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1. Introduction 

Linear temporal logic was introduced in [6] as an appropriate formal system for 
reasoning about parallel programs. This logic permits the description of a program’s 
execution history without the explicit introduction of program states or time. 
Moreover, important correctness properties, such as mutual exclusion, deadlock 
freedom, and absence of starvation, can be elegantly expressed in this system. 
Proving that a parallel program satisfies some correctness property consists of 
deducing the formula for that property from program axioms that characterize the 
possible interleaving of atomic statements of the individual processes. An important 
special case occurs when the program is finite state. In this case, the program 
axioms and correctness specification can be expressed in the propositional version 
of the logic, and provability becomes decidable. A number of researchers (see [5]) 
have attempted to use such a decision procedure for constructing correct linite- 
state programs. 

In this paper, we examine the inherent complexity of decision procedures for 
validity, satisfiability, and truth in structures generated by binary relations for 
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propositional linear temporal logics with the operators F (eventually), G (invar- 
iantly), X (next-time), U (until), and S (since). 

Structures generated by binary relations (R-structures) model finite-state concur- 
rent programs. The problem of determining truth in an R-structure consists of 
verifying whether a given formula holds on a path starting from a node of the 
structure. An algorithm for solving this problem can be used to determine whether 
a concurrent program fails to meet its specification on some execution. 

We first consider the logic L(F) in which F is the only temporal operator. We 
prove that the problem of determining truth in an R-structure in NP-complete. 
Indeed, we prove that this problem is difficult even for simple formulas without 
nesting of temporal operators. This result is surprising since the corresponding 
problem for branching-time logics has been shown to be in P [ 11. 

These proof techniques are extended to prove a linear size model theorem for 
L(F). Thus, we have independently established, by a different technique, the result 
obtained in [4] that satisfiability for this logic is in NP. 

We next consider the complexity of full linear temporal logic. Although it is 
possible to translate propositional linear temporal logic into the language of the 
structures (N, <, PI, Pz, . . .) where N is the set of natural numbers, < is the natural 
w-ordering, and PI, P2, . . . are monadic predicates, any decision procedure for 
satisfiability of formulas in the latter logic must be nonelementary [7]. A tableau- 
based decision procedure for propositional linear temporal logic was given in 
[lo]; however, this procedure requires exponential space. We give a polynomial- 
space-bounded decision procedure for satisliability of formulas in L(U, S, X). We 
show that satisliability for the logics L(F, X), L(U), L(U, X), L(U, S, X) and for the 
extended temporal logic given by Wolper in [lo] are PSPACE-complete. These 
results are surprising because all of these logics have different expressive powers 
(some are more powerful than others). Finally, we show that the problem of 
determining truth in an R-structure is PSPACE-complete for the previously men- 
tioned logics. 

This paper is organized as follows: Section 2 defines the syntax and semantics of 
the linear temporal logic that we use in the remainder of the paper. In Section 3, 
we prove the results for L(F). Section 4 contains the PSPACE-completeness results 
for L(F, X), L(U), and L(U, S, X). In Section 5 we show how our results can be 
extended to the logic given in [lo]. 

2. Notation and Basic Definitions 

We use the following convention for symbols: 

P, Q, R, . . . denote atomic formulas and are drawn from the finite set 9 
f;g, h, . . . denote formulas. 
s, t, al, . . . denote finite or infinite sequences. We always assume 

s = (so, Sl, . . .). 
S, T, W, . . . denote structures. 

If 01, . . . ) Ok E (X, F, G, U, S) are distinct operators, then L(O1, . . . , Ok) 
denotes the propositional temporal logic restricted to these operators, for example, 
L(F, G), L(X, F, G), and so on. 

A well-formed formula in propositional linear temporal logic is either an atomic 
proposition or of the form lf, J; A fi, Xf;, fi U f2, fi S .A where f; f2 are well- 
formed formulas. In addition, the following abbreviations are used: 

fiVf2’l(lf;A~f2), fi3f2’1fiVf2, Ff= True Uf; Gf= iFif: 
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Let L(F, X) be the logic that uses the Boolean connectives A, V and the temporal 
operators F, X, with negations allowed only on the atomic propositions. 

A structure S = (s, t), where s = (SO, sl, . . .) is an w-sequence of states in which 
all the states are distinct and 4: (SO, sI, . . .) + 2? Intuitively, [ specifies which 
atomic propositions are true in each state. An interpretation is a pair (S, S) where 
S is a structure as previously defined, and 6 is a state in the sequence s. Since we 
have assumed all states in s to be distinct, every state in s has a unique position. 
We define the truth of a formula in an interpretation inductively as follows: 

S, Si I= P where P is atomic iff P E t(si); 
S,Sikf; Af2 iff S,Sikfi and S,Sikf2; 

Sv Si != If; iff not (S, Si bfi); 

SY Si I= X5 iff SY Si+l bh; 

ST SikJ Ufi iff 3k L i such that S, Sk k& 
and Vj,isj<k, S,sjbf;; 

AS, SibJ Sf2 iff 3k 5 i such that S, Sk l= f2 

and Vj, k<js i, S,sjbf;. 

Length(f) denotes the length of the formula J; which is the number of symbols 
in f; and SF(f) is the set of subformulas of for their negations after eliminating 
double negations. It can easily be shown by induction on f that card(SF(f)) I 

Wmd-W). 
An R-structure T is a triple (N, R, II), where N is a finite set of states (also 

called nodes). R G N x N is a total binary relation (i.e., Vt E N 3’ E N such that 
(t, t’) E R), and II: N+ 2 . a A path p in T is an infinite sequence (~0, pI, . . .) where 
Vi L 0, pi E N, and (pi, pi+i) E R. For a path p in an R-structure T = (N, R, q), we 
let S, denote the structure (s, [) where Vi L 0, [(Si) = &i). 

The global behavior of a finite-state parallel program can be modeled as an R- 
structure. In the R-structure, each path starting from the initial state represents a 
possible interleaving of executions of the individual processes in the program. In 
many cases the correctness requirements of the concurrent system can be expressed 
by a formula of propositional linear temporal logic. The system will be correct iff 
every possible execution sequence satisfies this formula; that is, every path begin- 
ning at the initial state in the corresponding R-structure satisfies the formula. For 
these reasons, the following problem (which we call the determination of truth in 
an R-structure) is important in verifying finite-state parallel programs: 

Given an R-structure T, a state 6 E N, and a formulafE L, is there a path p 
in T starting from 6 such that S,, SO kf? 

3. The Complexity of L(F) 

Let S = (s, 4) be a structure and let S” = (sj, sj+l, . . .) be the maximal suffix of s 
such that for each Sk in s” the following condition holds: VI 3i such that i > 1 and 
((Si) = [(Sk); that is, there exist infinitely many states in S” that have the same 
assignment of atomic propositions as Sk. It is easily seen that such an s” exists 

(because 9 is finite) and is unique. Let s = s’ . s”. Define init = s’,final(S) = 
Sn, rU??gf?(S) = {&$!?k) 1 Sk iS in SO), and Size(S) = length(init(S)) + card(range(S)). 
Thus, range(S) is the set of all assignments of atomic propositions that occur 
infinitely often in s. Note that init is a finite sequence (and can be the null 
sequence!), final(S) is an infinite sequence, and range(S) is a subset of 2? 
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The following lemmas are used in proving the main results of this section. 
Lemma 3.1 shows that all states in final(S) with the same assignment of atomic 
prepositions satisfy the same formulas in L(F). 

LEMMA 3.1. Let S = (s, 5) be a structure and let Sj, sk be states in final(S) such 
that [(Sj) = [(Sk); thenfor allf E L(F), S, Sj kf#S, Sk bf: 

PROOF. The proof is by structural induction on f: Iffis an atomic proposition, 
then the lemma holds trivially. Assume that the lemma holds forfi,f*. Then it is 
easily seen that the lemma holds for-f; A f2, lfi. We must prove that the lemma 
holds for f = Ff . Suppose S, Sj I= Ff . Then there is a state s/ such that 1~ j and 
S, SI kf;. Since SI is in final(S), there are infinitely many m such that [(s,) = [(sl) 
and (by induction) S, sm kfi. Hence, there is an m L k such that S, sm E1;; that is 
s,&b:f: 0 

LEMMA 3.2. Let S = (s, 4), T = (t, 7r) be structures such that length(init(S)) = 
length(init(T))fir all j < length(init(S)); E(sj) = r(tj); [(SO) = a(@ (this is necessary 
for the case in which length(init(S)) = 0) and range(S) = runge( T); then for all f E 
L(F), S, so F=f 8-T to b:J: 

Lemma 3.2 can also be proved by induction onf; and it states that formulas in 
L(F) cannot distinguish the order of occurrence of states in final(S). 

Let s = (so, sl, . . .), t = (to, tl, . . .) be finite or infinite sequences with all states 
in s, t being distinct. t is a subsequence of s (written t I s) iff there exists integers 
i0, iI, . . . such that io < il < iz < . . - and,foralljrO,~~=t~LetS=(.s,C;)bea 
structure and t 5 s. t is an acceptable subsequence of s (written t 5 s) if any Sj in 
final(S) is contained in t; then every State sk in final(S) such that [(Sk) = [(Sj) is alSO 

contained in t. We assume that the structure with respect to which 5 is defined is 
understood from the context. For notational convenience, we define init, final, 
range, and size for acceptable subsequences also. Let t 5 s. We define init to be 
the longest prefix oft that is a subsequence of init and final(t) to be the suffix 
oft starting from the state appearing immediately after init( Range(t), size(t) are 
defined exactly the same as the corresponding definitions for a structure. Note that 
init( final(t), range(t), and size(t) are defined with respect to S, which we assume 
is understood from the context. Let ul, u2 be acceptable subsequences of s and let 
u be the subsequence containing exactly those states appearing in ul, 242 (there is 
only one such u because all states in s are distinct); then u is an acceptable 
subsequence of s and size(u) < size(&) + size(u2). 

Let p(f) denote the number of occurrences of the symbol F in the formula f: 
Using deMorgan’s laws and the identities 1Fg = Gig, 1Gg = Fig, any formula 
f' E L(F) can be converted to an equivalent formula f in which all negations apply 
to atomic propositions only and by at most doubling the length of the formula. 

LEMMA 3.3. Let S = (s, 4) be a structure and let t 5 s by such that, for all 
j z 0, S, tj I= f where f E L(F, G) and in which all negations are applied to 
atomic propositions only. Then (a) there exists a u such that u 5 s, size(u) < p(f ), 
and (b) for all structures W = (w, V), where u 5 w 5 s, sb is the restriction of [ to 
the states in w, the following condition holds: 

For any i, ifwi is present in t, then W, wi kf: 

PROOF. The proof is by induction on the structure of the formulaj 

Basis: f = P or 1P. u = null sequence satisfies the lemma. 
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Induction: 

(i) f = fi V fi. Let t’ be the subsequence of t containing all tj such that S, tj kfi 
and t” be the subsequence of t containing all tj such that S, tj l= f~. By induction 
hypothesis, there exist ul, ~2 such that size(ul) 5 p(J), size(u2) I p(h), and (b) 
holds for t’, ul, fi and t”, u2, f2. Let u 5 s be the sequence containing the states of 
uI and 242. Then Size(u) 5 size(U1) + size( u2) 5 p(f), and it is easily seen that (b) 
holds for U, f: 

(ii) f=fi A fi. The argument is similar to (i). 
(iii) f= Ffi. 

Case 1: t isfinite. Let t, be the last state oft. S, t, I= Ffi. Hence, there is an 
Sj appearing after t,, in s such that S, Sj Efi. If Sj is in init( then let t’ = (Sj); 
otherwise, let t’ be the subsequence of all states Sk in final(S), such that E(sk) = E(Sj). 

For all sk in t’, S, Sk l= fi. By induction hypothesis, there is a U’ 5 s such that 
size(u’) 5 p(J) and (b) is satisfied for u’, fi, with t = t’. Now let u 5 s be the 
sequence containing all states of U’ and t’. Then size(u) 5 size(t’) + size(u’) 5 1 + 
dfi) = P(P) and (b) holds. 

Case 2: t is infinite. There exist infinitely many k such that S, sk l= Ffi. Let 
t’ be the infinite sequence of states in final(S) such that for all j L 0 S, tj kfi and 
t(tj) = [(tj+,). Clearly, size(t’) = 1. The remainder of the argument is same as in 
Case 1. 

(iv) f= GA. If to is in init( then let t’ = suflix of s starting from to; otherwise, 
let t’ = final(S). Clearly, for all j 2 0, S, tj kfi. By induction hypothesis, there is 
a U’ 5 s such that size(u’) 5 p(fi) and (b) holds for u’,f, and with t = t’. Since t’ 
is a suffix of s, it is easily observed that (b) holds forfand t with u = u’. Cl 

THEOREM 3.4. Zff E L(F) is satisfiable, then there exists a structure S = (s, ,5) 
such that size(S) 5 length(f) and S, SO E=f: 

PROOF SKETCH. Assume f E L(F) and is satisfiable. If neither of the symbols 1, 
A appear inf; then f is either an atomic proposition or is a sequence of F symbols 
followed by an atomic proposition. In this case there is a trivial structure of size 1 
in which f is true. Now consider the case in which there is at least one occurrence 
of either -I or A. It is easily seen that length(f) L p(f) + 2. Let V = (v, 9) be a 
structure such that V, v. I= J We repeatedly apply deMorgan’s laws and the 
identities 1Fh = Glh, 1Gh = Flh to f until we get a formula g in which all 
negations are applied to the atomic propositions only. It is easily seen that w(g) 5 
p(f ). Let t be the sequence given as follows. If length(init(v)) > 0, then t = (vo); 
otherwise, t is the sequence containing all states vi such that ‘P(vi) = cd(vo). Clearly, 
t 5 v, size(t) = 1, and, owing to Lemma 3.1, for all i 2 0, V, ti Ef: Now, applying 
Lemma 3.3 for g with S = I’, we get a sequence u 5 v, such that size(u) c: p(f) 
and u satisfies the condition given in Lemma 3.3. Let s 5 v be the sequence 
containing all the states oft and U. Then s 5 v and size(s) 5 size(t) + size(u) I 1 + 
p( f ). If s is a finite sequence, then extend it by adding to it a suffix x such that all 
states in x are in final(V) and all these states satisfy the same set of atomic 
propositions. Let S = (s, [), where E is the restriction of 9 to the states appearing 
in s. Then, from Lemma 3.3, S, so KJ Clearly, size(S) 5 p(f) + 2 5 length(f). 0 

THEOREM 3.5. The following problems are NP-complete for the logic L(F): 

(i) determination of truth in an R-structure, 
(ii) satisfiability. 
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PROOF 

(i) We prove that determining truth in an R-structure is NP-hard by reducing 
3-SAT to this problem. Let g = Ci A CZ A . . . A C, be a Boolean formula in 
3-CNF where Ci = lit V Ii2 V Ii3 (for 1 5 i I WZ), lik = xj or lxj (1 5 k 5 3) for some 
j such that 1 I j 5 ~1. xl, x2, . . . , x, are the variables appearing in g. Let T = 
(N, R, 7) be the R-structure defined as follows: 

S=(Cill sismj, 

N = (Xi 1 1 5 i 5 n] U (Xi 1 1 5 i 5 TZ) U (yi IO 5 i 5 TZ), 

R = {@i-l, Xi), (Vi-l, Xi’), (Xi, YA (Xi’, J’J I 1 5 i 5 nI U I(Ym YJI, 
q(xi) = {Cj 1 xi appears as a literal in C’, i.e., for some k, 1 5 k I 3, lj,+ = Xi), 
&$) = (Cj 1 lxi appears as a literal in Cj), 

dJ!J = 0. 

T can be described by the graph shown in Figure 1. 
It can easily be proved that g is satisfiable iff there exists a path p in T starting 

from y. such that (S,, SO) l= FCi A FC2 A * * * A FC,. This reduction is a polynomial 
reduction. Hence, determination of truth in an R-structure is NP-hard for the 
language L(F). 0 

Let T = (ZV, R, q) be an R-structure. Any path q in Tcan be uniquely decomposed 
into q’, q” such that q = q’.q”, any state that appears in q” appears in it infinitely 
often, and q” is the maximal such suffix. All the states in q” belong to a strongly 
connected component in the graph of T. Let S,, SO kf: From Lemma 3.3, it follows 
that there is a subsequence u of q’, such that length(u) I length(f) so that any path 
p = p’ . q”, where p’ contains u as a subsequence and is obtained from q’ by deleting 
some cycles, has the property that S,, SO Ef: 

Now, it easily follows that there is a path p in T starting from qo such that S,, 
so k=fand p = p’ -4” where length(p’) 5 length(f).card(N). From Lemma 3.1, it 
follows that, if Si, Sj are any two states in S, corresponding to the same node in q”, 
then Si, Sj in S, satisfy the same formulas. From Lemma 3.2 it is easily seen that, if 
r is any path that has p’ as a prefix followed by a suffix that contains the same 
nodes as in q” repeating infinitely often, then S,, SO l= f: Using these facts, we 
present the following nondeterministic algorithm to verify that there is a path p in 
T starting from q. such that S,, ~0 kj A nondeterministic Turing machine (TM) 
M guesses p’ and the set C of states appearing in q”. Next, it verifies that p’ is a 
finite path starting from qo in T, that the subgraph containing nodes of C is strongly 
connected, and that there is an edge from the last state of p’ to a state in C. Then 
M uses the following algorithm to verify if (S,, SO) kf: For each node x in p’ or C, 
M maintains a set label(x) that, at the end, contains the set of subformulas offtrue 
at x and that is initially set to the empty set. For each g E SF(f) in the increasing 
order of length(g) and for each node x, label(x) is updated using the following rules: 

( 1) Add g = P to label(x) iff P E q(x). 
(2) Add g = lgl to label(x) iff g, 4 label(x). 
(3) Add g = g, A g2 to label(x) iff g,, g2 E label(x). 
(4) Add g = Fg, to label(x) iff gl E label(y) for some y E C or x is in p’ and there 

is a node y in p’ after x such that gl E label(y). 
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A4 accepts ifffE label(q,,) at the end of this procedure. 
It can easily be shown that the previous algorithm works correctly and that it is 

polynomial-time bounded in card(w + length(f). Thus, determination of truth in 
an R-structure is NP-complete. 

(ii) Satisfiability is NP-hard because Boolean satisliability is NP-hard. 
Left f E L(F). From Theorem 3.4, if f is satisfiable, then it is satisfiable in 

structure S = (s, [), where size(S) 5 length(f). A nondeterministic TM A4 that 
checks for satistiability offoperates as follows: M guesses init and range(S) such 
that length(init(S)) I length(f), card(range(S)) < length(f). Next it uses a labeling 
algorithm similar to the previous one to accept or rejectf: Clearly, M is polynomial 
time bounded in length(f). 0 

It is to be noted that Lemmas 3.1 and 3.2 are used in the proof of Theorem 3.5. 
The satisfiability problem for L(F) is also shown to be in NP in [4] by proving a 
linear-size model theorem. However, our techniques are different from those used 
in [4], and these techniques are also used for the problem of truth in an R-structure. 

LEMMA 3.6. Let f E &F, X) and S = (s, [) be such that S, si Ff;; then there 
exists a finite sequence u containing si such that u I s, length(u) I length(f ), and 
for all structures V = (v, ‘P) where u 5 v I s and $0 is a restriction of ,C, V, si kf 

PROOF. The lemma is proved by induction on the structure off: The lemma is 
easily seen to hold for the base cases when f is an atomic proposition or negation 
of an atomic proposition. We prove the induction step for the case whenf= Xfi. 
Let f= Xf; and S, Si Ef: Then S, &+I l==1;. Let u’ be the sequence corresponding 
tofi given by the induction hypothesis and u be the sequence starting with si and 
followed by u’. (Note that any two successive states in s also appear successively 
in any subsequence of s containing them.) It is easily seen that u satisfies the lemma 
forf: The proof for the case when f = Ffi is exactly similar, and for the other cases 
in which f = f, A f2 orf= fi V f~, the proof is easily seen. q 

THEOREM 3.7. The following problems are NP-complete for L(F, X) also: 

(i) determination of truth in an R-structure, 
(ii) satisfiability. 

PROOF. Determination of truth in an R-structure is shown to be NP-hard by 
the same proof given for L(F). This is because the formulas used in this proof are 
also formulas in E(F, X). Satisfiability is NP-hard since 3-SAT is NP-hard. 

From Lemma 3.6, it easily follows that a formula f E E(F, X) is satisfiable iff it 
is satisfiable in a structure S with size(S) 5 length(f). Using the same techniques 
given in the proof of Theorem 3.5 and using Lemma 3.6, it is straightforward to 
see that the two problems in Theorem 3.7 are in NP for L(F, X). Cl 

4. The Complexity of L(F, X), L(U), and L(U, S, X) 

The main results of this section are summarized in the following theorem. 

THEOREM 4.1. The following problems are PSPACE-complete for the logics 
L(F, X), L(U), and L(U,S,X): 

(i) satisfiabilt’ty, 
(ii) determination of truth in an R-structure. 

The proof of the Theorem 4.1 is based on the following lemmas. 
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Let S = (s, t), T = (t, K) be structures such that, for some m z 0, the following 
conditions are satisfied: 

Vi, 0 5 i 5 m, ti = s;; Vi, i > m + 1, ti = Si-1, 

and 7r is an extension of [ such that 

&I+,) = &J, 

that is, T is obtained by duplicating the mth state in S successively once. The 
following lemma is easily proved by induction on the formulaf: 

LEMMA 4.2. For any f E L(U), T, t, i= f if T, tm+l I= f and for any 6 in s, 
S, 6 i=f z#-T, 6 EJ: 

Lemma 4.2 states that, by duplicating a state successively, we do not change the 
truth value of a formula in L(U). Note that the lemma is not true for L(U, X). 

LEMMA 4.3. Determining truth in an R-structure is polynomial-time reducible 
to the satisfiability problem for L(F, X), L(U), and L(U, S, X). 

PROOF. Let T = (ZV, R, 7) be an R-structure and let f E L(U, S, X). Let 
5% be the set of atomic propositions appearing in J Let 9, = (Px 1 x E NJ and 
9, n JP~ = 0. 9, contains one new atomic proposition for each state in N. 

Let x E N and g, be the conjunction of all Q such that Q E v(x), let Q E %, g2 
be the disjunction of all Q such that Q E (92 - v(x)), and let g3 be the disjunction 
of all PY such that (x, y) E R and 

fx = Px 3 (g, A 182 A Xg,). 

Let h, be the disjunction of all P, such that x E N, let h2 be the conjunction of 
allf, such that x E N, and let h3 assert that exactly one proposition in 9, is true 
at any point and 

f’ = G(hl A h:! A hs). 

Any structure T = (t, 7r) such that T, to kf has the following property. At each 
state in t, exactly one proposition in P1 is true. If P, is true at a state, then all 
propositions in q(x) are true in that state, all propositions in ( P2 - v(x)) are false 
in that state, and in the next state PY is true for exactly one y such that (x, y) E R. 
Let q E N and f” = f A f A Pp It can easily be seen that there is a path p in S 
starting from q such that S,, SO E f iff f” is satisfiable. If f E L(F, X), then f” E 

W, W. 
In f, we can avoid the X operator using the U operator in the following way. 

We replace the formula Xg3 by g’ defined as follows: 

g’ = { ;;:)g?‘[Px U (g3 A lPJ]), 
if (x, xl B R, 
otherwise. 

If (x, x) 4 R, then g’ causes P, to repeat successively a finite number of times 
before PY is true for some y that is a neighbor of x. However, Lemma 4.2 states 
that this does not change the truth value of the formula A that is, f is true in a 
structure in which P, does not repeat iff it is true in a structure in which P, repeats 
successively a finite number of times. It is easily seen that there is a path p in T 
starting from q such that S,, SO l= f iffy” is satisfiable. These reductions are clearly 
polynomial reductions. Cl 
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I I 

LEMMA 4.4. Determination of truth in an R-structure is PSPACE-hard for 
L(F, X) and L(U). 

PROOF. Let A4 = (Q, Z, {, V,, VR, Vi) be a one-tape deterministic TM where Q 
is the set of states, Z is the alphabet, c Q X Z + Q X Z X (L, R), VA, V,, VI are 
the accepting, rejecting and initial states, respectively. Let Mbe S(n)-space bounded 
such that S(n) is bounded by a polynomial in n. We assume that after M enters 
the state V, or V, it remains in that state without updating the contents of the 
tape. An id of A4 is appropriately defined. Let a = al a2 . . . a, be an input to M. 

Let T = (N, R, v) be an R-structure shown in Figure 2. 
Let 9= (P, 1 c E’ (Q x Z) U Z] U {Bl, EI1 be the set of atomic propositions. 

The structure in Figure 2 has S(n) diamonds connected in a chain, and, in each 
diamond, there are card(Q x Z U Z) number of vertical vertices. In each diamond, 
on each vertical vertex, exactly one atomic proposition is true, and every atomic 
proposition of the form PO, where u E (Q X Z U Z), is true on some vertical vertex 
of the diamond. Each subpath between BI and EI represents an id of M, and a 
path from BI represents a sequence of ids of A4. 

Using 2S(n) X operators, the relation between the contents of a tape cell in 
successive ids can be asserted. Because of this, polynomial-length bounded formulas 
in L(F, X) can be obtained asserting the following conditions: All the ids on a path 
p starting from BI are valid, the first id is the initial id containing the input string 
al a2 . . . a,, each successive id follows from the previous one-by-one move of M, 
and the final id appears on the path. 

Let f, be the conjunction of formulas asserting these conditions. It is easily seen 
that there is a path p from BI in T such that S,, so k fa iff M accepts a. For any 
input a, f0 can be obtained in polynomial time. We briefly sketch how we can 
avoid the use of X operator in fa by using U operator. We introduce additional 
propositions Qo, Q,, . . . , QsCn, to mark the left and right end points of successive 
diamonds. Let el be the disjunction of all Qi for 0 I i 5 s(n). The position of the 
ith cell in an id is indicated by the truth of the formula gi = (Tel U Q;); that is, g; 
is true at a state iff that state corresponds to the ith cell in an id. Let e2 be the 
disjunction of all P, such that u E Q x Z. The following formula asserts that each 
id has exactly one composite symbol: 

where 

GIBI 3 BI U ((le2 A lB1) U (e2 A dl))], 

dl = Tel U (e, A (Tel U BI)). 

The formula [lg; U (gi A P,,)] asserts that the ith cell in the first id contains the 
symbol u. From this it is straightforward to see how we can assert that the first id 
is the initial id. Let hl, h2 be propositional formulas. Then the following formula 
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asserts that, if the state corresponding to the ith cell in an id satisfies h,, then the 
state corresponding to the jth cell in the next id satisfies hZ: 

G[(gi A hl) 2 (1BI U &!)I, 

where 

d2 = BI A [lgj U (gj A h2)]. 

From this it is easy to see how we can assert that the contents of successive ids 
are properly related. Now it is straightforward to see how the formula fa can be 
obtained. The resulting formulaf, E L(U). Cl 

Let S = (.s, [) be a structure andfE L(U, S, X). For any state Si in s, let [&J= 

(g E SF(f) 1 S, Si k g). Note that the number of such subsets % 21ength(f). 

LEMMA 4.5. In S = (s, [), ifsi, sj are two states SUCK that [si]s,f = [sj]s,f, then 
for the structure S’ = (s’, [‘), where S’ = (SO, ~1, . . . , si-1, sj, sj+l, . . .) and [’ is 
restriction of [ to states in s, the following property holds: 

[S&J = [SLls’,J. Vsk such that sk is present in s and in s’. 

Lemma 4.5 can be proved by induction on the length of the formulaf: 

A formula g is said to be a U-formula if it is of the form gl U g2. Let g = gl U g2 
be a U-formula such that S, Si k g. We say that g is fulfilled before Sj iffj > i and 
there is an 1 such that i I 15 j and S, SI l= g2. A structure S = (s, 4) is said to be 
ultimately periodic with starting index i and period m if Vk 2 i [(Sk) = [(Sk+& 

LEMMA 4.6. For the structure S = (s, 6) let i, p be intergers such that p > 0, 
[S;]SJ = [si+p]s,r, and every U-formula in [si]s,/ is fulfilled before si+p. Let S’ = 
(s’, C;‘) be an ultimately periodic structure with starting index i and period p such 
that Vk < i + p [(Sk) = (‘(s;). Then for any g E SF(f), the following conditions 
hold 

(a) Vk < i + p S, sk t= g lg” S’, s,( I= g, 
(b) Vk z i S’, sb I= g l! S’, sb+p I= g. 

PROOF. We prove (a), (b) by structural induction on g. 

Basis: If g is atomic, then (a), (b) follow trivially. 

Induction: Assume (a), (b) hold for g,, g2 E SF(f). By a simple argument, it 
can easily be shown that (a), (b) hold for g = lgl, gl A g2. In Case 1 and Case 2, 
we prove that (a), (b) hold for g = gl U g2, gl S g2: a similar argument can be given 
forg= Xg,. 

Case l:g=g, Ug2. We prove (a). (b) can be proved similarly. Assume for 
some k c i + p S, Sk b g. Assume k < i. From the hypothesis of the lemma 
it follows that, for some I such that k I 1 < i + p, S, SI l= g2 and Vj k 5 j < 1, 
S, sj l= g,. By the induction hypothesis, the above property holds for S’ also. Hence, 
S’, si l= g. Now assume i 5 k < i + p. The interesting case occurs when Vj k 5 j 
< i + p, S, Sj k 182, S, Sj E gr. In this case, S, Si+p k g and, hence, S, Si E g. From 
the hypothesis of the lemma and the induction hypothesis for (b), it can easily be 
seen that S’, s; E g. The implication in the other direction can also be proved 
similarly. 
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Case 2:g=g,Sgz. Thenfork<i+pSskl=g 
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iff (31rkS,sl~g*andVjl<j~kS,sj~ggl) 
iff (31 I k S’, s; l= g2 and Vj I < j I k S’, s,! I= g,) 

(due to induction hypothesis) 
iff S’, si t= g. 

We would like to prove that (b) also holds for g. Assume for k 2 i, S’, si I= g. 
Then there exists 1 I k such that S’, s[ l= g2 and for all j, such that 1 < j ZG k, 
S’, sj I==,. Fork 2 i + p or (k < i + p and I 2 i), the result can easily be seen. So 
we consider the case in which I< i I k < i + p. In this case, owing to the induc- 
tion hypothesis for (a), it can be seen that S, SI l= g2 and for all j such that 1 < j 5 
i S, Sj l= g,. Hence, S, si l= g. Owing to the hypothesis of the lemma, we see that 
S, s;+~ l= g. Thus, one of the following two cases holds: 

(i) 3m(k<m<i+pandS,s,~g2andVjsuchthatm<jIi+pS,sj~gl). 

By the induction hypothesis for (a), Condition (i) is also satisfied by S’. Owing 
to the induction hypothesis for (b), it follows that for all j such that i + p 5 j % 
k + p S’, sj’ I= g,. Hence, S’, sL+~ l= g. 

(ii) Vjiij5i+pS,SjRg~. 

Owing to the induction hypothesis for (a), Condition (ii) holds for S’ also. Owing 
to the induction hypothesis for (b), 

Vj k 5 j 5 k + p S’, s/ I= gl. 

Hence, S’, sL+~ l= g. The induction step for the reverse implication in (b) can be 
similarly proved. 0 

THEOREM 4.7 (ULTIMATELY PERIODIC MODEL THEOREM). A formula f E 
L(U, S, X) is satisfiable iflit is satisfiable in an ultimately periodic structure S = 
(s, [) with starting index 1 5 2’+‘e”@h(f) period p I 4’+‘engfhU) and Vk 2 I[s&/ = 
[ s,++,,]s,~, and every U-formula in [ S,&J is fulfilled before sk+p. 

PROOF. Let f be a satisfiable formula. Since f may refer to the past, it may not 
be satisfiable at the beginning of a structure. For this reason we consider g = FJ: 
Clearly, there exists a structure T = (t, a) such that T, to l= g. Let I, m be integers 
such that [t&-,g = [t,+,JTa and the condition (*) holds: 

(*) Every U-formula in [t,lTx is fulfilled before t/+m. 

It is easily seen that 1, m exist. Now we repeatedly apply the reductions of Lemma 
4.5 to states between to and tl, or to states between t/ and t/+,,, (excluding to, tr, t,+,) 
without violating (*), until no more such reductions are possible. In the resulting 
sequence, 

(a) there are at most 21ength(g) states before tt, 
(b) there are at most length(g).2 length@) states between tl and tl+,,,. 

(a) follows trivially if we observe that, in the resulting sequence, there are no two 
states before tr that satisfy exactly the same set of subfomulas of g. If(b) does not 
hold, then there exist at least length(g) + 1 states between t/ and tl+,,, that satisfy 
the same set of subformulas of g; that is, there exist at least length(g) intervals 
between these states. It is easily seen that there exist at least one interval among 
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these, such that every U-formula in SF(g) that is satisfied at SI is fulfilled at a state 
outside this interval and between tl and tl +m, since there are fewer than length(g) 
U-formulas in SF(g). Hence, we could have carried a reduction of Lemma 4.5 for 
the two end states of this interval without violating (*). This contradicts our 
assumption. 

Let t’ be the resulting sequence after the reductions, and let T’ = (t’, 7’) be 
the structure, where 7’ is the restriction of 17 to the states in t’. There exist integers 
i 5 2leWth(g), p < 4leWkZ) such that tl, t:+p satisfy the same subformulas of g, any 
U-formula in SF(g) that holds at tl is fulfilled before t;+p Using Lemma 4.6, we 
obtain a periodic structure S with starting index i 5 21engthtg), period p CE 41engthcg) 
satisfying the condition of the lemma, such that S, SO l= g. 0 

In [2], a theorem similar to the above is proved for a restricted version of PDL. 

PROOF OF THEOREM 4.1. Let f be a formula in L(U, S, X). As above, we con- 
sider g = Ff(=True Uf). Note thatfis satisfiable iff g is satisfiable at the beginning 
of an ultimately periodic structure. We describe below a nondeterministic TM A4 
that checks for satistiability of g. M guesses two numbers nl 5 21engthcg), n2 5 41engthcg), 
which are supposed to be the starting index and period of an ultimately periodic 
structure. Next, M guesses the subformulas that are true at the beginning and 
verities that g is in this set. At this point, it checks for Boolean consistency, and it 
checks that any subformulaf, Sf2 is in this set ifff2 is in this set. 

Subsequently, M guesses the subformulas that are true in the next state and 
verities their consistency with the subformulas that are guessed to be true in the 
present state. If Subpresent, Subnext are the formulas guessed to be true at the present 
state and the next state, respectively, it verities that the following conditions hold 
for each g E SF(f): 

g = Xf; E Subpresent iff fi E Subnext, 
g = J; U h E SUbpresent iff f2 E Subpresent 

or (1; E SUbpresent and .h U f2 E Sub,,& 
g =fi Sh E Subnext ifl h E Subnext 

or (5 E Subnext and f; S h E SUbpresent). 

It also checks the Boolean consistency whenever it guesses a set of subformulas 
to be true at any state; that is, for each g E SF(f), 

g = .fi A f2 E f+&xesent iff f;, h E Sub,,,,,; 
g = -!h E Subpresent iff fi 4 Subpresent. 

M continues this process, each time incrementing the counter. When the counter 
is nl, it notes that it is in the periodic part of the structure. It saves the set of 
subformulas Sub,,.id, guessed to be true at the beginning of the period, and it 
reinitializes the counter. It continues guessing the subformulas in the next state 
and incrementing the counter. At each instance, it has to keep three sets of 
subformulas: those that are true in present state, those true in the next state,. and 
those true at the beginning of the period. When the counter has value n2, it stops 
guessing and takes Subwtid to be the set of subformulas true in the next state. At 
each step in this procedure, it checks the consistency of the subformulas guessed. 
It also verifies the following condition. Each formula of the form V; Uf2) E Subwtiti 
is eventually fulfilled within the period, that isf2 is present in the set of subformulas 
guessed to be true somewhere within the period. It can easily be proved by induction 
that M accepts an input formula iff it is satisfiable. Clearly, M uses space linear in 
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length(f). Using Savitch’s theorem [8], it follows that there is a polynomial space- 
bounded deterministic TM that decides satisfiability. Cl 

5. Complexity of Extensions of the Logic 

In [lo], propositional linear temporal logic is extended with the addition of 
operators corresponding to regular right linear grammars. A regular right linear 
grammar is a regular grammar in which all the production rules are of the form 
N + aM or N + a, where N, M are the nonterminals in the grammar and a is a 
string of terminal symbols. Let R be a regular right linear grammar with terminal 
symbols al, a2, . . . , a,, and nonterminal symbols NI, N2, . . . , N,,,. Iffy, f2, . . . , fn 
are formulas in the logic, then so is N,(fi,f2, . . . ,fn) for 1 I j 5 m. For a structure 
S = (s, 0, S, Sk I= Nj(fi,ji . . * ,fn) iff there exists a finite or infinite string ai,,, ai,, 
Ui,, . . . generated by R from Nj such that, for all 1 I 0, S, s/.+k FJ,. If CY = ai,, ai,, 
. . . has the previous property, then we say that (Y makes Nj(fi, . . . ,J,) true at Sk. 

For notational convenience, we assume that the nonterminal symbols in different 
grammars are denoted by different letters with subscripts. 

Example. Consider the grammar No + al a2 NO. It generates the infinite string 
ala2ala2. . . . S, so I= NO (True, P) iff P holds at all even states in s. 

For convenience, we assume that each production rule in the grammar has, at 
most, one terminal symbol. Note that, for any grammar, we can obtain an 
equivalent grammar with the previous property by increasing the size of the 
grammar by at most a constant factor. For any formula fin this logic, we define 
SF(f) inductively as follows: 

If f = P, then SF(P) = (PI, 
f=fi Ah orf; Uh orf; Sh then SF(P) = SW2 U SF(h) U cf), 
f= 1J; or XFI then SF(f) = SF(J) U (f), 

.f= Nj(fi,h, .. . , fn) where Nj is a nonterminal in the previous regular 
grammar, then SF(f) = SF(J) U SF(&) U . . . U SF(fn) U (Nj(f,, f2, 

. . . ) fn) 115j5rnl. 

We extend SF(f) by adding to it lg for every g present in the previously defined 
set after eliminating double negations. With the above definition of SF(f), it can 
easily be seen that Lemma 4.5 holds for this logic. We prove Theorem 4.1 for ETL 
also. 

Let S = (s, C;) be a structure and Ni(fi, fi, . . . , f,) be a formula. For j L 0, 
we define a labeled tree I’(S, j, Ni) in which each node is labeled with a subformula 
of the form N,(f,, . . . , f,) as follows: The root of the tree is labeled with Ni(f;, f2, 
. . . , f,). Let x be a node of the tree at a depth I that is labeled with Nk(fi, . . . ,f4). 
For each production rule of the form Nk + a,N,, such that S, Sj+l ESp, x has a son 
with label N,(fi, . . . , f,). 

LEMMA 5.1. S, Sj I= lNi(fi, . . . , fq) iff there is no finite string that makes 
Ni(fi, . - . , f,) true at sj and the tree I’($ j, Ni) isfinite. 

PROOF. Assume S, Sj I= lNi(fi, . . . , f4). Clearly, there is no finite string 
that makes Ni(f;, . . . , f,) true at Sj. Now contrary to the lemma, assume that 
I’(& j, Ni) is infinite. Since this tree is finitely branching from Konig’s infmitary 
lemma, it follows that I’(& j, Ni) has an infinite path. From this it is easily seen 
that there is an infinite string ai,,, ai,, . . . generated by the grammar starting from 
Ni such that, for all 1 2 0, S, Sj+/ k A,. Hence, S, Sj I= Ni(fi, . . . , f,), which is a 
contradiction. 
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Now assume that I’(S, j, Ni) is finite and that there is no finite string that makes 
Ni(f;, . - - , f,) true at +. NOW if S, Sj E Ni(f;, . . . , f,), then there should be an 
infinite string that makes Ni(fi, . . . , f,) true at Sj and this would make I’($ j, Ni) 
infinite, a contradiction. Hence, S, Sj l= lNi(f;, . . . ,f,). 0 

Let S, Sj E lNi(fi, . . . , f,). Then I’(& j, Ni) is finite. Let 1 be the maximum 
depth of any node in T(S, j, Ni) and let m be any integer such that m 2 I+ j. Then 
we say that lNi(fi, . . . , f,) at Sj is fulJilled before s,,,. 

LEMMA 5.2. Let S, i, p, f be as in Lemma 4.6, with the additional constraint 
that for every subformula of theform TNjcf;, . . . , f,) in [si]s,/, lNj(J, . . . , f,) at si 
is fulfilled before si+p. Also let S’ be as in Lemma 4.6. Then (a), (b) of Lemma 4.6 
also hold for ETL. 

PROOF. We prove (a), (b) of Lemma 4.6 by induction on the structure of 
g. Clearly, it is enough if we prove the induction step for the case in which g = 
N,ti, . . . , f,), where N, is a nonterminal in a grammar with terminal symbols al, 
a2, . . . , aq, since the other cases are proved in Lemma 4.6. Let S, Sk l= g for k < 
i + p. Assume k < i. Now we have the following two cases: 

(i) g is satisifed at Sk owing to a string of length I (i - k) generated from 
N,; that is, there is a finite string a,,, a,,, . . . , a,,,?, generated from N,, where 
r zz (i - k) and, for all 1, 0 5 I< r S, s(k+n l= fm,. Using the induction hypothesis for 
(a), (b), it is easily seen that S’ si l= g. 

(ii) g is satisfied at Sk owing to a string of length > (i - k) generated from N,. 
From this it is easily seen that there is a finite string (Y = amo, a,,, . . . , a,,?,, and a 
nonterminal NY, where r = i - k such that N, can be reached from N,, with the 
string (Y using the production rules of the grammar and, for all 10 5 I< r, S, 
&+I l= fm,. Now we have two subcases: (a) N, is satisfied at Si owing to a finite string 

P = ai,, aj,, . . . , aj,-, of length I p. In this case, using the induction hypothesis, it 
is easily seen that S’, si l= g. (b) N, is satisfied at Si owing to a string of length >p. 
In this case, there is a string /? = aj,,, aj,, . . . , ajP, and a nonterminal N, such that 
N, can be reached from N,, with the string /3 using the production rules of the 
grammar, S, Si+p l= N,(fi, . . . , f,) and, for all 10 I 1 < p, S, si+t LJ,. Since si, si+p 
satisfy the same subformulas, it follows that S, Si K N,(f;, . . . , f,). Now by 
repeatedly using the previous argument, the following is easily seen: There is a 
finite or infinite string y = aj,, aj,, . . . , generated from N, such that, for all 1, 0 5 
I< length of y, S, Si+t LA, where t = 1 mod p. Now from the induction hypothesis 
for (a), (b) it is seen that for all 10 I I< length of y S’, si l=J, and hence S’, sil l= 
Nv(.h, . . . , f,). From this it follows that S’, SL I= g. 

A similar argument can be given for the case when i 5 k < i + p. 
Assume S, Sk l= 18, where k I i. Then clearly 1g at Sk is fulfilled before Si+p. 

Hence, by the induction hypothesis for (a), (b) it follows that S’, si l= lg. Assume 
i < k < i + p. The interesting case occurs when 1g at Sk is not fulfilled before 
S(i+p-l). Then, let N,,, . . . , Nt, be the labels of the nodes at depth (i + p - k) in 
I’(& k, NJ. Clearly Vv such that 1 5 v 5 r, S, Si+p l= lN,Jfi, . . . , f,) and hence 
S,~iklN~~cf;, . . . , f,). Clearly, all these formulas at Si are fulfilled before Si+a. 
Now from the induction hypotheses for (a), (b), it easily follows that S’, si l= lg. 

It is straightforward to see that (b) holds for g. 0 

THEOREM 5.3. A formula f in ETL is satisfiable iff it is satisfiable in an 
ultimately periodic structure S = (s, [) ,with starting index 1 I 2’fcardcsFc/jj, period 
p I cc~4WfN for some constant c, and Vk 2 1, [s&J. = [sk+p]S,j. and all the 
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U-formulas and all subformulas of the form lN,,(fi, . . . , f,) in [S&J are fulfilled 
before Sk+. 

PROOF. As in the proof of Theorem 4.7, let g = Ff and T = (t, 7) be such that 
T, to l= g. Let 1, m be intergers such that [tJr,g = [tl+m]T,g and 

(*) Every U-formula in [tJT, is fulfilled before t I+,,,, and for every subformula of 
the form 1N,(fi, . . . ,f,) E [thx, lNr(f;, . . . , f,) at tl is fulfilled before tl+,,,. 

If ti is a state appearing between tl and tl+m, then let C( ti) = (N,(fi, . . . , f,) 1 for 
some subformula lN,c1;, . . . , f,) E [tJTx, N&, . . . , f,) is the label of a node in 
I’(T, I, Nr) at a depth (i - I)). We say that two states ti, tj between t/, tl+,,, are 
equivalent if C(ti) = C(tj) and [ ti]T,g = [tj]T,g. It can easily be seen that the number 
of such equivalence classes 5 4 card(SF(g)). If ti, tj are such equivalent states and if we 
delete all states between ti and tj(excluding tj but including ti), then, in the resulting 
structure, lN,(fi, . . . , f,) still holds at tl, since it remains fulfilled before tl+,,,. Now 
we carry out this reduction repeatedly for the states between tr and tl+,,, without 
violating (*) until no more such reductions can be carried out. We also repeatedly 
carry out the reduction of Lemma 4.5 to states before t/ until no more such 
reductions can be carried out. In the resulting structure, there are at most 2card(sF(b’)) 
states before tt and at most card(SF(g)).4 card(SF(g)) states between t! and tl+,. The 
remainder of the proof is same as that for Theorem 4.7. 0 

THEOREM 5.4. The following problems are PSPACE-complete for ETL: 

(i) satisfiability, 
(ii) determination of truth in an R-structure. 

PROOF. We first consider the satisfiability problem. We assume that the gram- 
mars corresponding to the regular operators are encoded as part of the input. In 
this case, if the length of the input is n, then card(SF(f)) I 2n, where f is the input 
formula. We modify the proof of Theorem 4.1 as follows: The two guessed integers 
IZ~, n2 should be ~2~“, c2”, respectively, where c is the constant of Theorem 5.3. In 
addition, the operation of M is to be modified as follows: 

At any time Nj(fi,ji, . . . , f,) is in the set of subformulas guessed to be true at 
any state, iff either (1) there is a production rule of the form Nj +P ak NI in the 
grammar, fk is present in the set of formulas guessed to be true in the present 
state, and AKfi,.fi, . . . , f,) is present in the set of formulas guessed to be true 
in the next state, or (2) there is a production rule of the form Nj + ak and fk 
is present in the set of subformulas guessed to be true in the present state. 

For each formula of the form lNj(fi, f2, . . . , f,) present in the set of subfor- 
mulas guessed to be true at the beginning of the periodic part, M keeps a set of 
subformulas denoted by cb(Nj(f;, f2, . . . , fp)). Roughly, if Nk E gC(Nj(fi, . . . , f,)), 
then Nk(f;, . . . , f,) should be false at the present state. At the beginning of the 
periodic part, this set contains only Nj. If Ppresent, ‘P,,,, denote the value of P in the 
present and next state, then sb is updated as follows: P&Nj(fi,f2, . . . ,f,)) = (NI 1 
there is a production rule NP + ak N/ in the grammar such that NP E (P,,,,,(Nj(fi, 

h, ** . , f,)) and fk is present in the set of subformulas guessed to be true in the 
present state]. M makes sure that cO(Nj(f;, fi, . . . , f4)) becomes empty at some 
point within the periodic part of the structure. This guarantees that I’(& i, Nj) is 
finite where S is the guessed periodic structure, and i is the beginning of the period. 
The consistency checks of the previous paragraph guarantee that there is no finite 
string that makes Nj(fi, . . . , f,) true at the beginning of the period. Owing to 
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TABLE I 
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Logic Satisliability Validity 
Truth in an 
R-Structure 

L(F) 
i(F, Xl 

NP-complete Co-NP-complete NP-complete 

W, W 
L(U) 
w, w 
WJ, s, w PSPACE-complete PSPACE-complete PSPACE-complete 

Linear time logic with Regu- 
lar operators 

Lemma 5.1, these conditions guarantee that lNj(fi, . . . ,f,) is true at the beginning 
of the period. 

It can easily be proved that M accepts an input formula in the extended logic iff 
the formula is satisfiable. It is easily seen that M is polynomial-space bounded. The 
problem of determining truth in an R-structure is in PSPACE, since it is reducible 
to the satisfiability problem. 0 

6. Conclusion 

In this paper we have examined the complexity of satisfiability and truth in a 
particular structure for various propositional linear temporal logics. We have 
determined that these ,problems are NP-complete for L(F) and PSPACE-complete 
for L(F, X), L(U), L(U;S, X), and Wolper’s extended logic (see Table I). It should 
be observed that the satisfiability problem is PSPACE-complete for L(F, X) whereas 
it is only NP-complete for E(F, X), as the later logic does not permit arbitrary 
alternation of 1, F. 

These complexity results first appeared in an early version of this paper [9] in 
1982. Subsequently, satisliability for L(U, X) was also shown to be in PSPACE in 
the journal version of [2] by using a different technique that does not work for 
L(U, S, X). One of the theorems used in [9] to prove that satisliability for the 
extended temporal logic of Section 5 is in PSPACE contained an error. The error 
was independently corrected by us in the version submitted to this journal and by 
Wolper in the journal version of [lo]. 

Finally, it is interesting to compare our results with the corresponding results for 
branching-time logics. Since branching-time formulas are interpreted over the 
states of a structure, rather than over executions sequences, determining truth in a 
particular structure is much easier and, in many cases, is in polynomial time P 
[I]. Satisliability, on the other hand, can be shown to be exponential-time hard for 
branching-time logics with a next-time operator and is shown to be PSPACE- 
complete in [3] for many branching time logics with only the F and G operators. 
Thus, deciding satisfiability is apparently more difficult for the branching-time 
logics than for the corresponding linear-time logics. 

REFERENCES 

1. CLARKE, E. M. , AND EMERSON, A. Design and synthesis of programming skeletons using branching 
time temporal logic. IBM Conference on Logics of Programs. Lecture Notes in Computer Science, 
vol. I3 I, Springer-Verlag, New York, 198 I. 

2. HALPERN, J. Y. , AND REIF, J. H. The propositional dynamic logic of deterministic, well-structured 
programs. In Proceedings of the 22nd Symposium on Foundations of Computer Science (Nashville, 
Tenn.) IEEE, New York, 1981, pp. 322-334. Also in Theoret. Comput. Sci., 27(1983), 127-165. 



The Complexity of Propositional Linear Temporal Logics 749 

3. LADNER, R. The computational complexity of provability in systems of modal propositional logic. 
SIAM J. Comput. 6 (1977), 467-480. 

4. ONO, H. AND NAKAMURA, A. On the size of refutation Kripke models for some linear modal and 
tense logics. Studia Logica 39 (1980), 325-333. 

j. MANNA, Z. , AND WOLPER, P. Synthesizing concurrent programs from temporal logic specilica- 
tions. IBM Conference on Logics of Programs. Lecture Notes in Computer Science, vol. 131, 
Springer-Verlag, New York, 1981. 

6. PNUELI, A. The temporal logic of programs. In Proceedings of the 18th Annual Symposium on 
Foundations of Computer Science (Providence, RI.). IEEE, New York, 1971, pp. 46-57. 

7. ROBERTSON, E. L. Structure of complexity in weak monadic second order theories of the natural 
numbers. In Proceedings of the 18th Annual Symposium on Foundations of Computer Science 
(Providence, RI.). IEEE, New York, 1977, pp. 161-171. 

8. SAVITCH, W. J. Relationships between nondeterministic and deterministic tape complexities. J. 
Comput. Syst. Sci. 4, 2 (1970), 177-192. 

9. SISTLA, A. P. , AND CLARKE, E. M. The complexity of propositional linear temporal logics. In 
Proceedings of the 14th Annual ACM Symposium on Theory of Computing (San Francisco, Calif. 
May 5-7). ACM, New York, 1982, pp. 159-168. 

10. WOLPER, P. Temporal logic can be more expressive. In Proceedings of 22nd Symposium on 
Foundations ofcomputer Science (Nashville, Tenn.). IEEE, New York, 1981, pp. 340-348. Also in 
InJ: Control 56 (1983), 72-99. 

RECEIVED APRIL 1982; REVISED OCTOBER 1984; ACCEPTED JANUARY 1985 

Journal of the Association for Computing Machinery, Vol. 32, No. 3, July 1985. 


