates. The notion of the "running time" of an
algorithm on an asynchronous model is not well-defined, be~-
cause of this inherent variability. Asynchronous models form
the basis for the formal study of topics in operating systems:
mutual exclusion, deadlock gvoidance, determinacy, etc., where
the goal is to prove theorems about the behavior of a system
of cooperating sequential processes regardless of their rela-
tive execution speeds. For a description of the most impor-
tant formal asynchrcnous parallel models, as well as extensive
bibliographies, see [M1] or [Pl]. Since our interests here
lie in quentitative rather than qualitative aspects of paral-
lelism, our model of parallel computation will be synchronous
instead of asynchronous.

The choice between bounded and unbounded parallelism is
somewhat more difficult. Certainly any parallel computer that
will ever be built can have only a fixed number of processing
elements. However, just as the random access machine model
for sequential computers assumes registers of unbounded

.lenjth, so will we assume unbounded parallelism. The justifi-
cation for unboundedly long registers in RAMs is that over a
reasonable range of input sizes, the RAM approximates a real
computer. Similarly, one may expect that over a reasonable

range of input sizes the parallel model will fairly closely

-f=-

approximate a parallel computer containing a finite number,
say 10° or 106, processors. Also, it should be noted that a
parallel model with parallelism limited to a constant k is in-
distinguishable asymptotically from a sequential model that is
k times faster than each of the parallel processors.

The remainder of the thesis studies the computational
complexity of synchronous, unboundedly parallel computers. It
is organized as follows. Chapter 2 describes the particular
parallel model, called the P-RAM, that will be used throughout
the thesis. Justifications for the attributes chosen for the
P~RAM are presented, as well as arguments that demonstrate its
robustness, or insensitivity to minoc changes, with respect to
the resource requirements of programs that run on the model.

A parallel programming language is also presented; it allows
more compact descriptions of the parallel algorithms to fol-
low. Chapter 3 gives a concise characterization of the power
of time-bounded parallel computers in terms of the more famil-
iar Turing machine time and space complexity classes. Also.
discussed are restrictions to the basic P-RAM model, and the
effect of these restrictions on the power of the device, once
again expressed relative to the standard complexity classes.
Chapter 4 describes some of the basic techniques of P~RAM pro-
gramming useful in the construction of efficient parallel al-
gorithms. The complexities of these techniques are analyzed
with respect to both time end the degree of parallelism re-
quired, Chapter 5 uses the techniques of Chapter 4 to give

efficient parallel algorithms for several combinatocial prob-

-5-

lems, in several cases improving on the best previously known
parallel resource bounds. Finally, the last chapter summar-
izes the important concepts introduced by the thesis and poses

several unanswered questions,

Chapter 2

Models of Parallel Computation

In this chapter we introduce the parallei machine model
that will be employed throughout the remainder of the thesis;
Section 2.1 surveys existing parallel computers. The basic
properties of our parallel model are described in Section 2.2,
then in Section 2.3 we show that a variety of changes to the
model, some of them radical, do not substanéially affect the
resource requirements of programs that run on the model. 1In
the last section of the chapter, we introduce the parallel
programming language that is used to present the computational
structures and parallel algorithms of Chapters 4 and 5. This
final section also shows how to implement the statements of
the programming language on the parallel model and how much
time and other resources should be charged to the various con-

structs of the language.

2.1 Existing parallel computers

Current computers exhibiting some of the features of
parallelism fall into two main categories: the so-called
"pipelined” vector machines, exemplified by the Cray-1 [Rl]},
and true multiprocessors, for example the ILLIAC IV [Bl] and
Cm* {S6]. We shall outline the characteristics of each of

these machines before presenting the parallel model to be used

throughout the thesis.

The Cray-1l is the fastest computer currently available.
It is a parallel machine in only a certain limited sense, how-
ever. The architecture of the Cray-1l is intended to optimize
the essentially serial processing of vectors of data, where
the identical operation is to be perform2d on corresponding
elements of a pair of vectors. Each of the execution units
that carry out the arithmetic instructions of the machine is
pipelined; that is, additional sets of opcrands may be fed
into the execution unit before the result of the first set of
operands has become available. In this way, parallelism at
the lowest level of hardware occurs, since several partially
conpleted operations on elements of the vectors reside in the
execution unit at the same time. Once an initial startup
period has elapsed, answers can be extracted from the execu-
tion unit faster than the unit is capable of producing an
answer to any individual operation. The length of the pipe-
line is bounded by a small constant. Thus, from a theoretical
point of view, the Cray-1 is merely a scquential computer sped
up by this small constant; hence it is unsuitable as a model
for a more general study of the power of parallelism.

The ILLIAC IV comes closer to the parailel model desired
. here. There are 64 processing elements arranged in the form
of a rectangular grid, where each processing element may com- °
municate with its four neighbors on the grid. Each processing
element is a compuﬁer in its own right, having a CPU and some

memory. Instructions are broadcast from a control processor,

-8-

then executed simultanecusly by all processing elements, each
using its local memory as the source of its operands. The
problem with ILLIAC is communication; for a processing element
to obtain data from the memory of some other processing ele-
ment, the data must be explicitly routed from one processing
element to the other. Imagining an ILLIAC style computer hav-
ing n processing elements, this data transfecr could require
time O(nl/z) in the worst case. Indced, in [Gl) lower bounds
of ghis order for this model are shown for _scveral simple
problems, including matrix multiplicat{on. As will be seen,
exponentially better running times can be obtained using the
P~RAM model to described later.

The Cm* machine provides the next step towards a general
purpose parallel computer. In this machine, there are a (po-
tentially large) number of processor - mcmory pairs, whece
each pair is a commercially available microcomputer. The
pairs are grouped into clusters, and the clusters into super=
clusters, with interprocessor communication taking place over
buses connecting the members of each level of the hierarchy.
Logically, each processor views the entire memory of the
machine homogeneously, thus may refer to 4ny memory location
in any cluster. Physically, refercnces to remote memory loca-
tions are implemented by a series of messages passed over the
buses. To take advantage of the (hoped for) locality of
reference within processors, the machine is asynchronous.
Therefore, it is not slowed down to the spced of the slowest

memory reference. As a model of parallel coaputation for the

-9-

purposes of this thesis, Cm* suffers due to its asynchronous
operation. As mentioned in the introduction, we shall be
interested in deriving worst case asymptotic running times for
parallel algorithms, thus asynchronous models are not ap-

propriate.

2.2 The parallel random access machine model

The model used in this thesis to compare the power of
parallel computations to sequential Turing machine computa-
tions and to derive efficient parallel algorithms is the

parallel random access machine (P-RAM). The P-RAM model is

intended to capture the ideas of synchronous computation from
ILLIAC IV, while at the same time allowing the elegant logical
memory structure of Cm*, Called by other names or not defined
explicitly at all, the P-RAM model has been used by other au-
thors for a variety of problems [A3], [Cl]), [C3], [CS), [H2],
(ud4), [HS), (K2}, (M2], [P3).

A P-RAM consists of an unbounded set of processors PO'
Pys «vey an unbounded global memory, a set of input registers,
and a finite program. Each processor has an accumulator, an
unbounded local memory, a program counter, and a flag indicat-
ing whether or not the processor is running. All memory loca-
tions are capable of holding arbitrary non-negative integers.
The program consists of a sequéﬁce of possibly labelled
instructions chosen from the list in Figure 2.2.1 below. A

program is nondeterministic if some label occurs more than 1

-10~

Instruction Function
LOAD operand Transfer operand to/from the ac-
STORE operand cumulator from/to memory.
ADD operand . Add/proper subtract the value of
SuB operand the operand to/from the accum-
ulator.

JUuMP label Unconditional branch to label.
JZERO label Branch to label if accuaulator .
is zero.

READ operand See text.
FORK label See text.
HALT See text.

Figure 2.2.1 The P-RAM instruction set.

once, deterministic othétwlae. Each operand may be a literal,
an address, or an indirect address. EBach processor may access
either global memory or its local memory, but not the local
memory of any other processor. Indirect addressing may be
through one of these memorlies to access the other.

Initially the input to the P-RAM is placed in the input
registers, one bit per register; all memory is cleared; the

length of the input is placed in the accumulator of P and P

o
is started at the first instruction of the program. At each

0

step in the computation, each running processor executes the
instruction given by its program counter in one unit of time,
then advances its program counter by one unless the instruc-
tion causes a jump.

A READ instruction uses the value of the operand to
specify one of the input registers; the contents of the
éelected register is placed in the accumulator. A PORK label

instruction executed by processor P1 selects an inactive proc~-

-11~-

essor Pj' clears Pj's local memory, copies Pi‘s accumulator
into Pj’s accumulator, and starts Pj running at label. A HALT
instruction causes a processor to stop running.

Simultaneous reads of a location in global memory are al-
lowed, but if two processors try to write into the same memory
location simultaneously, the P~RAM immediately halts and re-
jects its input. Several processors may read a location while
one processor writes into jt; all reads are completed before
the value of the location is changed.

Execution continues until P, executes a HALT instruction
(or two processors attempt to write into the same location
simultaneously). 1If the P-RAM is acting as an acceptor, then
the input is accepted only if there is some computation in

which P, halts with a one in its accumulator; the time re-

0
quired to accept the input is the minimum over all such compu-
tations of the number of instructions executed by PO' If the
P-RAM i3 acting as a transducer, the output will be placed in
designated global memory locations and the running time is
measured as above. The number of processors required to ac-
cept or tranform an input is the maximum number of processors
that were active (started by a FORK and not yet stopped by a
HALT instruction) at any instant of time during the P-RAM's
computation. '

Several details of the model deserve further comment. A
great deal has appeared in the literature about processor
interconnection patterns that improve on the ILLIAC IV grid

{s5) [wW3], but a totally satisfactory pattern has not yet been

~-12-

found, and indeed may not exist. Thus, we avoid a potential
problem by positing a global mcmory. In Chaopter 3, some of
these interconnection schemes will be diccussed and models us-~
ing explicit interprocessor communication rather than a global
memory will be shown to possess many of the same characteris-
tics as P~RAMs.

Given a global memory, we could restrict the local memory
of each processor to only a constant number of locations by
mapping the local memory of each processor into global memory.
However, in Chapter 3 we shall be interested in what happens
when the size of glcbal memory is restricted, hence we allow
each processor unbounded local memory. Alzo, we choose to use
special registers to hold the input in order to be able to
discuss sublinear running times. If, say, the input were en-
coded in binary and placed in the accumulator of % then it
would take at least linear time (in the length of the input)
to unpack the input.

In Chapters 4 and 5, however, we shall be dealing with
objects such as graphs and matrices where a more compact input
representation is reasonable. Therefore, in those chapters,
we shall permit the input registers to hcld integers as large
as the size of the input object and express resource bounds as
a function of the number of input registers rather than as a
function of the sum of their lengths. For example, the input
representation for a graph of size n would be a sequence of
integers, each no longer than log n bits. Since the single

bit per register input form of such an object can certainly be

-13~

packed into longer registers in time proportional to the
length of the longer registers, an additive term of log n
should be charged to algorithms manipulating such objects.
But since all algorithms to be presented require at least

log n time, the time to pack the input is insignificant. Un=-
fortunately, the processor cost to perform this packing is
non-trivial; our algorithm to compute the sum of n numbers in
time log n using Tag-ﬁ processors does not have the resources
to examine n*log n separate bits. In that sense then, the P-
RAM model as used to develop efficient algorithms differs from
that used to compare the power of parallel computers and Tur-

ing machines.

2.3 variations on the P-RAM model

There are sevecal simple modifications to the model de-
scribed in the previous section that do not significantly af-
fect either resource requirements or prbgramming. For exam-
ple, the input registers could be eliminated by storing the
input in designated global memory locations. The instruction
set of the P-RAM may be changed somewhat without major distur-
bances; some of‘the addressing modes are redundant, for exam-
ple. Also, features found in other parallel models can be
simulated easily on the P-RAM.

Two examples of such simulations will be given: processor
numbers and channel registers. To implement these or other

changes in an arbitrary P~-RAM program the idea of interleaving

-14-

will be employed. When we say "operation x is interleaved
with instruction execution,” we mean that each instruction {
is to be replaced by a block of instructions having constant
execution time that performs operation x followed by instruc-
tion i. Since the same block has been prefixéd to each
instruction, the modified program will possess the same timiﬁg
characteristics as the unmodified version, slowed down by a
constant factor. In particular, the presence or absence of
simultaneous writes into a global memory location ;s unaffect-
ed by this program transformation. When oniy some instruc-
tions are to be preceded by some new code, all other instruc-
tiéns must be prefixed by the appropriate number of null
instructions in order to preserve this property of synchrony.
The parallel models of {G3} and others include a special
instruction that allows a processor to obtain its processor
number. These processor numbers are used to indicate to a
processor which element of the input it is to process, to ar-
bitrate memory references, etc. We show how to simulate this
facility on a P-RAM as follows. Each processor will have a
register in its local memory, pn, devoted to holding the proc-
essor number. Interleaved with the execution of all iﬁstruc-
tions, the processor will double the value in its pn register.
FORK instructions in the original program are augmented by
code which passes to the child processor the value 2-pn + 1 to
be used as an initial processor number. These two operations
insure that at every instant of time, all pn registers will

contain different values. The argument passing can be done at

-15-

FORKsS by passing through the accumulator the address of a
block in global memory containing the necessary parameters.

The following scheme suffices to manage space in global
memory. In general, assume that a processor has free storage
consisting of every kth location starting at address m. Upon
executing a FORK, the processor can assign to its child every
2kth location beginning at address m+x and change its own al=-
location to be every 2kth location beginning at address m, in-
suring disjoint global memory work areas for all processors.
All of the above changes can be.composed together, yielding a
program that executes more slowly by only a constant factor.

In [S2] a parallel model similar to the P-RAM is present~
ed in which, during the execution of the equivalent of a k-way
FORK instruction, a fixed number of parameters may be passed
to the child processors using channel registers. The parent
may then wait until its children have completed processing and
read their results out of the same channel registers. P-RAM
simulation of channel registers is easy; argument passing
through a block of storage in global memory as described above
works nicely. To simulate the wait of the parent, a busy wait
may be performed, repeatedly testing for completion of the
(constant number of) children.

Not all modifications to the P-RAM model can be handled
quite so easily. Another parallel machine model is the SIMDAG
{G3], which is similar to the P-RAM model in that it is based
on the RAM model for sequential compdtations {C4] and has a

global memory accessible by all processors. However, the

-16-

SIMDAG differs from the P-RAM in two major respects. First,
the two models use different conventions for resolving write
conflicts in global memory. The P-RAM disallows such con-
flicts entirely, while the SIMDAG allows the lowest numbered
processor to update the contents of a global register in the
event of a write conflict. This discrepency allows a SIMDAG
to determine in constant time whether a Boolean vector con-
tains any ones, by assigning a processor to each element of
the vector and having the processor assigned to a particular
element store a one in some common global memory location if
its vector element is non-zero. A P-RAM algorithm for the
same problem requires that answers be fanned together pairwise
in the form of a complete binary tree to prevent an input

_ Boolean vector that has more than a single one from causing a
write conflict in global memory. This fan-in procedure takes
time proportional to the logarithm of the length of the vec-
tor.

To simulate an arbitrary SIMDAG program on a P-RAM, each
write into global memory by the SIMDAG must be simulated by a
fan-in tree of depth the log of the number of currently active
processors, which can be as large as log 2t - t at time t.
Thus, in the worst case P-RAM time will be the square of
SIMDAG time. However, in [G3] the notion of a ®"charged
SIMDAG" is presented, in which the instructions of the SIMDAG
are charged at an amount reflecting the cost of their imple-
mentation at a more primitive level, rather than at simply

unit time per operation. It turns out that the charged SIMDAG

-17-

cost in the worst case will also be the square of the simple
SIMDAG running time, so the P-RAM prohibition of global memory
write conflicts appears réasonable in this light.

The second major difference between the P-RAM and SIMDAG
models is that the "S" in SIMDAG stands for "single instruc-
tion stream," which means that as in the ILLIAC IV there is a
central unit that broadcasts instructions to all of the proc-
essors. In contrast, each processor of a P-RAM has its own
program counter and may thus execute a portion of the program
different from that being executed by other processors. In
the notation of [Fl), the P-RAM is therefore a "MIMD," or
“multiple instruction stream, multiple data stream® computer..
It might appear that allowing multiple instruction streams
adds power to tﬁe model, but the discussion below shows that
this is not the case.

There are two issues to be dealt with. First, the
differing strategies for resolving write conflicts in global
memory must be reconciled. Later, we must show how to simu-
late multiple instruction streams using a single instruction
stream, It is necessary for the SIMDAG to be able to detect
when more than one processor attempts a write into the same
global memory location. Since the processors in the SIMDAG
can determine their processor numbers, by using the subroutine
in Fiéure 2.3.1 to peffotm each write, global memory conflicts
can be detected. The conflict signalling can be done by writ-

ing into a specified register in glpbal memory.

-18-

rocedure store (x, a):
;' store value x into global memory location a */
pn := processor number;

store pn into a;
if value of a is not pn
then signal that a write conflict has occurred
else store x into a
fi
end

Figure 2.3.1 SIMDAG write conflict detection.

It is not yet clear that the SIMDAG is capable of execut-
ing the write conflict detection program, since as presented
so far there is no way for some processors to execute the then
clause while others execute the elge clause of the if state-
ment. In existing SIMD machines [Bl] [T3]}, conditionals are
accomplished by having comparison instructions set one or more
mask bits within each processor, then broadcasting instruc-
tions whose execution by a given processor is conditioned by
the setting of its mask bits. Under such a scheme, the SIMD

code broadcast to all processors to implement the conditional

begin
if A
then B
else C

fi

nd

1]

Figure 2.3.2 Conditional statement.

statement in Pigure 2.3.2 might be that shown in Pigure 2.3.3.

-19-

begin
evaluate A, setting mask bit if true;
execute B - occurs only within those processors whose
mask bit is set;
reverse mask bit - this is always executed by all pro-
cessors, regardless of their mask bit settings;
execute (C;
set all mask bits
end

Pigure 2.3.3 SIMD code to implement conditional statement.

Nested conditionals can be handled with the aid of instruc-
tions to push and pop the mask bits.

The SIMDAG contains only a much simpler mechanism fof
dealing with conditionals. The only parallel instruction
whose outcome is conditioned on the value of some register is
one which stores a value into global memory only if the con-
tents of some specifled local register is greater than zero.
The register specified can be treated as a mask, with execu-
tion masked off if the contents of the register is less than
or equal to zero. Each instruction in, say, the then clause
of an if statemeﬁt can be processed as follows. Since no
instructions have side effects, the effect of any instruction
will be to compute some value v and store it into an address
a. If a is in global memory the conditional store instruction
.can be used directly. To simulate the effect of masking if a
is in a processor's local memory, compute the value v and then
execute the program in Figure 2.3.4, where there is a temp
register in global memory for each processor and where the

parenthesized statem~nt is executed only if the mask register

.

-20-

begin
temp 1= contents of a

(temp := v); :
copy temp into address aj
end

Figure 2.3.4 SIMDAG simulation of mask registers.

is greater than zero. Nested conditionals can be simulated by
a statically allocated stack of mask registers.

Given this method of performing nested conditional state-
ments on a SIMDAG, the single instruction stream simulation of
multiple instruction streams is straightforward. The accumu-
lator and program counter registers of each processor of the
P-RAM are simulated by registers in global memory of the
SIMDAG. An initial segment of the SIMDAG program will write a
copy of the P-RAM program into global memory in some easily
decoded form. The remainder qf the SIMDAG program will be an
implementation of the fetch-execute cycle of the P-RAM, a por-
tion of which 1s shown in Figure 2.3.5.

The only instruction whose simulation is at all tricky is
FORK, and that too can be handled with little difficulty. By
maintaining a pn register as described earlier, each processor
p at each 1nstant‘of time will have a "buddy" processor; which
will be awakened if p needs to simulate a FORK at that partic-
ular instant. Since the simulated accumulators and program
counters are kept in the global memory of the SIMDAG, the new-
ly activated processor can be initialized with the proper

values. The running time of the SIMDAG simulation is just a

-21-

begin
while true do
for all processors do

I := instruction of the program pointed to by the
program counter;
I = ADD with operand in local memory
then simulate the ADD instruction
€lse¢ if I = ADD with operand in global memory
then simulate the instruction
elce

if

od

od

end -’

Figure 2.3.5 SIMDAG simulation of P-RAM.

constant (albeit a very large one) times the running time of
the P-RAM for the same program., The preceding discussion has

proven Theorem 2.3.1, which is stated below.

Theorem 2.3.1 Any P-RAM program may be simulated on a SIMDAG

with only a constant factor slowdown.

The importance of Theorem 2.3.1 is not so much that a
SIMDAG can simulate a P-RAM, but that any reasonable single
instruction stream model capable of executing conditional
statements can simulate a multiple instruction stream model
with only a constant factor loss in speed. This result is of
interest only to thecreticians, not computer architects, since
the constant in question will be on the order of the size of

the instruction set of the multiple instruction stream ,

-22-

machine, which can be in the hundreds for modern computers.

2.4 Parallel pidgin Algol

The proofs of the theorems in Chapter 3 Qill be expressed
in terms of the low-level machine instructions of the P-RAH..
Such programs at the machine language level are not appropri-
ate as a vehicle for describing the computational structures
and parallel algorithms of Chapters 4 and 5. The purpose of
this section Is to describe a high level prbgramming language,
parallel pidgin Algol,.which will be used in later chapters to
express all of the parallel algorithms introduced. A formal
description of the language would be a major undertaking and
will not be attempted; instead we hope only that our informal
language specification will be sufficient to allow the reader
to understand the basic concepts behind the algorithams that
follow. Since we shall often be interested in the running
times of parallel pidgin Algol programs, we shall describe how
one might implement each statement of the language in terms of
P~-RAM instructions.

A parallel pidgin Algol program is of the form begin
statement list end, where a statement 1list is a list of state-
ments chosen from the list below and separated by semicolons.
Clauses enclosed in brackets [) are optional. Variables will
not normally be declared, their definitions either being clear
from context or described by text preceding the program. Al-~

location of storage in global memory has been discussed previ-

-23-

ously, and allocation within a processor's local memory can

usually
1.
2.

3.
4.

be accomplished by some simple static mapping policy.

variable := expression

if condition then statement list [else statement
list] f£i

while condition do statement list od

for variable := initial value to final value

{by stepsize] do statement list od

procedure name (formal pacameter list): statement
list end

procedure name (actual parameter list)

assign processor specification

for processor specification do statement list od

any other well-defined statement

Statement types 1 through 6 are essentially the same (with.

minor syntax changes} as the corresponding definitions of

sequential pidgin Algol statements given in {Al). The costs

assigned to these statements will be discussed later.

Statement type 7 is the means by which parallel pidgin

Algol programs access the FORK instruction of the P-RAM. An

example of an assign statement might be

assign a processor to each element of array A.

. The P-RAM implementation of the above assign statement would

be a PORK instruction in a loop, with the loop controlled in

such a way that the processor encountering the assign would

execute a FORK, then the two active processors would also exe-

cute PORKs, etc., until a total of |A| processors were active.

-24~-

We assume that processor numbers are passed at each FORK, so
that processors can know to which element of A they have been
assigned. The time to execute the assign is the number of ex-
ecutions of the FORK loop, or the depth of the tree of proces-
sor activations, in this case O0(['log |AlT). If |Al is oot a
power of two, the FORK tree is complicated by the fact that
some processors stop FORKing one iteration before others. We
shall typically ignore such details, since the program changes
required to implement them are relatively ﬁtraightforward,
although messy.

Statement type 8 is the companion to type 7. All of the
specified processors execute the statement within the scope of
the do od brackets. . There are no notions of complicated run-
time scheduling involved here; enough processors will be as-
sumed so that each node of a graph, or element of an array,
etc., may have its own processor. An example of this state-~
ment type is:

for each processor p do A(p) := A(p) + 1 od
Assuming that this statement followed the assign statement
above, it would have the effect of incrementing each element
of the array A by one. Note the use of the dummy variable p;
the expression A(p) refers to the element of the array A as-
signed to processor p. Depending on whether or not elements
of the array A need to be referenced by more than one proces-
sor, the parallel pidgin Algol compiler would allocate storage

for A in either global or local memory.

-25-

Square brackets are used for standard array references,
so that B[A(p)] would refer to "the element'of array B (which
is implicitly global) given by the element of array A assigned
to processor p." Before discussing the timing characteristics
of "for processors do S od" statements, it is necessary to ex-
anine the implementation of some simpler statements.

Consider the execution of the statement in Figure 2.4.1

by two processors simultaneously, where x and y are global

for processors p do
i_g_ B{p)
then x 1= f(y

the)i
else y := g(x);
fi

od

Figure 2,4.1 Example of a race.

memory locations. The Boolean, B, depends on values local to
each processor, thus may be true for one processor and false
for the other. Hence a race can develop between the proces-
sors: depernding on the relative times required to evaluate f
and g, either the old or new value of, say, x may be used by
the else clause. The code generated is a legitimate P-RAM
progyram; however, for our purposes thils program is not very
useful because it becomes hard to argue about its precise
behavior. If a statement such as that above were to occur in
a parallel pidgin Algol program, we shall adopt the convention
that the old values of both x and y must be used in the compu-

tation, as if the program had becn written as in Fiqure 2.4.2!

-26~-

for processors p do

then tx 1= £(y)
else ty := g(x)

fi
wait for both processors to reach herey
if B(p)
then x := tx
else y := ty
fi

od

Figure 2.4.2 Transformation that removes a race.

Transformations of this form possibly cannot be given in gen-~
eral so that the running time of the program is affected only
by a constant factor. - However, all of the parallel pidgin
Algol programs in this thesis will have simple enough
transformations that the order of their running times will
remain unchanged when race conditions are removed.

The transformed program in Figure 2.4.2 above points out
another characteristic needed to prove properties of parallel
pidgin Algol programs: synchronization. The wait between the
two conditionals is necessary if the use of the old values of
both x and y is to be guaranteed. Although the P-RAM model
itself allows far more opportunities for parallelism, we shall

restrict our parallel programs as follows:

If each processor in a set P begins to execute a
statement S at the same time, all processors {in P
which do not halt within S will complete their exe-

cutions of S simultaneously.

-27-

Given thin centriction, the time to cxecute any parallel
pidgin Algol statement S can be seen to be the maximum over
all processors of the execution time of each processor on §
plus the time to resynchronize processors at the conclusion of
S. Often the resynchronization can be accomplished by a few
judiciously placed null instructions, for example in padding
out the then or else branch of an if statement, provided the
execution times of the alternate paths can be computed at com-
pile time. The general.case requires that the number of proc~
essors entering and leaving S be matched, necessitating a
log (number of processors) delay to count the processors
entering and leaving S.

An example should help to clarify these concepts. The

program in Figure 2.4.3 1s a simple-minded program to set an .

begin
assian a processor to each element of Aj
for each processor p do
while A(p) > 0 do
A(p) := A(p) - 1
od
od
end

FPigure 2.4.3 Unsynchronized array initialization program.

array A of non-negative integers to all zeros. The running
time of the "for each processor®™ statement in this case is
O(M + log IAl), where M = max {A[i)}. The log |A]l term re-
flects the time required toisynch:onize the processors at the

conclusion of the statement. A similar program for the same

-28~

purpogse is shown in Figure 2.4.4, assuming that M is somchow

known ahead of time, The "for each processor” statement now

begin
assign a processor to each element of A;
for each processor p do
for 1:= 1 to M do

TTif A(p) >0
then A(p) t= A(p) - 1
else idle
£1
Ja
od

Figure 2.4.4 Synchronized array initialization program.

has a running time of just O(M), since synchronization at the
termination of the for loop is guaranteed, in contrast to the
while loop above where synchronization has to be explicitly
tested.

Note the "idle" statement in the else clause of the
second program. Since the time to execute the then clause is
known, synchronization within the if statement can be accom-
plished by this simple device. As with the transformations
designed to prevent race conditions mentioned earlier, the
full generality of processor synchronization will seldom be
required in the parallel pidgin Algol algorithms to follow in

later chapters.

Chapter 3

The Computational Power of Parallel Computers

The main purpose of this chapter is to examine the power
of the P-RAM model when it is viewed as an abstract model of
computation. A sccondary purpose is to examine some alterna-
tive parallel models to further investigate the appropriate-
ness of the attributes chosen for the P-RAM model. Section
3.1 contains the main results of the chapter; they relate time
complexity classes for detexministic and nondeterministic P-
RAMs to Turing machine time and space complexity classes.
These results originally appeared in [F2). Section 3.2 inves-
tigates the cffects of limiting the memory resources available
to the P-RAM. Finally, in Section 3.3, parallel models that
replace the global memory of the P-RAM by explicit interproc-
essor comaunication through a connection network are intro-
duced. Results very similar to those in Section 3.1 are
derived for several network topologies, supporting the conten-
tion that the P-RAM model is a reasonable basis for the study
of parallel computational complexity. The reader is referred
to [Al] for the definitions of Turing machine time and space

complexity classes.

=30~
3.1 Deterministic and nondeterministic P-RAMs

This section is devoted to proving two theorems that com-
pletely characterize the power of deterministic and nondeter-
ministic P~-RAMs in terms of Turing machine time and gpace com~-
plexity classes. We say that a language L is in the class
deterministic (nondeterministic) polynomial-time-P-RAM if
there is a determiéistic (nondeterministic) P-RAM M such that
for all words x of length n, x is in L if and only if x is ac-
cepted by M and requires time at most T(n). Our two main
theorems are presented below. Throughout this chapter,
resource bounds unqualified by P-RAM refer to Turing machine
computations.

Theorem 3.1.1 (deterministic P~RAMs) For T(n) 2 log n,

«© Kk @ Kk
U T(n) -time-P~RAM = U T(n) -space.
k=1 k=1

Theorem 3.1.2 (nondeterministic P-RAMs) FPor T(n) > log n,

2c'r(n)

U nondet~cT(n)-time-P-RAM = U nondet- ~time.

c>0 c>0
For particular familiar complexity classes, these theorems say
that deterministic P-RAMs can accept within polynomial time
exactly tho mets that Turing machines cun accept within poly-
nomial space and that nondeterministic P-RAMs can accept
within polynomial time exactly the sets that nondeterministic
Turing machines can accept using exponential time. The proof

of Theorem 3.1.1 is given in Section 3.1.1, and the simula-

-3~

tions catablinshing the truth of Thcorem 3.1.2 are given in
Section 3.1.2.

Before giving the proofs of the theorems, it is appropri-
ate to compare these results to others that have been obtained
for nontraditional machines modelling some aspects of paral-
lelism. Several authors have constructed models for which
deterministic and nondeterministic polynomial time are
equivalent and are equal to PSPACE on a Turing machine. These
include Hartmanis and Simon [H1l) and Pratt and Stockmeyer
[P2}, who use RAMs augmented by instructions that can manipu-
late exponentially long numbers at unit cost; Kozen [K3] and
Chandra and Stockmeyer [C2], who use alternating Turing
machines (nondeterminism is subsumed by alternation, hence
adds no power); and Savitch and Stimson [S2], who use parallel
RAMs without global memory. 1In [G2]), Goldschlager shows that
the SIMDAG model described in Chapter 2 can accept in polyno-
mial time exactly the sets in PSPACE, but he does not study
the power of nondeterminism for that device. By our simula-
tion presented in Chapter 2 and the theorems above, it can be
seen that, to within a polynomial, the P-RAM and the SIMDAG
possess the same power.

while we do not know that nondeterminism is more powerful
than determinism on our model, settling the question would de-
cide PSPACE = nondecterministic exponential time. Savitch [§3)
has also proven a result similar to Theorem 3.1.2 for non-
deterministic parallel RAMs without global memory augmented by

l1ist processing instructions that can manipulate exponential

-32-

amounts.ot information in unit time. The power of the deter-
ministic version of Pis machines is still open.

It is appropriate to note at this point that although we
use the uniform cost criterion [C4] throughout this section,
our results still hold (at most squaring the simulation cost)
if the logarithmic cost criterion is used; this is in contrast
to the results for the RAMs mentioned above that rely on the
unit time manipulation of large numbers. Similarly, we could
charge memory accesses at a cost proportional to the logarithm
of the size of global memory with only a polynomial increase

in computing time.

3.1.1 Proof of Theorem 3.1.1

The proof of Theorem 3.1.1 is here divided into two lem-

mas, one for each direction of simulation.

Lemma 3.1.1.1 Let L be accepted by a deterministic T(n)
space-bounded Turing machine M, for T(n) 2 log n. Then L is
accepted by a deterministic ¢+T(n) time-bounded P-~RAM P, for

some constant C.

Proof We shall first present a simulation of M by P that as-
sumes that the value of T(n) is available, then show how to
remove this assumption. Given T(n), P will construct a
directed graph where each node represents a configuration of

M. The number 'of configurations of M is bounded by 2d-T(n)

~33-

for some 4 depending on M, hence so is the number of nodes.
Leaving each node will be a single edge to the node of its
successor configuration. Accepting config?rations of M are
their own successors. Thus there is a path from the initial
configuration node to an accepting configuration node if and
only if M accepts its input within T(n) space.

s 29°T(n) processors

To build the graph, P first initiate
in O(T(n)) steps, each holding a different integer, represent-
ing each possible configuration of M. Each processor then, in
O(T(n)) time, unpacks its configuration integer into local
memory, computes the successor configuration, and packs the
result into a single integer. The graph is then stored in
global memory, the address of a configuration node being the
integer representing the configuration.

To find the endpoint of the path from the initial config-
uration, the following is executed iteratively. Each proces-
sor finds the successor of the successor of its configuration
node, then stores that as its successor in global memory.
After i iterations, each node has its descendant at distance
2i stored as its successor. Since the terminal configuration
is at distance at most Zd'T(“) from the initial cohfiguration,
only d°*T(n) iterations are neceded. As each iteration takes
constant time, and the reat of the simulation O(T(n)), the to-
tal time is c*T(n), for some cC.

To avoid the constructibility assumption about T(n),

modify the above simulation as follows: Py will start proces-

sors one at a time that will execute the procedure above as-~

-34-

gsuming T(n) = 1,2,... . When any of these simulations
succeed, Po will be notified and will accept. The order of
the running time is unchanged, since it requires only O(T(n))
time to start the simulation that uses the correct guess for
T(n). The individual simulations must also be modified so
that they each use disjoint locations in global storage to
store their configuration graphs. This can be accomplished by

JT(n)

increasing each address by the assumed value of De-

tails are left to the reader. [}

Lemma 3.1.1.2 Let L be accepted by a deterministic T(n)
time-bounded P~RAM. Then L is accepted by a O(T(n)z) space-

bounded Turing machine.

Proof We shall first construct a nondeterministic T(n)
space-bounded Turing machine M that accepts L, then show how
to make M deterministic without increasing the space bound.

In bzder to determine whether the P-RAM accepts its in-
put, M needs to know the contents of Po's accumulator when it
halts and needs to verify that no two writes occur simultane-
ously into the same global memory location. The simulation is
based on a recursive procedure ACC that checks the contents of
a processor's accumulator at a particular time. By applying
the procedure to Py, we can determine if the P-RAM accepts.
ACC is similar to the procedure PIND in [H1].

ACC will check that at time t, processor Pj executed the

th

i instruction of its program, leaving c in its accumulator.

-39~

In order to check this, ACC needs to know

i) the instruction executed by Pj at time t-1 and the

ensuing contents of its accumulator, and

{1) the contents of the memory location(s) referenced by

instruction 1.
ACC can nondeterministically gquess (i) and recursively verify
it. To determine (ii), for each memory location m referenced,
ACC guesses that m was last written by some processor Pk at
time t' < t. ACC can recursively verify that P, did a STORE
of the proper contents into m at time t'. ACC must also check
that no other processor writes into m at any time between t'
and t. It can do this by guessing the instructions executed
by each processor at each such time, recursively verifying
them, and verifying that none of the instructions change m.
Checking that two writes do not occur into the same memory lo-
cation simultaneously can be done in a similar fashion. For
each time step and each pair of processors, ACC nondetermin-
istically guesses the instructions executed, recursively veri-
fies theé, and checks that the two instructions were not
writes into the same location.

The correctness of the simulation follows from the deter-
minism of the P-RAM. In general, each instruction executed by
the P~-RAM will be guessed and verified many times by ACC.
However, since the P-RAM is deterministic, at any step for
each running processor there is exactly one instruction that
can be executed; thus all verified guesses of that instruction

must be identical.

'
P
R

-36-

To analyze the space requirements, note that there can be
at most 2T(M processors running after T(n) steps, so writing
down a processor number takes T(n) space. Since addition and
subtraction are the only arithmetic operators, numbers can in-
crease in }ength by at most one bit at each step. Thus, writ-
ing down the contents of an accumulator takes at most
T(n) + log n = O(T(n)) space. Writing down a time step takes
log T(n) épace and the program counter requires only constant
space. Hence the arguments to a recursive call of ACC can be
written down in O(T(n)) space. Cycling through time steps and
processor numbers to verify that a memory location was not
overwritten also takes only O(T(n)) space, hence the total
space requirement at each level is O(T(n)). As the total
depth of recursion is T(n), the total space required is
orim?).

Note that the simulation can be performed directly by a
deterministic Turing machine. At each step in the simulation
outlined above where a nondeterministic guess was made, M can
deterministically cycle through all possible outcomes until
the correct one is found. This requires no additional

space. [

3.1.2 Proof of Theorem 3.1.2

As in the previous section, the proof of Theorem 3.1.2 is

given by the two lemmas that follow.

-37 -

Lemma 3.1.2.1 lLet L be accepted by a nondeterministic T(n)
time-bounded Turing machine M. Then L can be accepted by a
nondeterministic c¢+log T(n) time-bounded P-RAM P, for some

constant c.

Proof For an input of size n accepted by M, the length of an
accepting sequence of configurations is at most T(n)z. In
d+«1log T(n) steps, for some d, enough processors can be ac-
tivated so that each can guess one symbol of the computation.
The first n processors check that the initial configuration
corresponds to the configuration of M on its input; each of
the remaining processors verifies that its symbol follows from
the corresponding symbol and the ones on either side of it in
the preceding configuration. The processors for the last con-
figuration must also check that it is an accepting configura-
tion, In another @'*log T(n) steps, for some d', the informa-
tion that the computation 18 correct can be bubbled up to 90
through the tree of activated processocrs, and Po can accept.
T(n) does not have to be constructible, since the length
of the accepting computation can be guessed nondeterministi-

cally. 1 ¢

L.emma 3.1.2.2 Let L be accepted by a nondetermintiatic T(n)

time-bounded P-RAM, T(n) > log n. Then L is accepted by a

c+T(n)

nondeterminiatic 2 time-bounded Turing machine, for some

constant ¢.

-38-

~ Proof The brute force simulation of the P~RAM suffices.

There can be at most 2T (n) processors activated, each of which
can access at mast T(n) memory locations with addresses in the
range 0 to n-ZT(n). The contents and address of each aemory
location can be of size at most T(n) + log n = O(T(n)), since
numbers at most double at each step and PO'B accumulator orig-
inally contains n. Hence the total tape required is
2T(")-T(n)2. The Turing machine can simulate one step of one

processor in some constant number of scans of its tape; 2T(n)

2-T(n)

processors with T(n) steps each takes time 2 °T(n)3 <

26°T(M) | ¢or some c. 01

3.2 Memory limited computations

Since the proofs of Theorems 3.1.1 and 3.1.2 require
numbers of memory locations and processors that are exponen~
tial in the parallel running time, it is natural to ask what
happens Qhen these resources are restricted to a polynomial in
the running time. 1In the case of processors, such a restric-
tion is not very interesting, since a polynomial number of
processors running for polynomial time can be simulated by a
single processor running for polynomial time. However, when
the size of the global memory of the P-RAM is limited to a
polynomial in the parallel ruaning time, non-trivial cesults
can be obtained.

We can characterize the power of nondeterministic P-RAMs

with restricted storage and can partially characterize the

-39~

pover of similarly constrained, bu£ deterministic, P-RAMs,
The theorems below are stated for the familiar classes NP and
PSPACE, but as with the earlier theorems in thias chapter,
similar results hold for higher and lower complexity classes.
for the remainder of this section, all P-RAMs are assumed to

possess only a polynomial number of global storage locations.

Theorem 3.2.1 The class of sets accepted by nondeterministic
polynomial time-bounded, polynomial global storage-bounded P-

RAMs is identically PSPACE.

Proof The key to the P-RAM's simulation of a PSPACE bounded
Turing machine M is a recursive subroutine TEST(i,j,t) that
verifies that ﬁ's configuration j follows from configuration |
within at steps, for some constant d depending on M. TEST
works by guessing the configuration k midway between i and j,
then FORKing to execute TEST(i,k,t-1) and TEST(k,j,t-1) in
parallel. The middle configuration k can be guessed using a
processor's local memory, and parameters can be packed into
the accumulator prior to the FORK, so no global storage is re-
quired to perform all of the parallel subroutine calls.

There is not sufficient global storage for each call of
TEST to bubble {ts result back to {ts fathar as {n Lemma
3.1.2.1, so an alternate strategy must be employed. When a
processor determines that TEST(L,j,t) is false, it forces the
P-RAM to rcject by forking to create two sons, each of which

does a store into global memory location zcro. If TEST(i,),t)

-40~-

is found to be true, the processor merely halts, The root
processor Po computes D(n), an upper bound on the depth of re-
curgsion and calls TEST (initial configuration, final configur~
ation, D(n)). 1t then waits long enough for D(n) levels of
recursive calls to TEST to complete, and accepts. If Py ac-
cepts, then there exists a sequence of guesses of middle con~
figurations k such that no vrocessor finds a mistake or at-
tempts a recursive call deeper than D{(n), so M must accept its
input.

D(n) may be taken to be a polynomial since M is PSPACE
bounded. The processing at each call to TEST, exclusive of
recursive calls, is proportional to the length of a configura-
tion, a polynomial, so the P-RAM runs for time at most some
polynomial in the length of the input.

To simulate a global memory limited, nondeterministic
polynomial time-bounded P-RAM within NPSPACE (hence PSPACE),
first observe that although exponentially many processors may
be active at once, only polynomially many of them may wrcite
into global memory on any step of the computation. Thus, a
nondeterministic Turing machine may guess and write down
within polynomial space the entire contents of global memory
after each step of the computation, along with documentation
of which processors modified which storage locations at each
step. The Turing machine can then traverse the tree of ac-
tivated processors implied by FORK instructions and verify
that all instructions executed are consistent with the guessed

global memory contents and conversely. If this implied tree

-g1=

is traveraed so that only the local memocries of the proccssors
directly on the path back up to Po are stored at any time, the

simulation can be carried out within polynomial space. [

Theorem 3.2.2 The clags of sets accepted by deterministic

polynomial time-bounded, polynomial global storage-bounded P-

RAMS contains the class co-NP.

Proof It is sufficient to show how to accept the complement
of some NP-complete set deterministically on a memory limited
P-RAM. We show how to accept the set of Boolean formulas that
are not satisfiable. 1In c;n time, 2" processors can be ac-
tivated, each holding a different integer in the range 0 to
2"-1. 1In an additional c,n time each processor can unpack its
integer into its local memory and determine if the assignment
of truth values represented by the bits of the integer cause
the input formula to be satisfied. Processors finding a
satisfying assignment force the P-RAM to reject as in Theorem
3.2.1. If no processor has forced rejection after (cl*cz)n

steps, P, accepts the input. (.

Notice that the set of satisfiable Boolean formulas can-
not be accepted by trying all truth values in parallel and
setting a flag in global memory if any satisfying assignment
is found, because there may be more than one such satisfying
assignment, resulting in several processors trying to set the

global flag simultaneously. If an NP-complete set could be

bt Y

found such that cach member of the set had exactly one “cer=
tificate® (or only polynomially many), then memory limited
deterministic polynomial time P-RAMs could accept at least NP

union co-NP.

3.3 Network connected parallel computers

The main theorems of the previous sections use the global
memory of the P-RAM model as a means of communication between
acbitrary pairs of processors. The question naturally arises
whether similar results can be obtained for a more restrictive
form of interprocessor communication, such as that used by the
ILLIAC IV. Recall that on this machine, processors may share
data only with their neighbors on a rectangular grid and even
then only when the data are explicitly routed from one proces-
sor to another. A generalized model of parallel computation
based on ILLIAC IV may be realized by replacing the global
memory of the P-RAM by a graph, where processors are located
at the vertices and communication occurs only along edges.
This motivates the definition of a network RAM, given below.

A network connected RAM (N-RAM) consists of a set of in-
put registers, a communication network, and an unbounded set
of processors. The input registers and instructions for read-
ing them are the same as in the P-RAM model. The processors
are also very similar to the processors of the P-RAM in that
they each possess an unbounded local memory, an accumulator,

and a program counter, and that they operate synchtonously.

-43-

Acceptance or rejection of an input will be handled as before
by the single designated processor that is active initially.
Differences between the two models lie in their instruction
gets and in the abzence of global memory on an N-RAM.

Instead of a global memory, an N-RAM has two new instruc-
tions that implement interprocessor communication. For a word
to be sent from one processor to another, one processor must
execute SEND() while the other simultaneously executes
RECEIVE(). The parameter to SEND and RECEIVE specifies one
of the possible communication links attached to the processor
that executes the instruction. The structure of the communi-
cation network is implicit in the correspondence of these
parameter pairs. 1In order for a message to be sent along a
link, there must be a SEND executed at one end of it and a
RECEIVE at the other end. An unmatched SEND or RECEIVE
behaves as a null instruction. A corollary of this protocol
is that a processor may communicate with only one other proc-
essor at a time; there is no "broadcast® facility. We shall
assume that all communication links are bidirectional.

The meaning of the FORK instruction must also be clari-
fied in the context of the N-RAM model. Executiorf of a FORK
instruction on an N-RAM causes a processor adjacent to the
processor executing the FORK to be activated and the number of
the communication link that connects them to be made available
to both parent and child for use in subsequent SEND and
RECEIVE instructions. As a consequence, the number of neligh-

bors of each processor must be unbounded, to permit a FORK to

-44-

be executed at each unit of time.

Por our applications, it will usually be necessary that
processors be able to infer the link numbers that connect thea
to certain of their neighbors. For this reason, we shall use
as the underlying communication network of the N-RAM only
graphs having a very regular structure. The graph to be used
throughoutrthe next several subsections will be the binary n-
cube, defined as follows. The 2™ vertices of an n-cube are
labelled with binary vectors of length n and there are edges
between those vertices whose labels differ in only one posi-
tion. We shall take n to be the running time of the N-RAM
program to allow the maximum number of PORKsS. Using theé n-
cube ‘connection pattern, FORKs executed at time t will ac-
tivate processors whose labels differ from their activating

processor only in the tth

bit position.

we shall also assume that the N-RAM may access processor
numbers as well as iﬁdividual bits of processor numbers. This
last facility may be simulated by passing processor numbers as
in Section 2.2 and unpacking them in time proportional to
their length, possibly squaring the N-RAM running time.
Another squaring of the running time results if the execution
of SEND-RECEIVE pairs 18 charged at a cost proportional to the
length of the value transferred instead of at unit cost.
Since the applications we shall present for N-RAMs are fairly
insensitive to polynomial changes in running time, the resulk

of these squarings is only a slight weakening of our theorem

that relates the power of nondeterministic N-RAMs to the power

- -

of nandotsrministic Turlng machinen,
The remaindec of this section presents N-RAM analogs for

Theorems 3.1.1 and 3.1.2.

3.3.1 Deterministic N-RAMs

Running times and complexity classes are defined for N-
RAMs in the same way as they were for P-RAMs earlier, so for
deterministic N-RAMs, a theorem corresponding exactly to 3.1.1
can be derived. One of the simulations is not as tight as in
the proof of the earlier theorem, but since a union over all
polynomial-bounded complexity classes is involved, the state-
ment of the theorem, given below, remains unchanged except for

the substitution of N-RAM for P-RAM.

Theorem 3.3.1 (deterministic N-RAMs) For T(n) > log n,
@ K_, . @ k
U T(n) ~time-N-RAM = U T(n) -space.
k=1 k=1
Proof One direction of the proof is nearly trivial. The
deterministic T(n)2 space simulation of a deterministic T{(n)
time-bounded N~RAM is nearly identical to the proof of Lemma
3.1.1.2. 1In the case of an N-RAM, the recursive procedure ACC
can in fact be somewhat simpler, since write conflicts in a
global memory do not have to be detected.
To simulate a deterministic space-bounded Turing machine

within deterministic O(T(n)z) parallel time on an N-RAM, the

R—

recurnivae procedure TEST of Theorea 3.2.1 will be caployed,
with cxhaustive testing replacing nondeterministic guesaing of
the middle configuration. As before, the depth of crecursion
of calls to TEST is T(n), but to start up processors that try
all possible ZT(") middle configurations requirea an addition-
al time T(n) at each level of recursion. Constructibility asz
sumptions about T(n) are avoided by running the simulation in

parallel “for T(n) = 1,2,... . 0

Notice that the n-cube connection network is not really
needed here, since the computation tree may be embedded in the
n-cube of the N-RAM in the obvious manner, and the only com-
munication 1inks‘ever used are the links connecting parent and
child processors at a FORK. Also notice that the technigue of
this proof does not provide an improvement of the power of
memory limited P-RAMs given by Theorem 3.2.2 because although
all of the calls to TEST can be made by the P-RAM, there is
insufficient space in global memory to return the answers back

up the tree.

3.3.2 Nondeterministic N-RAMs

For nondeterministic N-RAMs using the n-cube connection
pattern, an exact analog of Theorem 3.1.2 can be given. The

theorem is stated below.

-47-

Theorem 3.3.2 (nondeterministic N~RAMs) For T(n) 2 log n,

U nondet-cT(n)-time-N-RAM = U nondet-2°T (M-time
c>0 c>0
Proof Once again, the Turing machine simulation of an N-RAM
program follows the proof given earlier. The brute force
simulation in Lemma 3.1.2.2 works for N-RAMs as well as for
P-RAMS .

To simulate a nondeterministic 2T(")

time-bounded Turing
machine M using a nondeterministic O(T(n)) time-bounded N-RAM,
a modification of the simulation used in the proof of Lemma
3.1.2.1 suffices. Recall that the four steps of this simula-
tion were
i) ZZT(“) processoré, connected as a tree, are initi-
ated,
ii) each processor guesses one symbol of an accepting
computation of M,
1i1) each processor verifies that its symbol followa from
the corresponding symbol andrthe symbols adjacent to
it in the preceding configuration, and
iv) the information that the guessed computation is
correct is bubbled up to the root of the proceasor
tree, which accepts the input.
Stages (1), (ii), and (iv) can be performed straightforwardly
within O(T(n}) time using the technléues described earlier.
The following lemma aids in the implementation of part (11i)

of the simulation.

~-48~

Lemma 3.3.2,1 Suppose each of the 2“ processors of a non-
deterministic N-cube connected N-RAM wishes to send a message
to some other processor whose number is known. Subject to the
constraint that no processor send or receive more than one
message, all messages can be delivered to their destinations

within time O(N).

The proof of Lemma 3.3.2.1 will be postponed for now.

Given the lemma, part (iii) of the desired simulation can
be performed by some constant number of message passing itera-
tions as follows. The N-RAM nondeterministically guesses T(n)
and makes the value available to each processor during step
(1). Each processor p sends messages first to processor p-
T(n)-1l, then to p-T(n), and finally to p-T(n)+l requesting a
copy of the guessed symbol of the computation stored in those
processors. Once the return messages have been received, p
can determine whether its guessed symbol follows from the
corresponding symbols in the previous configuration and go on
to part (iv). Generalized message passing is not required to
verify that the initial and final configurations are correct,
since communicatian along the edges of the processor tree {s
sufficient, The total simulation time is O(T(n)), as

claimed.

Proof of Lemma 3.3.2.1 The proof that messages can be non-
determinlstically routed on an N-cube in O(N) time consists of

three parts. We shall

-gYy~

i) nhow that mennagen can be nondeterminintically crout-
ed quickly from the inputs to tho outputs of a cer~
tain graph G,

i1) give a transformation of G that preserves its mes-

gaqe passing characteristics, and

iii) demonstrate that the transformed graph is a subgraph

of the binary N-cube.
The graph G will be chosen so that (i) will be obvious.

A 2“-petmutation network is a directed graph with 2N in-
put vertices and 2N output vertices such that for each of the
2“! permutations of inputs to outputs there exists a set of
vertex-disjoint paths from inputs to outputs realizing the
permutation. 1In {W2] it is shown how to construct a 2N permu-
tation network with the additional properties that

i) each vertex has in and out degrees bounded by two,

and

ii) Vthe network contains O(N'ZN) vertices, arranged as

VO(N) levels of 2N vertices each., The only edges
connect vertices of each level to vertices of the
next level.

The construction in [W2]) uses many copies of a graph
known as a switch, shown in Fiqure 3.3.2.1. A 21—permuter is
a single switch., A ZN-pe:mutet is bullt recursively from two
2“-1—permutets as shown in Pigure 3.3.2.2. The correctness of
the construction is given in [W2), along with an algorithm for

finding the disjoint paths tealizing any given permutation.

0 0

Figure 3.3.2.1 A switch and its schematic representation.

(o, C
2N-l
. .| network
- 2N-l
network

Figure 3.3.2.2 Construction of a 2¥ permutation network.

Since our routing algorithm is to be nondeterministic, we re-
quire only the existence of the sets of disjoint paths, and do
not have to find them explicitly. By identifying the inputs
with the outputs of the permutation network, its message pass=-
ing abilities are clear. It remains to show how to embed the
network in an N-cuba.

Part (ii1) of the proof of Lemma 3.3.2.1 i{s motivated by
the following observations. The vertices of a N permutation
network are arranged as 2N cows of O(N) vertices each. Shift-
ing a set of messages through the network can be done in O(N)

steps by simultaneously moving all messages from one level to

“5la

the next at each step. Thus, the lévels of the pe:mutacion'
network correspond to units of time. If the vertices in each
row of the permutation network were collapsed together, all of
the interprocessor connections required to realize any permu-
tation would still exist.

In Figure 3.3.2.2, to minimize the number of edges in the
collapsed network, as many of the edges as possible connecting
the outputs of the first tier of switches to the inputs of the
smaller permutation networks were drawn horizontally. Such
horizontal edges occurring in a path connecting an input to an
output correspond in the collapsed network to a processor that
does not reroute a message at a particular time step. Another
feature of the way the permutation network was drawn above la
symmetry: every directed edge in the collapsed network 1s ac-
companied by a directed edge of the opposite orientation, thus
both directed edges can be replaced by a single undirected
edge. Simul&aneous passing of messages in both directions
along an undirected edge can be modelled by serializing the
messages. Figure 3.3.2.3 shows collapsed versions of a switch
and of a ZN—permutation network.

Finally, the collapsed representation of the permutation
network can easily be seen to be a subgraph of a binacry N-
cube. In Figure 3.3.2.3, a N input permutation network is

N-1 input networks plus edges connecting every

built from two 2
other vertex of the smaller networks. An N-cube is built
identically, except that every corresponding pair of vertices

of the smaller cubes is joined by an edge, rather than every

-52~

zN-l

permutation
network

2N-1

permutation
network

FPigure 3.3.2.3 Collapsed switch and permutation network.

other pair,

We have shown that in some sense, a binary N-cube con-
tains a ZN—pezmutation network., Thus, by using at most half
of the available communication links, a nondeterministic N-RAM
can perform message passing (or sorting) on an N-cube in the

desired O(N) time. (]

Although Lemma 3.3.2.1 is sufficient to prove Theorem
3.3.2, it is instructive to consider a deterministic version
of the lemma. We shall describe a deterministic algorithm ca=-
pable of routing 2N messages on an N-cube within O(Nz) time.
The deterministic message routing algorithm will employ the *
technique of divide and conquer. Initially each processor
contains in its local memory at most onc message, whose desti-

nation bears no relation to the number of the processor hold-

iy o

ftaq tha measwjo, On cach of N fteratlonn, monaagen will bae
passed to an adjacent proceasor so that there {o agrecment
between one more blt of the destination address and the number
of the processor holding the message. The zlgorithm is given

in Pigure 3.3.2.4.

As shown in the figure, after messages are swapped some

begin
for i := 1 to N do
for each processor p do
TTif bit i of the message destination does not match
bit i of p
then send message to the processor connected to p
along dimension i
fi
od
7% Destinations and processor numbers now match in
bit positions 1,2,...,i. By shuffling messages
around in the N-i cube obtained by varying the
last N-i bits of processor numbers, make sure
4 that no processor holds more than one message */
o
end

Pigure 3.3.2.4 Deterministic message routing in an N-cube.

processors may end up holding two messages, so a balancing
procedure must be performed before the next iteration may com-

4 messages situated at the ver-

mence. There are at most 2~
tices of-each N-i cube, which may be redistributed determin-
{stically in time 0((N-i)2) {or nondeterministically in time
O(N-1)) by the divide and conquer algorithm of Figure 3.3,2.5.
It remains only to show that redistribution among lower dimen=

sioned subcubes at each step of 3.3.2.5 can always be per-

formed (deterministically) without causing any processor to

o
=

l
|

cqi
for § 1= {+1 to N do
——Hividetﬁach N-j cube into two N-j-1 cubes along the
j dimension and balance the number of messages
held in each smaller cube
od
nd

o

Figure 3.3.2.5 Deterministic message redistcibution.
hold in excess of two messages at once.
Call the subcubes that differ in their j"h dimension L

and R, containing n, and n, messages, respectively, and

n, +n
_E_f—_‘ vertices each. Consider the edges connecting the two

subcubes. There are only nine types of edges, depending on
the number of messages initially at the left and right end-
points of the edge. Let Xiqe i,j = 0,1,2, be the number of
each kind of edge, where the left endpoint processor holds i
messages and the right endpoint processor holds j messages.
We have

g m Xpg * 2Xpg t Xy b 2exy) ¥ 2eXy, * Xy, and

NR = Xgy * 2°Xgp * Xy ¥ 27Xy ¥ 27Xy * Xy
Without loss of generality, suppose n; 2 np. Then the maximum
number of messages that can be moved from L to R without forc-
ing a processor to hold more than two messagesAat once is

fLer ® X10 * 2°%y0 * Xq1 * X21
By eimple arithmetic, it can be verified that

n

- n £ n, +n

L L»R R L»R
thus the required redistribution is always possible.

-55-

Using nondeterminism, this redistribution can be per-
formed in constant time. To redistribute the messages deter~
ministically the values nj and np must be computed and used to
*steer”™ the redistribution, using the techniques to be
presented in Section 4.1.5. These computations require an ad-
ditional O(N-i) time, for a total of 0(N3) for the entire

deterministic message routing algorithm.

Several corollaries readily follow from the above proofs.
Results identical to Theorems 3.3.1 and 3.3.2 can be derived
for N-RAMs using connection patterns other than the binary n-
cube. The collapsed form of the permutation network described
above is clearly one of these and so is a collapsed form of
the “"buttecfly”™ graph employed by the Fast Fourier Transform
[Al), since the latter connects in successive stages vertices

whose labels differ in each bit position.

Chapter 4

Computational Structures

The designer of a parallel algorithm is confronted with
additional choices that do not face the developer of a sequen-
tial algorithm. 1In addition to the ordinary concerns about
the method and data structures to be used, the author of a
parallel program must also worry about the assignment of proc-
essors to the various objects in the program. Por example, a
parallel algorithm to add n numbers together uses trivial data
structures, a few scalar variables per processor, but the or-
der in which these processors operate on their data can become
quite involved, as will be shown in Section 4.1.1. We use the
term computational structures to mean the combination of data
structures, algorithms that manipulate them, and processor as-

signments.

4.1 Basic Computational Structures

In the atu&y of parallel algorithms, there are several
computational structures that occur so frequently that {t is
worthwhile to factor thelr analysis into a separate section.
These structures include:

{) computing the sum (or any other ansocifative func~-

tion) of n elements,

-57~

{i) ceunting the numbec of elements In a linked list,

iii) cunverting a list of elements from a linked
tepresentation to an array representation,

fv) deleting blocks of elements from a linked 1list,

v) compressing a 6parse arcay, and

vi) initializing a block of storage to a given value.

4.1.1 Computing the sum of n numbers

Perhaps the most basic non-trivial parallel operation is
exemplified by computing the sum of n numbers. Since the ad-
dition operator is associative, we are free to organize the
computation in a mannec yielding the smallest parallel running
time. Assuming first that n is a power of 2, we can achieve a
time bound of log n using % processors as follows: Each proc-
essor will coampute the sum of two array elements in unit time.
At the second step, each of % processors will compute the sum
of two sums from step 1, etc,, until one processor computes
the complete sum at step log n. If n is not a power of 2, L%J
processors suffice to compute the sum in time [log n7l, by an
obvious generalization., Any associative operation could have
been used instead of addition; min, union, or, etc. will be
used in later algocrithims. A parallel pldgin Algol program to
express this algocithm would involve processors examining bits
of their processor numbers to determine whether they are ac=
tive on a given step; such programming details are not of

interest and will not be given.

o -

Another way of viewing the computation of the sum above
would be to consider it as a binary tree of minimum height
with the n elements to be‘summed at the leave . . internal
nodes marked with the addition operator. This viewpoint al-
lows us to derive more general resoucce bounds. osuppose p £ g
processors are available. Then to compute the bottom level
sums would require at most r%§1 time, the next higher level
would reqﬁi:e at most F%ET, etc., for a total time T satisfy-

ing

n n n
T < r§§1 + r3§1 + aee * r;rTEE“E1;1

[T

n n n
(1+~2—p-) + (1+—4§) + 4. + (1m)

n 1.1 1
lMog nl + B'(2+]*...+;r13§—31)

o
P

in

cl-log n+oc,e

o + D
(log n p)

s n . .
Notice that T is O{(log n) for p = Tog 7’ so a running time of
the same order as the simple parallel addition program can be

obtained with a logarithmic factor fewer processors.

4.1.2 Counting the number of elements in a linked list

To count the elements in a list, we shall employ a tech-

nique called doubling, which will appear in some form in most

59

of the algorithms to follow. The essential idea is that the
processor associated with each element of the list will main-
tain a pointer to an element farther along the list, and at
each step will "double” the distance its pointer spans by set-
ting its pointer to the value of the pointer belonging to the

element pointed to on the previous iteration.

Algorithm 4.1.2
Given a list L, linked together via next fields, with end of

list indicated by a null next field, compute |L{. It will be

th

convenient to treat the head of the list as the zero element

of L. The program is given in Figure 4.1.2.1.

begin
assign a processor to each element of L
assign the processor named head to the 1ist header
for each processor p (including head) do
fac(p) = next(p);
span(p) 3= 17
while far(head) is not null do
1t tar(p) is not null
then span(p) t# span(p) + span(far(p));
far(p) := far(far(p))
fi
od
od
end

Pigure 4.1.2.1 Finding the length of a linked list,

The correctness of the algorithm follows from the obser-

vations that

-60-

1) the following is an invariant of the while loop:

Yp, far(p) = next P20 (P)

(p), and

11) far(head) will eventually become null,

When far(head) is null, span(head) will be the number of links
in L, including the final null link, so |L| = span(head) -~ 1.
To analyze the running time of the algorithm, notice that span
for each processor is computed as the sum of two spans from
the previous iteration, except possibly for the last, when the
null link at the end of L is discovered. Thus, span(head)
doubles on each iteration, so the running time is therefore
Mog(iLi + 1)1 = O(log IL!).

As in Section 4.1.1, a natural question to ask is whether
the above algorithm can be made more efficient, i.e. whether
{t can be made to run in the same time using fewer processors.
" Here the answer appears to be no, at least for the following
simple modification. Suppose the p < |L| + 1 available proc-
e8s80rs8 are assigned to the list elements such that each list
element executes the body of the while loop once before any
element is allowed to execute the body again. The modified
program is still correct; the same invariant holds, but it re-
quires time rl%lﬁ to insure that each processor at least dou-~
bled its span (although some of the processors might more than
double thoir spans, depending on tho actual asasignment of
processors to elements). The total running time becomes
0(131-109 Ll). Since p {8 includcd multiplicitively rather
than additively in the running time, no gain in efficiency

results.

4.1,3 Converting fron a linked list to an array

Given a linked list L of elcments, the problem of storing
the elements contiguously in an array A while preserving the
order of L is equivalent to the problem of determining, for
each x on L, the ponition of x in tho 1liat. Onco tho poaltion
nunbers are kﬁown, they can be used as subscripts into A to
produce the arcay in constant time using IL| processoxrs. To
compute the position numbers a simple modification of the pre-
vious algorithm suffices. Note that in Algorithm 4.1.2 the
distance froa an element of a linked list to the end of the
list is computed for all list elements, not just the list
header. From the computed distances and IL|, the position of
each element in the list can be determined. The running time
and processor requirements are the same as for Algorithm
4.1.2, namely O(log |L|) and |L], respectively.

Observe that the inverse operation, converting from an
array to a linked list, can be done trivially in constant time
by assigning a processor to each array element to form the
links, provided that n pfocessots have previously been initi-
ated. We shall frequently make such an assumption, since for
many of our algorithms the processor startup cost is incurred

only once, at the beginning of the algorithm.

4.1.4 Deleting elements from a linked list

Suppose we are given a linked list that has a processor

assigned to each element of the list. Simultaneously, all

processors decide whether to delete their clement fcom the
list, and some elements are marked as deleted. Linking around
‘the deleted segments of the list is nontrivial, since there
may have been a large block of consecutive elements all delet-
ed at the same time. The following algorithm uses a doubling
strategy to locate the boundaries of a block of deleted ele-
ments and performs the relinking that deletes the appropriate

elements ¥rom the list.

Algorithm 4.1.4

Given a list L, circularly doubly linked by next and last
pointers and given a predicate deleted that tells whether an
element is to be removed, relink L. The list head will be the
zero®® element of'L, with deleted(head) = false. We identify
the processor associated with an element and the element it-

self where no confusion can result. The progtam is shown in

Figure 4.1.4.1 below.

For deleted list elements p, far(p) will always point to
a deleted element farther along the list. Let b < |L| be the
size of the largest block of consecutive deleted elements in
L, and let Py be the processor associated with the leftmost
deleted element in a deleted block of size b. Within
Flog bl-1 1tetation§ of the while loop, the doubling of far
will have made far(po) point to the rightmost deleted element
in the block, so Py can link around the deleted segment of L.

The following two final observations confirm the correctness

~63-

begin
for each processor p (including head) do
© Af deleted (p)
then
far(p) 1= 1f deleted(next(p))
then next(p)
else p
while far(far(p)) ¥ far(p) do
far({p) := facr(far(p))
od
If not deleted(last(p)) and
not deleted{next(far(p
then p is the leftmost in a block of deleted
elements and far(p) is the rightmost
deleted element in the blocky p may link
together the undeleted elements last(p)
and next(far(p)), bypassing the deleted
block

fi

gg__
end

Pigure 4.1.4.1 Deleting elements from a linked list,

of Algorithm 4.1.4:

i) simultaneous deletions of blocks on both sides of an
undeleted element e do not interfere with one anoth-
er, since the two deletions change different pointer
fields in e, - and

i1) the processor that deletes a segment is determined
uniquely since only processors for deleted elements
are active and only one of these in each block may
have {ts left neighbor undeleted.

The running time of this algorithm .appears to be

0(log b), where b was dafined previously, and indecd, this is
the running time before resynchronization costs are included.

However, the program in Figure 4.1.4.1 provides an example of

-64-

the need for synchronization, as discussed in Section 2.3. As
written, processors will complete the while loop at different
times and the processors associated with undeleted list ele-
ments must wait a variable amount of time before they may con-

tinue. Rewriting the algorithm as shown in Pigure 4.1.4.2

begin
for each processor (including head) do
if deleted(p)
then .
far(p) := if deleted(next(p))
then next(p)
else p

la)

i

3l

£ i :=1 tollog ILIT do
if deleted(p)

then far (p) := far(far(p))
i

d

"'I

-]

o8
il

not deleted(last(p)) and
not deleted{next(far(p)))

then p links last(p) and next(far(p)) together
around the deleted segment

.

Pigure 4.1.4.2 Synchronized list element deletion progran.

provides solutions to both of these problems. By replacing
the while loop by a for loop with a fixed bound, synchroniza-
tion is guaranteed and this program may be implemented on a
P-RAM by padding out.gl_q branchnaa by a constant numher of
null instructions. The running time is O(log b + log [LI) -.

O(log ILl). Hencefocth, progcam transformationa similar to

the preceding will not be given explicitly.

[—
4.1.,9% Coaproaning a nparse array

Given an array A of size n where only the elements A(lll,
A(izl, cees A[iml are non-null, we wish to produce an array B
such that for 1<j<m, B[]] = A[ijl. One solution to this prob-
lem combines two of the previous algorithms: fovm a llnked:
1ist of all the elements of A, then use Algorithm 4.1.4 to
delete the null elements, then use.Algorlthm 4.1.3 to store
the compressed list into B. This algorithﬁ has a running time
of O(log n) using O(n) processors. The algorithm we present
here solves the problem with slightly fewer processors and il-
lustrates a technique that will be useful later.

The crux of the problem is to compute, for each non-null
element A[isl, the value of j. As in Section 4.1.1, the com-
putation will be organized as a complete binary tree whose
leaves are the elements of A. Unlike the earlier algorithnm,
however, information will flow in both directions along the
edges of the tree, in a manner similar to the carry lookahead

adder circuit.

Algorithm 4.1.5

Given an array A with null and non-null elements, compute j
for each non-null element A[ij] using the program in Figure
4.1.5.1. The computation tree will be made explicit in this
presentation, although it would not be in an efficient imple-
mentatioﬁ. We assume that JAl = n is a power of 2. The
counts are computed exactly as in Algorithm 4.1.1, with infor-

mation moving up towards the root. For a subtree rooted at p,

begin

assign a processor to each leaf and internal node of
the computation tree

compute count(p) for cach node p of the tree as the
number of non-null elements of A that are descen=-
dants of p; .

first(root) := 1;

last({root) := count(root);

for each processor p do

or { 1= 0 to loy n do
T 1f node p is at diStance i from the root with
count(p) > 0

then
if p is a left son of its father
* then first(p) := first(father(p)):

last (p) 1= first(father(p)) +

) count(p) -1
else first(p) := last(father(p)) -

count(p) + 1;

last (p) 3= last(father(p))

£i
fi
od

gﬂa-
end

Figure 4.1.5.1 Compressing a sparse array.

first(p) and last(p) delimit the range of j values to be as-
signed to leaves of that subtree. These values are computed
by working down the tree towards the leaves. By induction it
can be verified that for the non-null leaf ij' first(ij) =
last(ij) = § upon termination of the algorithm. As presented,
the resource requirements are O(log n) time and O(n) proces-
sors, but using the techniques of Section 4.1l.1, the processor
requirement can be reduced to 0(133—3) without changing the
time bound.

7=
4.1.6 Initializing a block of storage

Clearly, an array A of size pT can be initialized in time
T by p processors. For some applications, however, this is
not sufficient. For example, consider a graph algorithm that
requires an adjacency matrix representation of a sparse graph
G = (V,E). If |E] is on the order of |V]| and a processor is
available for each edge, then the naive algorithm requires at
least O(iV]!) time to initialize the adjacency matrix. A gen-
eralization of Exercise 2.12 in (Al} allows us to perform the
initialization in constant time. With each processor p that
can store information into A is assoclated a stack in global
memory and a pointer giving the extent of the valid stack en-
tries in p's stack.

A value v is entered into A[i] by pj by pushing (v,1i)
onto pj's stack and linking A[l] to the new stack entry.
Initialization consists of invalidating all stack entries by
setting the local stack pointer for each processor to null and
storing the default (initial) value for the array elements in
a special global location. The program in Figure 4.1.6.1 may
be executed to find the value of A[i]. The proceéures for
initialization, entering a value, and retrieving a value each
require only éonstant time and as many processors as will ever

access or store into A simultancously.

-68-

if A(i]) points to a valid stack entry for some proces-
sor, say J

Tf the stack entry points back to A[i]
then the value is taken from pj‘s stack entry
else use the default value

else use the default value

Pigure 4.1.6.1 Extracting the value of Afi}.

4.2 Algorithms using basic computational structures

In this section we present parallel algorithms that solve
common problems by the application of the computational struc-
tures given in the previous section. We first show how to
compute the preorder, inorder, and postorder traversals of a
binary tree, then give a parallel implementation of a struc-

ture similar to a priority queue.

4.2.1 Tree traversals

Since we are interested here in parallel algorithms, the
traversal of a trée will be accomplished by assigning to each
node its number in the traversal. The algorithms for preor-
der, inorder, and postorder are similar, and all depend on the
ability to cénstruct a particular representation of the tree

quickly. We shall first assume that the tree is already in

the proper form, then show how to remove this restriction.

s -

In tho denlred reprenontation, esach node of the troeo con~
slsts of a block of three polntecs, left, right, and fathec.

Por any of the traversals, tn2 pointers belonging to a node x

left(x) := if x has a left son 1
then address of the left polnter of 1

elce address of the right pointer of x

right(x) := if x has a right son r
then address of the left pointer of ¢

else address of the father pointer of x

father(x) := if x is a left son of its father f
then address of the right pointer of £
else address of the father pointer of x

Figure 4.2.1.1 Data structure for tree traversals.

are defined in Pigure 4.2.1.1. In addition, there is a spe-
cial node head whose pointers are set to make the root of the
tree a left son of head, and father{head) is set to null. A
tree and its representation are shown in Figure 4.2.1.2. The
links of this structure form a singly linked list, beginning
with left(head), heving the following propertiess
i) the left pointer out of a node x is the beginning of
a linked list that links through all the pointers of
the left subtree of x before returning to the right
pointer of x, and
il) the right pointer out of a node x behaves similarcly,
traversing the right subtree of x and returning to

the father pointer of x.

heead

Figure 4.2.1.2 Example of data structure for tree traversals.

These assertions are easily proven by induction on the size of
the tree using the definitions of left, right, and father.

The linked list that results defines the tree traversal
<root> <left subtree> <root> <right subtree> <root>., By
deleting all but the first, second, or third visit to <root>,
we obtain preorder, inorder, or postorder traversals of the
tree, respectively. Given the structure above for a tree T,
the algorithm for a preorder traversal is shown in Figqure
4.2.1.3. The algorithms for inorder and postorder traversals
are identical except for the choice of nodes to delete. The
running time is dominated by the time to run Algocrithms 4.1.3
and 4.1.4, for a total of [log(3:(ITI+1))7] + Mog(iTI+1)7,
which is O(log IT!), using O(iT|) processors.

The required data structure can be constructed in con-
stant time from any representation of T in which nodes can
determine their father and left and right sons in constant

time. Suppose, however, that the given representation of T

-7)-

begin
asslgnfa processor to each pointer field of each node
of T3

change the singly linked representation of T to a dou~
bly linked representation in constant timej

for all processors, mark as deleted the right and fa-
ther pointers of each node in T;

perform Algorithm 4.1.4 to link around deleted segments
in the list;

perform a variation of Algorithm 4.1.3 to assign
numbers to the list of nodes (these are the output
of the traversal)

end

Figure 4.2.1.3 Parallel preorder tree traversal algorithm.

contains only a father pointer for each node. Then the sons
of a node are unordered, S0 we must show how to classify sons
as left or right. This subproblem appears to be easy; one
might expect to be able to solve it in time O(log 2) using IT|
processors. However, the best algorithm we can give uses
O{log IT!) time and O(IT!-1l0og IT|) processors. Each node x
will store the pair (x, father(x)) in an array, which is then
sorted on its second component using the algorithm of [P3] to
bring together the pairs belonging to nodes having the same
father. In constant time, nodes can determine whether they
are left or right sons of their fathers by examining their
neighbors in the sorted arcay and set theicr links appropriate-
ly. The resource bounds follow from the time and processor

requirementa of the sortlng algorlthm in [P3].

-2~
4.2.2 Pacallel pipelined MIN

A In [Al), the problems on-line and off-line MIN are intro-
duced. 1In either of these, a sequence of operations INSERT({)
and MIN i8 to be processed, where INSERT(1) adds the integer
i1, 1<i<n to a set S and MIN computes the minimum of all ele-
ments of S and deletes that element from S. For the on-line
version of the problem the answer to a MIN request must be
produced before the next operation in the sequence is seen,
while an off-line solution allows input of the entire segquence
before any answers must be produced. A further possibility
exists: reading of the sequence is allowed to continue without
walting for an answer to a MIN request, but answers cannot lag
behind inputs by more than time f(n). We shall refer to this
as the “pipelined MIN* problem, where the pipeline has size
f(n).

For a parallel algorithm it is appropriate to allow mul-
tiple INSERTs or MINS to occur simultaneously, so the parallel
pipelined MIN problem can be stated as follows. Given n proc~
essors, numbered 1 to n, at any time t any number of proces-
sors may receive INSERT and/or MIN commands. An INSERT com-
mand received by processor i1 means to insert i into the set S
being maintained. No later than time t + f(n) the answers to
the MIN commands trecelived at time t must be produced. A MIN
command received at time t i{s allowed to extract a value {in- *
serted at time t. Por simplicity, we assume that none of the
n processors receive more than one INSERT command or more than

ona MIN comnand during execution of the soquance of commands.

-y

Exavple: Suppose n = S5 and f(n) = 2.

t=1 .ot=2 t=3 t=4 t=5
inputs I(3) I(1) M(1)

1(2) M(4) M(5)

M(3) M(2)

I(4)
outputs M(3)=2 M(4)=3 M(1l)=4

M(2)=1 M(5)=undefined

Pigure 4.2.2.1 Parallel pipelined MIN example.

Note that the two MINs received at time t=f in the example in
Pigure 4.2.2.1 could have produced either M(4)=3 and M(2)=1 or
M(4)=1 and M(2)=3. We adopt the convention that the smaller
min will be output by the lower numbered processor.

To solve the parallel pipelined MIN problem with a pipe-
line length of €(n) = O(log n), we shall use a generalization
of the array compression algorithm of Section 4.1.5. As in
the earlier algorithmn, there will be a tree of processors
above the n processors that receive the INSERT and MIN com-
mands. Each processor in the tree will maintain insert_count
and ain_count arrays: counts of the total number of INSERTs
and MINs received below it prior to or at each each unit of
time. These counts are computed in the obvious way by propa-
gating subtree counts up the tree towards the root. We shall
assume that the count arrays are indexed by time units. Ob-
serve that, say, insert_count(root)[t] will not be correctly
computed until time t + log n.

Two types of information will flow down the tree towards
the leaves. The first of these will assign unique sequence

numbers to each of the MIN commands received, by sending

(€irst, last) pairs to the sons of a processor based on thelc
min_count values, as in Algorithm 4.1.5. The sequence numbers
will be cumulative.
The second type of information will also be MIN command
sequence numbers, but instead of sending this information back
to the processors that received the MIN commands, these data
will be routed to the processors that received the inserted
values that are the answers to the MIN requests. To effect
this routing, an additional array, delete_count, is required,
to allow each processor p to keep track of how many of the
insert_count(p) [t] elements inserted below p prior to or at
time t have been deleted by MIN commands. The number of ele-
ments in the subtree rooted at p that were inserted at time £
t and are eligible to be deleted by MIN commands received at
time t is given by
insert_count{p) [t) - delete_count({p)[t-1].

For p = root, if this quantity is smaller than
min_count{root) [t] - min_count(root) [t-1],

then some of the MINs received at time t are unsatisfiable.

Using the (first, last) routing algorithm described in
Section 4.1.5, the two sets of MIN command sequence numbers
may be sent back towards the leaves of the processor tree.
Eventually, both the processor that received the MIN command
at time t and the processor that inserted the answer to the
MIN command will receive the same sequence number. This se-
quence number can then be used as an index into a global array

through which the answer can be passed.

-75-

The delay between receipt of abnxu request and output of
its answer is the time for messages to travel from the leaves
to the root and back to the leaves, or 2°+log n. The number of
processors required is 2n - 1, or O(n). The space required
per processor is not proportional to the total time the algo-
rithm runs, as it would first appear, but rather is propor-
tional to log n, since at most 2-log n of the entries in any
of the three arrays for each processor_can be active at any
time, and these can be "folded" into a circular buffer of size
O(log n). Thus, the total space required is bounded by
O(n*log n).

As a final observation, note that the above solution to
the pipelined MIN can also be viewed as an O(log n) implemen-
tation of the on-line MIN problem. The memory required for
the on-line version of this algorithm is O(n), since only a
constant amount of information needs to be kept at each node

of the processor tree.

[,

Chapter 5

Parallel Algorithms for Some Representative Problems

In this chapter we develop scveral useful design tech-
niques for fast parallel algorithms to augment those of
Chapter 4 and illustrate their use by constructing parallel
algorithms for. several problems. We shall introduce the tech-
nique of pairwise function composition, which is a generaliza-
tion of the doubling strategy discussed in the last chapter.
In addition, we shall describe data structures that rely on
redundancy in their representation of some object, thereby
enhancing the speed of a parallel algorithm that manipulates
the object. The problems for which we shall develop algo-
rithms are

i) computing string edit distances,

ii) the off-line MIN, and

1i4) determining the connectivity of an undirected graph.

5.1 String edit distances

The string-to-string correction problem is the following,
Given two strings x and y of symbols from a finite alphabet 2,
find the minimum cost of transforming x into y, where the al-
lowable transformations are inserting a symbol into x, delet~
ing a symbol from x, and replacing a symbol of x by another

symbol from 2. A soquential solution to this problem is given

-y

in [wWl]).
Throughout this section we shall write x as X XgeeeX and

Y 8S Y Yo+ Y- Also, the substring xixi+1...xj will be

denoted xij' with the convention that if j < i then x is the

ij
null string €. We say that the transformation of x to y is at
stage (i,j) if the first i symbols of x have been read and the
first j symbols of y have been output. Although this defini-
tion implicitly assumes a sequential transformation of x to y,
we shall be interested in the cost of the transformation, not
the actual sequence of edit operations; thus, parallel algo-
rithms to compute the edit cost are meaningful. In [Wl] the
three editing operations were allowed to have arbitrary costs.
We assume here that each operation has unit cost, since the
generalization is straightforward.

The solution to the string-to-string correction problem
in [Wl) is based on dynamic programming. The costs for all
possible stages of the transformation are placed in a matrix
A[O:n, O:m], where A[i, j] is the cost of transforming xl,i to
Yl,j' The sequential algorithm, for unit cost edit opera-
tions, is given in Figure 5.1.1. At the termination of this
algoritha, Afn, m] contains the minimum cost of converting x

to y. The min computes whether it is cheaper to construct

yl.j from XL by

-s0—

begin
for i := 0 to n do A[i, 0] := 1 od;
for j := 0 to m do A[0, j] := j od;
for i := 1 to n do
“Ffor 3 := T to m do
dgy 1= if x; = yy then 0 else 1y
Ali, 3] := min { afi, j-1] + 1,
Ali-1, 3} + 1,
Ali-1, 3-1) + d
) 1
od
od
end

|

Figure 5.1.1 Sequential string-to-string correction.

i) converting X),i to Yl,j-l and then inserting yj.

ii) deleting xyq from Xy 4 and then converting Xy, i-1 to

¥1,40 ©°F

iii) converting X1, i-1 to yl,j-l and then changing x; to

Yy-
The running time is obviously O(nm).

A fairly simple modification of the above algoritha
yields a parallel algorithm whose running time is O(n+m) and
which uses O(max(n, m)) processors. The same matrix A will be
computed, but all elements A[i, J] having i+j=k will be filled
in simultancously, for k = 0,1,...,n+tm. This is possible be-
cause in order to compute A[i, j), only elements of A whose
subscript sum is less than i+j are required. The algorithm is
given in Figure 5.1.2. This algorithm has the advantage that
it could be implemented on a parallel computer without a glo-
bal memory. Using O(nm) processors connected only to their
neighbors on a rectangular grid, as in Illiac IV [Bl], the

stated running time could be obtained by storing one elemeat

-79~

beqin
for ki= 0 to n+m do
assign a processor to each pair (i, 3j) such that
i+j=k (this implicitly assigns values to i and j
in each processor)
if £ = 0 then AL, J) := 3
e if j = 0 then All, J) = {;

Ali, 31 t= min (A[i, 3-1) + 1,

dij 1= i Xy = yj then 0 else 1;

Ali-1,
Ali-1, 3-1) + 4d
) 3

FPigure 5.1.2 Linear parallel time string edit distances.

of the array A in each processor's local memory. However, if
global memory is available, as in the P-RAM model, we shall
show how to construct a O(log n°log m) time algorithm.

The faster parallel algorithm will compute the matrix A
indirectly. The answer must be placed in A[n, m] and thete.
appears at first to be no way to compute this value quickly,
because the three surrounding values are not known. The key
that makes the algorithm work is that although A[n, m) cannot
be computed directly, a function that expresses A{n, m] in
terms of other (unknown) elements of A can be computed effi-
ciently. By computing similar functions for each element of
A, then composing these functions together, an easily evaluat-’
ed function yielding A[n, m] in terms of the {(known) boundary
conditions can be obtained.

Without loss of generality, assume that n+m is odd. The

case where n+m i{s even i{s similar and will not be given.

-80-

+
Divide the elements of A into classes Cyr OLKk<N, for N-nggJ,
where A(L, j] is in class Ck if 1+3=2k or i+j=2k+l. That is,

classes consist of pairs of parallel antidiagonals, Notice

that the elements of Ck can be computed if the elements of

Ck-l are known, for fixed strings x and y. Por example,
Aln-1, m], a member of class Cy+ may be expressed in terms of
elements of class Cy-1 2s min {(A[n-2, m)+1, A[n-1, m-1]+1,
Afn-2, m'1]+dn-1,ml' where dlj is zero if x; = Yy and one oth-
erwise. Similarly, A(n, m) may be first expressed as a func-
tion of A(n-1, m]: Aln, m-l]: and Aln-1, m-1}. The starred
terms are members of the same class as A[n, m), namely CN’ 80
we expand those elements in terms of elements of Cy-1- Yielad-
ing:
Afn, m) = min {(1 + min (A[n-2, m] + 1,
A(n-1, m-1] + 1,
A(n-2, m-1) + 4
}'
1l +min { Aln~1, m-1] + 1,

n~-1,m

Aln, m-2}] + 1,
Afn-1, m-2] + &
|

Aln-1, m-1]1 + dn,m

n,a-1

~pg-

e aln { Aln-2, m)] +» 2,
Afn-2, w-1] + 1 + dn—l,m'

Aln-1, m-1]) + min {d 2, 2},

n,m’
Aln-1, m~2] + 1 + dn,m—l’
Afln, m-2}) + 2
}

The form of this function for any member of a class Ck is
very rejular; it is the minimum for all Afi, j) in Ck-l of
Ali, 3) élus'a constant, where the constant for each member of
Ck—l depends on only the local structure of x and y. In fact,
we shall show that the same functional form can be used to ex-
press any memnber of Ck in terms of members of any other class
Cj' j ¢ k. A conpact way of representing the above function
is by recording the constants in an array that is indexed by
elements of Crqe with the constant @ stored in positions of
the array corresponding to unreferenced elements of ck-l' For
this representation, we use the symbol f??(p,q) to be the con-
stant depending on x and y such that

Ali, j} = min { ...,
Alp, al + £15(p,@),
}e.

That is, f??(p,q) is the constant in the expansion of A[(i, j])

that applies to Alp, ql], where AL, j) i8 in class Cp and

Alp, q] is contained in class CB' we write £*® to denote the

set of all f??(p.q) with (i{,j) and (p,q) restricted to the ap-
propriate ranges, and if the classes are understood, we write

fl)(P:q). Another way of viewing (ij(p,q) is that {t is the
cost of going from stage (p,q) to stage (i,j). The'key to the
parallel algorithm to compute A[n, m] is contained ia the fol-

lowing lemma, which formalizes the above ideas.

Lemma For any classes CA and Cc, C < A, and any A[i, J] in

Cpr

Ali, 31 = min (Alp, @] + £35(p. @),
(P:Q)GCC

where f??(p,q) is defined by
ifa=c¢C+1, fgg(p,q) is found by expanding A[i, j] in
terms of elements of CC' as was done in
the above text to show fnm(n-Z, m) = 2,
fnm(n—2, m-1l) = 1, etc.
ifA>C+1, VB, C<B<a,
2%, = min (2B,v) + 8Cp,q))
1] Alu, viec, ij uv
Proof The transformation of x to y proceeds one stage at a
time, either increasing the length of the substring of x that
has been seen, or increasing the length of the substring of y
that has been produced, or both. At no time, however, can the
sum of the lengths of the substrings increase by more than two
from the previous stage. Therefore, beginning at stage (0,0)
of the transformation and proceeding towards stage (i,j), at
some point a stage (p,q) must be reached that is a moember of
class Ccr for 0<C<A, since the width of a class is two. Thus,
the form of the function for Ali, j] is clearly the minimum

over all such stages (p,q)vin CC of the sum of the costs of

v

-83-

getting to stage (p,q) and getting from (p,q) to (1,3). These
costs are, respectively, Alp, q] and f?g(p,q), as the lemma
states.

It remains to show that the f??(p.q) are computed
correctly, which we do by induction on A-C. The basis case,
A-C=1, was given in the discussion preceding the lemma. For
the inductive step, assume the lemma is true for classes
separated by less than A-C. The expression fij(p,q) is the
cost of transforming the string Xy, to Y1, given that we
have already transformed xl,p to yl,q' By reasoning similar
to that above, in passing from stage (p,q) to stage (i,3),
some stage (u,v) in class CB must be entered. The value of
fij(p,q) is the minimum over all such (u,v) in CB of the sum
of the costs of going from stage (p,q) to (u,v) and from stage
(u,v) to (i,3)s this is exactly what the definition of

f??(p,q) in the statement of the lemma states. These costs
8
]
correctly by the inductive hypothesis. (I

are fES(p,q) and f? (u,v), respectively, which are computed

Algorithm S.1

Given strings x and y, determine the minimum cost of
transforming x to y using the operations defined above. The
values f??(p,q) are computed for A-C = 1,2,4,...,2r1°g N by
the method suggested by the lemma. The answer will be

f:$0(0.0). since Aln, m] = min (AL, 31 + fﬁéo(l‘j))' -
AlL, 3)ec,

min {A[0, 0)+£ (0,00, ALO, 11+£ (0,1), A(1, OJ+E (1,0)) =

-84~

min (£,.(0,0), £.(0,1)+1, £ (1,041}, and the cost £120(0,0)
includes the possibility of going through either of the stages
(0,1) or (1,0) in Co during the transformation of x to y. The

program in Pigure 5.1.3 is a sketch of the detailed fast
parallel algorithm.

begqin
assign a processor to each pair (i,3J), 0<i<n, 0<j<m;
for ii,j) in class CA do
Compute f?gh-l(p,q) for the maximum of five elements
(p,q) in Cp-y that Af{i, j] depends on, taking

into account boundary conditions on A, i, j, p.,
and q; '
d

o’

r iter := 1 to lNog N7 do

C 1= max (0, A - ziter)’

B := max (1, A - 2iter-1y,

for each (p,q) in Cos compute t?g(p,q) as

Sl + £20e.@)

min (f?
(u,v)eCB
od
end

Pigure S.1.3 Past parallel string edit distance algoritha.

In a careful implementation of this algorithm, several
. efficiencles can be realized, in terms of both storage and
processor requirements., First, the £% 4o not have to be com-
puted for the indicated A and B at every iteration. Since

E:AO(O,O) i8 the only number of interest to be output, any IAB

.

that does not contribute to computing fzéo(n,O) may be dis-

carded. Por example, on the first iteration of the for loop,

only Et;k-z for k = ntm,n+m-2,...,3 need to be computed, since

-5~

they are the anly values that will bho referenced by later

iterations. In genaral, on iteration i, the values of
k,max (0,k=-2")

£ need to be cemputed only for those classes Cp
such that n+a-k is a wultiple of 2‘. Thus the number of ac-
tive £h8 tegins at O(nm) and approximately decreases by a fac-

tor of two at cach iteration.

Complementing this decreasce {8 the increase in the number
of procescsors needed to find the min in the computation of
f?g(p,q), as well as the increase in the number of non-o®
values of £?§(p,q) as A-C increases. In some portions of A,

" in the worst case, both of these latter quantities double at
each iteration, being ultimately bounded by O(min(n,m)). A
crude bound on the number of processors required is thus:

< nm° (1 + 21-21-lr + 22-22-£ﬁ + ...
2

llog min(n,m 7 ,Mlog min(n,m)7], 1
2 e TTog w1

which is O(nm-min{(n,m)). The running time is given by the
number of iterations, rlogLﬁ%EJ1, or O(log max(n,m)), times
the time required to find the minimum inside the loop, or
Mlog min(n,m)7), for a tot#l time that is O(log n<log m).
Since the time for each iteration is dominated by the cost of
the minimum, the techniques of Section 4.l1.1 can be applied to
reduce the number of processors by a factor of log min(n,m)
without changing the order of the running time,

' The space required to store the results of each ilteration
is bounded by O{nm), since the reduction in the number of ac-

tive B exactly balances the increase in the non-o terms that

hal t 1 ¢ e

muat ba stored for oach (??. Tho non=v terma for vach {??
form a contiguous block within the class CB' 80 no storage

need be allocated to store o terms. The total space required
is dominated by the space used to store temporary results on

each iteration while computing the minimums, thus 8pace

O(number of processors) may be employed.

5.2 Off-line MIN

In Section 4.2.2, the problems on~line and off-line MIN
were introduced and an algorithm was given for a generaliza-
tion of the on-line version of the problem. 1In this section
we show that if the entire sequence of INSERTs and MINs is
made available at once, then all of the answers to MIN com-
mands can be obtained in time O(log n) using O(nz) processors
(which can be reduced to O(T%;_ﬁ) processors by the usual
techniques). We shall assume that the entire sequence Q of
INSERT (i) and MIN commands is available in an array located in
global memory and that lQ} is a power >f two. The output will
be placed in an array parallel to the input, with output[i]
= § if input{i] is the MIN command whose answer is j. Unsat-
isfiable MIN commands will have null output values.

The parallel off-line MIN algorithm will operate in a
manner reminiscent of the sequential algorithm for the same
problem given in (Al]. The updating of a sot 8 of integors is
simulated in both cases from the point of view of the INSERT

inatructiona. For each INSERT command, the MIN is located

-87 -

that extracts the value inserted. Whereas the sequential al-~
gorithm does this computation iteratively for each INSERT, the
parallel algorithm to be described operates on all INSERTs
simultaneously. We shall describe here the procedure executed
to find which MIN extracts the value k, with the understanding
that a copy of this procedure needs to be executed for each k
for which there is a command INSERT(k) in Q.

Assuming that the command INSERT (k) appears somewhere in
Q, we may write Q as QL INSERT (k) Qp., or Q = QLkQR for brevi-
ty. We use S(Z) to denote the contents of the set S being
manipulated by the INSERT and MIN commands as it would appear
after the command sequence Z has been processed sequentially.
The answers produced for different values of k are interrelat-
ed, but the following lemma allow the computations for dis-

tinct values of k to proceed independently.

Lemma In determining which MIN in Q extracts the value k,
INSERTs of values greater than k may be ignored without at-

fecting the outcome.

Proof The proof is by induction on the number of INSERT({)
commands in Q with 1 > k. If there are no such INSERTs in Q,
the lemma is true vacuously. Now suppose the lemma is true
for sequences Q containing fewer than p INSERTs of values
greater than k and let Q be a command sequence containing ex-
actly p such INSERTs. We may write Q as QlkozkaJ' where Kk

means INSERT (k) and m, {s the MIN that extracts k from S. Let

-88-

r be the value of the rightmost INSERT in Q of a value greater
than k. There are now three cases, depending on whether r oc-
curs in Q,, Q,, 0or Q3. In each case, we seek to show that re-
moving from Q some INSERT of a value greater than k leaves the
answer to m, fixed, allowing the inductive hypothesis to be
applied to the shorter command sequence,
teQJ: An INSERT of any value appearing in Q3 clearly can-
not affect earlier commands in the sequence. It
therefore may be removed withcut changing the answer
to m, .
zeozs No MIN in 02 may extract a value greater than k or
be unsatisfiable, since the value k is known to be
in S until it is deleted by m,. If the INSERT of r
to S were ignored, m, would still extract k.
:eolx If r is not extracted by a MIN somewhere in Q. the
same argument as above for r in Q, shows that
INSERT (r) may be deleted without affecting m, . If ¢
is extracted from S by a MIN within Q,;, then delet-
ing INSERT(r) from Q, will either leave S(Q,) the
same (if some MIN in Q1 {s made unsatisfiable) or
decrease IS(QI)I by one. In the latter case, S(Ql)
will be lacking some value larger than r that was
‘extracted by a MIN in Ql' But the presence or ab-
sence of values >r (hence >k) in S(Q;) does not af-

fect the outcome of my ., by the previous argument. 0

The ckeletnn of an alqgorithm shown in Figqure 5.2,1 out-

lines the parallel simulation of a command sequence Q = QLkQR.

begin
dclete all INSERT(i) commands fcom Q that have id>kj
find the shortest prefix q of Qr such that
156(Q ky) | = 0y
;he last fommand in q is the MIN that deletes k
en

Pigure 5.2.1 Skeleton off-line MIN algorithm.

By ignoring any INSERTs of values greater than k, only the
size of S is important, not the actual members, since all
members of S other than k will be less than k and will be
equivalent as far as determining which MIN extracts k from S§.

The problem of finding which MIN command deletes a par-
ticular value k from S has been reduced to the problem of
determining 1S(Z)| for command sequences 2 that are prefixes
of Q and contain no INSERTs of values greater than k. Alter-
natively, one could allow Z to contain INSERTs of large values
but not count them when computing |S(Z)|. We shall adopt the
second approach here. The size of S(Z) may be stated concise-
ly by the following recurrence equation:

is(e)l =0

IS(zc) | = max (0, IS(2)} + 6.}, where

1 if ¢ is INSERT(i) for i<k

§.= 0 if c is INSERT(1) for i>k
-1 if ¢ is MIN

For a general discussion of the parallel solutlon of re-
currence problems, see (K2]).

The essential structure of this recurrence problem can be
captured by replacing each command ¢ in Z by the corresponding

6c value, using + to indicate +1 and - to indicate -1. Thus,

for
Z2=23m5m6md,
we have
6(2) =+ + -+ -0~ +,
for k = 5.

Because of the form of the recurrence equation involving
the 6c's, there is a compact representation for any string
6(z) that summarizes the action of 8§(2) upon IS(2)|. Whenever
a minus follows a plus in such a sequence, both symbols may be
cancelled out against one another. Repeated applications of
this rule (and deleting zeros) will always reduce a string of
pluses, minuses, and zeros to a canonical form: n minuses fol-
lowed by m pluses, written (n,m). For the example above, we
have

rl+(+=) (+=) (0)=+]) » c[(+-)+] » c[+] = (0,1)
Note that (-+) pairs cannot be reduced; applying a MIN and
then an INSERT to a set S; yields a set S, with Isyl =1
whether Isll is 0 or 1.

Our algorithm for computing the effective represeatation
of a string 6(2) depends on the associativity of string con-

catenation and the following rule for the reduction operator

T =91~

described above. If r{8(x)] = (a,b) and r{6(y)} = (c,8), then
(a,d) if b=c
rls(xy)l - e(6(x)8(y)) = (a+(cb)) LE bee
(a, (b-c)+d) if b>c
This rule can easily be derived by writing r[8(x)6(y)] as
_a+b_c+d and cancelling (+-) pairs in the interior of the
string.
By performing the r{-] calculation in the form of a com-
plete binary tree, the parallel time bound of O(log [2]) can
be achieved using O(]lZ!) processors. The example in Figure

4 - 2 3 m 5 m m 4

6
+ + - + - 0 - +
(0,1) (0,1) (1,0) (0,1) (1,0) (0,0) (1,0) (0,1)
\ / \ / \ / \ /

N / N / \ 7/ \N 7/
(0,2) (1,1) (1,0) (1,1)
/ \ /

\ / \ /
\ \ /

\ /
{(0,1)
Pigure 5.2.2 Example of r{ } calculation.
5.2.2 shows the tree built for the string ++-+-0-+, PFrom the

tree in Pigure 5.2.2 one could immediately conclude that the

cffect of the execution of the command seoquence Z would be a

-92-

net increase of one on the size of set S for k=5 (since the
root summarizes Z as (0,1)).

The skeleton algorithm given earlier requires knowledge
of the size of S at points intermediate in the processing of
the command sequence. This information can be extracted from

the r(*] tree efficiently by the following procedure.

Algorithm 5.2.1

Suppose the r{°*] tree described above has been constructed for
some command sequence Q. Each node of the tree is labelled
with a (n,m) pair. To obtain the number of minuses at a node,
the program uses minus[node] and similarly for pluses. To
find 1S(2)t for Z a prefix of Q, walk from the root of the
tree to the leaf corresponding to the last command in Z ac-
cording to the program in FPigure 5.2.3. The correctness of
this algorithm follows from the construction of the r{-] tree
and the fact that inside the while loop size is IS(6(Y))| for
Y the prefix of Z (and Q) to the left of the subtree rooted at
position. The algorfthm may be executed by a single processor

in time proportional to the depth of the tree, or O(log {Ql).

The skeleton off-line MIN algorithm given earlier £finds
the shortest prefix q of o such that IS(Oqu)l = 0, This

operation can be decomposed into stages as follows:

P

beglin

it 1 be the leaf corresponding to the last command

in Z;

size = 03

position 1= root of cl*] treey

while position ¥ 1 do

i1 ts In the loft aubtreo of the troo rooted at. po=
sition .

then position = left son of position;

‘alna aizo 1= max (

size - minus[left son of position]))
slze t= gize + plus [left son of position];
position 1= right son of position

£i
od
adjusf size by +1 or -1 according to the last command
n 23
[{S(2)! is contained in asize
end

Figure 5.2.3 Computing [S(2)|.

i) build T, corresponding to 6(QLkQR)’

ii) compute lS(QLk)I by applying Algorithm 5.2.1 to T,,
iii) build tree T, corcresponding to 6(QR), and

iv) use the following procedure to locate the MIN com-

mand that deletes k from S.

Algorithm 5.2.2
Suppose that size has been initlalized to IS(QLk)l and that T,

_corresponding to 6(QR) has been built. At the termination of
the algorithm in Figure 5.2.4, position will be the leaf of 72
corresponding to the MIN command that extracts k from 8. Thise
ptocadute can be seen to be a simple modification of Algorithm
5.2.1 in which the search is guided by the location of the

leftmost zero of |5(Q kq) | rather than by the location of a

begin
f minus{root]) < size

then k is never extracted
else
position := root of T,;
while poaftion / a 108¢c do
Af minus{left son of position) > size
then position := left son of position;
clac size 1= slze
- minua{left aon of poultion]
+ plus [left son of position];
position 3= right son of position

. od
£1i
end

Figure 5.2.4 Finding q such that IS(Q kq)l = 0.

fixed leaf. Variable size keeps track of the size of § after
processing every command to the left of the curcrent subtree,
glven by position. The correctness of Algorithm 5.2.2 can be
established easily by induction.

The running time of the parallel off-line MIN algorithm
is given by the time to build and then traverse T, and Ty
These times are bounded by O(log 1Ql) in each case. The only
places where more than a single procescor is required are in
building TI and T2' which require n processors (or IEg"K) to
yield the claimed running time. Since the trees built are
quite similar for different values of k, it is an interesting
open problea to find a way to reuse the tree built for one

value of k, or part of it, for other values of k.

-95-
$S.3 Connectivity of undirected graphs

Much attention has been given by many authors to algo-
rithms for various forms of graph conneativity [Al] (Tl}, The
problem appears to be fundamental, since the techniques
developed to deal with connectivity problems have often been
applied in other contexts. For example, the technique of
depth first search used in sequential algorithms to test
biconnectivity, strong connectivity, etc., also finds applica-
tion to sequential algorithms for graph planarity [H5], domi-
nators {T2], and so on. In the parallel domain the same claim
cannot yet be made, since the techniques to deal with connec-
tivity are still being devised. However, a few arguments can
be presented for the importance of the parallel solution to
the connectivity problem for undirected graphs.

Unlike the sequential case, parallel algorithms for un-
directed connectivity can be easily extended to (time) effi~-
cient algorithms for higher order connectivity. For example,
as has been observed elsewhere {Sl), by testing the connec-
tivity of each of the graphs G - [vll, G -~ {vy}, ..., for each
vertex v in G, the biconnectivity relation of an u?directed
graph can be determined in time O(C(n) + log n), where C(n) is
the running time of the undirected connectivity algorithm.
Algocrithma with the same tunning time for determining k-
connectivity, for any fixed k, can be obtained similarly. As
a further argument, from the results of Chapter 3 showing that
LOG space I8 contained In deterministic-LOG-parallel-time and

the LOG gpace reductions in [J1), parallel algorithus cunnlng

-96~

in time O(C(n) + log n) can be constructed for a variety of
problems, including testing bipartiteness of graphs, testing
satisflability of certain propositional formulas, and deter-
mining whether a graph has & clique cover of size two., In ad=
dition, it seems likely that the computational structures used
in solving the undirected connectivity problem will once again
find wider application.

There have been three major approaches to connectivity
algorithms, They are

1) deleting edges until a spanning tree remains,

1i) adding edges until a clique results, and

i11) collapsing vertices together until the entire graph

has been compressed to a single vertex.
In any of the approaches, the goal is to verify that there {is
a path connecting each pair of vertices in the input graph G.
In the sequential case, an efficient algorithm (time
O(n + e)) can be obtained by performing a traversal of the
graph using a technique such as depth first search, This ap-
proach essentially builds a spanning forest of the graph by
throwing away edges that provide redundant paths between pairs
of vertices. The graph is connected if and only if the span-
ning forest is a tree. Depth first search does not appear to
yield a practical parallel connectivity algocithm, because the
best known parallel implementation requicres time O(n} in the
worst case [A2].

The second approach is used in {A4] to yield a parallel

algorithm with a running time of O(logzn) using O(nl) proces-

-y -

Bors, where n i8 the number of vertices in the graph. In this
algorithm, whenever a path from vi to vj is discovered, the
edge (Vi' vj) is added to G. If this transitive closure proc-
ess succeeds in producing the clique K., the original graph is
connected.

The algorithm of [H3} uses a combination of the second
and third approaches above to give a running time of 0(1ogzn)
using 0(n2) processors. In this algorithm, cycles in a graph
derived from G are located, the vertices on each cycle are
collapsed into a single vertex representing the cycle, and the
connectivity of the smaller graph is tested recursively. If
the derived graph can be collapsed to a single vertex, G is
connected. A transitive closure process also proceeds simul-~
taneously to determine the connected components of the graph
in the event it is not connected. The meaning of the phrase
"collapsing vertex x into vertex y" is that any edges incident
to x become incident to y instead, effectively removing x from
the graph. Collapsing together of adjacent vertices obviously
preserves the connectivity of the graph.

The algorithm to be described here uses a version of the
third approach, vertex collapsing, to achieve the same running
time as the two previous parallel algorithms, but uses O(n+e)
ptocessors rather than O(nz) ot O(nJ), where e {s the number
of edges in G. Potr sparse graphs, including such important
classes as planar graphs, this algorithm is more efficient

than that of [H3]).

s

Because of the method to be used, an algorithm slightly
more general than required will be presented. The algorithm
will operate on multigraphs, which are gsimilar to directed
graphs except that they are defined in such a way that they
may contain multiple loops and/or multiple edges between pairs
of vertices. To distinguish multigraphs from directed graphs,
we use the terms node and arc to refer to the objects in mul-
tigraphs éo:responding to vertices and edges in directed
graphs. Each edge in the input undirected graph G will be
represented by a pair of oppositely oriented arcs joining
nodes in the multigraph that correspond to the endpoints of
the edge in G. It should be clear that the transformed graph
i3 connected if and only if the input graph is.

The outline of the node-collapsing algorithm is given in
Figure 5.3.1. We must show that the algorithm can be made to
work within the resource bounds mentioned earlier.

The first issue to dealt with is the form of the input.
Since only O(n+e) processors are to be used, an input
representation such as an adjacency matcix cannot be employed.

. The input representation we use is the adjacency list matrix,

as defined in [A3]. The representation of an undirected graph
G can be viewed conceptually as a matrix A, where row { of A
contains the value j for each j such that there is an edge
from vertex L to vertex j in G. Since the graph is undirect-
ed, each edge will appear twice. In addition, we assume that
the number of edges incident to a vertex v is avallable as

degreel[v]. The important property of A is that the rows are

-99-

begin
while not all nodes have been collapsed together and
the graph ls not known to be disconnected do
identify sets of nodes that may be collapsed togeth-
er;
make all arcs incident from a set of collapsing nodes
be incident from one representative of the set
instead;
update the “"incident to" relation by making arcs
point only to nodes that survived the collapsing
process;
delimlnate arcs that are self-loops;
o
if the graph has been collapsed to a single node
then the graph is connected
else it is not
fi
end

Figuré 5.3.1 Skeleton connectivity algorithm.

left justified; for each row i, the elements A[i, 1], Al{, 2],
esse Ali, degree(l)] are non-null, and the remaining elements
of row | are null. The left justification, together with the
degree{) values, free the program that manipulates A from
having to assign processors to non-existant edges. It is not
necessary to use n2 space to store A, since an array of
pointers into a block of storage of size O(e) suffices; how-
ever, a later step of the algorithm will require O(nz) space,
so we assume the simpler representation. .

Given an undirected graph G in the form above, we now de-
scribe the data structure that will be uned to tepresent the
multigraph form of G. For each node there will be a clrcular-
ly doubly linked 1list with a list header. The elcmenta of the

1ist will be of two types: arc elements and dummy elemecnts.

Besides the forward and backward pointers, each list element

~100-

that represents an arc will contain the number of the node to
which the arc is incident (the node {t is incident from is
glven implicitly by the identity of the list on which the arc
appears) and a pointer to its brother arc (the oppositely
oriented arc representing the same edge). Dummy list elements
will contain only a flag distinguishing them as dummies and
the forward and backward pointers. Initially, arc and dummy
elements will alternate on each list, with the first and last
elements dummies. The purpose of dummy elements is to isolate
arcs from one another on a list so that simultaneous updates
can be made to adjacent arcs. Building this structure in con-
stant time given the adjacency list matrix as input is simple,
except for the links between brother arcs. Using an auxiliary
matrix of size n2 and the techniques of Section 4.1.6, each
arc can store its address in the auxiliary matrix for its
brother to read.

Let us now examine the implementation of the node col-
lapsing operation given the linked arc-list structure de-
scribed above. Suppose that the first arc list element on the-
list for node x is an arc incident to node y, and that we wish
to collapse x inéo y. By the definition given previously, we
must make all the arcs that were incident from x be incident
from y inatead. Tho arcs (x,y) and (y,x) should not appear iﬁ
the collapsed graph, since the vertex x will no longer be paft
of the graph. 1In constant time, a single proccusor can fe-
place the arc element (y,x) in list y with the entire list

(arcs and dummies) belonging to list x, then delete the arc

element (x,y). Tho brother pointer of (x,y) is used to deter=-
mine where to insert the list and the header of list x is used
to find the front and rear of list x.

The lists in the resulting structure will no longer al-
ternate arc and dummy list clements; {instecad they will alter-
nate arc elements with blocks of dummy elements of size at
least one. Notice that the only fields i{n list y that must be
changed by the collapsing operation are the forward and back-
ward links of the dummy elements surcrounding the arc element
(y,x). This permits, for example, a simultaneous collapse
into the arc element adjacent to (y,x) without interference.
Suppose that a set of node collapsings is defined by a set §
of arc lists as follows. Simultaneously, for each 1list x in
s, if (x,y) is the first arc element on list x, collapse list
x into list y. The following lemma characterizes the maximal
sets S of simultaneous interference~free collapses supported

by the arc-list data structure,

Lemma 1f the collapses defined by a set S of arc lists are
not circular, then they may be performed in constant time us-
ing O(IS|) processors, yielding an arc-list structure in which
arc list elements are separated from one another by blocks of

dumny list elements of size at least one.

Proof The proof is by induction on IS|. For IS| = 1, the
discussion above provides the basis case. Suppose the lemma

is true for up to k simultaneous collapses, and consider the

collapsas apecified by a set § of arc lists of size k + 1.
Since the collapses are acyclic, there must be some list x
that is to collapse into a list y such that no list collapses
into x. By the inductive hypothesis, the set of collapses de-
fined by S - {x} can be performecd simultancously. In addi-
tion, the arc element (y,x) will not be collapsed into by any
of the collapses in S - (x}, because only by collapsing its
brother (i,y) may (y.x) be removed from the list structure.
Since the arc element (y,x) is surrounded by dummy elements,
the collapse of list x into (y,x) may occur in parallel with
the other collapses. Dummy list elements are never deleted,
only moved, so arc list elements must remain separated from
one another by dummies if they were so separated in the origi-

nal structure. [

Shown below in Figure 5.3.2 is an example of the arc-list
structure and a set of collapses. Dummy elements are shown as
dots. The parentheses in the final list serve only to delimit
the lists that are moved by the collapse operations and are
not actually part of the data structure.

Having described the arc~list structure and how to per-
form the node-collapsing operation on it, only a few fairly
simple details remain to complete the algorithm. We must show
how to locate a set of arc lists defining a set of acyclic
collapses large enough so that the algorithm will run suffi-
ciently fast. To do this we employ the total ordering of the

nodes implied by the node numbering. Letting S be the set of

~103-

before collapses:

1; . 4. 2.
23 .3 .4.1.
3: .2 . 4.
43 «3.2.1.

s = {1, 2, 4}
node 1 collapses into node 4 which collapses into node 3;
node 2 also collapses into node 3
after collapses:
3: e 4 L) a (e e 202) .

Pigure 5.3.2 Example of arc-list structure and collapses.,

arc lists whose first arc elements define collapses of nodes
into lower numbered nodes, and S conversely, then one of S or
§ will define a set of collapses that will at least halve the
size of the graph. Provided that the size of the first block
of dummy elements on each list is of constant size, the set S
may be enumerated in constant time and IS| computed in time
log n.

To insure that the block size condition holds, at the
conclusion of each iteration duplicate dummy elements can
identify themselves and delete themselves from their list by
applying Algorithm 4.1.4. The "incident to” relation may be
updated by recording each node that collapses into another,
then applying a doubling procedure to determine, for each node
x, upon which liast x's arca ended up after all aimultancoun
collapses are applied. If, after updating this relation, an
arc becomes a loop, it and its associated dummy element delete

themselves via Algorithm 4.1.4.

-104~

The two applications of Algorithm 4.1.4 are combined in

the final program, which summarizes all of the concepts men-

begin
assign processors to each node and arcy
set CIx) := x for each node processor x;
build the arc-list structure from the adjacency list
matrix;
for { := 1 to [log n7 do
T count the number of low to high and high to low col-
lapses;
perform the most frequent type of collapse, setting
C({x] := y if x is collapsed into y;:
for each node processor x do
£__ j := 1 to Mlog n do
x] = CICIx1); od Od
update the head of each arc according to C;
mack arc list elements deleted if they are loops;
for each dummy list element d do
lﬁ forward(d) is marked deleted or is a dummy ele—
ment
then mark 4 deleted
fi
od
execute Algorithm 4.1.4 on the arc lists to remove
all elements marked deleted;

od
ZE the graph has been reduced to a single node
then it is connected
else it is not, and each remaining node x represents
a connected component, with the nodes y in the
component having Cly}] = x
£1i
end

|

Figure 5.3.3 Efficient parallel connectivity aléozithm.

tioned above and is shown in Plgure 5.3.3. The running time
18 dominated by several operations inside the main for loop
that require O{log n) time, for a total of 0(log2 n}, as v
claimed. There are O(n+e¢) processors required and O(nz)

space,

=-1u3-

It is interesting to apeculate on the posaibilities for
improving the running time of Algorithm 5.3 to O(log n}. One
might hope to be able to do this based on the observation that
collapsing a set of nodes together can be performed in time
proportional to the log of the size of the set. For example,
in collapsing together k nodes, the computation of the closure
of C and the execution of Algorithm 4.1.4 require at most only
MNog k1 steps until their answers have been computed. How-
ever, as the discussion following the presentation of Algo-
rithm 4.1.4 points out, to remain in synchronization the proc-
essors must wait a full Flog nl time. To circumvent this dif-
ficulty, the less synchronized algorithm of Figure 5.3.4 sug-

gests itself. The idea here is to allow the arc-list struc-

beqin
while not done do
pecform some acyclic set of collapses, setting C{]
appropriately;
Clx] :=C(C[x]]);
update the head of each arc according to C;
mark list elements deleted as in Algorithm 5.3;
dexecute one iteration of Algorithm 4.1.4;
o
end

Pigure 5.3.4 Less synchronized connectivity algorithm.

ture to only loosely represent the collapsed graph after each
iteration. The much weaker invariant assertion is that Lf the
program is halted at some point, the consistancy of the arc-
1ist structure can be re-established within time O(log n) by

one execution of the body of the main for loop in Algoritha

5.3.

There are a number of details to be clearcd‘up concerning
this algorithm, but they are moot because the skeleton algo-
rithm suggested above cannot run in time O(log n). It is
inatructive to consider why not. The problem lies in the
first statement inside the loop: selecting nodes to collapse.
Since Algorithm 4.1.4 is not run to completion, there may be a
large block of elements marked deleted at the beginning of a
1ist, so it is not always possible to find arcs along which to
collapse. If it could be shown that this deleted block either
could not get too big or could not get big too often, the al-
gorithm might still be shown to run quickly. The following
example shows that this is not the case.

At the first step, nodes numbered k+l collapse into nodes
numbered k, for k=1,3,...,n-1. At the second step, nodes num-~
bered k+2 collapse into nodes numbered k, for k=1,5,...,0-3.
In the worst case, before any further collapses can occux,
four arcs joining nodes k and k+l1 with nodes k+2 and k+3, for
k=1,5,...,n=-3, must be deleted, requiring time log 4. At the
next step, nodes numbered k+4 collapse into nodes numbered k,
for k=1,9,...,n-7. This set of collapses causes all arcs that
originally joined nodes k through k+3 with nodes k+4 through
k+7 to simultaneously change from being parallel arcs joining
the collapsed nodes k and k+4 to being loops at the collapsed
node k. Eliminating these 16 loops in the worst case delays

by time log 16 the next set of collapses. In general, the

-107~

running time will be propottlonul to
log 4 + 109 16 + log 64 + ... + log (12'-)2

- 2+{1 + 2 +3 + ... %+ (log n-1))
which is O(logzn), as before.

We see that the difficulty is redundant parallel arcs
that slow down the algorithm once they become loops. Attempts
to detect and delete parallel arcs when they first occur are
faced with a fundamental problem: depending on the sequence of
collapses, any two arcs potentially may become parallel.

Thus, in testing whether to delete itself each arc must look
at every other arc (or every arc with a lower address),
resulting in a delay of at least O(log e). This is too slow
to allow an improvement over Algorithm 5.3. The arc-list
structure may be viewed as a method of overcoming a similar
problem, that of being able to collapse nodes quickly although -
faced with the possibility of being required to collapse any
arbitrary pair of nodes. It ls thus still possible that some
clever data structure, possibly combined with some preproc-
essing of the graph, may allow faster parallel arc deletion,
and therefore faster parallel algorithms for undirected graph

connectivity.

Chapter 6

Conclusions

6.1 Summary

In this thesis we have studied the computational complex-
ity of synchronous parallel computers. Chapter 2 introduced
the main parallel model used throughout the thesis, the P~RAM.
The P-RAM model is intended to capture many of the features
that may be found in the parallel computers of the not too
distant future. It is not an entirely realistic model, but we
believe it to be fairly reasonable, in the same sense that the
RAM model for sequential computation closely approximates ex-

. isting sequential computers over a moderate range of problem
sizes. We showed that the precise characteristics chosen for
the P-RAM are unimportant, provided the basic features of un-
bounded parallelism, synchronous operation, and a global
memory are retained. Given this uniform model for pacrallel
computations, we investigated two main areas within the field
of parallel computational complexity. In Chapter 3, we ex-
plored the power of the P-RAM model viewed as an abstract com-
puting device, and in Chapﬁers 4 and 5 we studied techniques
for developing efficient algorithms for parallel computers.

In Chapter 3, we were able to give concise characteriza<
tions of the power of deterministic and nondcterministic P-
RAMs in terms of the more widely known space and time complex-

jty claosses for multi-tape Turing machines. Roujhly speaking,

tima-houndmd datarminintic P~RAMs are oqulvalent In powor to
{can accept the same nets an) space-bounded Turing machines,
where the time and space bounds differ by at most a polyno-
mial. 1In the context of comparing models of computation, we
consider such polynomial differences in resource bounds to be
insignificant. Adding the feature of nondeterminism to the
time-bounded P-RAM changes its power to that of a nondeter-
ministic Turing machine with an exponentially higher running
time. This latter'result is perhaps somewhat surprising, in
light of results by other authors for models expressing some
of the aspects of parallelism in which nondeterminism provides
no increase in power. Since little is known of the relation-
ships between various deterministic and nondeterministic Tur-
ing machine time and space complexity classes, our equivalence
results suggest another means through which some of the funda-
mental problems in computer sclence might be approached.

Chapter 3 also investigated the power of several varia-
tions on the basic P-RAM model. FPor example, we showed that
by limiting the amount of global memory available to the P-RAM
for use in interprocessor communication, the classes of sets
accepted drop one level in the complexity hierarchy. The last
gection of Chapter 3 demonstrated that P-RAMs possess esﬁen-
tially the same power as a model that replaces global memory
by explicit mcssage passing, where the topology of the message
network is given by a binary n-cuba,

Chapter 4 played the role that a section on data struc-

tures might play in a paper about sequential computational

complexity, We argued that for parallel aljocithma, something
mora gencral than data structures arce nceded, to account for
the assignments of processors to data in a parallel computer.
The term computational structures was introduced to denote
data structures and processor assignments and the mechanisms
for manipulating them. We presented computational structures
for a variety of simple subproblems that occur frequently in
the desidn of fast, efficient parallel algorithms. Among the
topics considered were tree traversals and several very basic
operations on linked lists and arrays.

The purpose of Chapter 5 was to exhibit efficient paral-
lel algorithms for several problems and, more importantly, to
define the techniques that were applied to yield the algo-
rithms. Three parallel algorithms were described, each having
a running time proportional to at most the square of the loga-
rithm of the problem size and each requiring a number of proc-
essors that is a polynomial function of the problem size. The
algorithms were: computing minimum string edit distances, com-
puting the off-line MIN, and finding t'.e connected components
of an undirected graph. The techniques used were, respective~
ly, pairwise function composition, the structuring of a paral-
lel computation in the form of a complete binary tree, and
redundancy in the data structure used to represent an object.
We can view pairwise function composition as a parallel ver-
sion of dynamic programming. Btructucing a parallel computa-
tion as a balanced tree should properly be called a computa-

tional structure; the off-line MIN algorithm, however, uses

-111=-

several different types of data slmﬁltaneously moving up and
down the tree. Finally, redundancy in a data structure allows
an improvement over the best previously known processor bound
for the graph connectivity problem. Each of the techniques we
described in Chapter 5 has been embedded in parallel algo-
rithms for other problems by other authors; we hope that by
extracting these techniques, they may be applied in the future

to yield additional efficient parallel algorithms.

6.2 Puture research

Our goal in this thesis has been to extend some of the
results of sequential computational complexity theory to
parallel models of computation. A long list of open problems
may be generated by simply enumerating areas of study within
computational complexity, since we have studied only a few out
of the many possible topics. We shall mention several of
these in particular.

This thesis did not consider the entire area of lower
bounds on resource requirements for particular problems. For
a general model of parallelism and problems of size n, only
the bound {l(log n) is known. This lower bound corresponds to
the time required to examine all n of the inputs, hence is
trivial. Non-trivial lower bounds for the parallel solution
of problems using a general model may be as difficult to ob-
tain as bounds bigger than fl(n) for sequential algorithms;

however, it would still be interesting cven to prove lower

-112-

bounds for restricted parallel models, possibly even demon-
strating the optimality of some non-trivial parallel algorithm
for such models. A specific example of an interesting problem
that may even have practical consequences is the inherent com-
plexity of sorting depending on the number of processors
avatlable. See [Kl] or {K4} for preliminary work in this
area.

In the area of algorithms, a candidate for further work
is depth first search. As mentioned in Chapter 5, the number-
ing assigned to a graph by depth first search permits effi-
cient sequential algorithms for a variety of problems. If
this numbering could be computed using parallel time, say,
O(logz(n+e)), then many of these sequential algorithms could
almost immediately be converted to efficient parallel algo--
rithms.

A problem related to both algorithms and lower bounds is
suggested by the frequency with which the parallel time bound
of 0(1092n) has appeared in this thesis. A natural question
to ask is whether or not it is a coincidence that many of our
algorithms have this as their running time. 1If not, there may
be some deeper connection between the algorithms. It may be
possible to define the notion of a complete problem for this
parallel time complexity class and to find other members of
the class. Alternatively, {f there is no such deeper connec-
tion, it becomes reasonable to search for faster parallel al-

gorithma for these problems.

-113-

Finally, the results of Chapter 3 provide alternate means
by which the majoc open problems in computational complexity
might be attacked. To clte just one example, if one could
prove, as seems reasonable, that a single deterministic proc-
essor running for polynomial time was strictly less powerful
than exponentially many processors sharing a polynomial-
bounded global memory, then one would have shown proper con-
tainment of the class P in the class PSPACE, settling an im-

portant conjecture in the affirmative.

(Al}

(r2)

(a3)

(a4]

81]

(1)

{c2j

{c3]

[c4]

(Ccs]

(F1]

(F2)

References

aho, A., J. Hopcroft, and J. Ullman, The Design and
Analysis of Computer Algorithms, Addison wesley, Reading,
Mass., 1974.

Alton D., and D. FEckntein, Parallel Scarching of
Non-apatae Graphs, Manusce ipt tiom Computer Scloence
Dept., Univ. of Iowa, 1977.

Arjomandi, E., A Study of Parallelism in Graph Theory,

Ph.D. thesis, TR-86, Dept. of Computer Science, Univ. of
Toronto, 1975.

Arjomandi, E. and D. Corneil, "Parallel Computations in
Graph Theory," SIAM J. of Computing 7, May 1978, pp.
230-237.

Barnes, G., M. Richard, M. Kato, D. Kuck, D. Slotnik, and
R. Stokes, "The ILLIAC IV Computer,” IFEE Transactions on
Computers C17, August 1968, pp. 746-757.

Chandra, A., Maximal Parallelism in Matrix
Multiplication, Report RC 6193, IBM Thomas J. Watson
Research Center, September 1976.

Chandra, A. and L. Stockmeyer, "Alternation", Proc. of
the 17th Annual Symposium of Foundations of Computer
Science, llouston, Texas, Oct. 1976, pp. 93~108.

Chen, S., "Time and Processor Bounds for Linear Re-
currence Systems with Constant Coefficients,” Proc. of

the International Conference of Parallel Processing, Au-
gust 1976, pp. 196-205.

Cook, S. and R. Reckhow, "Time Bounded Random Access
Machines,” JCSS 7, 1973, pp. 354-375.

Csanky, L. "Fast Parallel Matrix Inversion Algorithms,*”
SIAM J. of Computing 5, 1976, pp. 618-623.

Flyan, M., "Very High-Speed Computing Systems," Proc.
1EEE 54, December 1966, pp. 1901-1909.

Fortune, S. and J. Wyllle, "Parallelism in Random Access
Machines,"” Proc. of the Tenth Annual ACM Symposium on the

Th:2r¥e%g Comgutiﬁa, San Diego, California, May 1978, pp.

-114-

G1]

{G2)

{G3]

(a1}

{82}

(13])

[n4)

{ns)

{J1)

(1]

(x2)

(x3)

(x4}

=115~

Gentleman, W., "Some Complexity Results for Matrix Compu-
tations on Parallel Processors," JACM 25, January 1978,
pp.112-115,

Goldschlager, L., Synchronous Parallel Computation, Ph.D.
thesis, TR-114, Dept. of Computer Science, Unlv, of
Toronto, December 1977,

Go]d.bhquLt, L.. "A Unifled Approach to Madela of Syn-

s Sart

Hartmanis, J. and J. Simon, "On the Power of Multiplica-
tion in Random Access Machines", Proc. of the 15th Annual

1EEE Symposium on Switching and Automata Theory, New Or=
Teans, October 1974, pp. 13-23.

Heller, D., "A Survey of Parallel Algorithms in Numerical
Linear Algebra,® SIAM Review 20, October 1978, pp.
740-777.

Hirschberg, D., "Parallel Algorithms for the Transitive
Closure and the Connected Components Problems," Proc. of

" the E_ghth Annual ACM Symposium on the Theory of

Computing, Hershey, Pennsylvanxa, May "197%, pp. . 55-57.

Hirschberg, D.,, "Fast Parallel Sorting Algorithms," CACM
21, August 1978, pp. 657-661.

Hopcroft, J., and R. Tarjan, "Efficient Planarity Test-
ing," JACM 21, 1974, pp. 549-568.

Jones, N., Y. Lien, and W. Laaser, New Problems Complete
for Nondeterministic Log Space, TR-75-1, Dept. of Comput-

er Science, Univ. of Kansas, April 1975,

Karp, R. and W. Miranker, "Parallel Minimax Search for a
Maximum,"® Journal of Combinatorial Theory 4, January
1968, pp. I9-35."

Kogge, P., "Parallel Solution of Recurrence Problems,”
IBM J. of Rescarch and Development 18, March 1974, pp.
138-148.

Kozen, D., “on Parallellum in Turlng Machines,” Proc. of

Sc1ence, Hiouston, Texas, Oct. 1976, pp. 89-97.

Xungy, H., "New Algorithms and Lower Bounds for the Paral-
lel Evaluation of Certain Rational Expressions and Re-
currences, ™ JACM 23, Apcil 1976, pp. 252-261,

{M1]

(M2]

1)

(p3)

{r1}

(81}

{s2]

(s3]

(s4)

{ss)

(s6]

{T1}

(T2)

=116~

Miller, R., "Mathematical Studies of Parallel Computa~-
tion,” Proc. of the Pirst IBM Symposium on Mathematical
Foundations of Computer Science, October 1976, pp. 1-23.

Munro, I. and M. Paterson, "Optimal Algorithms for Paral=-
lel Polynomial Evaluation,® JCSS 7, 1973, pp. 189-198,

Prtecrson, J. and T. Predt, "A Conrarison of Models of

A . 1 . . .
oy, : R TR S o N Sy

LTI TR BN

Preparata, F., Parallellism i{n Sorting, Proc. of the
International Conference on Parallel Processing, Bel

Fichigan, August 1977,

Russell, R., "The Cray-1 Computer System,® CACM 21, 1978,
pp. 63-72.

lair,

Savage, C. and J. Ja'Ja’, Fast, Efficient Parallel
Algorithms for Some Graph Problems, Manuscript from Com-
puter Science Dept., Pensylvania State University, 1979.

Savitch, W. and M., Stimson, "Time Bounded Random Access
Machines with Parallel Processing,® JACM 26, January
1979, pp. 103-118.

Savitch, W., Parallel and Nondeterministic Time
Complexity Classes, Report 78-CS-012, Dept. of Applied
Physics and Information Science, Univ. of California at
San Diego.

SIGARCH Newsletter 7, April 1979, Proc. of the 6th Annual
Symposium on Computer Architecture.

Stone, H., "Parallel Processing with the Perfect Shuf-
fle," IEEE Transactions on Computers €20, Pebruary 1971,
pp. 153-161,

Swan, R,, S. Fuller, and D. Siewiorek, "Cm* - A modular,
multi-processor," APIPS Conference Proceedings 46, 1977,
pp. 637-644,

Tarjan, R., “bLepth tlest Search and Lincar Graph Algo-
rithms,” SIAM J. of Computing 1, 1972, pp. 146-160.

.
Tarjan, R., "Finding Dominators in Directed Greaphs,*
Proceedings of the Seventh Annual Princeton Conference on

Tnformation Scicnces and Systems, 1974, pp.414-41d.

-11/=

[Wl] wajner, R. and M. Fischer, "The String to String Correc-
ticn Problem,” JACM 21, January 1974, pp. 168-173.

[W2] Waksman, "A Permutation Network," JACM 15, January 1968,
pp. 159-163.

{w3] Wen, K., Interprocessor Connections - Capabilities,

Exploitation and Effectiveness, Ph.D. thesis, Report No.
UI0CTC5-R-T6-830, Unlv. of Illinois, October 1976.

, R
i
: - B vl- . - .
. " . < - - . .
- - N 1 . - - -
] - . -

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif
	pdftemp/0041.tif
	pdftemp/0042.tif
	pdftemp/0043.tif
	pdftemp/0044.tif
	pdftemp/0045.tif
	pdftemp/0046.tif
	pdftemp/0047.tif
	pdftemp/0048.tif
	pdftemp/0049.tif
	pdftemp/0050.tif
	pdftemp/0051.tif
	pdftemp/0052.tif
	pdftemp/0053.tif
	pdftemp/0054.tif
	pdftemp/0055.tif
	pdftemp/0056.tif
	pdftemp/0057.tif
	pdftemp/0058.tif
	pdftemp/0059.tif
	pdftemp/0060.tif
	pdftemp/0061.tif
	pdftemp/0062.tif
	pdftemp/0063.tif
	pdftemp/0064.tif
	pdftemp/0065.tif
	pdftemp/0066.tif
	pdftemp/0067.tif
	pdftemp/0068.tif
	pdftemp/0069.tif
	pdftemp/0070.tif
	pdftemp/0071.tif
	pdftemp/0072.tif
	pdftemp/0073.tif
	pdftemp/0074.tif
	pdftemp/0075.tif
	pdftemp/0076.tif
	pdftemp/0077.tif
	pdftemp/0078.tif
	pdftemp/0079.tif
	pdftemp/0080.tif
	pdftemp/0081.tif
	pdftemp/0082.tif
	pdftemp/0083.tif
	pdftemp/0084.tif
	pdftemp/0085.tif
	pdftemp/0086.tif
	pdftemp/0087.tif
	pdftemp/0088.tif
	pdftemp/0089.tif
	pdftemp/0090.tif
	pdftemp/0091.tif
	pdftemp/0092.tif
	pdftemp/0093.tif
	pdftemp/0094.tif
	pdftemp/0095.tif
	pdftemp/0096.tif
	pdftemp/0097.tif
	pdftemp/0098.tif
	pdftemp/0099.tif
	pdftemp/0100.tif
	pdftemp/0101.tif
	pdftemp/0102.tif
	pdftemp/0103.tif
	pdftemp/0104.tif
	pdftemp/0105.tif
	pdftemp/0106.tif
	pdftemp/0107.tif
	pdftemp/0108.tif
	pdftemp/0109.tif
	pdftemp/0110.tif
	pdftemp/0111.tif
	pdftemp/0112.tif
	pdftemp/0113.tif
	pdftemp/0114.tif
	pdftemp/0115.tif
	pdftemp/0116.tif
	pdftemp/0117.tif
	pdftemp/0118.tif
	pdftemp/0119.tif
	pdftemp/0120.tif
	pdftemp/0121.tif
	pdftemp/0122.tif
	pdftemp/0123.tif
	pdftemp/0124.tif
	pdftemp/0125.tif
	pdftemp/0126.tif
	pdftemp/0127.tif
	pdftemp/0128.tif
	pdftemp/0129.tif
	pdftemp/0130.tif

