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A b s t r a c t  

This paper is concerned with the Computational complexity of the following prob- 
lems for various modal logics L: (1). The L-deducibility problem: given a finite set of 
~ormulas S and a formula A, determine if A is in the modal theory THL(S) formed 
With all theorems of the modal logic L as logical axioms and with all members of S 
as proper axioms. (2). The L-consistency problem: given a finite set of formulas S, 
determine if the theory THL(S) is consistent. 

Table 1 is a comparison of complexity results of these two problems and the corre- 
sponding provability and satisfiability problems for modal logics K, T, B, $4, KD45 and 
$5. The complexity results of the deducibility problem for extensions of K4 are a direct 
consequence of a modal deduction theorem for K4 (cf. [17, 15]). The NP-completeness 
of the S4-consistency problem is due to Tiomkin and Kaminski [15]. 

The main contribution of this paper is that we can show that the deducibility prob- 
lem and the consistency problem for any modal logic between K and B are EXPTIME- 
hard; in particular, for K, T and B, both problems are EXPTIME-complete. 

"This research was supported by the National Science Council of ROC under contract number NSC82- 
0408-E-002-428. 
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Table 1: The complexity of various decision problems for some normal modal logics. Note: 
all problems are complete for the corresponding complex classes. 

[Logic(L) K T B ]$4 KD45, $5 

L-provability PSPACE PSPACE PSPACE PSPACE Co-NP 
L-satisfiability PSPACE PSPACE PSPACE PSPACE NP 
L-deducibility EXPTIME EXPTIME EXPTIME PSPACE Co-NP 
L-consistency EXPTIME EXPTIME EXPTIME NP NP 

1 I n t r o d u c t i o n  

In the study of logic, there are two kinds of relations that are usually discussed. One is 
a unary relation consisting of formulas derivable from the logical axioms and inference 
rules of a logic and is called the provability relation; the other is a binary relation, which 
we call the dedueibility relation and is concerned with whether a given formula can be 
derived from the logic with an additional set of formulas given as proper axioms. The 
provability relation is always a subrelation of the deducibility relation with the given 
set of proper axioms restricted to empty. 

For classical logic, since the deduction theorem holds, if the set of proper axioms 
is restricted to finite sets, the deducibility relation can be reduced to the provability 
relation. As a result both relations are inter-reducible and any complexity results about 
either one apply to the other too. 

For modal logic, however, there are at least two deducibility relations that have 
been defined in the literature [7] depending on whether we admit the rule of necessi- 
tation(NEC): "If S ~- A, then S ~- o A ' .  For the deducibility relation without the rule 
NEC, the deduction theorem also holds. Hence its decision problem is reducible to 
the corresponding provability relation. Consequently, any complexity result about this 
relation can resort to the better known result of the corresponding provability relation. 
For this reason, we need only pay our attention to the deducibility relation admitting 
the rule NEC. 

Under the deducibilty relation discussed, we can also define the notion of cosistency. 
We say that a set of formulas is consistent for a modal logic L (or simply L-consistent) 
if _1_ (falsity) is not derivable from the logic with the set of formulas given as proper 
axioms. 

In this paper we are concerned with the complexity of the deducibility relations and 
the corresponding consistency relations for some modal logics. We restrict the given 
set of proper axioms in both relations to finite sets. 

In the study of modal logic, traditional logicians seem more interested in the prov- 
ability relation and its corresponding satisfiability relation; in contrast, the deducibil- 
ity relation receives less attention. Nevertheless, in the application of modal logics 
to artificial intelligence, the deducibility relation has been found to be fundamental 
for nonmonotonic reasoning [12, 15, 14]. In fact, our study of the complexity of these 
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relations is motivated by Moore's autoepistemic logic (AEL)[13] and McDermott 's Non- 
monotonic modal logic (NML) [12], each suggesting a fixed point semantics and the 
corresponding fixed point operator being defined in terms of the deducibility relations 
in some modal logics. 

Table 1 is a comparison of the complexities of these two problems and the corre- 
sponding provability and satisfiability problems for modal logics K, T, B, $4, KD45 and 
$5. The complexity results of the deducibility problem for extensions of K4 are a direct 
consequence of a modal deduction theorem for K4 (cf [17, 15]). The NP-completeness 
of the S4-consistency problem is due to Tiomkin and Kaminski [15]. 

The main results of this paper is that we can show that the deducibility problem 
and the consistency problem for any modal logic between K and B are EXPTIME-hard; 
in particular, for K, T and B, both problems are EXPTIME-complete. 

The rest of this paper is organized as follows. In Section 2 we define the deducibillty 
and the consistency relations and their semantics. Section 3 summarizes all complexity 
results. Section 4 presents the upper bound result by showing that the deducibility 
relation for K, T and B is in EXPTIME. Finally, in Section 5 we presents the lower 
bound result by showing that the consistency relation for any normal logic between K 
and B is EXPTIME-hard. 

2 P r e l i m i n a r i e s  

All modal logics considered in the paper share a common language whose alphabet F 
includes : (1). a denumerable set P V of propositional variables: p, q, r . . .  and (2). the 
five symbols: ( , ) ,  --, A, O. The set of modal formulas M F  is defined to be the least 
set of words over I" including PV such that if A and B are members of M F ,  then so 
are (A A B), -,A and DA. The other connectives such as V (or), D (implication), <~ 
(possibility), 2. (falsity) as treated as abbreviations in the standard way. 

By a (modal) logic L we mean any subset of M F  that contains all tautologies and 
is closed under modus ponens (MP) and uniform substitution (US). So the classical 
propositional logic (in M F )  is the smallest modal logic, while the set of all modal 
formulas is the largest modal logic. 

We say that a modal logic L is normal if it contains the formula K : O(p D q) D 
(Op D nq) and is closed under necessitation(NEC): OA E L whenever A E L. The 
smallest normal modal logic is called K. 

There are famous normal modal logics that can be defined as smallest normal logics 
containing parts of the following formulas: 

D: rip D Op. 

T:  Op D p. 

B: pD n~p. 

4: Op D OOp. 

5: Op D <>Op. 
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As adopted by Chellas[2], we use K a l . .  "an, where rt > 0 and each ai E {D, T, B, 4, 5}, 
to denote the smallest normal modal logic containing all logical axioms ai's. Accord- 
ing to such convention, the tive famous normal modal logics more usually called D, 
T, B, $4 and $5 are in fact equal to KD, KT ,  K T B ,  KT4  and KT45, respectively. 
In what follows let .A4 denote the set of logics {L I L = Kal . . .a ,~ ,n  > 0 and each 
a i e  {D ,T ,B ,4 ,5} } .  

EaA:h member of a modal logic is called a theorem of the logic. We use the relational 
notation ~'L A to stand for the hc t  that A E L. In [11], F-L is called the prov~bility 
relation for L (or simply the L-provability relation). For any logics L1, L2, we say L2 is 
an eztension of L 1 (and L 1 is a sublogic of L2) iff LI is a subset of L2. We say another 
logic L is between L1 and L2 if L1 C L C L2. Therefore, the normal logics D, T, and 
K4 are between K and $4; D, T, B and $4 are all extensions of K. 

Let L be any modal logic, the L-deducibility relation, with some abuse of terminol- 
ogy, also denoted I-L, is defined to the the smallest subset of 2 MF x M F  closed under 
the following rules: 

1. S I-L A whenever A E S or A is a theorem of L (Axioms). 

2. S I-L B if S bL A and S f-L A D B (MP). 

3. S F'L C3A if S ~-L A (NEC). 

The L-theory of S, denoted THL(S), is the set {A fi M F  ] S ~-L A}. If S F-L A, we 
say A is deducible from S under L. Each formula in S is called a proper axiom of the 
theory. 

We say that a set of formulas S is L-consistent if .t. (falsity) ~ THL(S).  

2.1 S e m a n t i c s  

The semantics of many modal logics can be defined by Kripke model. A (Kripke) model 
M is a triple < W, R, h > where 

�9 W is a nonempty set (of worlds), 

�9 R is a binary relation on W called the accessibility relation of M; if (w, w') E R, 
we say w' is accessible from w. The pair (W, R) is called the frame of M. 

�9 h E W --, 2 PV is the valuation function, which assigns to each world w in W a 
subset h(w) of P V  with the intention that p is true at world w iff p E h(w). 

Given any Kripke model M = <  HI, R, h >, any world w E W, and any formula 
A E MF ,  the truth definition of A at w of M, denoted M, w ~ A, is defined inductively 
as follows. 

�9 M , w ~ p i f f p E h ( w )  

�9 M , w ~ - , A i f f M ,  w ~ A  

�9 M , w  ~ A ^ B  if fM, w ~ A and M,w ~ B. 

�9 M, w ~ ClA iff for every w' E W accessible from w, M, w t ~ A. 
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We say A is M-satisfiable if there is a world w in W such that  M, w ~ A and say 
A is M-valid, denoted M ~ A, ifM, w ~ A for every world w in W. 

We are particularly interested in Kripke models whose accessibility relations R 
satisfy parts of the following conditions: 

serial(D): for any w E W, there is a w' in W such that  wRw'. 

reflexive(T);  for any w E W, wRw. 

s y m m e t r l e ( B ) :  for any w, w' E W, if wRw ~ then wIRw. 

t r ans i t i ve (4 ) :  for any w, w I, w" E W, if wRw t and wIRw II, then wRw". 

eucl ldean(5):  for any w, w ~, w" E W, if wRw t and wRw", then wIRw ". 

With some abuse of terminology, we use K r l  " " r n ,  where (n > 0) and each 
ri E {D,T,4 ,5 ,  B , H} ,  to denote also the class of  all kripke models whose accessi- 
bility relations satisfy all ri's. Each member of the class K r l  . - ' r n  of models is called a 
K r l  - . .m-model .  Analogous to modal logics, we also use T, D, B, $4 and $5 to denote 
the classes of KT, KD, KTB, KT4 and KT45 models, respectively. 

Let L be any class of models. We say that  a formula A is (locally) L-satisfiable 
if there exists an L-model M and a world w in W such that M , w  ~ A; we say A 
is globally L-satisfiable if there is an L-model in which A is valid. We say that A is 
L-valid, denoted ~L A, if A is valid in every L-model. 

By treating every (finite) set of formula as an abbreviation of the conjunction of all 
its members, we extend the definitions of previously defined notions like satisfiability, 
validity, etc. to sets of formulas in the obvious way. So, for example, M, w ~ S iff 
M,w  ~ A for every A E S. 

The following well-known proposition establishes the equivalence of the semantical 
validity relation and the syntactic provability relation for each modal logic given here. 

P r o p o s i t i o n  1 [2] Let L be any logic in .A4. Then for any modal formula A, A is 
L-provable iff A is L-valid. 

For each normal logic L E M ,  Kripke's model can also supply suitable semantics 
for the L-deducibility relation and the L-consistency relation. Given a set of formula ~' 
and a formula A, we say that A is a global L-consequence of S if for all L-models M,  if 
every formula of S is valid in M, then so is A. D. McDermott  [12] has shown that  for 
L E {T, $4, $5) ,  the deducibility relation and the consequence relation are identical. 
The following proposition is a simple generalization of his result. 

P r o p o s i t i o n  2 Let L be any logic in .A4. Then for any set of formula S and for any 
formula A, S t-L A iff A is a global L-consequence of S. 

The following is a corollary of Proposition 2. 

P r o p o s i t i o n  3 Let L be any logic in .s Then for any set of formula S, S is L- 
consistent iff S is globally L-satisfiable. 
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3 C o m p l e x i t y  resul ts  

We now begin to study the complexity of the deducibility relation and the consistency 
relation for the logics K, T, B, $4, KD45 and $5. The results, together with the 
complexity of other related decision problems, are listed in Table 1. The complexity 
results of the provability and the satisfiability problems for these logics can be found 
in [11, 8, 3]. 

For all extensions of K4 we have the following modal deduction theorem. 

P ropos i t i on  4 [7, 15, 17] Let L be any extension of K4. Then S F-L A iffF- L (ASA 
A{OB I B �9 S))  ~ A. 

According to Proposition 4, for every extension of K4, the deducibility relation and 
the unary provability relation are inter-reducible and hence are in the same complexity 
class. Since the provability relation for $4 is PSPACE-complete [11] and the provability 
relation for KD45 and $5 [11, 8] is CoNP-complete, we thus have the following corollary. 

Coro l la ry  1 1. The S4-deducibility relation is PSPA CE-complete. 

2. The KD45-deducibility relation and the SS-deducibility relation are CoNP-complete. 

That the L-consistency relation for every modal logic L is NP-haxd is rather obvious 
since every Boolean formula(modal formula without modality) is satisfiable for classical 
propositional logic if and only if it is L-consistent. Hence the consistency relations for 
KD45 and $5, like their corresponding satisfiability problems, axe NP-complete. 

We might guess that for $4 the consistency problem has the same complexity as 
the satisfiability problem. But in fact the guess is incorrect. The following result is 
due to Tiomkin and Kaminski [15]. 

L e m m a  2 [15] Let S be any set of modal formulas. Then S is S4-consistent iff S is 
SS-consistent. 

Corol la ry  3 The consistency relation for any of S4, KD$5 and $5 is NP-complete. 

Compared with the satisfiability problem, for $4 the consistency relation becomes 
easier to decide. On the contrary, for all normal logics between K and B, we will show 
in Section 5 that the consistency relation is EXPTIME-haxd; hence for K, T and B 
the global consistency relation is harder than the satisfiability relation, which has been 
shown to be PSPACE-complete. 

4 T h e  deduc ib i l i t y  re lat ions  for K, T and B are 
in E X P T I M E  

In this section we show that the global deducibility relations (and the global consistency 
relations) for the three modal logics K, T and B are all in EXPTIME. The result in 
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fact also holds for many other logics between K and B, such as D, K B ,  OM,  O M  +, 
OB, OB + [16] etc. For simplicity, we choose here only K,  T and B as representatives. 

To show that  the deducibility relation is in EXPTIME,  our strategy is to use the 
semantical notion and show that the global consequence relations for K, T and B 
can all be reduced to the unsatisfiability problem of propositional dynamic logic with 
converse (CPDL). Since the latter problem is lmown to be EXPTIME-complete  [9], 
the deducibility relations thus are in EXPTIME as well. For an understanding of 
this section, we assume the readers are familiar with propositional dynamic logic with 
converse. Readers who are unfamiliar with CPDL are referred to Harel[9] 

T r a n s l a t i o n s  of  m o d a l  fo rmu la s  in to  C P D L  f o r m u l a s  

Let L be any of K, T and B. Let a be a fixed atomic program. Define the CPDL 
programs prL as follows. 

1. prK = a, 

2. p r T  = a U  T?, 

3. prB = a U a - U T ? .  

For each modal formula A, define the CPDL formula 

TrL(A) = A(O ~ [prL]), 

where A(n  ~ [prL] ) is the CPDL formula obtained from A with every occurrence 
of the [] connective in A replaced by the modality "[prL]". 

For each pair (S, A) where S is a finite set of modal formulas and A is a modal 
formula, now define three CPDL formulas 

1. f K (S ,A )  = ([a*]TrK(A S)) ^ TrK(-~A), 

2. IT(S, A) = ([a']TrT(A S)) ^ TrT(-,A), 

3. fB(S,  A) = ([(a O a -  U T ? ) ' ] T r s ( A  S)) ^ T r s ( - a ) .  

Intuitively, the formula fB(S,  A) say that there is a CPDL structure M and there 
is a world w at which A is false and at every world reachable from which S is true. 

L e m m a  4 [3] Let L is any of K,  T and B, S a finite set of modal formulas and A 
a modal formula. Then A is not an L-consequence of S iff fL(S,  A) is satisfiable for 
CPDL. 

It is easy to see that fg(S,  A) can be obtained from S and A in polynominal time; 
moreover, since the unsatisfiability problem for CPDL is known to be in EXPTIME 
[9]. We thus can have the following corollary. 

Corollary 5 For L E { K , T , B } ,  the L-deducibility relation and the L-consistency 
relation are in EXPTIME. 
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5 E X P T I M E - h a r d n e s s  of  the  cons i s t ency  rela- 
t ions  for logics b e t w e e n  K and B 
We now turn to the derivation of lower bound results. 

T h e o r e m  1 For any modal logic L between I~ and B, the L-consistency relation is 
EXPTIME-hard. 

Our method is borrowed and modified from that of Fischer and Ladner[5] for show- 
ing that the satisfiabillty problem of propositional dynamic logic (PDL) is EXPTIME- 
hard. The method is to reduce any language accepted by an alternating Turing machine 
operating in polynominal space to the L-consistency relation for any L between K and 
B. Since APSPACE = EXPTIME [1], the L-consistency relation thus is EXPTIME- 
hard. Similar methods have been used for showing EXPTIME-hardness of many in- 
tensional logics [4, 8, 6]. 

Let s be any language accepted by an alternating Taring machine TM which op- 
erates in space s(n), where s is a polynominal, 

Without loss of generality, assume that s(n) is computable in time polynominal of 
n and that any computation path of TM on any input never repeats a configuration. 
See Fischer and Ladner[5] for detail arguments. 

Let T M = ( Q, r, E, # ,  ~, qo, U) be a one-tape alternating Turing machine, where 

�9 Q is the set of states, 

�9 r is the tape alphabet, 

�9 E C r is the input alphabet, 

�9 # E F - ~ is the blank symbol, 

�9 $ C (Q • r )  • (Q x r • {L, R}) is the next move relation, 

�9 U C Q is the set of universal states, 

�9 Q - U is the set of existential states, and 

�9 q0 is the initial state. 

Let x be any input string of length n. Assume s(n) = m. Since TM never 
runs outside the first m tape cells, every configuration xrqy ~ of TM possibly reach- 
able from the initial configuration qoz can be represented by the triple (q, i, z), where 
i is the position (counted from 1) of the tape cell pointed to by the tape head and 
z = #xry~#('~+l-I='l-ly'l) is a string of length m + 2 storing not only the nonblank part 
of the configuration but also all tailing blanks up to the (rn + 1)-th tape cell in the 
configuration; moreover, a blank is inserted at the front serving as end marker, Now 
define CF m to be the set of (representations of) all configurations of T M  of length at 
most rn, i.e., C F "  = {(q,i,x) J q E Q, 0 < i < m +  1, Izl E # r " # ) .  

We construct a set of modal formulas STM(x) using propositional variables from 
PVTM(x), which is given as follows. 

1. PVTM(= ) consists of the following propositional variables: 
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�9 init,  which is used to identify the initial configuration, init  has the effect of 
preventing all predictions about successor configurations from being enforced 
to the initial configuration. 

�9 Ci,a where 0 < i < m + 1 and a 6 F, which is used to represent the tape 
contents of current configuration so that Ci,~ is true iff the ith tape cell 
contains a. 

�9 Hi, where 0 < i < m + 1, which is used to represent the head position so 
that Hi is ture iff the current tape head points to position i. 

�9 Qq, where q 6 Q, which is used to represent the state of the current config- 
uration. 

�9 Li, where 0 < i < 2, which is used to represent the value j rood 3 where j is 
the length of the computation path from the initial configuration to current 
configuration. Li has the effect of preventing all predictions about successor 
configurations from being enforced to predecessor configurations the current 
configuration. 

2. STM(~ ) is the union of the following sets. 

�9 $I = {VqeQ(Qq h ACeQ-{q} ~Qr 

$1 is the state constraint which says that each configuration has exactly one 
state. 

�9 $2 = Uo<i<m+1 {V~er(Ci, ^ A.,er-{,}-~Ci.,,)} u {Co,#, Cm+1,#) 

$2 says that each tape cell contains a unique symbol in r and the initial and 
the final cells must contain the blank symbol. 

�9 s3 = {-~H0, ~H..+I} U {V~<i<m(Hi ^ h~<j_<m,j~; ~Hj)} 

$3 says that the tape head must point to exactly one position in [1, m]. 

�9 $4 = {~Hi A Ci,a A Lj D I'-I(Lj+lmod3 A -~init D Ci,~) I 0 < i < m + 1,a 6 
r , o  < j _ < 2 }  

$4 says that all tape cells not pointed to by tape head remain unchanged in 
the next configuration. Note that the Lj+lmod3 A -.init appearing inside the 
box O has the effect of preventing the prediction that Ci,~ must be true from 
being enforced to the initial configuration, in which init  must be true, and 
the current and the predecessor configurations in which Lj+lmod3 must be 
false. 

$5 = {Hi A Ci,a A Qq A Lj D A(q,a,q,,a,,R)66 <>(Hi+I A Ci,a, A Qq, A Lj+Imod3 A 
-,init)A 
A(q,a,q',a',L)66 <>(Hi-1 A Ci,a' A Qq, A Lj+lmod 3 A -~init) 
I l < i < m ,  a 6 r ,  q 6 U a n d O < j < 2 }  

$4 and Ss encode the next-move relation for universal states. It describes 
how the current configuration moves to successor configurations and says that 
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the current configuration is accepted if all its successors are accepted. Note 
that the empty conjunction is defined to be T. The Lj+lmodS'S appearing 
at the right hand side of the implication say that if the length modulo 3 of 
the path from the initial configuration~to current configuration is j ,  then the 
length modulo 3 of the path from the initial configuration to every successor 
configuration is j + I rood 3. The "-,init's appearing at the right hand 
side of the implication indicate that no successor configuration is the initial 
configuration. 

Ss = {Hi A Ci,a A Qq A L i D V(q,~,r ^Ci,~, ^ Qq, ^ Lj+lmoaS ^ 
-~init)V V(q,a,q',a',L)r O(Hi-1 ACi,a, A Qq, A Lj+lmodS A -,init) 
I i < i < m ,  a E r ,  q E Q - U a n d O < j < 2 }  

$4 and 5'6 encode the next-move relation for existential states. Note that the 
empty disjunction is defined to be .I.. 

�9 Let ATM(x ) denote the encoding of the initial configuration: 

Qqo A H1 A Lo A Co,# A Al<i<n Ci,x~ A An+l<i<m+l Ci,#. 

Then let So = {<>init, init D ArM(x)}. 

So says firstly that there must exist a world at which init is true, and secondly 
that whenever init is true at a world, it is a world corresponding to the initial 
configuration. Note that <>init has the side effect of making accessible from 
each world a world corresponding to the initial configuration. 

The following proposition is easy to see. 

P ropos i t i on  5 SrM(x) can be obtained from (some encoding of) T M  and z in poly- 
nominal time. 

With the above explanation it is not hard to prove the following two lemmas, whose 
detail proofs can be found in Chen[3]. 

L e m m a  6 [3] I f  STM(x) is globally K-satisfiable, then x is accepted by TM.  

L e m m a  7 [3] If x is accepted by TM then STM(x ) is globally B-satisfiable. 

We can now prove the main theorem of this section. 

Proof .  (of  Theorem 1.) Let L be any modal logic between K and B, Let s be any 
language in EXPTIME accepted by an alternating TM which operates in polynominal 
space s(.). Let x be any input string. If x is accepted by TM,  then by Lemma 7 
and Proposition 2, STM(x) is globally B-consistent. Hence it is L-consistent. On the 
other hand, if z is not accepted by TM, by Lemma 6 and Proposition 2, STM(x) is not 
K-consistent. Hence it is not L-consistent. As a result, every language s in EXPTIME 
is polynominal-time reducible to the global L-consistency relation via the polynominal 
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time transformation (TM, x) --, STM(x ). The L-consistency relation thus is EXPTIME- 
hard. 

Theorem 2 For L E {K, T, B}, the L-consistency relation and the L-deducibility re- 
lation are EXPTIME-complete. 

Proof .  Direct consequence of Theorem 1 and Corollary 5 and the fact that EXPTIME 
is closed under complementation. 
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