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Abstract

We study the complexity of the combination of the Description Logics ALCQ and ALCQI
with a terminological formalism based on cardinality restrictions on concepts. These com-
binations can naturally be embedded into C2, the two variable fragment of predicate logic
with counting quanti�ers, which yields decidability in NExpTime. We show that this ap-
proach leads to an optimal solution for ALCQI , as ALCQI with cardinality restrictions has
the same complexity as C2 (NExpTime-complete). In contrast, we show that for ALCQ,
the problem can be solved in ExpTime. This result is obtained by a reduction of reason-
ing with cardinality restrictions to reasoning with the (in general weaker) terminological
formalism of general axioms for ALCQ extended with nominals . Using the same reduction,
we show that, for the extension of ALCQI with nominals, reasoning with general axioms
is a NExpTime-complete problem. Finally, we sharpen this result and show that pure
concept satis�ability for ALCQI with nominals is NExpTime-complete. Without nominals,
this problem is known to be PSpace-complete.

1. Introduction

Description Logics (DLs) can be used in knowledge based systems to represent and rea-
son about taxonomical knowledge of the application domain in a semantically well-de�ned
manner (Woods & Schmolze, 1992). They allow the de�nition of complex concepts (i.e.,
classes, unary predicates) and roles (binary predicates) to be built from atomic ones by
the application of a given set of constructors. For example, the following concept describes
those parents having at least two daughters:

Human u (Male t Female) u (> 2 hasChild Female) u 8hasChild:Human

This concept is an example for the DL ALCQ. ALCQ extends the \standard" DL ALC
(Schmidt-Schau� & Smolka, 1991) by qualifying number restrictions, i.e., concepts restrict-
ing the number of individuals that are related via a given role (here hasChild), instead of
allowing only for existential or universal restrictions like ALC. ALCQ is a syntactic variant of
the (multi-)modal logic K with graded modalities (Fine, 1972). In this paper we will study
problems for the DLs ALCQ and ALCQI. The latter extends ALCQ with the possibility to
refer to the inverse of role relations. Additionally, in this paper we will encounter nominals,
i.e., concepts referring to single elements of the domain. The extensions of ALCQ and ALCQI
with nominals are denoted by ALCQO and ALCQIO. An example concept of ALCQIO that
describes the common children of the individuals ALICE and BOB living with ALICE or BOB
is

9hasChild�1:ALICE u 9hasChild�1:BOB u 9livesWith:(ALICE t BOB):

c
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ALCQ ALCQO ALCQI ALCQIO
Concept Satis�ability PSpace-c. open PSpace-c. NExpTime-c.
GCIs ExpTime-c. ExpTime-c. ExpTime-c. NExpTime-c.
Cardinality Restr. ExpTime-c. ExpTime-c. NExpTime-c. NExpTime-c.

Figure 1: Complexity results established in this paper (shown in bold face)

Here, the parent relationship is expressed as the inverse of the hasChild relationship.

A terminological component (TBox) allows for the organisation of de�ned concepts and
roles and forms the knowledge base of a DL system. TBoxes studied in DLs range from weak
ones allowing only for the acyclic introduction of abbreviations for complex concepts, over
TBoxes capable of expressing various forms of general axioms, to cardinality restrictions
that can express restrictions on the number of elements the extension of a concept may
have. In the following, we give examples of these three types of assertions.

The following TBox introduces parent as an abbreviation for a human having at least
one child and whose children are all human, toddler for very young human, and busy parent
for a parent having at least two children that are toddlers.

Parent = Human u (> 1 hasChild) u 8hasChild:Human

Toddler = Human u VeryYoung

BusyParent = Parent u (> 2 hasChild Toddler)

The next expressions are general axioms stating that males and females are disjoint (?
denotes the empty concept) and that males or females coincide with those humans having
exactly two human parents.

Femaleu Male = ?

Femalet Male = Human u (= 2 hasChild�1 Human)

Finally, the following expression is a cardinality restriction expressing that there are at most
two earliest ancestors:

(� 2 (Human u (6 0 hasChild�1 Human)))

Cardinality restriction were �rst introduced by Baader et al. (1996) as a terminological
formalism for the DL ALCQ; as we will see, they can express general axioms and hence are
the most expressive of the terminological formalisms considered in this paper.

A key component of a DL system is a reasoning component that provides services like
subsumption or consistency tests for the knowledge stored in the TBox. A subsumption
test, for example, could infer from the previous de�nitions that both Male and Female are
subsumed by Human and that BusyParent is subsumed by Parent as each busy parent must
have at least one child. There exist sound and complete algorithms for reasoning in a large
number of DLs and di�erent TBox formalisms that are optimal with respect to the known
worst-case complexity of these problems (see Donini et al., 1996, for an overview).
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The Complexity of Cardinality Restrictions and Nominals

In this paper we establish a number of new complexity results for DLs with cardinality
restrictions or nominals. Figure 1 summarises the new complexity bounds established in
this paper. All problems are complete for their respective complexity class. This paper is
organised as follows.

After giving some basic de�nitions in Section 2, we show that consistency of TBoxes
with cardinality restrictions forALCQI is aNExpTime-complete problem (Section 3). Mem-
bership in NExpTime is shown by a translation to the satis�ability problem of C2 (Pa-
cholski et al., 1997)1, the two variable fragment of �rst order predicate logic augmented
with counting quanti�ers. The matching lower bound is established by a reduction from a
NExpTime-complete bounded domino problem.

In Section 4, we show that reasoning with cardinality restrictions can be reduced to
reasoning with the (weaker) formalism of general axioms in the presence of nominals. This
yields interesting complexity results both for reasoning with cardinality restrictions and
with nominals. Using a result from (De Giacomo, 1995), the reduction shows that consis-
tency of TBoxes with cardinality restrictions for ALCQ is in ExpTime. This improves the
result from (Baader et al., 1996), where it was shown that the problem can be solved in
NExpTime. Moreover, we show that for a DL with number restrictions, inverse roles, and
nominals reasoning problems become NExpTime-hard, which solves an open problem from
(De Giacomo, 1995). This combination is of particular interest for the application of DLs
in the area of reasoning with database schemata (Calvanese et al., 1998a, 1998b).

2. The Logic ALCQI

De�nition 2.1 Let NC be a set of atomic concept names and NR be a set of atomic role
names. Concepts in ALCQI are built inductively from these using the following rules: all

A 2 NC are concepts, and, if C, C1, and C2 are concepts, then also

:C; C1 u C2; and (> n S C);

are concepts, where n 2 N and S = R or S = R�1 for some R 2 NR.

A cardinality restriction of ALCQI is an expression of the form (> n C) or (6 n C)
where C is a concept and n 2 N; an ALCQI-TCBox 2 is a �nite set of cardinality restrictions.

The semantics of concepts is de�ned relative to an interpretation I = (�I ; �I), which
consists of a domain �I and a valuation (�I) that maps each concept name A to a subset

AI of �I and each role name R to a subset RI of �I ��I . This valuation is inductively
extended to arbitrary concepts using the following rules, where ]M denotes the cardinality

of a set M :

(:C)I := �I n CI ;

(C1 uC2)
I := CI

1 \ C
I
2 ;

(> n R C)I := fa 2 �I j ]fb 2 �I j (a; b) 2 RI ^ b 2 CIg � ng;

(> n R�1 C)I := fa 2 �I j ]fb 2 �I j (b; a) 2 RI ^ b 2 CIg � ng:

1. The NExpTime-result is valid only if we assume unary coding of numbers in the counting quanti�ers.

This is the standard assumption made by most results concerning the complexity of DLs.

2. The subscripted \C" indicates that the TBox consists of cardinality restrictions
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	x(A) := Ax for A 2 NC

	x(:C) := :	x(C)
	x(C1 u C2) := 	x(C1) ^	x(C2)
	x(> n R C) := 9�ny:(Rxy ^	y(C))
	x(> n R�1 C) := 9�ny:(Ryx ^	y(C))

	y(C) := 	x(C)[xny; ynx]

	(./ n C) := 9./nx:	x(C) for ./ 2 f>;6g

	(T ) :=
V
f	(./ n C) j (./ n C) 2 Tg

Figure 2: The translation from ALCQI into C2

An interpretation I satis�es a cardinality restriction (> n C) i� ](CI) � n, and it sat-

is�es (6 n C) i� ](CI) � n. It satis�es a TCBox T i� it satis�es all cardinality restrictions
in T ; in this case, I is called a model of T and we will denote this fact by I j= T . A TCBox

that has a model is called consistent.
With ALCQ we denote the fragment of ALCQI that does not contain any inverse roles

R�1.

Using the constructors from De�nition 2.1, we use (8 C) as an abbreviation for the
cardinality restriction (6 0 :C) and introduce the following abbreviations for concepts:

C1 t C2 = :(:C1 u :C2) (6 n S C) = :(> (n+ 1) S C)
C1 ! C2 = :C1 tC2 (= n S C) = (6 n S C) u (> n S C)

9S:C = (> 1 S C) > = A t :A for some A 2 NC

8S:C = (6 0 S :C)

TBoxes consisting of cardinality restrictions have �rst been studied in (Baader et al.,
1996) for the DL ALCQ. Obviously, two concepts C;D have the same extension in an in-
terpretation I i� I satis�es the cardinality restriction (6 0 (C u :D) t (:C uD)). Hence,
cardinality restrictions can express terminological axioms of the form C = D, which are
satis�ed by an interpretation I i� CI = DI . General axioms are the most expressive TBox
formalisms usually studied in the DL context (De Giacomo & Lenzerini, 1996). One stan-
dard inference service for DL systems is satis�ability of a concept C with respect to a TCBox
T , i.e., is there an interpretation I such that I j= T and CI 6= ;. For a TBox formalism
based on cardinality restrictions this is easily reduced to TBox consistency, because obvi-
ously C is satis�able with respect to T i� T [ f(> 1 C)g is a consistent TCBox. For this
the reason, we will restrict our attention to TCBox consistency; other standard inferences
such as concept subsumption can be reduced to consistency as well.

Until now there does not exist a direct decision procedure for ALCQI TCBox consistency.
Nevertheless this problem can be decided with the help of a well-known translation of
ALCQI-TCBoxes to C2 (Borgida, 1996), given in Figure 2. The logic C2 is the fragment of
predicate logic in which formulae may contain at most two variables, but which is enriched
with counting quanti�ers of the form 9�`. The translation 	 yields a satis�able sentence of
C2 if and only if the translated TCBox is consistent. Since the translation from ALCQI to C2
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can be performed in linear time, theNExpTime upper bound (Gr�adel et al., 1997; Pacholski
et al., 1997) for satis�ability of C2 directly carries over to ALCQI-TCBox consistency:

Lemma 2.2 Consistency of an ALCQI-TCBox T can be decided in NExpTime.

Please note that theNExpTime-completeness result from (Pacholski et al., 1997) is only
valid if we assume unary coding of numbers in the input; this implies that a number n may
not be stored in logarithmic space in some k-ary representation but consumes n units of
storage. This is the standard assumption made by most results concerning the complexity
of DLs. We will come back to this issue in Section 3.3.

3. Consistency of ALCQI-TCBoxes is NExpTime-complete

To show that NExpTime is also the lower bound for the complexity of TCBox consistency,
we use a bounded version of the domino problem. Domino problems (Wang, 1963; Berger,
1966) have successfully been employed to establish undecidability and complexity results
for various description and modal logics (Spaan, 1993; Baader & Sattler, 1999).

3.1 Domino Systems

De�nition 3.1 For n 2 N, let Zn denote the set f0; : : : ; n�1g and �n denote the addition

modulo n. A domino system is a triple D = (D;H; V ), where D is a �nite set (of tiles)

and H;V � D�D are relations expressing horizontal and vertical compatibility constraints

between the tiles. For s; t 2 N, let U(s; t) be the torus Zs� Zt, and let w = w0 : : : wn�1 be
a word over D of length n (with n � s). We say that D tiles U(s; t) with initial condition
w i� there exists a mapping � : U(s; t)! D such that, for all (x; y) 2 U(s; t),

� if �(x; y) = d and �(x�s 1; y) = d0, then (d; d0) 2 H (horizontal constraint);

� if �(x; y) = d and �(x; y �t 1) = d0, then (d; d0) 2 V (vertical constraint);

� �(i; 0) = wi for 0 � i < n (initial condition).

Bounded domino systems are capable of expressing the computational behaviour of
restricted, so-called simple, Turing Machines (TM). This restriction is non-essential in the
following sense: Every language accepted in time T (n) and space S(n) by some one-tape TM
is accepted within the same time and space bounds by a simple TM, as long as S(n); T (n) �
2n (B�orger et al., 1997).

Theorem 3.2 ((B�orger et al., 1997), Theorem 6.1.2)

Let M be a simple TM with input alphabet �. Then there exists a domino system D =
(D;H; V ) and a linear time reduction which takes any input x 2 �� to a word w 2 D� with
jxj = jwj such that

� If M accepts x in time t0 with space s0, then D tiles U(s; t) with initial condition w

for all s � s0 + 2; t � t0 + 2;

� if M does not accept x, then D does not tile U(s; t) with initial condition w for any
s; t � 2.
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Corollary 3.3

There is a domino system D such that the following is a NExpTime-hard problem:

Given an initial condition w = w0 : : : wn�1 of length n. Does D tile the torus
U(2n+1; 2n+1) with initial condition w?

Proof. Let M be a (w.l.o.g. simple) non-deterministic TM with time- (and hence space-)
bound 2n deciding an arbitrary NExpTime-complete language L(M) over the alphabet �.
Let D be the according domino system and trans the reduction from Theorem 3.2.

The function trans is a linear reduction from L(M) to the problem above: For v 2 ��

with jvj = n, it holds that v 2 L(M) i� M accepts v in time and space 2jvj i� D tiles
U(2n+1; 2n+1) with initial condition trans(v).

3.2 De�ning a Torus of Exponential Size

Similar to proving undecidability by reduction of unbounded domino problems, where de�n-
ing in�nite grids is the key problem, de�ning a torus of exponential size is the key to
obtaining a NExpTime-completeness proof by reduction of bounded domino problems.

To be able to apply Corollary 3.3 to TCBox consistency for ALCQI, we must characterise
the torus Z2n � Z2n with a TCBox of polynomial size. To characterise this torus, we use
2n concepts X0; : : : ;Xn�1 and Y0; : : : ; Yn�1, where Xi (resp., Yi) codes the ith bit of the
binary representation of the X-coordinate (resp., Y-coordinate) of an element a.

For an interpretation I and an element a 2 �I , we de�ne pos(a) by

pos(a) := (xpos(a); ypos(a)) :=

�n�1X
i=0

xi � 2
i;

n�1X
i=0

yi � 2
i

�
; where

xi =

(
0; if a 62 XI

i

1; otherwise
yi =

(
0; if a 62 Y I

i

1; otherwise :

We use a well-known characterisation of binary addition (e.g. (B�orger et al., 1997)) to
relate the positions of the elements in the torus:

Lemma 3.4 Let x; x0 be natural numbers with binary representations

x =

n�1X
i=0

xi � 2
i and x0 =

n�1X
i=0

x0i � 2
i:

Then

x0 � x+ 1 (mod 2n) i�

n�1̂

k=0

(

k�1̂

j=0

xj = 1)! (xk = 1$ x0k = 0)

^
n�1̂

k=0

(

k�1_
j=0

xj = 0)! (xk = x0k) ;

where the empty conjunction and disjunction are interpreted as true and false, respectively.
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Tn =
�
(8 9east:>); (8 9north:>);
(8 (= 1 east�1 >)); (8 (= 1 north�1 >));
(> 1 C(0;0)); (> 1 C(2n�1;2n�1));

(6 1 C(2n�1;2n�1)); (8 Deast uDnorth)
	

C(0;0) =

n�1

G
k=0

:Xk u

n�1

G
k=0

:Yk

C(2n�1;2n�1) =

n�1

G
k=0

Xk u

n�1

G
k=0

Yk

Deast =

n�1

G
k=0

(

k�1

G
j=0

Xj)! ((Xk ! 8east::Xk) u (:Xk ! 8east:Xk)) u

n�1

G
k=0

(

k�1G
j=0

:Xj)! ((Xk ! 8east:Xk) u (:Xk ! 8east::Xk)) u

n�1

G
k=0

((Yk ! 8east:Yk) u (:Yk ! 8east::Yk))

Dnorth = : : :

Figure 3: A TCBox de�ning a torus of exponential size

The TCBox Tn is de�ned in Figure 3. The concept C(0;0) is satis�ed by all elements
a of the domain for which pos(a) = (0; 0) holds. C(2n�1;2n�1) is a similar concept, whose
instances a satisfy pos(a) = (2n � 1; 2n � 1).

The concept Dnorth is similar to Deast where the role north has been substituted for east
and variables Xi and Yi have been swapped. The concept Deast (resp. Dnorth) enforces that,
along the role east (resp. north), the value of xpos (resp. ypos) increases by one while the
value of ypos (resp. xpos) is unchanged. They are analogous to the formula in Lemma 3.4.

The following lemma is a consequence of the de�nition of pos and Lemma 3.4.

Lemma 3.5 Let I = (�I ; �I) be an interpretation, Deast;Dnorth de�ned as in Figure 3,
and a; b 2 �I .

(a; b) 2 eastI and a 2 DI
east implies: xpos(b) � xpos(a) + 1 (mod 2n)

ypos(b) = ypos(a)

(a; b) 2 northI and a 2 DI
north implies: xpos(b) = xpos(a)

ypos(b) � ypos(a) + 1 (mod 2n)

The TCBox Tn de�nes a torus of exponential size in the following sense:

Lemma 3.6 Let Tn be the TCBox as de�ned in Figure 3. Let I = (�I ; �I) be a model of
Tn. Then

(�I ; eastI ;northI) �= (U(2n; 2n); S1; S2) ;
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where U(2n; 2n) is the torus Z2n � Z2n and S1; S2 are the horizontal and vertical successor
relations on this torus.

Proof. We show that the function pos is an isomorphism from �I to U(2n; 2n). Injectivity
of pos is shown by induction on the \Manhattan distance" d(a) of the pos-value of an element
a to the pos-value of the upper right corner.

For an element a 2 �I we de�ne d(a) by

d(a) = (2n � 1� xpos(a)) + (2n � 1� ypos(a)):

Note that pos(a) = pos(b) implies d(a) = d(b). Since I j= (6 1 C(2n�1;2n�1)), there is

at most one element a 2 �I such that d(a) = 0. Hence, there is exactly one element a
such that pos(a) = (2n � 1; 2n � 1). Now assume there are elements a; b 2 �I such that
pos(a) = pos(b) and d(a) = d(b) > 0. Then either xpos(a) < 2n � 1 or ypos(a) < 2n � 1.
W.l.o.g., we assume xpos(a) < 2n � 1. From I j= Tn, it follows that a; b 2 (9east:>)I . Let
a1; b1 be elements such that (a; a1) 2 eastI and (b; b1) 2 eastI . Since d(a1) = d(b1) < d(a)
and pos(a1) = pos(b1), the induction hypothesis yields a1 = b1. From Lemma 3.5 it follows
that

xpos(a1) � xpos(b1) � xpos(a) + 1 (mod 2n)

ypos(a1) = ypos(b1) = ypos(a)

This also implies a = b because a1 2 (= 1 east�1:>)I and f(a; a1); (b; a1)g � eastI . Hence
pos is injective.

To prove that pos is also surjective we use a similar technique. This time, we use an
induction on the distance from the lower left corner. For each element (x; y) 2 U(2n; 2n),
we de�ne:

d0(x; y) = x+ y:

We show by induction that, for each (x; y) 2 U(2n; 2n), there is an element a 2 �I

such that pos(a) = (x; y). If d0(x; y) = 0, then x = y = 0. Since I j= (> 1 C(0;0)), there

is an element a 2 �I such that pos(a) = (0; 0). Now consider (x; y) 2 U(2n; 2n) with
d0(x; y) > 0. Without loss of generality we assume x > 0 (if x = 0 then y > 0 must hold).
Hence (x � 1; y) 2 U(2n; 2n) and d0(x� 1; y) < d0(x; y). From the induction hypothesis, it
follows that there is an element a 2 �I such that pos(a) = (x� 1; y). Then there must be
an element a1 such that (a; a1) 2 eastI and Lemma 3.5 implies that pos(a1) = (x; y). Hence
pos is also surjective.

Finally, pos is indeed a homomorphism as an immediate consequence of Lemma 3.5.

It is interesting to note that we need inverse roles only to guarantee that pos is injec-
tive. The same can be achieved by adding the cardinality restriction (6 (2n � 2n) >) to
Tn, from which the injectivity of pos follows from its surjectivity and simple cardinality
considerations. Of course the size of this cardinality restriction would only be polynomial
in n if we assume binary coding of numbers. Also note that we have made explicit use of
the special expressive power of cardinality restrictions by stating that, in any model of Tn,
the extension of C(2n�1;2n�1) must have at most one element. This cannot be expressed
with a ALCQI-TBox consisting of terminological axioms.
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3.3 Reducing Domino Problems to TCBox Consistency

Once Lemma 3.6 has been proved, it is easy to reduce the bounded domino problem to
TCBox consistency. We use the standard reduction that has been applied in the DL context,
e.g., in (Baader & Sattler, 1999).

Lemma 3.7 Let D = (D;V;H) be a domino system. Let w = w0 : : : wn�1 2 D�. There is
a TCBox T (n;D; w) such that:

� T (n;D; w) is consistent i� D tiles U(2n; 2n) with initial condition w.

� T (n;D; w) can be computed in time polynomial in n.

Proof. We de�ne T (n;D; w) := Tn[TD [Tw, where Tn is de�ned in Figure 3, TD captures
the vertical and horizontal compatibility constraints of the domino system D, and Tw en-
forces the initial condition. We use an atomic concept Cd for each tile d 2 D. TD consists
of the following cardinality restrictions:

(8
G
d2D

Cd); (8 G
d2D

G
d02Dnfdg

:(Cd uCd0));

(8 G
d2D

(Cd ! (8east:
G

(d;d0)2H

Cd0))); (8 G
d2D

(Cd ! (8north:
G

(d;d0)2V

Cd0))):

Tw consists of the cardinality restrictions

(8 (C(0;0) ! Cw0
)); : : : ; (8 (C(n�1;0) ! Cwn�1

);

where, for each x; y, C(x;y) is a concept that is satis�ed by an element a i� pos(a) = (x; y),
de�ned similarly to C(0;0) and C(2n�1;2n�1).

From the de�nition of T (n;D; w) and Lemma 3.6, it follows that each model of T (n;D; w)
immediately induces a tiling of U(2n; 2n) and vice versa. Also, for a �xed domino system
D, T (n;D; w) is obviously polynomially computable.

The main result of this section is now an immediate consequence of Lemma 2.2, Lem-
ma 3.7, and Corollary 3.3:

Theorem 3.8

Consistency of ALCQI-TCBoxes is NExpTime-complete, even if unary coding of numbers is
used in the input.

Recalling the note below the proof of Lemma 3.6, we see that the same argument also
applies to ALCQ if we allow binary coding of numbers.

Corollary 3.9

Consistency of ALCQ-TCBoxes is NExpTime-hard, if binary coding is used to represent
numbers in cardinality restrictions.

It should be noted that it is open if the problem can be decided in NExpTime, if binary
coding of numbers is used, since the reduction of C2 only yields decidability in 2-NExp-
Time.
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In the following section, we will see that, for unary coding of numbers, deciding con-
sistency of ALCQ-TCBoxes can be done in ExpTime (Corollary 4.8). This shows that the
coding of numbers indeed has an in
uence on the complexity of the reasoning problem. It
is worth noting that the complexity of pure concept satis�ability for ALCQ does not de-
pend on the coding; the problem is PSpace-complete both for binary and unary coding of
numbers (Tobies, 2000).

For unary coding, we needed both inverse roles and cardinality restrictions for the
reduction. This is consistent with the fact that satis�ability for ALCQI concepts with respect
to TBoxes consisting of terminological axioms is still in ExpTime, which can be shown by
a reduction to the ExpTime-complete logics CIN (De Giacomo, 1995) or CPDL (Pratt,
1979). This shows that cardinality restrictions on concepts are an additional source of
complexity. One reason for this might be that ALCQI with cardinality restrictions no longer
has the tree-model property.

4. Reasoning with Nominals

Nominals, i.e., atomic concepts referring to single individuals of the domain, are studied both
in the area of DLs (Borgida & Patel-Schneider, 1994; Donini et al., 1996) and modal logics
(Gargov & Goranko, 1993; Blackburn & Seligman, 1996; Areces et al., 1999). In this section
we show how, in the presence of nominals, consistency for TCBoxes can be polynomially
reduced to consistency of TBoxes consisting of general inclusion axioms, which, in general,
is an easier problem. This correspondence is used to obtain two novel results: (i) we show
that, for unary coding, consistency of ALCQ-TBoxes consisting of cardinality restrictions
can be decided in ExpTime; (ii) we show that, in the presence of both inverse roles and
number restrictions, reasoning with nominals is strictly harder than without nominals: the
complexity of determining consistency of TBoxes with general axioms rises from ExpTime

to NExpTime, and the complexity of concept satis�ability rises from PSpace to NExp-
Time.

De�nition 4.1 Let NI be a set of individual names (also called nominals) disjoint from
NC and NR. Concepts in ALCQIO are de�ned as ALCQI-concepts with the additional rule

that, for every o 2 NI , o is an ALCQIO-concept.

A general concept inclusion axiom for ALCQIO is an expression of the from C v D,

where C and D are ALCQIO-concepts. A TIBox for ALCQIO is a �nite set of general

inclusion axioms for ALCQIO, where the subscript \I" stands for \Inclusion".

The semantics of ALCQIO concepts is de�ned similar as for ALCQI, with the additional

requirement that every interpretation maps a nominal o 2 NI to a singleton set oI � �I;

o can be seen as a name for the element in oI. Please note that we do not have a unique
name assumption, i.e., we do not assume that o1 6= o2 implies oI1 6= oI2 .

An interpretation I satis�es an axiom C v D i� CI � DI. It satis�es a TIBox Tgci i�

it satis�es all axioms in Tgci; in this case I is called a model of Tgci, and we will denote

this fact by I j= Tgci. A TIBox that has a model is called consistent.

Cardinality restrictions, TCBoxes, and their interpretation for ALCQIO are de�ned anal-

ogously to ALCQI.
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With ALCQO we denote the fragment of ALCQIO that does not contain any inverse roles
R�1.

Lemma 4.2 Consistency of TCBoxes or TIBoxes both for ALCQO and ALCQIO is Exp-
Time-hard and can be decided in NExpTime, if unary coding of numbers is used.

Proof. Consistency of TIBoxes (and hence of TCBoxes) is ExpTime-hard already for (a
syntactical variant of) ALC (Halpern & Moses, 1992). Assuming unary coding of numbers,
we can reduce the problems to satis�ability of C2, which yields the NExpTime upper
bound.

4.1 Expressing Cardinality Restrictions Using Nominals

In the following we show how, under the assumption of unary coding of numbers, consistency
of ALCQI-TCBoxes can be polynomially reduced to consistency of ALCQIO-TIBoxes. It
should be noted that, conversely, it is also possible to polynomially reduce consistency
of ALCQIO-TIBoxes to consistency of ALCQI-TCBoxes: for an arbitrary concept C, the
cardinality restrictions f(6 1 C); (> 1 C)g force the interpretation of C to be a singleton.
Since we do not gain any further insight from this reduction, we do not formally prove this
result.

De�nition 4.3 Let T = f(./1 n1 C1); : : : (./k nk Ck)g be an ALCQI-TCBox. W.l.o.g., we

assume that T contains no cardinality restriction of the form (> 0 C) as these are trivially

satis�ed by any interpretation. The translation of T , denoted by �(T ), is the ALCQIO-TIBox
de�ned as follows:

�(T ) =
[
f�(./i ni Ci) j 1 � i � kg;

where �(./i ni Ci) is de�ned depending on whether ./i=6 or ./i=>.

�(./i ni Ci) =

(
fCi v o1i t � � � t o

ni
i g if ./i=6

foji v Ci j 1 � j � nig [ fo
j
i v :o`i j 1 � j < ` � nig if ./i=>

;

where o1i ; : : : ; o
ni
i are fresh and distinct nominals and we use the convention that the empty

disjunction is interpreted as :> to deal with the case ni = 0.

Assuming unary coding of numbers, the translation of a TCBox T is obviously com-
putable in polynomial time.

Lemma 4.4 Let T be an ALCQI-TCBox. T is consistent i� �(T ) is consistent.

Proof. Let T = f(./1 n1 C1); : : : (./k nk Ck)g be a consistent TCBox. Hence, there is a
model I of T , and I j= (./i ni Ci) for each 1 � i � k. We show how to construct a model
I 0 of �(T ) from I. I 0 will be identical to I in every respect except for the interpretation of
the nominals oji (which do not appear in T ).

If ./i=6, then I j= T implies ]CI
i � ni. If ni = 0, then we have not introduced

new nominals, and �(T ) contains Ci v :>. Otherwise, we de�ne (oji )
I0 such that CI

i �
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f(oji )
I0 j 1 � j � nig. This implies CI0

i � (o1i )
I0 [ � � � [ (onii )I

0

and hence, in either case,
I 0 j= �(6 ni Ci).

If ./i=>, then ni > 0 must hold, and I j= T implies ]CI
i � ni. Let x1; : : : xni be ni

distinct elements from �I with fx1; : : : ; xnig � CI
i . We set (oji )

I0 = fxjg. Since we have

chosen distinct individuals to interpret di�erent nominals, we have I 0 j= o
j
i v :o`i for every

1 � i < ` � ni. Moreover, xj 2 CI
i implies I 0 j= o

j
i v Ci and hence I 0 j= �(> ni Ci).

We have chosen distinct nominals for every cardinality restrictions, hence the previous
construction is well-de�ned and, since I 0 satis�es �(./i ni Ci) for every i, I 0 j= �(T ).

For the converse direction, let I be a models of �(T ). The fact that I j= T (and hence
the consistency of T ) can be shown as follows: let (./i ni Ci) be an arbitrary cardinality
restriction in T . If ./i=6 and ni = 0, then we have �(6 0 Ci) = fCi v :>g and,
since I j= �(T ), we have CI

i = ; and hence I j= (6 0 Ci). If ./i=6 and ni > 0, we have
fCi v o1i t� � �to

ni
i g � �(T ). From I j= �(T ) follows ]CI

i � ](o1i t� � �to
ni
i )

I � ni. If ./i=>,

then we have foji v Ci j 1 � j � nig[fo
j
i v :o`i j 1 � j < ` � nig � �(T ). From the �rst set

of axioms we get f(oji )
I j 1 � j � nig � CI

i . From the second set of axioms we get that, for

every 1 � j < ` � ni, (o
j
i )
I 6= (o`i)

I . This implies that ni = ]
S
f(oji )

I j 1 � j � nig � ]CI
i .

Theorem 4.5

Assuming unary coding of numbers, consistency of ALCQI-TCBoxes can be polynomially
reduced to consistency of ALCQIO-TIBoxes. Similarly, consistency of ALCQ-TCBoxes can be
polynomially reduced to consistency of ALCQO-TIBoxes.

Proof. The �rst proposition follows from the fact that �(T ) is polynomially computable
from T if we assume unary coding of numbers and from Lemma 4.4. The second proposition
follows from the fact that the translation does not introduce additional inverse roles. If T
does not contain inverse roles, then neither does �(T ), and hence the result of translating
an ALCQ-TCBox is an ALCQO-TIBox.

4.2 Complexity Results

We will now use Theorem 4.5 to obtain new complexity results both for DLs with cardinality
restrictions and with nominals.

4.2.1 ALCQ and ALCQO

De Giacomo (1995) obtains complexity results for various DLs by sophisticated polynomial
reduction to a propositional dynamic logic. The author establishes many complexity results,
one of which is of special interest for our purposes.

Theorem 4.6 ((De Giacomo, 1995), Section 7.3)

Satis�ability and logical implication for CNO knowledge bases (TBox and ABox) are Exp-
Time-complete.

The DL CNO studied by the author is a strict extension of ALCQO; TBoxes in his thesis
correspond to what we call TIBoxes in this paper. Unary coding of numbers is assumed
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throughout his thesis. Although a unique name assumption is made, it is not inherent
to the utilised reduction since is explicitly enforced. It is thus possible to eliminate the
propositions that require a unique interpretation of individuals from the reduction. Hence,
together with Lemma 4.2, we get the following corollary.

Corollary 4.7

Consistency of ALCQO-TIBoxes is ExpTime-complete if unary coding of number is assumed.

Together with Theorem 4.5, this solves the open problem concerning the lower bound
for the complexity of ALCQ with cardinality restrictions; moreover, it shows that the NExp-
Time-algorithm presented in (Baader et al., 1996) is not optimal with respect to worst case
complexity.

Corollary 4.8

Consistency of ALCQ-TCBoxes is ExpTime-complete, if unary coding of numbers in cardi-
nality and number restrictions is used.

4.2.2 ALCQIO

Conversely, using Theorem 4.5 enables us to transfer the NExpTime-completeness result
from Theorem 3.8 to ALCQIO.

Corollary 4.9

Consistency of ALCQIO-TIBoxes or TCBoxes is NExpTime-complete.

Proof. For TIBoxes, this is an immediate corollary of Theorem 4.5 and Theorem 3.8.
Reasoning with TCBoxes is as hard as for TIBoxes in the presences of nominals.

This results explains a gap in (De Giacomo, 1995). There the author establishes the
complexity of satis�ability of knowledge bases consisting of TIBoxes and ABoxes both for
CNO, which allows for qualifying number restrictions, and for CIO, which allows for inverse
roles, by reduction to an ExpTime-complete PDL. No results are given for the combina-
tion CINO, which is a strict extension of ALCQIO. Corollary 4.8 shows that, assuming
ExpTime 6= NExpTime, there cannot be a polynomial reduction from the satis�ability
problem of CINO knowledge bases to an ExpTime-complete PDL. Again, a possible expla-
nation for this leap in complexity is the loss of the tree model property. While for CIO and
CNO, consistency is decided by searching for a tree-like pseudo-models even in the presence
of nominals, this seems no longer to be possible in the case of knowledge bases for CINO.

Unique Name Assumption It should be noted that our de�nition of nominals is non-
standard for Description Logics in the sense that we do not impose the unique name as-
sumption that is widely made, i.e., for any two individual names o1; o2 2 NI , o

I
1 6= oI2 is

required. Even without a unique name assumption, it is possible to enforce distinct inter-
pretation of nominals by adding axioms of the form o1 v :o2. Moreover, imposing a unique
name assumption in the presence of inverse roles and number restriction leads to peculiar
e�ects. Consider the following TIBox:

T = fo v (6 k R >); > v 9R�:og
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Under the unique name assumption, T is consistent i� NI contains at most k individual
names, because each individual name must be interpreted by a unique element of the do-
main, every element of the domain must be reachable from oI via the role R, and oI may
have at most k R-successors. We believe that this dependency of the consistency of a TIBox
on constraints that are not explicit in the TIBox is counter-intuitive and hence have not
imposed the unique name assumption.

Nevertheless, it is possible to obtain a tight complexity bound for consistency of ALCQIO-
TIBoxes with the unique name assumption without using Theorem 4.5, but by an immediate
adaption of the proof of Theorem 3.8.

Corollary 4.10

Consistency of ALCQIO-TIBoxes with the unique name assumption is NExpTime-complete
if unary coding of numbers assumed.

Proof. A simple inspection of the reduction used to prove Theorem 3.8, and especially
of the proof of Lemma 3.6 shows that only a single nominal, which marks the upper right
corner of the torus, is necessary to perform the reduction. If o is an individual name and
create is a role name, then the following TIBox de�nes a torus of exponential size:

Tn =
�
> v 9east:>; > v 9north:>;
> v (= 1 east�1 >); > v (= 1 north�1 >);
> v 9create:C(0;0); o v C(2n�1;2n�1);

C(2n�1;2n�1) v o; > v Deast uDnorth

	
Since this reduction uses only a single individual name, the unique name assumption is
irrelevant.

Internalisation of Axioms In the presence of inverse roles and nominals, it is possible
to internalise general inclusion axioms into concepts using the spy-point technique used,
e.g., in (Blackburn & Seligman, 1996; Areces et al., 1999). The main idea of this technique
is to enforce that all elements in the model of a concept are reachable from a distinct point
(the spy-point) marked by an individual name in a single step.

De�nition 4.11 Let T be an ALCQIO-TIBox. W.l.o.g., we assume that T is of the form

f> v C1; : : : ;> v Ckg. Let spy denote a fresh role name and i a fresh individual name.

We de�ne the function �spy inductively on the structure of concepts by setting Aspy = A for

all A 2 NC , o
spy = o for all o 2 NI , (:C)spy = :Cspy, (C1 u C2)

spy = C
spy
1 u C

spy
2 , and

(> n R C)spy = (> n R (9spy�:i) u Cspy).
The internalisation CT of T is de�ned as follows:

CT = i u G
>vC2T

Cspy u G
>vC2T

8spy:Cspy

Lemma 4.12 Let T be an ALCQIO-TIBox. T is consistent i� CT is satis�able.

Proof. For the if -direction let I be a model of CT with a 2 (CT )
I . This implies iI = fag.

Let I 0 be de�ned by

�I0 = fag [ fx 2 �I j (a; x) 2 spyIg
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and �I
0

= �I j�I0 .

Claim 1: For every x 2 �I0 and every ALCQIO-concept C, we have x 2 (Cspy)I i� x 2 CI0 .

We proof this claim by induction on the structure of C. The only interesting case is
C = (> n R D). In this case Cspy = (> n R (9spy�:i) uDspy). We have

x 2 (> n R (9spy�:i) uDspy)I

i� ]fy 2 �I j (x; y) 2 RI and y 2 (9spy�:i)I \ (Dspy)Ig > n

(�) i� ]fy 2 �I0 j (x; y) 2 RI0 and y 2 DI0g > n

i� x 2 (> n R D)I
0

;

where the equivalence (�) holds because of set equality and the de�nition of I 0.

By construction, for every > v C 2 T and every x 2 �I0 , x 2 (Cspy)I . Due to Claim 1,
this implies x 2 CI0 and hence I 0 j= > v C.

For the only-if -direction, let I be an interpretation with I j= T . We pick an arbitrary
element a 2 �I and de�ne an extension I 0 of I by setting iI

0

= fag and spyI
0

= f(a; x) j
x 2 �I . Since i and spy do not occur in T , we still have that I 0 j= T .

Claim 2: For every x 2 �I0 and every ALCQIO-concept C that does not contain i or spy,
x 2 CI0 i� x 2 (Cspy)I

0

.

Again, this claim is proved by induction on the structure of concepts and the only
interesting case is C = (> n R D).

x 2 (> n R D)I
0

i� ]fy 2 �I0 j (x; y) 2 RI0 and y 2 DI0g > n

(�) i� ]fy 2 �I0 j (x; y) 2 RI0; (a; y) 2 spyI
0

; and y 2 (Dspy)I
0

g > n

i� x 2 (> n R (9spy�:i) uDspy)I
0

:

Again, the equivalence (�) holds due to set equality and the de�nition of I 0.

Since, for every> v C 2 T , we have I 0 j= > v C, Claim 2 yields that ( F>vC2TCspy)I
0

=

�I0 and hence a 2 (CT )
I0

As a consequence, we obtain the sharper result that already pure concept satis�ability
for ALCQIO is a NExpTime-complete problem.

Corollary 4.13

Concept satis�ability for ALCQIO is NExpTime-complete.

Proof. From Lemma 4.12, we get that the function mapping a ALCQIO-TIBox T to CT

is a reduction from consistency of ALCQIO-TIBoxes to ALCQIO-concept satis�ability. From
Corollary 4.9 we know that the former problem is NExpTime-complete. Obviously, CT can
be computed from T in polynomial time. Hence, the lower complexity bound transfers.

213



Tobies

ALCQ ALCQO ALCQI ALCQIO
Concept Satis�ability PSpace-c. open PSpace-c. NExpTime-c.
GCIs ExpTime-c. ExpTime-c. ExpTime-c. NExpTime-c.
Cardinality Restr. ExpTime-c. ExpTime-c. NExpTime-c. NExpTime-c.

Figure 4: Complexity of the reasoning problems

5. Conclusion

Combining the results from (De Giacomo, 1995) and (Tobies, 2000) with the results from
this paper, we obtain the classi�cation of the complexity of concept satis�ability and TBox-
consistency for various DLs and for TBoxes consisting either of cardinality restrictions or
of general concept inclusion axioms shown in Figure 4, where we assume unary coding of
numbers.

The result for ALCQIO shows that the current e�orts of extending very expressive DLs
as the logic SHIQ (Horrocks et al., 1999) and DLR(Calvanese et al., 1998c) or propositional
dynamic logics as CPDLg (De Giacomo & Lenzerini, 1996) with nominals are diÆcult tasks,
if one wants to obtain a practical decision procedure, since already concept satis�ability for
these logics is a NExpTime-hard problem.

We have shown that, while having the same complexity as C2, ALCQI does not reach its
expressive power (Tobies, 1999). Cardinality restrictions, although interesting for knowledge
representation, are inherently hard to handle algorithmically. The same applies to nominals
in the presence of inverse roles and number restrictions. As an explanation for this we o�er
the lack of a tree model property, which was identi�ed by Vardi (1997) as an explanation
for good algorithmic behaviour of many modal logics.

At a �rst glance, our results make ALCQI with cardinality restrictions on concepts or
ALCQIO with general axioms obsolete for knowledge representation because C2 delivers
more expressive power at the same computational price. Yet, is is likely that a dedicated
algorithm for ALCQI may have better average complexity than the C2 algorithm; such an
algorithm has yet to be developed. This is highly desirable as it would also be applicable to
reasoning problems for expressive DLs with nominals, which have applications in the area
of reasoning with database schemata (Calvanese et al., 1998a, 1998b).

An interesting question lies in the coding of numbers: If we allow binary coding of
numbers, the translation approach together with the result from (Pacholski et al., 1997)
leads to a 2-NExpTime algorithm. As for C2, it is an open question whether this additional
exponential blow-up is necessary. A positive answer would settle the same question for C2

while a proof of the negative answer might give hints how the result for C2 might be
improved. For ALCQ with cardinality restrictions, we have partially solved this problem:
with unary coding, the problem is ExpTime-complete whereas, for binary coding, it is
NExpTime-hard.
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