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Abstract: We consider the computational complexity of planning compliant motions
in the plane, given geometric bounds on the uncertainty in sensing and control. We can
give efficient algorithms for generating and verifying compliant motion strategies that are
guaranteed to succeed as long as the sensing and control uncertainties lie within the specified
bounds. We also consider the case where a compliant motion plan is required to succeed over
some parametric family of geometries. While these problems are known to be intractable
in 3D, we identify tractable subclasses in the plane.
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1 Introduction

In motion planning with uncertainty, the objective is to find a plan which is guaranteed to
succeed even when the robot cannot execute it perfectly due to control uncertainty. With
control uncertainty, it is impossible to perform assembly tasks which involve sliding motions
using position control alone. To successfully perform assembly tasks, uncertainty must be
taken into account, and other types of control must be employed which allow compliant
motion.

Compliant motion occurs when a robot is commanded to move into an obstacle, but
rather than stubbornly obeying its motion command, it complies to the surface of the ob-
stacle. Work on compliant motion! attempts to utilize the task geometry to plan motions
that reduce the uncertainty in position by maintaining sliding contact with a surface. Plans
consisting of such motions can be designed to exploit the geometry of surfaces around the
goal to guide the robot. By computing “preimages” of a geometrical goal in configuration
space, guaranteed strategies can be synthesized geometrically: We call this a geometri-
cal theory of planning. The first results in this theory begin with Lozano-Pérez, Mason,
and Taylor (or [LMT]), with subsequent contributions by Mason [Ma2], Erdmann [E] and
Donald [D,D2,D3,D4]. This research has led to a theoretical computational framework for
motion planning with uncertainty, which we denote [LMT,E,D]. See [Buc, EM, Bro, CR]
for other allied work.

The [LMT,E,D] framework begins by observing that the use of active compliance en-
ables robots to carry out tasks in the presence of significant sensing and control errors.
Compliant motion meets external constraints by specifying how the robot’s motion should
be modified in response to the forces generated when the constraints are violated. For
example, contact with a surface can be guaranteed by maintaining a small force normal
to the surface. The remaining degrees of freedom (DOF) can then be position-controlled.
Using this technique, the robot can achieve and retain contact with a surface that may vary
significantly in shape and orientation from the programmer’s expectations. Generalizations
of this principle can be used to accomplish a wide variety of tasks involving constrained
motion, e.g., inserting a peg in a hole, or following a weld seam. The specification of par-
ticular compliant motions to achieve a task requires knowledge of the geometric constraints
imposed by the task. Given a description of the constraints, choices can be made for the
compliant motion parameters, e.g., the motion freedoms to be force controlled and those to
be position controlled. It is common, however, for position uncertainty to be large enough
so that the programmer cannot unambiguously determine which geometric constraints hold
at any instant in time. For example, the possible initial cbnfigurations for a peg in hole
strategy may be “topologically” very different, in that different surfaces of the peg and hole
are in contact. Under these circumstances, the programmer must employ a combined strat-
egy of force and position control that guarantees reaching the desired final configuration
from all the likely initial configurations. We call such a strategy a motion strategy.

Motion strategies are quite difficult for humans to specify. Furthermore, robot programs
are very sensitive to the details of geometry. For this reason, we have been working on the
automatic synthesis of motion strategies for robots. .

Note that compliant motion planning with uncertainty is significantly different from

!See [Ma] for an introduction and survey.



motion planning with perfect sensing and control along completely-known configuration
space obstacle boundaries [Kou, HW, BK]. The two chief differences are:

® The planning of motions in contact with perfect control has the same time-complexity
as planning free-space motions; that is, it can be done in time O(n"logn) for r degrees
of freedom and n faces or surfaces in the environment [Ca]; the exponent is worst-
case optimal. However, prior to this paper, there are no upper bounds for planning
compliant motions with uncertainty. However, for 7 fixed at 3, the problem is hard
for non-deterministic exponential time [CR].

e From a practical point of view, the motion-in-contact plans generated under the
assumption of perfect control cannot ever be executed by a physical robot using
position control alone. While this difficulty in fact motivates our work, in this paper
we concentrate on the geometrical and combinatorial aspects of the problem; for
further details on issues in compliant motion we recommend the reference [LMT].

1.1 Dynamic Model

Compliant motion is only possible with certain dynamic models. We will employ the gen-
eralized damper model [Ma]. We assume that the environment is polyhedral, and that it
describes the configuration space of the robot, so that the robot is always a point. The
planned path consists of 7 successive motions in directions v1,...,0,. Each motion termi-
nates when it sticks, due to coulomb friction, on some surface in the environment,.
Because of control uncertainty, however, the robot cannot move with precisely velocity
v; on the i*» motion. Instead, it moves with velocity v{ "¢, which lies in a cone of velocities
B.(v;) about v;. The boundaries of the cone form an angle of e, with v;. ¢, is called
the control uncertainty, and B..(v;) the control uncertainty cone about v;. It is, in fact,
equivalent to regard . as specifying that v{" lies within a ball about v; in velocity space.
For a compliant motion, the robot moves along an obstacle surface with a sliding velocity
vde which is the projection onto the surface of the obstacle of some v,-f "¢ in Bec(v;).
Under generalized damper dynamics, the motion of a polyhedral robot without rotations is
completely specified by the motion of its reference point in configuration space. See fig 1.
The i** motion terminates by sticking on a surface when the velocity v/™® in Beo(v;)
points into the negative coulomb friction cone on a surface. Thus sticking on a surface
can be non-deterministic. We will assume that motion i can terminate on any reachable
surface for which some velocity v/"*® € Bec(v;) is inside the negative friction cone. Sticking
termination is motivated by the fact that a robot with a force-sensing wrist can easily
recognize sticking and robustly terminate the motion.
To test whether sticking is possible on some set of (say, goal) edges, we simply perform
a geometric cone intersection on each edge. Sticking is possible when the intersection of
the cone of velocity uncertainty and the negative friction cone have a non-trivial intersec-
tion. Since determining the possibility (or necessity) of sticking reduces to a simple cone
intersection, which may be done in constant time per edge, in this paper we will focus on
the more difficult issue of computing reachability. However, the more general question of
representing friction in configuration space is subtle; see ([E, BRS].



Figure 1: (a) Peg in hole environment. (b) Configuration space, showing the motion of the reference point
during compliant motion.

We define the predicate stick,,(z) to be true at a configuration z when sticking is
possible at z under commanded velocity v;.

While robust implementation of generalized damper dynamics is still a research issue, in
our robotics laboratory we have recently implemented an experimental force-control system
with this dynamic model to test our geometrical Planning theories [D6)].

1.2 Definitions

We will regard the goal region G as a polyhedral region in configuration space. Since in
general we cannot precisely know the initial configuration of the robot, we will also assume
that the start region R is some polyhedral region in configuration space.

We now pose three problems:

Problem 1: One-Step Compliant Motion Planning with Uncertainty. Given a
polyhedral start region R of constant size, a polyhedral environment P of n vertices,
control uncertainty ¢., coefficient of friction Y, and a polyhedral goal G of constant
size, find one commanded motion direction v such that under v, all possible motions
from R terminate by sticking in G.

Problem 2: One-Step Compliant Motion Verification. Given (R,P,€c, 4, G) and v,
verify that under v, all possible motions from R terminate by sticking in G.

Problem 3: Compliant Motion Planning with Uncertainty Given (R,P,ec,u,G),
and an integer r, find a sequence of 7 motions such that each motion terminates in
sticking, and the final motion terminates in the goal. Or, if no such r-step strategy
exists, then say so.

In the sequel we will in fact assume that P is an arrangement of size n; that is, P is a
set of configuration-space obstacle polyhedra whose interiors do not intersect. We assume
in the exposition that R and G are convex. We believe this restriction may, in fact, be
relaxed; see sec. 7.

2 Related and Previous Work

See [Bra, LP2, Ma, LMT, Y2, SHS] for backround on robotics, compliant motion, and
algorithmic motion planning.



2.1 Related Work
2.1.1 Voronoi Diagrams and Retraction Methods

One might ask whether exact algorithms for motion plannning can ever be utilized after
* uncertainty in sensing and control are introduced. The answer is a qualified “yes.” In
particular, the Voronoi diagram has proved to be useful for motion planning among a set of
obstacles in configuration space (see [0SY1, OSY2, 0Y, Y], and the textbook of Schwartz
and Yap [SY] for an introduction and review of the use of Voronoi diagrams in motion
planning). The Voronoi diagram, as usually defined, is a strong deformation retract of
free space so that free space can be continuously deformed onto the diagram. This means
that the diagram is complete for path planning, i.e. Searching the original space for paths
can be reduced to a search on the diagram. Reducing the dimension of the set to be
searched usually reduces the time complexity of the search. Secondly, the diagram leads to
robust paths, i.e. paths that are maximally clear of obstacles. Hence Voronoi-based motion
planning algorithms are relevant to motion planning with uncertainty. [CD, CD2] define
a “Simplified Voronoi Diagram” which is still complete for motion planning, yet has lower
algebraic complexity than the usual Voronoi diagram, which is a considerable advantage
in motion planning problems with many degrees of freedom. Furthermore, the Simplified
diagram is defined for the 6D configuration space of the “classical” movers’ problem. For
the 6DOF “classical” polyhedral case, [CD, CD2] show that motion planning using the
Simplified diagram can be done it time O(n”logn). Of course, these methods do not
address the compliant motion planning problem.

2.1.2 Tray-Tilting and Parts-Orienting

Erdmann and Mason [EM] have described an implemented tray-tilting planner for orienting
planar polygonal parts. While they give no explicit time bounds for their algorithm, it is
clear that it runs in exponential time. [Nat] showed that after introducing a variety of
simplifying assumptions, the Erdmann-Mason planner can run in polynomial time. In
addition, [Nat] demonstrated polynomial algorithms for other parts-orienting algorithms
under uncertainty. [Bro] has developed algorithms for planning compliant grasps (“squeeze-
grasps”) under uncertainty.

2.1.3 Lumelsky’s Approach

Lumelsky [Lum] considers the following related problem: suppose that a robot has a 2D
configuration space, perfect control and sensing, the obstacles are finite in number, and
each obstacle boundary is a homeomorphic image of the circle. Then a collision free-path
may be found by tracing around the boundary of any obstacles encountered when moving
in a straight line from the start to the goal. At each obstacle boundary encountered,
there is a binary choice of which way to go, and the move may be executed with perfect
accuracy. Lumelsky also demonstrates complexity bounds under these assumptions, and has
considered configuration spaces such as the plane, the sphere, the cylinder, and the 2-torus.
While it is not clear how this technique can extend to higher-dimensional configuration
spaces, it is useful to compare Lumelsky’s approach as an example of how to exploit a



useful geometric primitive (wall-following). See also [Kod] for extensions to this approach
using potential fields.

2.2 Previous Work on Compliant Motion Planning with Uncertainty
2.2.1 Lower Bounds

[CR] have shown that in 3D, the one-step verification problem (2) (and hence one-step
planning (1)) is A"P-hard, and the multi-step planning problem (3) is NEXPTIME-hard.
Previously, [Nat] had shown that (3) is PSP.ACE-hard.

2.2.2 Upper Bounds

Erdmann [E] has shown that in the plane, when G is a single edge of the polygonal envi-
ronment P, then the one-step verification problem (2) can be done in time O((n+ c)logn),
where ¢ is the number of intersections encountered by a planar arrangement algorithm.
Using plane-sweep techniques, Canny and Donald [D3] implemented an O((n + ¢)logn)
algorithm for the case where G is polygon of size n, and c is the number of intersections of
G with P.

Buckley [Buc] implemented an interesting multi-step compliant-motion planner in 3D
that uses sticking termination. While his algorithm is “heuristic” (in that it is not guar-
anteed to find a plan), it appears to generate a useful class of strategies in practice. [Buc]

gives upper bounds of time {22°™ ).

2.2.3 Backprojections

Erdmann’s algorithm makes use of backprojections, which he defined as a simplified case
of the [LMT] notion of geometrical preimages. The question of goal reachability from a
start region can be reduced to deciding the containment of the start region within the
backprojection of the goal.

The backprojection of a goal G (with respect to a commanded velocity vg) comsists of
those configurations guaranteed to enter the goal (under v3).2 That is, the backprojection is
the set of all positions from which all possible trajectories consistent with the control uncer-
tainty are guaranteed to reach G. See fig. 2. The terms “preimage” and “backprojection”
come from viewing motions as “mappings” between subsets of configuration space. Hence
the backprojection of a goal is the set of configurations from which a particular commanded
compliant motion is guaranteed to succeed. [LMT] envisioned a back-chaining planner that
recursively computes preimages of a goal region. Successive subgoals are attained by mo-
tion strategies. Each motion terminates when all sensor interpretations indicate that the
robot must be within the subgoal.

Here is the key point about backprojections: Given (R,P,e., u,G, vg), the one-step
verification problem (2) reduces to testing set containment, i.e., that

R C By(G).

*The star * denotes the ideal, or perfect control velocity. Henceforth, we will typically identify a com-
manded motion vy with its angular direction 4.



Figure 2: The goal is the region G. Sliding occurs on vertical surfaces, and sticking on horizontal ones.
The commanded velocity is v3, and the control uncertainty is B.(vg). The backprojection of G with respect
to § is the region P.

Erdmann showed that when G is a single edge of the environment P, then By(G) has
size O(n) and can be computed as follows:

1. Find all vertices in the environment where sticking is possible under v}.

2. At each of these vertices, erect two rays, parallel to the two edges of the inverted
velocity cone — Bec(v}).

3. Compute the arrangement from the environment plus these additional O(n) con-
straints.

4. Starting at the goal edge, trace out the backprojection region.

An excellent exposition of Erdmann’s algorithm can be found in [E]. Canny and Donald
implemented a plane-sweep algorithm for backprojections from general polygonal goals.
The idea is similar, but interested readers may find details in [D3]. Both methods take
time O(nlogn) and space O(n) when the goal has O(n) intersections with P.

3 Statement of Results

3.1 Restriction to Planar Compliant Motion Planning with Uncertainty

Here are the main results of this paper. We consider problems (1-3) in the plane, and call
these problems the Planar Compliant Motion Planning with Uncertainty Problems. That
is, we restrict G, R, P to be planar polygonal. Note that when we say planar we also mean
that no rotations are allowed. So we may speak of the Planar One-S tep Compliant Motion
Planning Problem, the Planar One-Step Verification Problem, and so forth, so we have the
following definition of the multi-step planar motion strategy generation problem. While
the compliant motion strategies we consider employ sticking termination, for conciseness,
we will not write this out in each definition.

Definition: = The planar compliant motion planning problem with uncertainty is defined
as follows. Given a polygonal start region R of constant size, an integer r, a polygonal
environment P of size n, control uncertainty e, coefficient of friction i, and a polygonal goal
G of constant size, find a sequence of r motions 0y, .. .6, such that each motion terminates
in sticking, and the final motion 8, terminates in the goal. Or, if no such r-step strategy
ezists, then say so.

Definition: = The one-step planar compliant motion planning problem with uncertainty
1s defined as above, with r = 1.



Figure 3: Geometric models of two gear-like planar objects A and B. Ais grasped and can translate but
not rotate. The orientation of B is unknown. The task is to generate a motion strategy to mesh the gears.

Figure 4: The configuration space for the gear example (fig. 3) at one o-slice (a = 0) of C x J. The goal
region is the “valleys” of the cspace obstacle. The start region is the diamond to the lower left. B is not
allowed to rotate, so no motion across J is possible.

Theorem 1. The one-step planar compliant motion planning problem with uncertainty
can be decided in time O(n*logn).

Theorem 2. The planar compliant motion planning problem with uncertainty is decidable
in time n’

Theorems (1) and (2) represent the first upper bounds for compliant motion strategy
generation under uncertainty. Comparison with lower bounds [CR] therefore indicates that
the planar case is a tractable subclass. (In 3D one-step planning is N7P-hard and multi-step
planning is worst-case doubly-exponential).

3.2 One-Step Compliant Motion Planning with Model Error

Finally, we consider the following problem as well. Suppose that we regard P, the configu-
ration space environment, to be generated by two sets of real-space polygons, A and B. A
and B are each sets of convex polygons, which may overlap. The union of B represents the
real-space obstacles. The union of A represents the robot (or the manipulated object). In
general, if A and B both contain m edges, then the complexity of computing the resulting
configuration space at a fixed orientation will be O(m?logm). We may, in fact, regard n
as O(m?); see [LP, D3].

Now suppose that the orientation of B is fixed, but unknown ahead of time. Assume B
will remain at the same orientation throughout any compliant motion strategy. What we
want is a motion strategy that will succeecd for any initial orientation of B. For example,

in [D3], an application where A and B are planar gears (fig. 3) was considered. A strategy
" was synthesized to mesh the gears despite initial uncertainty in their relative orientation.
v We model this problem in a three-dimensional “generalized” configuration space R2x St
- Thus the initial state of the planar system is some triple (z,y,a), where (z,y) lies in
R C R2, and a € S! can be any orientation of the environment B. During the course of a
compliant motion, & remains fixed; that is, we remain within some fixed, albeit unknown
“glice” of the environment. Consider the one-step compliant motion verification problem.
Suppose @ represents a direction in ®2. Hence the control uncertainty cone about vy is
two-dimensional, and lies in the z-y plane at (z,y,a). This can be regarded as the problem
of computing a 3D backprojection By(G) in the “generalized” configuration space R2x St
Thus a point in Bg(G) represents an initial position (z,y) and an orientation a of the
environment, from which we are guaranteed to achieve the goal G under commanded motion

7



Figure 5: The backprojection in slice @ = 0 of the goals in fig. 4, assuming that B cannot rotate. The
coeflicient of friction is taken to be .25.

in direction §. The strategy § may be considered verified when all such points (z,y, a) for
(z,y) € R lie within Bg(G). The problem is to decide containment of the region R x S!
within the 3D backprojection Bg(G) of G in the generalized configuration space R? x S!.

We may view this construction as follows. We regard our generalized configuration
space as having two degrees of motion freedom, called C , and one degree of variational
model freedom, called J. Here C is ®2 and J is S!. Motions can be commanded only
in C, and the J-value never changes. The motion strategy must succeed for all J-values.
We think of J as representing a parametric family of environments, or a set of toleranced
parts for which the strategy must succeed. J is called the space of model error. This
technique for planning with model error was introduced in [D]: essentially, we considered
compliant motion planning problems with n degrees of motion freedom, and k dimensions of
variational geometric model uncertainty. We reduced this planning problem to the problem
of computing preimages in an (n + k)-dimensional generalized configuration space, which
encompasses both the motion and the model degrees of freedom, and encodes the control
uncertainty as a kind of non-holonomic constraint. Further details of the planning model
are not required for this paper, but the interested reader is referred to (D,D2,D3,D4].

Our last result is:

Theorem 3. Let R be a polygon of constant size, configuration space C be R?, model
error J be S1, By(G) be the backprojection of G in C x J as above. Suppose G is of constant
size. Then there ezists an algorithm deciding the containment of R x J in By(G) in time
O(ntlogn).

This means that one-step planar compliant motion verification with control uncertainty
and 1 DOF rotational model error can be decided in the same time bound.

Theorem (3) represents a case where n = 2, k = 1 and containment in the backprojection
can be computed in polynomial time (note for n = 3, k = 0, this is false [CR]).

Finally, we will describe how our algorithms can be generalized for R and G of size
n, and how the bounds in theorems (1) and (3) might be tightened to O(n?logn) and
O(n3logn), respectively.

4 Proof of Theorem 3

Verification is at least conceptually easier than generation. The development will be
smoothest if we prove theorem (3) first.

4.1 Critical Slices: An Introduction

An o-slice of the generalized configuration space 2 x S! is the subspace R2 x { a }. We now
ask the question: what is the complexity of one-step planar compliant motion verification
with control uncertainty and one DOF rotational model error?



The key to answering this question may be addressed using critical slices.> The idea
is as follows. Consider the gear example, where gear A can translate and B has unknown
orientation. Assume that the orientation of B is fized, so it cannot rotate when pushed by
A. Let a denote the orientation of B. Then consider the three-dimensional backprojection
of G in C x J. By taking z-y slices of the backprojection at different values of e, it is
clear that generically, as a varies, the topology of the backprojection remains unchanged.
Similarly for the forward projection (see below): The topology of two backprojection slices
are the same if no edges or vertices appear or disappear at a values between them. At
singular values of a, however, a small change in a will result in a change in the topology
of the backprojection slice. Such a change is called a “catastrophe.” These singular values
are called critical o, and the generic values of o are called non-critical. Two critical values
are called adjacent if there is no critical value between them.

The idea is that a planning algorithm can compute a backprojection slice at each critical
value of a. In addition, between each adjacent pair of critical values, the algorithm computes
a slice at a non-critical a. This slice of the backprojection at that value is representative
of a continuum of intermediate non-critical slices. Between critical slices, in addition,
it is clear how the surfaces of the backprojection change. The obstacle vertices of the
backprojection, for example, move along curved edges that are algebraic helicoids. The
obstacle edges are developable algebraic surfaces. The equations of the surfaces are found
in [BLP]. The equations of the edges, as parameterized by orientation, are found in [Don].
No additional vertices may be introduced except at critical values. The free-space edges
of the backprojection remain fixed across a between critical values. What we obtain is a
complete combinatorial characterization of the 3D backprojection in C x J. It can be used
to derive precise, combinatorial algorithms for decision problems about the backprojection.

Suppose we wish to decide whether a start region R is contained in the 3D backprojec-
tion. (That is, to decide whether the goal is guaranteed reachable from the start region).
By deciding the containment question, guaranteed strategies can be planned. Thus by de-
riving upper bounds on the containment problem in the backprojection, we obtain bounds
for the planning of guaranteed strategies.

Suppose R has the form U x J for U a polygon in the plane. Then U must be tested for
containment in each critical and non-critical slice as defined above. In addition, we must
ensure that U lies inside the backprojection as the boundaries of the backprojection move
with a. Since the equations of these surfaces are algebraically defined, we simply test them
for intersection with the boundary edges of U.

The next question is: how many critical values of  are there? In the following lemma,
when we speak of edges of the backprojection, or convex configuration space obstacle (CO)
vertices, we mean edges of the backprojection in a slice, or a vertex which is convex in a
slice. Of course these edges and vertices sweep out surfaces and curves (resp.) as a changes.

Lemma: Let C be R?, J be the circle S'. Suppose m is size of the input in real-space edges
so that n = O(m?) is the number of generalized configuration space constraints. Let G have
constant size, and By(G) be the backprojection of G in C x J as above. Then there are .
O(n®) critical values of a € J for By(G). '
Proof: We enumerate the various types of critical values:

3Note that slice methods have been studied in other domains. See, for example, [LP, SY, E].



A. First, an a valueis (potentially) critical when a new edge or vertex is introduced into, or
disappears from, the union of the configuration space obstacles. This can introduce
a topological change in the obstacle boundary of the backprojection. If A and B
are convex, then as o varies, there are potentially m? topological changes in the
configuration space obstacles. These generate O(m?) critical values of a, which we
call obstacle-critical. However, when A and B are non-convex, there can be O(m®)
obstacle-critical values. This bound arises as the number of critical values for an
arrangement of m? surfaces in dimension d = 3.

B. In addition, an a value can be critical if the determination of sliding vs. sticking
on an edge can change there. A change in sliding can result in the introduction
or deletion of a free-space constraint, and hence change the free-space boundary of
the backprojection. This occurs when an edge of the friction cone on some edge
becomes parallel to an edge of the velocity cone of control uncertainty. N ow, as a
configuration space edge rotates with e, its friction cone rotates with it. Thus as «
changes, a friction cone edge can be parallel to a velocity cone edge at most 4 times.
Hence there can be at most 4n values of & at which the sliding determination changes.
These values are called sliding-critical.

C. Next, the topology of a slice of Bg(G) can change when a convex vertex of a rotating con-
figuration space obstacle edge touches a free-space edge of the backprojection. These
a-values are called vertez-critical. Now, each free-space edge of a backprojection slice
is anchored at a convex configuration-space obstacle (CO) vertex. Vertex-criticality
occurs when a free-space edge of a backprojection slice joins two CO vertices in that
slice. The edge then lies in the visibility graph of the generalized configuration space
obstacles in that slice. Now, we can obtain a bound of O(m®) on the number of
vertex-critical values as follows. Introduce an additional O(m?) constraints, each an-
chored at a convex CO vertex and parallel to the left or right edge of the velocity cone.
These, together with the O(m?) obstacle surface constraints form an arrangement of
O(m?) surfaces in 3 dimensions, yielding a total of O(m?®) critical values. This bound
may be improved to O(m*), by observing that each vertex-critical value is generated
by a pair of convex CO vertices, and that there exist O(m?) such vertices.

D. Finally, an edge-critical value occurs when a configuration space edge, rotating with
@, touches a free-space backprojection vertex. Free-space backprojection vertices are
formed by the intersection of two free-space edges of the backprojection. Each free-
space edge of the backprojection is anchored at a convex CO vertex. The number
of edge-critical values is O(mS®), because each is generated by a CO edge, and two
convex CO vertices (one per free-space backprojection edge).

Finally, we observe that these bounds are additive, and that n is O(m?). O

Comments: We conjecture that the bounds on edge-critical values (D) can be improved
to O(m*). One approach to proving the improved bound is to identify each free-space
vertex v of the backprojection, with the right generating CO vertex. Follow the locus of v
as o varies. It remains to show that the locus is piecewise-smooth, and touches each CO
edge at most a fixed number of times.
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We can now address the complexity of deciding containment in the backprojection.

Theorem 3: Let U be a polygon of constant size, C be R?, J be S, By(G) be the back-
projection of G in C x J as above. Suppose G is of constant size. Then there ezists an
algorithm deciding the containment of R = U x J in Bg¢(G) in time

O(n'logn).

Proof. O(n3) slices of the backprojection can be computed in time O(nlogn). Now, to
test for containment of U in the 3D backprojection region between two adjacent critical
slices will take time O(n), since the backprojection has size O(n). The cost of deciding
the containment of U between successive adjacent pairs of n3 slices, each of size n, is

O(n*). Since the time for computation of the slices dominates, this yields total complexity
O(n%logn). O

4.2 Comments: Generic Singularities

Some comments are in order. First, our algorithm is naive, in that each backprojection
slice is recomputed from scratch. In fact, this extra work is unnecessary. At a critical
value of a, very few aspects of the topology of the backprojection will change. That is,
typically, only one or two edges will be introduced or disappear at any critical value. We
can make this notion precise as follows. If o is a generic singularity, then exactly one
edge or vertex will appear or disappear there. Hence, for example, we can ensure that all
critical values are generic singularities with probability one by subjecting the input to small
rational perturbations.

Suppose that a backprojection has been computed in a critical slice at @. Then to
compute a backprojection in a nearby non-critical slice at a + €, we merely need to update
the portion of the backprojection boundary that was critical at «. This requires only
constant work: only one edge or vertex must be changed to derive a backprojection in
the new slice! The new slice, furthermore, need not be copied in entirety. Instead, the
representation for the new slice can simply indicate how it has changed from the old slice.
It seems reasonable to conjecture that this technique would yield an algorithm of complexity
O(n®logn) for deciding containment in a backprojection.

Finally, it appears that there are many problems in which the number of critical values
fails to achieve the theoretically possible n3 bound. This is because characteristically, there
are orientation restrictions; typically, even with model error, B is not allowed to rotate
freely. In other cases, there are symmetries. For example, in the gear case, even though B
is allowed to rotate freely, it is unnecessary to consider n3 slices since due to symmetry the
configuration spaces “repeat” periodically.

4.3 Comparison with Lower Bounds

Consider the one-step compliant motion planning problem in 3D amidst precisely known -
polyhedral obstacles. This problem may be addressed via 3D backprojections in ®3. [CR]
have shown that deciding containment in such a 3D backprojection is NP-hard. In particu-
lar, such backprojections can have an exponential number of faces. However, in the previous
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theorem we demonstrated a special class of 3D backprojections that have only O(n*) faces,
along with an efficient algorithm for deciding containment. This special class of backpro-
jections arises in the presence of model error. Specifically, they arise when C is R2, J is
one-dimensional, and no motion is permitted across J. In this case, the non-holonomic

constraints that keep the robot within one slice essentially disallow the kind of fanning out
~ and branching that [CR] discovered in ®3. Thus, our polynomial-time algorithm identifies
a tractable subclass of the 3D motion planning problem with uncertainty. This subclass is
also interesting in that it arises naturally in planning with model uncertainty.

5 Non-Directional Backprojections

5.1 Intuition

Let us now return to the assumption of no model error. We now address problems (1) and (3)
in the plane, that is, the problem of planar compliant motion planning with uncertainty for
one-step (1) and for multi-step (3) strategies. To this end we define a combinatorial object
called the non-directional backprojection, and give a critical slice algorithm for constructing
it. The non-directional backprojection may be used to represent, in a sense, “all possible
backprojections” of a fixed goal. We intend to use it to generate motion strategies.

[LMT} first defined non-directional preimages. Erdmann [E] defined the non-directional
backprojection as the union of all backprojections in the plane:

U Bs(G).
@

We will use a different definition. However, it is in the same spirit as [LMT,E], and so
we will employ the same name. We must point out, however, that both M. Erdmann and
R. Brost have considered? a similar construction for generating commanded velocities, and
also thought about a critical slice approach to computing it.

Our definition exploits generalized configuration space. Consider the following intuitive
argument.

a. Suppose we have a planar polygonal environment with no model error. In generating
motion strategies, we do not know which way to point the robot—that is, we do not
know which way to command the motion. Thus in some sense, there is “uncertainty”
in “which way to go.” This “uncertainty” is the variable §. Thus we have a kind of
three-dimensional planning problem, with degrees of freedom z, ¥, 8. We intend to
map this uncertainty in “which way to go” into generalized configuration space.

b. Now, consider a problem which is in some sense dual to generating motion strategies.
In this problem, we only consider one commanded motion in a fixed direction vp-
However, there is total uncertainty in the orientation of the entire environment. We
may represent this uncertainty by a variable 6 also.

‘[Personal communication]. I am grateful to M. Erdmann for pointing out the similarity of the
construction.
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Clearly, both problems (a) and (b) can be represented in an generalized configuration
space where r and y are the degrees of motion freedom, and 6 is “model error.” Here is the
difference, however. In (b), 4 is universally quantified: that is, we are required to ensure
that a motion strategy succeeds for all §. In (a), however, 6 is existentially quantified. We
merely need one 6 to find a commanded motion.

The precise analogue of (a) is a problem like (b) in which we get to choose the orientation
of the environment such that the Vg, the fixed commanded motion under consideration, will
guarantee reaching G.

5.2 Computing the Non-Directional Backprojection

We now make the intuitive argument more precise. Let J be the space of all commanded
motions, so that J is exactly the circle, S!. We write § € J for a commanded motion
direction.

Definition: Let G be a goal amidst polygonal obstacles in the plane. The Non-Directional
Backprojection B(G) of G is a set in R? x J,

B(6) = U(B4(6) x {6}). (1)

8

Now, recall the critical slice algorithm of sec. 4.1. This algorithm computes 3D direc-
tional backprojections in a three dimensional generalized configuration space, 2 x S!. It
operates by determining critical orientations at which the topology of backprojection slices
change.

B(G) is also a 3D backprojection-like region. We can develop critical slice algorithms
for computing B(G) also. They will work by finding all values of # at which the topol-
ogy of Bg(G) can change. Then the algorithm takes slices at these critical 8’s and at an
intermediate non-critical §’s between each pair of adjacent critical values.

Now, B(G) is bounded by developable algebraic surfaces. These surfaces are of two
types, obstacle surfaces, and free-space surfaces. The obstacle surfaces are liftings into
R2 x J of the obstacle edges in ®2. The free-space surfaces are swept out by free-space
edges of By(G) as they rotate with §. The manner in which the bounding algebraic surfaces
of B(G) sweep between slices is completely known—the obstacle edges stay fixed, while
the free-space edges rotate with 4, remaining parallel with edges of the velocity cone.
Now, each free-space edge is anchored at an obstacle vertex cobounding a possible sticking
edge. As 0 varies, the free-space edge rotates about that vertex. Clearly, as @ varies, the
topology of Bg(G) can change if the free space edge contacts an obstacle vertex. When this
happens, there is an edge connecting two obstacle vertices which is parallel to an edge of
the commanded velocity cone. Next, we note that any such edge lies in the visibility graph
of the planar input environment. The visibility graph may be computed in time O(n?).
This gives us the following lemma, which gives an upper bound on the number of critical
values of 8. Here is the intuition behind the lemma:

Consider a free-space edge e;(8) of Byg(G). e;(6) lies in the infinite half-ray r;(#) which
extends from e;(#)’s anchor vertex. We call r;(6) a constraint ray; it is parallel to an

13



edge of B.c(v;). There are O(n) constraint rays in each backprojection slice By(G).

ri(8) rotates with 6, and it can intersect O(n) obstacle edges as § sweeps along. N ow,

how many other constraint rays of the form r;(6) can ri(f) intersect as it rotates?

Note that all constraint rays {e;(68) } move “with” 7i(6), and are either parallel to it,

or else intersect it always. Therefore how ri(#) can intersect these other constraint
. Tays as @ sweeps is also O(n).

We assume that the input polygons represent configuration space obstacles.’ We use
the boundary operator 9 to denote the topological boundary.

Lemma: Given q goal G of constant size and an arrangement of input polygons P of size
O(n), there are O(n?) critical values of 8 in the non-directional backprojection B(G).
Proof: Let B..(vg) denote the control velocity uncertainty cone about a commanded velocity
vg. We think of Bec(vy) as rotating with . The topology of B¢(G) can change when any
of the following occur:

A. An edge of B.( vg) becomes parallel to an edge in the visibility graph of P. Such values
of 8 are called vgraph-critical.

B. 8 is a sliding-critical value (see sec. 4.1), where the determination of sliding vs. sticking
behavior on an edge can change. Sliding-critical values occur when an edge of B, (v})
becomes parallel to the edge of a friction cone on some configuration space edge.

C. Let €;(6) and e;(8) be free-space edges of Bg(G). They rotate with § about their
anchor vertices. Let Pi;(0) denote their intersection; it is a free-space vertex of the
backprojection. Then 6 is vertez-critical when p;;(6) € 0By(G) and pi;(0) intersects
some obstacle edge.

Now, there are O(n?) edges in the visibility graph of P. In sec. 4.1 we showed that
there are O(n) sliding-critical values. Only sliding-critical values can introduce additional
constraint rays.

Now, since there are O(n) constraint rays in each slice, it would appear a priori that
there could be potentially O(n?) p,;(8)’s. Note, however, that each free-space vertex pi;(8)
of the backprojection can be identified with exactly one constraint ray, say the “left” one,
ri(6). Hence we see that there are merely O(n) p;;(6)’s. Each moves in a circle. Observe
that in effect, each free-space vertex of the backprojection moves with  in a piecewise-
circular, possibly disconnected locus. Consider the discontinuities in the locus caused by
type (A) or (B) critical values. In between discontinuities, each circular arc in the locus
can intersect only a fixed number of obstacle edges. In particular, the arc cannot intersect
n obstacle edges without “using up” more type (A) or (B) critical values. Hence, there are
O(n?) vertex-critical values of 6.

Next we observe that the bounds for (A) (B) and (C) are additive. In particular: the
bounds on vertex-critical and vgraph-critical values apply to all possible free-space edges;
hence the vgraph-critical and vertex-critical values do not interact and their complexities do

See sec. 3.2 for the complexity where the input is given in real space obstacles.
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not multiply. Similarly, the sliding-critical bounds cover all possible ways that a constraint
ray can be added or deleted from the backprojection boundary as changes. Hence this
bound is also additive. Thus we obtain the O(n?) upper bound. 0

Corollary: There ezists a representation of size O(n3) for the non-directional backprojec-
tion B(G).

Proof: Take O(n?) slices at critical values. Compute a backprojection slice By(G) of size
O(n) at each of the critical values of 6. 0

Comments: This upper bound means that O(n?) slices are required for a critical slice
representation of B(G). However, as in sec. critical, it seems that this upper bound will
almost never be attained in practice. In practice we will consider only small ranges of §. For
example, for a peg-in-hole strategy, we would probably only consider directions in the lower
(downward) half-plane. While these arguments do not affect the worst-case complexity,
they do suggest that in practice the number of critical 8 values may be smaller than O(n?).

We can now address the complexity of computing B(G). By this we mean, what
is the complexity of computing a precise, combinatorial description of B(G). The out-
put representation is a finite ordered set of alternating critical and non-critical slices
{ By, (G), By,,, (G),. ..}, along with an algebraic description of how the free-space edges of
the backprojection change between slices. (For a free-space edge, this is completely specified
by the anchor vertex and an interval of 8 for which the surface bounds B(G)).

As above, let P be an arrangement of input polygons representing configuration space
obstacles.

Theorem 4: Given a goal G of constant size and an arrangement of input polygons P of
size O(n), a representation of size O(n*) for the non-directional backprojection B(G) can
be computed in time O(ntlogn).
Proof: First, we compute the critical values of 4. Sliding-critical values can be computed
in linear time. Vgraph-critical values can be computed in time O(n?logn). While it may
be possible to compute the vertex-critical values in quadratic time, we give the following
simple O(n?) algorithm: Intersect all constraint rays to obtain O(n?) points p;;(8). Each
of these points is a possible free-space vertex of the backprojection, and each moves in a
circle with 6. Intersect these circles with the obstacle edges to obtain O(n®) possible critical
values of §. The actual vertex-critical values will be contained in this set.

The planar backprojection algorithms referenced in sec. 2.2.3 compute a 2D backprojec-
tion slice in time O(nlogn), and the output has size O(n). Using this algorithm, compute
O(n®) slices Bg(G), at each the possibly-critical value 4. 0]

Some comments are in order. Again our algorithm is naive, in that each backprojection
slice is recomputed from scratch. If § is a generic singularity, then exactly one edge or vertex
of B¢(G) will appear or disappear there. It is reasonable to speculate that application of
the techniques suggested in sec. 4.2 would yield an algorithm of time and space complexity .
O(n?logn) for computing B(G). (The log factor arises from the apparant necessity of
sorting the critical values).
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Figure 6: The (directional) forward projection Fy(R) in slice & = 0 of the diamond-shaped start region R
in fig. 4, assuming that B cannot rotate.

- 5.3 Generating One-Step Strategies using the Non-Directional Back-
projection

Let C be the configuration space R2, and J the space of commanded motions S! as above.
Define the projection map

T7:CxJ —= J
(z,9,0) — 4.

Consider algorithm One-Step which computes the set T of all motions guaranteed to
reach G from a start region R:

Algorithm One-Step
1. Ry —« RxJ.
2. T J- w,(Rl - B(G)).

3. Returnany 6€T.

We must now argue that given our representation of B(G), the set difference required
above can be done efficiently. R is convex and of constant size. Assume wlog that the
closure of R does not intersect any obstacle. B(G) is bounded by O(n) surfaces in C x J.
We throw R; into the arrangement of these surfaces, and introduce a new type of critical
value, called R-critical. An R-critical value 6; arises when an edge of R intersects an edge
of Bg,(G). (Equivalently, an R-critical value arises when OR, intersects 0B(G).) There are
O(n) R-critical slices. Now, suppose that in each R-critical slice 0;, we label each vertex v
of R as in or out, depending whether or not v € By,(G). Then we merely need to find some
0; with all vertices of R labeled in.

This shows that One-step Planar Compliant Motion Planning with Uncertainty can be
decided in time O(n*logn). Thus theorem (1) is proved.

6 Planar Multi-Step Compliant Motion Planning with Un-
certainty
6.1 The Directional Forward Projection

See figs. 3 and 6, which show the forward projection [E] of 2 commanded motion. This
region is the outer envelope of all possible trajectories evolving from the start region in
fig. 3, under a particular commanded motion. It is the set of all configurations that
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are reachable from the start region, given the particular commanded velocity and control
uncertainty cone.

Formally, the forward projection of a set R under commanded motion @ is all config-
urations which are possibly reachable from R under vg (subject to control uncertainty).
It is denoted Fy(R). [Buc] described the first algorithms for computing forward projec-
tions. Canny and Donald [D3] showed how in the plane, the same plane-sweep algorithm
for backprojections (see sec. 2.2.3) can also be used to compute forward projections. This
algorithm works by sweeping from R in the direction of . When R intersects the environ-
ment P O(n) times, the forward projection Fy(R) can be computed in time O(nlogn) and
has size O(n). The forward projection algorithm is quite similar to that of sec. 2.2.3; but
interested readers may find details in [D3].

We note that the forward projection Fy(R) is “directional”, in that it depends on the
direction of commanded motion, 6.

6.2 The Non-Directional Forward Projection

The analogue the non-directional backprojection is the non-directional forward projection:

Definition: Let R be a start region amidst polygonal obstacles in the plane. The Non-
Directional Forward Projection F(R) of R is a set in R2 x J, ‘

F(®) = Y(Fu(®) x {0}). 2)

0

As a corollary to our bounds on the complexity of the non-directional backprojection,
we obtain the following theorem which may be derived mutatis mutandis:

Theorem 5: Given a start region R of constant size and an arrangement of input obstacle
polygons P of size O(n), let F(R) be the non-directional forward-projection of R. Then

a. there are O(n?) critical values of 8 for F(R);
b. there ezists a representation of size O(n®) for F(R);

¢. a representation of size O(n*) for F(R) can be computed in time O(ntlogn). O

We will need the following corollary later:

Corollary: For a constant-sized start region R and goal region G, amidst an arrangement
of input obstacle polygons P of size O(n), the non-directional forward projection F(R) and
non-directional backprojection B(G) have representations as polynomial-sized formulae in
the language of semi-algebraic (s.a.) sets. Furthermore, these formulae are quantifier-free.
Proof: We can represent the non-directional forward projection (resp., backprojection) at a
polynomial (in n) number of critical values {#6;,...,6;} via the formula

A= AN6=6 = (2,9)€Fo(R). 3)
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Let two adjacent critical values be ™™ and ™2, In between adjacent critical values of
8, the non-directional projection is bounded by a fixed® set of O(n) developable algebraic
surfaces. That is, when 6 is between #™" and 672, the non-directional projection is
the intersection of some fixed set of O(n) algebraic half-spaces. These half spaces are
represented by algebraic inequalities, { g;;(z,y,0) < 0} where each gi; is a polynomial.
The form of the g;; is discussed in 5.2. We define the predicate

mg
Ci= /\ (gij(za?he) < 0)7 (4)
1=1
where m; is O(n). (4) only addresses the convex case: in the non-convex case, C; still has
linear size since there are only O(n) gi;’s. Specifically, C; becomes a linear-sized disjunction
of conjunctions of the g;;’s halfspaces. We construct the non-directional projection as a s.a.
set in a case statement,

AN NG € (8Mn 0™ —  C)).
0

6.3 Proof of Theorem 2

Above, we described a polynomial time exact algorithm for generating one-step guaran-
teed compliant motion strategies amidst planar polygonal obstacles. We now address the
general case of generating guaranteed r-step compliant motion strategies. Assume sticking
termination. Recall sec. 1.1: for a configuration z, we defined the predicate stickqg(z) to
be true when sticking is possible at z under commanded velocity v}. Let us define F.4(R),
the push-forward of 6 from R, to be all configurations z in the forward projection Fy(R)
such that sticking is possible at z. That is,

F.o(R) = {z € Fyp(R) | sticke(z)}.

By analogy with the non-directional backprojection, we defined the non-directional
forward projection. We also observed that all directional projection sets are semi-algebraic
(s.a.). Then by the lemma on critical values of B(G), so are the non-directional projection
sets. Furthermore, when R has constant size, the lemma shows that the non-directional
projection sets have descriptions (as s.a. sets) that are polynomial in the size of the input
arrangement P.

Theorem 2: The planar compliant motion planning problem with sticking termination is
decidable in time n™°",
Proof: Let po,...,pm € R2. We define the predicates

fo(pr, p2) <= p2 € Fo(p1) (5)

and

%i.e., fixed between ™ and 4%,
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f5(P1,p2) <= p2 € Fug(p). (6)
Clearly, definition (6) is equivalent to

fe(p1,p2) <= fo(p1,p2) A stickg(p,). (7)

We have shown how in polynomial time to compute a quantifier-free polynomial-sized
formula (in n) for the s.a. set F(p;)—the non-directional forward projection of p;. It
remains to show that (5), and consequently (6) are polynomial-sized predicates. Now,
6 € S', p1 € R?, and p, € R2. Consider fo(-,-) as a predicate on a 5D space S1 x R% x R?,
that is, as f(6, p1, p2). We can obtain a bound on the complexity of f by enumerating all
possible edges of Fy(p;) as 6 and p; vary. These edges then sweep out developable algebraic
surfaces in the domain of the predicate. There are four types of edges that can bound

Fo(p):

a. An edge e; of a generalized configuration space obstacle. These edges sweep out n
surfaces of the form S! x R? x e;.

b. A free-space edge anchored at a vertex vj of a generalized configuration space obstacle
and parallel to the left or right edge of the velocity cone. Let r(v;, #) denote the infinite
ray anchored at v; at orientation 6. Then type (b) edges sweep out 2n surfaces of the
form Ug({ 0} x R? x r(v;,0 % ¢.)).

c. A free-space edge anchored at p; and parallel to the left or right edge of the velocity
cone. These edges sweep out 2 surfaces of the form

gy({ﬁ} X {p}x T(Pl,eiec)).

d. A partial edge of a generalized configuration space obstacle. Let v;, v be the vertices of
a generalized configuration space obstacle edge. A partial generalized configuration
space edge can start at vy or v; and extend to v/, where v’ is a vertex of a type (b) or
(c) free-space edge. Clearly v’ simply arises as the intersection of a type (a) surface
with a type (b) or (¢) surface.

By enumeration, we clearly obtain a linear (O(n)) bound on the number of surfaces in
the 5D domain of f. The arrangement of these surfaces has polynomial size; in particular,
it has O(n®) critical values. Hence we may conclude that f is a predicate of polynomial
size in n.

Now, define

F(pos -, Pm; 015 ,0m) <= f5.(Po,p1) A fo,(P1sD2) A=+ A f5, (Pm=1,Pm).  (8)

Since (6) has polynomial size in n, clearly the predicate (8) has polynomial size in n as
well. Furthermore, it is quantifier-free.
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Now, we let the points p; serve as via points (sometimes known as switch-points) for
the strategy. We quantify over all possible via points achievable by the motion strategy
61,...,0,. By letting m be r, this is sufficient.

We can formulate the question of the existence of an r-step strategy as a decision
* problem within the theory of real closed fields:

(364, ...,6,)
( Vpo,...,Dr ((poER)/\f(Po,...,p,,Hl,...,er))=>(pr€G)>_ (9)

Now, deciding sentences in the theory of real closed fields is known be doubly-
exponential only in the number of quantifier alternations. More specifically, the truth
of a Tarski sentence for k polynomials of degree < d in r variables, where a < r is the
number of quantifier alternations in the prenex form of the formula, can be decided in time

(kd)o(r)ia—2 ,

(see [Gri]). We have a = 2, and hence (9) can be decided in time n2("°, (O

6.4 Discussion

This result is of interest for the following reasons. First of all, the general compliant
motion planning problem with uncertainty (in 3D) is known to be hard for non-deterministic
exponential time [CR]. This means that any algorithm for the problem takes at least doubly-
exponential time in the worst case. In this section, we have introduced restrictions on the
problem which make it more tractable. These restrictions are:

o The configuration space is the plane, where directional forward projections have linear
size. (In 3D they can have exponential size). A key step in our construction was then
to show that the non-directional backprojection B(G) has polynomial size.

e Sticking termination is used.

¢ The maximum number of steps in the strategy is given as input to the algorithm.

With these restrictions, the problem becomes decidable in time roughly exponential in
r. In fact, we conjecture that for a great number of planning problems, r is in fact a small
constant. When r may be so regarded, we effectively obtain a polynomial-time algorithm
for this restricted planar motion planning problem with uncertainty.

It might have been possible to devise these restrictions a priori, from a
strictly complexity-theoretic viewpoint. However, I believe that in light of
[LMT,E,EM,Bro,Buc,D,D2,D3,D4] it becomes clear that these restrictions are indeed phys-
ically meaningful, and in fact define a useful and interesting subclass of planning problems.
In a way, this work has been an exploration of problems solvable within these restrictions.
From this perspective, I believe it is reasonable to conjecture that a large class of planning
problems do fall under this rubric.
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7 Improving the Bounds

We are currently working on improving the bounds in theorems (1) and (3) to O(n?logn)
and O(n3logn), respectively. We believe that both problems can be reduced to decision
problems within the purely existential theory of real closed fields. This reduction would
yield the improved bound, and generalize the results for G and R non-convex, having size
n. See [D5] for details.

8 Conclusions

The chief goal of this paper was to analyze the complexity of compliant motion planning
with uncertainty. While in general it is known that the problem is intractable, we were able
to demonstrate a number of special cases where there exist efficient algorithms.

We introduced a combinatorial object call the non-directional backprojection, and an-
alyzed its complexity. Our analysis led to efficient algorithms for certain subproblems
in compliant planning with uncertainty. In particular, we gave an efficient algorithm for
planning one-step strategies in the plane. By using results from computational algebra, we
showed that planning a guaranteed planar multi-step strategy with sticking termination can
be decided in time polynomial in the geometric complexity, and roughly singly-exponential
in the number of steps in the plan.

We also considered compliant motion planning problems with n degrees of motion free-
dom, and k dimensions of variational geometric model uncertainty. We reduced this plan-
ning problem to the problem of computing preimages in an (n + k)-dimensional generalized
configuration space, which encompasses both the motion and the model degrees of free-
dom, and encodes the control uncertainty as a kind of non-holonomic constraint. We
demonstrated a case where n = 2, k = 1 and containment in the backprojection could be
computed in polynomial time (note for n = 3, k = 0, this is false [CR]). In this case, the
one DOF model error represented the uncertain orientation of the environment.

Of course, this is only a start. From the standpoint of developing theoretical, “exact”
algorithms, we have only addressed the problem of planning a restricted class of guaranteed
strategies in the plane. It remains to consider exact algorithms in higher-dimensional
configuration spaces, model error, Error Detection and Recovery, and more sophisticated
termination conditions. For more on work in this direction, see [D3].
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Fig. . The goal is the region G. Sliding occurs on vertical surfaces, and sticking
on horizontal ones. The commanded velocity is vy, and the control uncertainty
is Bec(vy). The preimage of the G with respect to @ is the region P.




Fig. . Geometric models of two gear-like planar objects 4 and B. A is grasped
and can translate but not rotate. The
orientation of B is unknown. The task is to generate a motion strategy to mesh
the gears.




t Gtart reglon and goals for enperinent i

Fig. . The configuration space for the gear example (fg. 2) at one a-slice
(e = 0) of G. The goal region is the “valleys” of the cspace obstacle. The start

region is the diamond to the lower left.

rotate, so no motion across J is possible.

B is not allowed to




Fig. . The- backprojection in slice a = 0 of the goals in fig.

Stromg beshare tost tan

that B cannot rotate. In all thege experiments, the coefficient of frict;

on is taken
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Fig. The forward projection of the start region in slice a = 0. Note the
degenerate edges due to sliding.
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