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THE COMPLEXITY OF RECURSION THEORETIC GAMES

MARTIN KUMMER

Wir meinen, das Märchen und das Spiel gehöre zur Kindheit: wir Kurzsichti-
gen! Als ob wir in irgendeinem Lebensalter ohne Märchen und Spiel leben
möchten! Friedrich Nietzsche

Abstract. We show that some natural games introduced by Lachlan in 1970
as a model of recursion theoretic constructions are undecidable, contrary to
what was previously conjectured. Several consequences are pointed out; for
instance, the set of all Π2-sentences that are uniformly valid in the lattice of
recursively enumerable sets is undecidable. Furthermore we show that these
games are equivalent to natural subclasses of effectively presented Borel games.

1. Introduction

Games are ubiquitous. The reader may first think of the ancient games of Chess
and Go, but the concept is much more general. It has been argued that games
are constitutive for man who is considered as a homo ludens by Huizinga in [14].
We may remark that this thesis is more convincing in Latin (or e.g. Dutch and
German) than in English because there one word combines the meaning of the two
English words play and game. Games are not confined to humanity, animals also
play games, and in [9] it is shown that games already appear in natural history,
in particular in the evolution of macromolecules. An ‘evolutionary game theory’
was developed in biology [29]. Games play a fundamental role in the fine arts
and in literature. They are studied in sociology [39], in philosophy, in particular in
Wittgenstein’s philosophy of language [42], and even in theology, where the concept
of a Deus ludens was proposed [36].

In mathematics, games are studied in the ‘theory of games’ founded in [32] (see
also [31] for an interesting account of its early history) with important applications
in economy. A well-known game in this context is Prisoner’s Dilemma. There
is also a combinatorial game theory with roots in recreational mathematics [1,
24]. A paradigmatic game in this field is Nim. For many combinatorial games a
complete analysis can be given [3]. On the other hand, some combinatorial games
are apparently very hard and defy an underlying theory. For them there seems
to be no simpler way to determine which player has a winning strategy than to
enumerate all possible moves in an exhaustive search.
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In theoretical computer science, finite games are studied in complexity theory,
as just mentioned. Here also new games have been invented like e.g. ‘interactive
proofs’ [34]. Infinite games are studied in automata theory as e.g. the regular games
of [5]; see [18] for a presentation in textbook form. They have found applications in
hardware and software design and provide powerful decision procedures of certain
logics; see [11] for an up-to-date survey. Another field where infinite games appear
is the study of online algorithms [4].

In logic, games also abound. In model theory, we have the finite Ehrenfeucht-
Fraissé games and also infinite games used to build certain structures in infinitely
many steps [13]. In set theory, one studies the axiom of determinacy (see [2], Chap.
B.2, §10) and in descriptive set theory, weaker versions of determinacy axioms are
considered (see [2], Chap. C.8, §6). For applications of determinacy in recursion
theory cf. [2], Chap. C.4, §4, and [23], Chap. V.5. In recursion theory many ar-
guments can be viewed as providing effective winning strategies in certain infinite
games. This point of view was first stressed by Lachlan [22] and was later strongly
advocated and made popular in the work of Soare. By now the game paradigm is
widely used in recursion theory as a visualization and heuristic.

There are easy examples of effectively presented games where none of the players
has a recursive winning strategy, e.g. an example of Rabin using a simple set [35]
(also in abbreviated form in [37], Ex. 8-5, p. 121 f.). Later Jones [16] gave more
explicit examples making use of the undecidability of Hilbert’s tenth problem.

In the present paper we study games proposed by Lachlan [22] where both play-
ers are enumerating finitely many sets and in the end, after infinitely many rounds,
player 1 wins iff the enumerated sets satisfy a specified formula, the winning condi-
tion. As Lachlan pointed out, these games are the basic building blocks of construc-
tions of r.e. sets. They refer to a single requirement of a construction that usually
has to satisfy an infinite sequence of requirements. Based on the analysis of many
concrete examples, Lachlan conjectured that for a single requirement it is decidable
which player has a winning strategy. He proved a strong partial result that pointed
in this direction. Later in [19] another attempt was made with the idea of reducing
these games to the regular games mentioned above. But this approach fell short of
a decidability proof, too.

We show here that, somewhat surprisingly, the problem is undecidable, even
with a rather high degree of unsolvability. We get interesting consequences on the
(non-)existence of recursive winning strategies, and we get that the set of all Π2-
sentences uniformly valid in the lattice of r.e. sets is undecidable. Our undecidability
proof resembles arguments from complexity theory used to show that certain finite
combinatorial games are PSPACE-hard [10, 38]. We also classify the complexity
of the problem as ∆1

2 in the analytical hierarchy. Finally we characterize these
games in terms of effectively presented Borel games, and it turns out that they
have maximal possible complexity.

For general background on logic we refer the reader to [2], for the more specific
recursion theory background see [37, 41].

2. The basic results

The following game was introduced by Lachlan [22]. There it was called basic
game of the second kind. Here we call it simply basic game.
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Definition 2.1. Let n ≥ 1 and F be any quantifier-free first-order formula with-
out equality and with variables u1, . . . , un and v1, . . . , vn, the operations union,
intersection and complement, and the unary predicate isEmpty(x).

A basic game G = GF is defined as follows: Two players are enumerating alter-
nately, starting with player 1, in rounds, natural numbers into some sets U1, . . . , Un

and V1, . . . , Vn, respectively. Each player may enumerate finitely many elements in
each round (in particular, he is also allowed to enumerate nothing, i.e. to pass at
his turn). Player 1 enumerates the Ui’s and player 2 enumerates the Vi’s.

F specifies the winning condition in the following sense: After ω rounds of G,
player 1 wins iff the formula F is satisfied by the canonical interpretation with the
enumerated sets.

Remark 2.2. Note that the order in which the players play is not essential, be-
cause, as the referee stressed, the action of one player does not prevent the ac-
tion of the other player. Thus, if player 2 has a winning strategy in GF with
F = F (u1, . . . , un, v1, . . . .vn), then player 1 has a winning strategy in GF ′ with
F ′ = ¬F (v1, . . . , vn, u1, . . . , un). This is used later on.

Also, though we do not use it, we could restrict one (or both) players to enumer-
ate at most one number in each round. This does not change the outcome, since
a player could append his original moves to a list of moves and enumerate in each
round the first element of the list (which is then removed from the list).

Example 2.3. a) Let us consider as an easy but instructive example the construc-
tion of a creative set K, cast in the language of basic games. The task is specified
as follows: One has to enumerate a set K and sets Ui such that for all i ∈ ω the
following requirements Ri are satisfied (where Wi is the i-th r.e. set):1

Ri : K ∩ Wi = ∅ → Ui �= ∅ ∧ Ui ∩ (K ∪ Wi) = ∅.
This can be considered as an infinite game where player 1 enumerates K und the
Ui’s while player 2 enumerates the Wi’s. We need to show that player 1 has a
recursive winning strategy.

The usual way to do this is to find a strategy for a single requirement and then
to combine the single strategies in a suitable way to play all of them. This is simple
in our examples but may in general require more sophisticated devices, like the
priority method.

Here a single requirement is specified by the following formula F :

isEmpty(u1 ∩ v1) → ¬isEmpty(u2) ∧ isEmpty(u2 ∩ (u1 ∪ v1)).

In the basic game GF player 1 has the following winning strategy: In round 0 he
enumerates 0 into U2, which momentarily satisfies F , and then waits to see what
player 2 is doing. If at some round player 2 enumerates 0 into V1, he enumerates 0
into U1 which satisfies F permanently.

Note that this strategy of player 1 is recursive, and the number 0 can be replaced
by any number. Therefore one can play infinitely many strategies simultaneously,
and this provides the desired winning strategy for the original game.

b) We can push the previous example somewhat further by devising a basic game
for a proof of Myhill’s Theorem that every creative set is m-complete [37], §11.3,

1Here as well as in the rest of the paper we assume as usual that ¬ is more binding than ∧
and ∨, which in turn are more binding than → and ↔.
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Theorem V. To this end we have the following requirements Ri:
Ri : [K ∩ U2i = ∅ → V2i �= ∅ ∧ V2i ∩ (K ∪ U2i) = ∅]

∧ |V2i+1| = 1 →
|U2i+1| = 1 ∧ (V2i+1 ⊆ B ↔ U2i+1 ⊆ K).

The Ui’s belong to player 1; B, K and the Vi’s belong to player 2. Using Lemma 3.2
below we can express these requirements in the language of Definition 2.1 (there is
a slight twist in picking the right replacement for the subformula |V2i+1| = 1).

Player 1 has the following winning strategy for Ri: Wait until player 2 enumer-
ates a number xi into V2i and a number yi into V2i+1. Then enumerate xi into
U2i+1 and wait until yi is enumerated into B. If this ever happens enumerate xi

into U2i. This satisfies Ri: If player 2 does not enumerate xi into K, Ri holds,
since the first conjunct of the hypothesis of Ri is false. If player 2 enumerates xi

into K, Ri holds, since the conclusion of Ri holds.
Since the different strategies do not interfere, they can be played simultaneously

such that all Ri are satisfied. Note that each single strategy as well as the combined
one is recursive. Using this and the recursion theorem we get for every creative set
K and every r.e. set B a recursive m-reduction which reduces B to K, i.e., Myhill’s
Theorem follows.

Note that the game approach lead to stronger results since we obtained recursive
strategies that win against any strategy of player 2, not just recursive ones (which
would be sufficient to prove the result). This feature also holds for all examples
in [22], Section 2. It does however not generalize to arbitrary basic games; see
Remark 4.1 below.

In the examples above we slightly abused the original intention of Lachlan, who
conceived the basic games for proving results about the lattice of r.e. sets. In fact,
most2 of the well-known theorems of the lattice of r.e. sets, as e.g. Friedberg’s
Splitting Theorem, can be proved by providing winning strategies in suitable basic
games using the additional predicate isFinite(x) to formulate the requirements.
Many examples can be found in [22].

An important question of the metamathematics of recursion theory is whether
there exists an effective procedure to tell us whether player 1 has a winning strategy
for any given single requirement. Formally we ask if the following decision problem
P of Lachlan [22], pp. 303, 309, is decidable.

Problem 2.4. P : Decide for any given formula F whether player 1 has a winning
strategy in the basic game GF .

Lachlan conjectured in [22] that P is decidable (even for the extended language
with the additional predicate isFinite(x), the ‘mixed basic games’, which we con-
sider in Section 6). The following result refutes this conjecture.

Theorem 2.5. Problem P is undecidable.

From the proof of the theorem we get a number of interesting consequences.

Corollary 2.6. (1) The complexity of P is at least as high as the complexity
of True Arithmetic; in particular it is non-arithmetical.

2Lachlan [22], p. 293, provided a formalization of ‘game derivability’. It is apparently still open
as to whether every sentence of the theory of the lattice of r.e. sets is game derivable.
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(2) P is also undecidable if we are asking for a recursive winning strategy for
player 1.

(3) P is also undecidable if player 1 and player 2 are restricted to recursive
strategies.

(4) For any n there are effectively computable formulas F such that neither
player has a winning strategy in GF that is recursive in 0(n).

(5) The set of all sentences of the Π2-theory of the lattice of r.e. sets (in the lan-
guage with equality, operations ∩,∪ and constants 0, 1) that are uniformly
valid3 is undecidable. This holds even if quantification is restricted to finite
sets and r.e. indices are used for the uniformity (with respect to recursive
indices the problem is decidable).

Lachlan proved in [22], Section 3, that the related problem P ∗, where the predi-
cate isEmpty(x) is replaced by isFinite(x) (so-called ‘basic games of the first kind’),
is in fact decidable with uniformly recursive winning strategies. This is in sharp
contrast to Corollary 2.6, (1), (4).

Corollary 2.6, (5) contrasts Lachlan’s well-known result that the Π2-theory of the
lattice of r.e. sets is decidable (see [20, 21] and the overview in [41], Chap. XVI, 2).

3. The basic proofs

Let us first sketch the outline of the proof of Theorem 2.5 and later provide the
details of the nontrivial steps.

We reduce Hilbert’s tenth problem to P , i.e., for each diophantine equation
p1 = p2, where p1, p2 are polynomials (in several variables) with nonnegative in-
teger coefficients, we effectively specify a formula F such that the equation has a
nonnegative integer solution iff player 1 has a winning strategy in GF .

In [28] the celebrated result was shown that Hilbert’s tenth problem is unde-
cidable (see [2], Chap. C.2, §5) and that for every r.e. relation R ⊆ ωk there is a
diophantine equation p1 = p2 with variables x1, . . . , xk and y1, . . . , yn such that for
every (a1, . . . , ak) ∈ ωk,

(a1, . . . , ak) ∈ R ⇐⇒ there exist (b1, . . . , bn) ∈ ωn such that p1 = p2

for xi = ai, i = 1, . . . , k and yj = bj , j = 1, . . . , n.

Furthermore, the diophantine equation can be found effectively in any r.e. index
of R.

Remark 3.1. We could also directly reduce True Arithmetic (TA) to P , but this
would be less perspicuous. However, it should be noted that essentially the same
proof also works using the undecidability of TA instead of the more sophisticated
undecidability of Hilbert’s tenth problem, which by the way was not available when
[22] was written.

The basic idea of our reduction may be best illustrated by an example. Suppose
we are given the equation y1 ∗y2 +5 = y3 +y1 ∗y4. Then player 1 enumerates finite

3 A Π2-sentence is called uniformly valid [19] if for any given indices of r.e. sets to be sub-
stituted for the universally quantified variables one can uniformly compute indices of r.e. sets
to be substituted for the existentially quantified variables such that the matrix holds with these
substitutions. Any uniformly valid sentence is valid, but not conversely. An easy counterexample
is the valid sentence ∀x∃y[x �= y] whose uniform version is the negation of the recursion theorem.
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sets M1, . . . , M5, N1, . . . , N4 and claims that:

(1) M3, M4 are pairwise disjoint and N1, N3 are pairwise disjoint.
(2) |M3| = |M1| ∗ |M2|.
(3) |M4| = 5.
(4) M5 = M3 ∪ M4.
(5) |N3| = |M1| ∗ |N2|.
(6) N4 = N1 ∪ N3.
(7) M5 = N4.

Claims (1), (4), (6), and (7) can be directly put into the winning condition.
For claim (3) it is not difficult to devise a subgame specified by a formula
Equal5(M4, . . .) that player 1 can win iff this claim is satisfied.

Player 2 may then challenge one of the claims (2), (3), and (5), and he should
win iff the challenged claim turns out to be false. This game can be reduced to a
basic game (where of course additional sets are used).

How can player 2 be sure that player 1 does not cheat by later enumerating addi-
tional elements into his sets? This can be done using the powerful idea of ‘double-
checking’ (or ‘committing’, as Marcus Schaefer suggested): Suppose player 1 is to
enumerate a finite set M . Then player 2 enumerates a subset A of M . The enu-
meration phase is ended by player 1 when he makes a signaling set S nonempty.
While S is empty he wins if A does not equal M . In this way player 1 can force
A = M . This is done by the following formula F :

A �⊆ M ∨ (A �= M ∧ S = ∅).

The basic idea (which is modified later on) is that this formula appears as a dis-
juntion in the winning condition so that player 1 immediately wins if player 2 does
not play as intended. The crucial point is that later we work not with M but with
the set A instead. Note that each player can freeze A if it is in his interest.

From the point of view of player 2, he can force that the enumerated double-
checked set A is finite unless the winning condition F ∨ (S �= ∅ ∧ . . .) is falsified:
If he makes A = M as long as S = ∅, player 1 is forced to eventually make S �= ∅
(otherwise the winning condition is false), and then the set A is finite and we even
have a canonical index for it.

The hard part of the reduction is to show that there is a formula

Mult(M, A, B, . . . )

such that for any canonically given fixed finite sets M, A, B, player 1 has a winning
strategy in GMult iff |M | = |A| ∗ |B|. Note that these are not basic games in the
strict sense of Definition 2.1 but rather basic games with parameters. For ease of
presentation we do not stress this distinction in the following and also speak of
these modified basic games simply as basic games.

To get an idea of how this is done the reader may first devise a corresponding
formula Greater(A, B, . . .) for the condition |A| > |B| that is used in building Mult.
In fact, this was the way in which the author discovered the reduction.

The formula Mult will implement the following game G′ where player 1 enumer-
ates N and player 2 enumerates L:

(1) Player 2 enumerates a new element of A into a test set L ⊆ A.
(2) Player 1 enumerates new elements of M into a test set N ⊆ M .
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(3) Player 2 wins instantly if player 1 did not enumerate exactly |B| new ele-
ments.

(4) Player 2 may start a new stage. Then the game continues with step 1.

Player 2 wins iff he wins in step (3) or at the end L = A and N �= M . The set L
serves as a ‘tally set’ or ‘loop counter’. Note that if |M | = |A| ∗ |B|, then player 1
has a winning strategy else player 2 has one. To actually realize this game in Mult
we are relying heavily on double-checking.

Now we can write down the winning condition F for player 1 in the example
above:

F = M3 ∩ M4 = ∅ ∧ N1 ∩ N3 = ∅
∧ M5 = M3 ∪ M4 ∧ N4 = N1 ∪ N3 ∧ M5 = N4

∧ F ′,

where F ′ is the following formula:

[
5∨

i=1

(Ai �⊆ Mi ∨ (Mi �= Ai ∧ S = ∅))

∨
4∨

i=1

(Bi �⊆ Ni ∨ (Ni �= Bi ∧ S = ∅))

∨ (S �= ∅ ∧ T1 ∪ T2 ∪ T3 = ∅)
∨ (T1 �= ∅ ∧ Equal5(A4, . . .))
∨ (T2 �= ∅ ∧ Mult(A3, A1, A2, . . .))
∨ (T3 �= ∅ ∧ Mult(B3, A1, B2, . . .)) ].

For each subformula Equal5 or Mult the variables indicated by the dots are new
variables that occur only in the corresponding subformula.

Now suppose that the diophantine equation has a solution. Then player 1 has
the following winning strategy. He enumerates the finite sets Mi, Nj such that all
claims are satisfied, where their size is chosen according to the values of the yk’s
in the solution. Then he waits, leaving S empty until player 2 has enumerated the
Ai, Bj such that Ai = Mi, Bj = Nj for all i, j. If this is never the case, player 1
wins by the first part of F ′. Also by the first part of F ′ he can force that Ai, Bj are
fixed in the following by fixing Mi, Nj . Now player 1 enumerates an element into
S, thereby forcing player 2 to enumerate an element into some Tk. Then player 1
applies his winning strategy to the selected formula Equal5 or Mult and wins the
game.

If the diophantine equation has no solution, then player 2 has a winning strategy.
He makes Ai = Mi and Bj = Nj for all i, j until player 1 enumerates an element
into S. If this never happens, he wins. So suppose that player 1 makes S nonempty.
Let X be the union of all Ai and Bj . Player 2 waits until the first part of F is
satisfied if all Mi, Nj are restricted to X. If this never happens, he wins. If it
happens, he enumerates, if necessary, additional elements into Ai, Bj in order to
satisfy Ai = Mi ∩ X and Bj = Nj ∩ X for all i, j. Since the diophantine equation
has no solution, one of the claims (1)–(7), with Mi replaced by Ai and Nj replaced
by Bj , is false. So far we know that claims (1), (4), (6), and (7) are true. Therefore
one of the claims (2), (3), or (5) is false. Player 2 determines which one it is, makes
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the corresponding Tk nonempty, and plays such that the corresponding formula
Equal5 or Mult is not satisfied. This makes F false, so player 2 wins.

Note that one could dispense with the T -variables, but this would make the game
more complicated, since then player 1 would have to play all subgames on Equalk
and Mult simultaneously.

This finishes the outline of the proof. We can leave it to the reader to generalize
the above construction to arbitrary diophantine equations.

It remains to show that there are formulas Equalk, Greater and Mult as required.
This is done by the following lemmas. For ease of presentation we call a basic game
effectively determined [19] if one of the players has a recursive winning strategy.

Lemma 3.2. For every k ≥ 0 there is a formula Equalk(M, U1, . . . , Uk, V1, V2)
such that for every canonically given finite set M the corresponding basic game
where player 1 enumerates the Ui’s and player 2 enumerates the Vj’s is effectively
determined, and player 1 has a winning strategy iff |M | = k.

Proof. We define Equalk(M, U1, . . . , Uk, V1, V2) as follows:

∧

1≤i<j≤k

Ui ∩ Uj = ∅ ∧
k∧

i=1

Ui �= ∅ ∧ U1 ∪ . . . ∪ Uk = M

∧¬[V1 ∩ V2 = ∅ ∧ V1 �= ∅ ∧ V2 �= ∅ ∧
k∨

i=1

V1 ∪ V2 ⊆ Ui].

The verification is left to the reader. For k = 0 the formula simplifies to M = ∅. �

Lemma 3.3. There is a formula Greater(A, B, U1, U2, V1, V2) such that for any
canonically given finite sets A, B the corresponding basic game where player 1 enu-
merates the Ui’s and player 2 enumerates the Vj’s is effectively determined, and
player 1 has a winning strategy iff |A| > |B|.

Proof. We define Greater(A, B, U1, U2, V1, V2) as follows (⊕ denotes the exclusive
or):

[U1 ⊆ U2 ⊆ A ∧ ((U1 = U2) ⊕ (V1 = V2))] ∨ ¬(V1 ⊆ V2 ⊆ B).

Suppose that |A| > |B|; then player 1 has the following winning strategy. It
proceeds in at most |B|+1 stages. At the beginning of each stage we have U2−U1 =
∅ = V2 − V1. Player 1 enumerates a new element a from A into U2. This makes
U2 −U1 nonempty and forces player 2 to enumerate at least one new element from
B into V2 − V1. If he does not do this he loses. If he does it, player 1 enumerates a
into U1 which forces player 2 to enumerate V2 −V1 into V1. This finishes the stage.
After at most |B| stages the elements of B are exhausted, and player 1 wins by
making U2 − U1 nonempty while V2 − V1 is empty.

If |A| ≤ |B|, then player 2 can counter each move that makes U2 −U1 nonempty
by enumerating a new element of B into V2. If player 1 clears U2 − U1 by making
it empty, then player 2 does the same with V2 − V1. Since |A| ≤ |B| player 2 will
not run out of moves and will win the game. �

Remark 3.4. The referee observed that the conditions U1 ⊆ U2, V1 ⊆ V2 could be
replaced by the weaker conditions U1 ⊆ A, V1 ⊆ B, but this added freedom makes
the proof slightly less perspicuous.
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Lemma 3.5. There is a formula Equal(A, B, U1, . . . , U4, V1, . . . , V4) such that for
any canonically given finite sets A, B, the corresponding basic game in which player
1 enumerates the Ui’s and player 2 enumerates the Vj’s is effectively determined,
and player 1 has a winning strategy iff |A| = |B|.

Proof. The formula Equal is defined as follows using the formula Greater from the
previous lemma:

¬[Greater(A, B, V1, V2, U1, U2) ∨ Greater(B, A, V3, V4, U3, U4)].

Note that the order of the Ui’s and Vi’s is reversed. Here we are using Remark 2.2.
By Lemma 3.3, player 1 has a winning strategy iff not |A| > |B| and not |B| > |A|,
i.e. iff |A| = |B|. �

Lemma 3.6. There is a formula Mult(M, A, B, K1, K2, N1, N, L1, L, M1, M2, T )
such that for any canonically given finite sets M, A, B the corresponding basic game
where player 1 enumerates K1, K2, N1, N and player 2 enumerates the remaining
sets is effectively determined, and player 1 has a winning strategy iff |M | = |A|∗|B|.

Proof. We are actually implementing the game G′ mentioned above using the ad-
ditional sets for double-checking. T is a signaling set of player 2 which indicates, if
nonempty, that player 2 tries to win by step (3) in game G′.

The formula Mult(M, A, B, . . .) is defined as follows:4

(M = ∅ ∧ (A = ∅ ∨ B = ∅))
∨ ¬(L1 ⊆ L ⊆ A ∧ M1 ⊆ N1 ∧ M2 ⊆ N)
∨ |L − K1| > 1(3.0)
∨ [ M �= ∅ ∧ A �= ∅ ∧ B �= ∅ ∧

N1 ⊆ N ⊆ M ∧ K1 ⊆ K2 ⊆ L ∧
(T = ∅ ∧ K2 �= L → M2 �= N) ∧(3.1)
(T �= ∅ ∧ K2 = L ∧ L1 �= L → |B| = |M2 − M1|) ∧(3.2)
(T = ∅ ∧ K2 = L = L1 → N1 = N) ∧(3.3)
(T = ∅ ∧ K2 = L = L1 ∧ M1 = M2 → K1 = L) ∧(3.4)
(K1 = A → M2 = M) ].(3.5)

The intuition behind these ‘rules’ is the following:
Player 1 has to satisfy the invariant K1 ⊆ K2 ⊆ L and N1 ⊆ N ⊆ M . Likewise

player 2 has to satisfy L1 ⊆ L ⊆ A and M1 ⊆ N1 and M2 ⊆ N .
(0) Player 2 can enumerate at most one element of A at a time into the loop

counter L.
(1) Player 1 forces player 2 to enumerate all of N into M2.
(2) Player 2 may decide to verify that player 1 has enumerated exactly |B| new

elements into N . This is verified with the double-checked set M2 −M1 of player 2.
(3) Player 2 forces player 1 to enter all of N into N1.
(4) Player 2 can prepare to start a new round only if he enters all of M2 into

M1.

4Writing the subformulas (3.1)–(3.5) as conditionals was suggested by Marcus Schaefer. The
intuition is that the conditionals are ‘rules’ that player 1 must follow while player 2 tries to spoil
this, i.e., to satisfy the hypothesis of a rule and falsify the conclusion.
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(5) If player 2 has enumerated all of A, then there are no new elements in M
left.

The intuition behind K1, K2 and L1 is that they are ‘step counters’. They play
the role of signaling sets which can now be recycled.

Note that in order to keep things simpler we have used some abbreviations which
require additional sets when spelled out. For |L − K1| > 1 we should write more
explicitly

C1 �= ∅ ∧ C2 �= ∅ ∧ C1 ∩ C2 = ∅ ∧ C1 ∪ C1 ⊆ L − K1,

where C1, C2 are additional sets of player 1. For |B| = |M2 − M1| we should write
more explicitly the formula

Equal(B, M2 − M1, U1, . . . , U4, V1, . . . , V4),

where the Ui’s belong to player 1 and the Vi’s belong to player 2.
a) Suppose |M | �= |A| ∗ |B|; then player 2 has a recursive winning strategy.

We may assume that M, A, B are nonempty, for otherwise player 2 wins by just
doing nothing. Furthermore, we may assume that N ⊆ M and K2 ⊆ L always;
for otherwise, player 2 wins by doing nothing more (since the strategy we describe
always falsifies the first three disjunctions of the formula). We can also assume that
N1 ⊆ N and K1 ⊆ K2 always, since player 2 can simply wait until these conditions
are satisfied.

The strategy of player 2 will always satisfy the conditions L1 ⊆ L ⊆ A, M2 ⊆ N ,
and M1 ⊆ N1.

Player 2 performs his strategy in stages as follows. When he starts stage s ≥ 0
he ensures the invariant

Rs : s = |L|, |M2| = |L| ∗ |B|, K1 = K2 = L, M1 = M2 ⊆ N1 ⊆ N.

Then player 2 enumerates a new element a of A into L. As long as K2 �= L, he makes
M2 = N and wins by (3.1) if player 1 does not eventually enumerate a into K2. So,
if this happens he checks whether |B| �= |M2−M1|. If this is the case, he enumerates
a number into T and wins by (3.2) (by performing the winning strategy that makes
the formula Equal(B, M2 − M1, . . .) false). If |B| = |M2 − M1|, then exactly |B|
new elements of M were enumerated into M2, i.e., we have |M2| = (s + 1) ∗ |B|.
Then player 2 enumerates a into L1 and waits until N = N1. If this never happens,
then player 2 wins by (3.3). So assume player 1 enumerates all of N into N1. Then
M2 ⊆ N1 and player 2 enumerates all of M2 into M1 and waits until a is enumerated
into K1. If this never happens, he wins by (3.4). If it happens and L �= A, he starts
a new stage s + 1 where the invariant Rs+1 holds.

If |M | < |A| ∗ |B|, then there cannot be |A| stages completed. Therefore there
must be a stage s < |A| in which player 2 wins.

If |M | > |A| ∗ |B| and there are |A| stages completed (otherwise player 2 wins),
then at the end of stage |A| − 1 the invariant R|A| holds. But this implies that
condition (3.5) fails. Therefore player 2 wins.

b) Suppose that |M | = |A| ∗ |B|; then player 1 has a recursive winning strategy.
This is clear if one of the sets is empty. For the following we assume that they are
all nonempty. Player 1 enumerates his sets such that N1 ⊆ N ⊆ M , K1 ⊆ K2 ⊆ L
always. For player 2 we can assume that L1 ⊆ L ⊆ A, M1 ⊆ N1 M2 ⊆ N always,
since if one of these conditions does not hold, player 1 does nothing and either wins
immediately or waits until it is satisfied.
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The strategy proceeds in stages where each stage is started by player 2 when he
enumerates a new element a of A into L. When player 2 does this he must wait
until player 1 enumerates it into K1 before he can enumerate another new element
b �= a into L. Otherwise player 1 wins by (3.0).

So let us get started. Player 1 ensures that at the end of stage s ≥ 0 the following
invariant holds:

Qs : |L| = s + 1, |N | = |L| ∗ |B|, M1 = M2 = N1 = N, K1 = K2 = L1 = L,

and at the start of the game obviously Q−1 holds.
At stage s, player 1 selects |B| new elements from M and enumerates them into

N . He waits until all of them are enumerated into M2. If this never happens, (3.1)
(as well as (3.2)–(3.5)) is satisfied and therefore the formula is satisfied and player 1
wins. Note that, since player 2 must obey M2 ⊆ N , player 1 can freeze M2 = N .
Also, since N1 ⊆ M1 player 1 freezes N1 = M1.

Now player 1 enumerates a into K2. If player 2 makes T nonempty, he loses
because |B| = |M2 − M1| = |N − N1|. So, what else can player 2 do? As long as
he does not enumerate a into L1, player 1 simply waits and does nothing which
would win in end. Thus we may assume that player 2 eventually does this, in which
case player 1 enumerates N into N1. Then he waits until player 2 enumerates M2

(which is still freezed to N) into M1, after which he enumerates a into K1. Then
Qs holds.

It follows that if player 2 does not perform |A| stages, he loses. If he performs
|A| stages, then at the end Q|A|−1 holds. But this implies that (3.5) (as well as
(3.1)–(3.4)) holds, i.e., player 1 wins. �

This finishes the proof of Theorem 2.5.

Remark 3.7. The reduction can be modified such that it becomes computable in
polynomial time (when all constants are encoded in binary). For this we build up
the sets M with |M | = k by successive multiplication and addition according to
Horner’s rule applied to k.

Let us state the following corollary of the proof which is useful for later applica-
tions.

Corollary 3.8. For every recursive relation R ⊆ ωn there is a formula

FR(A1, . . . , An, U1 . . . , Uk, V1, . . . , Vk)

such that for any canonically given finite sets A1, . . . , An, player 1 has a winning
strategy in GFR iff R(|A1|, . . . , |An|) holds; otherwise player 2 has one. Further-
more, the winning strategies are uniformly recursive in the canonical indices of
A1, . . . , An and any recursive index of R. The formula can be found uniformly in
any r.e. index of R.

Proof of Corollary 2.6. (1) It suffices to show that arbitrary Σ0
2n+1-sets are uni-

formly reducible to P for all n ≥ 0. The case n = 0 was shown above. To see how
this is done for larger n let us consider as an example n = 1. For any Σ0

3-set H and
e ∈ ω we can uniformly compute a diophantine equation p1 = p2 with variables
x, y, z1, . . . , zk such that

e ∈ H ⇐⇒ (∃x)(∀y)(∃z1, . . . , zk)p1 = p2.
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The corresponding game is roughly as follows. Player 1 enumerates a set X that is
double-checked by player 2, then player 2 enumerates a set Y that is double-checked
by player 1, and then player 1 enumerates sets Z1, . . . , Zk that are double-checked
by player 2. After this player 1 claims that (|X|, |Y |, |Z1|, . . ., |Zk|) is a solution of
the equation (actually, this is claimed with the double-checked sets). This part of
the game is the same as above. Player 1 has a winning strategy iff e ∈ H.

In the following we outline the proof and leave all further details to the reader.
The formula F looks as follows:

F = B ⊆ Y ∧ F ′,

where F ′ is the following formula:

[ (A �⊆ X ∨ (A �= X ∧ S1 = ∅))
∨ (S1 �= ∅ ∧ S2 = ∅ ∧ B = Y )

∨ (S1 �= ∅ ∧ S2 �= ∅ ∧
k′∨

i=1

(Ci �⊆ Zi ∨ (Ci �= Zi ∧ S3 = ∅)))(3.6)

∨ (S1 �= ∅ ∧ S2 �= ∅ ∧ S3 �= ∅ ∧
⋃

�

T� = ∅)

∨ (T1 �= ∅ ∧ . . .)
∨ (T2 �= ∅ ∧ . . .)
∨ . . .].

Here the sets B, S1, S3 belong to player 1 and the sets A, Ci, S2, T� belong to
player 2. Zk+1, . . . , Zk′ are additional sets to verify the equation as in the proof of
Theorem 2.5.

As long as S1 is empty, player 2 has to copy X into A. If player 2 does this
and S1 stays empty, he wins. When S1 becomes nonempty and S2 is still empty,
player 1 has to copy Y into B, and so on. After the double-checks, A, B, Ci have
been enumerated and all Sj are nonempty, player 2 chooses a signaling set T�, and
player 1 has to win the associated subgame. This is pretty much the same as in the
proof of Theorem 2.5 with the following modifications: It is convenient to formulate
the unions and intersections with the double-checked sets Ci and put this formula
F ′′ into F ′, e.g. as T1 �= ∅ ∧ F ′′. If A or B appears in this condition we replace
it by Ck′+1, Ck′+2 and add the conditions |Ck′+1| = |A| and |Ck′+2| = |B|. In this
case the disjunction in (3.6) runs up to k′ + 2.

(2) Just note that in the formulas of the proof of Theorem 2.5 that result from
encoding a diophantine equation, player 1 has a recursive winning strategy if he has
a winning strategy at all, i.e., if the diophantine equation has a solution. Since the
latter problem is undecidable, it is also undeciable whether player 1 has a recursive
winning strategy.

(3) This follows from (2) and the observation that player 2 has a recursive winning
strategy if the diophantine equation has no solution.

(4) Let E be any Σ0
n+1-complete set. For the predicate R(x, y) = [χE(x) = y]

consider the game where player 1 picks a and then player 2 picks b, and player 2
wins iff R(a, b) holds. In this game player 2 has a winning strategy, but he does
not have a winning strategy recursive in 0(n) since R is not recursive in 0(n).
It is straightforward, by the method of (1), to translate this game into a basic
game: Player 1 enumerates a set A that is double-checked as A′ by player 2, then
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player 2 enumerates a set B that is double-checked as B′ by player 1. Now the
game continues by evaluating the Σ0

n+1-condition for E as in (1). If player 2 had a
winning strategy recursive in 0(n), then we could use it to compute χE(x) recursive
in 0(n): Simulate the game by enumerating a set A = {1, . . . , x}. Then using the
winning strategy of player 2, let A be double-checked by player 2 and find out
which set B player 2 enumerates, by double-checking it as B′ = B. When player 2
enumerates a number in the corresponding signaling set we must have χE(x) = |B′|.
Note that this process terminates since otherwise player 2 would lose.

It can also be seen that in this game neither of the players has a winning strategy
if both players are restricted to 0(n)-strategies, i.e. the game is not determined with
respect to such strategies.

(5) We show that the formulas resulting from the reduction of the proof of
Theorem 2.5 can be rewritten in the language of the lattice of r.e. sets.

Let us first consider the language that contains union, intersection, and constants
0 and 1 denoting ∅ and ω, respectively. Also we have equality in this language.
Any formula of our original language can be rewritten as a Boolean combination of
atomic formulas of the form

A1 ∩ . . . ∩ Ak ∩ B1 ∩ . . . ∩ B� = ∅.
This is equivalent to

(3.7) A1 ∩ . . . ∩ Ak ⊆ B1 ∪ . . . ∪ B�,

where the left-hand side is ω if k = 0 and the right-hand side is ∅ if � = 0. Since
X ⊆ Y can be rewritten as X ∩ Y = X we see that the formulas of our reduction
can be expressed in the language of the lattice of r.e. sets. Now consider the
corresponding Π2-sentences where all variables of player 2 are universally quantified
and all variables of player 1 are existentially quantified. Since the corresponding
basic games are effectively determined we find that player 1 has a winning strategy
iff the corresponding Π2-sentence is uniformly valid. The straightforward details of
the last step, using the recursion theorem, can be found in Proposition 4.2 in [19].

The basic games of the reduction are still effectively determined with the same
winners if the players are enumerating only finite sets. Therefore we find that the
Π2-sentence corresponding to a game G is uniformly valid where quantification is
restricted to finite sets iff player 1 has a winning strategy in G. Thus, the second
claim of Corollary 2.6(5) follows.

The latter problem is decidable if recursive indices are used for the uniformity.
This follows from [19], Theorem 6.1 (like Corollary 6.2 there) when applied to the
formula

(∀M1, . . . , Mi)(∃N1, . . . , Nj)[
i∧

k=1

isFinite(Mk) → F ∧
j∧

�=1

isFinite(N�)],

where (∀M1, . . . , Mi)(∃N1, . . . , Nj)F is the Π2-sentence in question.
The undecidability results can also be shown for the language of the lattice

containing only the predicate ⊆. This is because we can define ∅, ω, and A ∩B by
the subgames for U1 ⊆ V1, V2 ⊆ U2, and U3 ⊆ A ∧ U3 ⊆ B ∧ (V3 ⊆ A ∧ V3 ⊆
B → V3 ⊆ U3), respectively. The formula for A∪B is similar. Here the Ui’s belong
to player 1 and the Vi’s belong to player 2. We modify the winning condition for
player 1 by prefixing it conjunctively with the conjunction of these formulas and
replacing each occurence of ∅, ω, A ∩ B by U1, U2, U3, respectively.
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To get the undecidabilty result when quantification is restricted to finite sets
one can check that in our reduction we do not need formulas of the form (3.7) with
k = 0. Therefore we can dispense with ω. �

Remark 3.9. From the proof of (5) it follows that the original game is undecidable
for the language that contains the operations union and intersection and only the
equality predicate. Likewise it is undecidable for the language that contains only
the ⊆-predicate and no operations.

4. On the degree of unsolvability of P

We have seen that P is at least as hard as TA. What about upper bounds? Right
from the definition it can be shown that P ∈ Σ1

2. Furthermore, the basic games are
determined as can be easily seen by translating them into Borel games5 on Baire
space N = ωω and appealing to Borel determinacy6 [25]. Therefore it follows that
P ∈ ∆1

2. We come back to the issue of Borel games in the next section.
By using the methods of the last section—easier proofs can be given by using

the characterization of the next section—it can be shown that this upper bound
is the optimal placement of P in the analytical hierarchy. To this end one shows
first that for every recursive tree T ⊆ ω<ω there is, in a uniform way, a basic
game G such that player 1 has a winning strategy in G iff T has an infinite branch.
We may assume that the finite sequences are effectively encoded in ω such that
code(s) < code(t) if s is a proper initial segment of t. G implements the following
game, in which player 1 enumerates sets E1, E2 and player 2 sets A1, A2, B1, B2:

(1) Player 2 enumerates an element into either A2 − A1 or B2 − B1.
(2) If A2 − A1 �= ∅ ∧ B2 − B1 = ∅, then player 1 may enlarge E2 by a finite

amount. After that player 2 selects one of the following alternatives:
(a) He wins instantly if |E1| is not the father of |E2| in (the encoding of)

T .
(b) To perform a new stage. Then he enumerates A2 into A1 making

A2 − A1 empty and continues with step 1.
(3) This is analogous to step 2 with Ai interchanged with Bi, i = 1, 2, and E1

interchanged with E2.
Player 2 wins iff he wins in step 2, (a) or step 3, (a). If T has an infinite branch

then player 1 has a winning strategy by enumerating into the Ei’s encodings of
successive nodes of that branch. If T does not have an infinite branch then player 2
has a winning strategy by alternately enumerating elements into A2 − A1 and
B2 − B1. This forces player 1 to enumerate encodings of successive nodes of T
into the Ei’s. Since this enumerated branch is finite, player 2 eventually wins by
step 2(a) or step 3(a).

Using the fact that the set of all indices of recursive trees is in the arithmetical
hierarchy and also by using Corollary 2.6(1), it follows that for each i there is in
a uniform way a basic game Gi such that player 1 has a winning strategy in Gi

iff i is an index of a recursive tree with an infinite branch. Thus, a well-known
Σ1

1-complete set A reduces to P , i.e. P is Σ1
1-hard. By [37], §16.7, Corollary XLI(b)

5The players alternately choose numbers 〈i1, . . . , in〉 with the intended meaning that player 1
(player 2) enumerates the finite set with canonical index ik into Uk (Vk) for 1 ≤ k ≤ n.

6A closer look reveals that we only need the determinacy for Boolean combinations of lightface
Σ0

2-sets which was already established in [8]. See [12] for a self-contained presentation.
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it follows that there is a basic game such that player 1 has a winning strategy but
no hyperarithmetic one.

But P is still much harder than Σ1
1: One can in a similar way as above (basically

by iterating the game twice; see Example 5.2 below) show that the hyperjump
of A (i.e. the set of all indices i such that ϕA

i is the characteristic function of a
finite-path tree; cf. [37], p. 412) reduces to P . Therefore P properly belongs to ∆1

2.
The game can be iterated further, and so the lower bound can be sharpened to the
corresponding iteration of the hyperjump. We leave it open up to which ordinal
the iterated hyperjump of A reduces to P .

By reversing the roles of player 1 and player 2 and using the fact that the
index set of recursive trees actually belongs to Π0

2, there are unformly computable
formulas F ′

i such that player 1 has a recursive winning strategy in GF ′
i

iff i is an
index of a recursive finite-path tree. It follows that

P eff = {F : Player 1 has a recursive winning strategy in GF }

is Π1
1-hard. An easy computation shows that P eff also belongs to Π1

1, therefore it
is Π1

1-complete.
Finally let us consider

P strongly eff = {F : Player 1 has a recursive strategy in GF that wins
against any recursive strategy of player 2}.

It is easy to see that P strongly eff belongs to Σ0
4. We now show that P strongly eff is

also hard for Σ0
4.

Let M be a Σ0
4-complete set. Then there is a recursive function g such that

M = {x : (∃i)(∀j)[Wg(x,i,j) is finite]}. As usual (see [41], Chap. I, Definition 4.1)
let Wk,s denote the standard approximation of Wk after k steps of computation,
where we assume that if x ∈ Wk,s, then x, k < s (in particular Wk,s = ∅ if k ≥ s).

Now consider the following game GM,x:

(1) Player 1 enumerates finitely many numbers into I.
(2) Player 2 enumerates finitely many numbers into J .
(3) Player 1 enlarges S by some finite amount.
(4) Player 2 enlarges T by some finite amount.
(5) Player 1 wins instantly if Wg(x,|I|,|J|),|T | ⊆ Wg(x,|I|,|J|),|S|.
(6) Player 1 may start a new iteration; in that case the game is continued with

step (3).

Player 1 wins GM,x iff he eventually wins in step (5). Note that player 1 has
a winning strategy iff x ∈ M . Furthermore this strategy may be chosen to be
recursive. If x �∈ M , then for any strategy of player 1 there is a recursive strategy
of player 2 that wins for player 2.

It is straightforward by the methods of the previous section to effectively trans-
late this game into a basic game. Therefore P strongly eff is Σ0

4-complete.

Remark 4.1. It follows that P eff is a proper subset of P strongly eff. I.e., there are
formulas F such that player 1 does not have a recursive winning strategy in GF , but
he has one that wins against any recursive strategy of player 2. Concrete examples
are provided using recursive trees that have an infinite branch but no recursive
infinite branch.
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5. A characterization of basic games

We characterize the problem P in terms of effectively presented Borel games on
N . It turns out that basic games and B(Σ0

2)-games are equivalent, where B(Σ0
2)

denotes the Boolean combinations of lightface Σ0
2-sets.

Let use first recall some basic notions from effective descriptive set theory (for
background see [30], Chap. 3 and [37], §15.2).7

Let node : ω → ω<ω denote the inverse of code. A set A ⊆ ω is called the support
of the open set O ⊆ N if

O = {f ∈ N : (∃a ∈ A)[f extends node(a)]}.
An open set is called effectively open (or Σ0

1) iff it has an r.e. (or equivalently,
recursive) support. Let Oi denote the open set with support Wi.

A set S ⊆ N is a Σ0
2-set if there is an r.e. set M ⊆ ω such that

S =
⋃

{On : n ∈ M}.

Let Si denote the set that is Σ0
2 via Wi.

A set B is a B(Σ0
2)-set if it is a Boolean combination of Σ0

2-sets. We code these
sets as numbers in some standard fashion.8 Let Bk denote the B(Σ0

2)-set with code
k ∈ ω.

For any set A ⊆ N we denote by G(A) the Gale-Stewart game on N , where A
is the winning set of player 1. If A is a B(Σ0

2)-set, G(A) is called a B(Σ0
2)-game.

In [7] Gale-Stewart games on Cantor space 2ω were considered, where the winning
set of player 1 is an effectively closed set. It is shown there that the winning
strategies of such games correspond to recursively bounded Π0

1-classes.
Finally let B0

2 = {k ∈ ω : Player 1 has a winning strategy in G(Bk)}. Then we
can state our characterization as follows:

Theorem 5.1. B0
2 ≡ P .

Proof. It is an easy exercise to define in a uniform way for every basic game G
a B(Σ0

2)-set B such that player 1 has a winning strategy in G iff player 1 has a
winning strategy in G(B).

The hard part is to prove the converse. Let us first consider Σ0
2-sets and then

generalize to Boolean combinations of such sets.
So suppose that S is a Σ0

2-set. Then we can uniformly compute a strictly in-
creasing recursive function g such that for all f ∈ N ,

f ∈ S ⇐⇒ (∃j)[f �∈ Og(j)].

Let M(k, t) = {node(a) : a ∈ Wk,t}.
Now we are ready to define a game GS in which player 1 enumerates sets D, E1

and player 2 sets E2, T as follows:
(1) Player 2 enumerates finitely many numbers into E2.
(2) Player 1 wins instantly if |E2| does not code the empty sequence.
(3) Player 1 enlarges E1 by some finite amount.

7 In descriptive set theory the effective analogs of the ‘boldface’ classes Σ0
n are called ‘lightface’

Σ0
n. The reader should not confuse this notation with the levels of the arithmetical hierarchy of

sets of numbers. In the rest of the paper Σ0
n and Π0

n will always denote Borel classes.
8 E.g. as follows: the number 〈b, i1, . . . , in〉 codes the Boolean combination tb[Si1 , . . . , Sin ] if

tb(x1, . . . , xn) is the b-th Boolean term with operations union, intersection and complement, and
variables x1, . . . , xn.
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(4) Player 2 wins instantly if node(|E2|) is not the father of node(|E1|).
(5) Player 2 enlarges E2 by some finite amount.
(6) Player 1 wins instantly if node(|E1|) is not the father of node(|E2|).
(7) Player 2 enlarges T by some finite amount.
(8) Player 1 enlarges D by some finite amount.
(9) Player 2 wins instantly if node(|E2|) extends a node in M(g(|D|), |T |).

(10) Player 2 may start a new iteration; in that case the game is continued with
step (3).

Player 1 wins the game either if he wins instantly in steps (2) or (6), or if at the
end D is finite.

We claim that player 1 has a winning strategy in G(S) iff he has a winning
strategy in GS .

First, if player 1 has a winning strategy in G(S) he uses this same strategy in GS

on codes instead of nodes, and in addition he enlarges D in step (8) such that |D| is
the least j such that node(|E2|) does not extend any sequence in M(g(j), |T |). Note
that j always exists by the choice of the approximation Wk,t and the hypothesis
that g is stricly increasing. Let f denote the function that is produced in a play of
G(S) when player 1 is following his winning strategy. Then there exists a minimal
j such that f �∈ Og(j), i.e., f does not extend any sequence in M(g(j), t) for all t.
Therefore, in the corresponding play on GS , D settles to a set with cardinality j,
i.e., player 1 wins.

Second, if player 1 has a winning strategy in GS he wins against any player 2
that makes T infinite. If in such a play a function f is produced (f is the extension
of all node(|E1,s|) where E1,s is the value of E1 after iteration s), then since D is
finite we must have f �∈ Og(|D|), i.e., f ∈ S. Thus we directly get a winning strategy
in G(S).

Using the methods of Section 3 one can effectively translate the game GS into a
basic game. We defer the details to the Appendix and just mention that the condi-
tion that D is finite is translated into the subformula Greater(U, D, U1, U2, V1, V2),
where the U ’s belong to player 1 and the V ’s belong to player 2. It is easy to see
that player 1 has a recursive strategy that wins if D is finite. On the other hand,
player 2 has the following copying strategy that wins if D is infinite: For each i ≥ 0
and b ∈ {1, 2}, enumerate the i-th element of D into Vb iff player 1 enumerated the
i-th element of U into Ub ∩ U2 (and |D| > i). Here the i-th element is understood
according to the order of enumeration of D and U , respectively.

The construction of GS is readily generalized: Suppose that B is a B(Σ0
2)-set.

Since Σ0
2-sets are uniformly closed under union and intersection, it follows that for

B we can uniformly compute n ≥ 1 and strictly increasing recursive functions gi, hi,
1 ≤ i ≤ n, such that for all f ∈ N ,

f ∈ B ⇐⇒
n∨

i=1

[(∃j)[f �∈ Ogi(j)] ∧ (∀j)[f ∈ Ohi(j)]].

The game GB is defined similar to the game GS above, only steps (7)–(10) are
modified as follows:

(7) (a) Player 1 may enlarge T1 by a finite amount.
(b) Player 2 may enlarge T2 by a finite amount.

(8) (a) Player 1 may enlarge D1
1 , . . . , D

1
n by a finite amount.

(b) Player 2 may enlarge D2
1 , . . . , D

2
n by a finite amount.
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(9) (a) Player 2 wins instantly if node(|E2|) extends a sequence in
n⋃

i=1

M(gi(|D1
i |), |T2|).

(b) Player 1 wins instantly if node(|E1|) extends a sequence in
n⋃

i=1

M(hi(|D2
i |), |T1|).

(10) Player 1 may start a new iteration; in that case the game is continued
with step (3).

Player 1 wins either if he wins instantly in steps (2) or (6), or if there is an i,
1 ≤ i ≤ n, such that at the end D1

i is finite and D2
i is infinite.

Similar as above it follows that player 1 has a winning strategy in G(B) iff
player 1 has a winning strategy in GB. Furthermore in more or less the same way
as above it is possible to effectively translate GB into a basic game. Let us just
mention that now the loop counter is enumerated by player 1, and player 1 wins if
he wins finitely or if the loop counter is infinite and the conditions on the D’s hold.
This completes the proof sketch. �

Note that we have obtained the stronger result that for the corresponding basic
games and B(Σ0

2)-games the winning strategies can also be effectively translated
back and forth. One may call a recursive class of B(Σ0

2)-games with this property
‘strongly complete’. There should be many other natural strongly complete classes
except basic games. Our result may simplify the proofs for strong completeness
since it suffices to show that in such a class basic games can be emulated.

Theorem 5.1 summarizes our previous results: It can be used to give direct proofs
of the lower bounds mentioned in Section 4. Using the strong completeness of P ,
all results of Corollary 2.6, except (5), follow easily as well.

Example 5.2. Let us just provide the proof of a result claimed in Section 4. We
define in a uniform way Σ0

2-games Gi such that player 1 has a winning strategy
in Gi iff ϕA

i has an infinite branch, where A is the Σ1
1-complete set {x ∈ ω :

ϕx codes a tree ⊆ ω<ω with an infinite branch} and ϕA
i is a total tree.

The game is roughly as follows. We omit the subgames for challenging and
checking the totality and the tree property.

Player 1 enumerates numbers a0, a1, . . . which code successive finite sequences.
He wins if player 2 does not interrupt. If player 2 interrupts at stage s0, then
player 1 presents a computation of the oracle Turing machine i with input as0 . Let
(x1, b1), . . . , (xn, bn) with xj ∈ ω, bj ∈ {0, 1} be the oracle queries and answers in
this computation. Player 2 wins if the result of the computation is 0. Otherwise
he may challange an (xj , bj), by claiming that A(xj) = 1 − bj .

If bj = 0, he enumerates numbers c0, c1, . . . which code successive finite sequences
until player 1 interrupts. He wins if player 1 does not interrupt. If player 1 inter-
rupts at stage s1, player 2 presents a computation of Turing machine xj with input
cs1 and wins iff the result of this computation is 1.

If bj = 1, player 1 must enumerate a sequence d0, d1, . . . until player 2 interrupts
him. Player 1 wins if there is no interruption. If player 2 interrupts at stage s2,
then player 1 has to provide a computation of Turing machine xj with input ds2 .
Player 1 wins iff the result of this computation is 1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE COMPLEXITY OF RECURSION THEORETIC GAMES 77

It is straightforward to check that the winning set of player 1 in this game is a
Σ0

2-set.

In effective descriptive set theory the class G(Σ0
2) is considered where G is the

‘game quantifier’; cf. [30], p. 322. The connection is the following: For a set A ⊆
ω × N let Ak = {f ∈ N : (k, f) ∈ A}. A belongs to lightface Σ0

2 iff there is
a recursive function h such that for all k ∈ ω, Ak = Sh(k). By definition, a
set N ⊆ ω belongs to G(Σ0

2) iff there is a set A ⊆ ω × N in lightface Σ0
2 such

that N = {k ∈ ω : Player 1 has a winning strategy in G(Ak)}. Therefore our set
{k ∈ ω : Player 1 has a winning strategy in G(Sk)} is m-complete for G(Σ0

2). In
particular, B0

2 is hard for G(Σ0
2).

Solovay has shown that G(Σ0
2) equals the class of all Σ1

1-inductive sets; see [17],
Theorem 2.5.2 and [30], 7.C.10, p. 414. Therefore, B0

2 is hard for the Σ1
1-inductive

sets, and lower bounds can be transferred from this class.

6. A characterization of mixed games

Recall that mixed games are modified basic games with the additional predicate
isFinite(x). These games are charaterized one level higher up in the effective Borel
hierarchy. This may come as a surprise since Lachlan [22] proved that games with
the single predicate isFinite(x) are recursive.

Let Pmix denote the set of all formulas F in the language of mixed games such
that player 1 has a winning strategy in GF .

Let us recall the following notations. A set A ⊆ N is called a Σ0
3-set iff there

is an r.e. set W such that A =
⋃
{Si : i ∈ W}. A set C is called a B(Σ0

3)-
set if it is a Boolean combination of Σ0

3-sets. We code these sets as numbers in
some standard fashion. Let Ck denote the B(Σ0

3)-set with code k ∈ ω. Finally let
B0

3 = {k ∈ ω : Player 1 has a winning strategy in G(Ck)}. Then we can state our
characterization as follows:

Theorem 6.1. B0
3 ≡ Pmix.

Proof. Again it is straightforward to define in a uniform way for every mixed game
an equivalent B(Σ0

3)-game.
For the converse let use first consider Σ0

3-sets and then generalize to Boolean
combinations thereof. So suppose that A is a Σ0

3-set. Then we can uniformly
compute a recursive function g such that for all f ∈ N ,

f ∈ A ⇐⇒ (∃i)(∀j)(∃a ∈ Wg(i,j))[f extends node(a)].

Now we are ready to define a game GA where player 1 enumerates sets C1, C2, D1,
D2, E1, T , and player 2 enumerates sets D3, E2 as follows:

(1) Player 2 enumerates finitely many numbers into E2.
(2) Player 1 wins instantly if |E2| does not code the empty sequence.
(3) Player 1 enlarges E1 by some finite amount.
(4) Player 2 wins instantly if node(|E2|) is not the father of node(|E1|).
(5) Player 2 enlarges E2 by some finite amount.
(6) Player 1 wins instantly if node(|E1|) is not the father of node(|E2|).
(7) Player 1 enlarges D1, D2 by some finite amount such that D1 ⊆ D2.
(8) Player 2 enlarges D3 by some finite amount such that D3 ⊆ D2.
(9) Player 1 enlarges C1, C2, T by some finite amount such that C1 ⊆ C2.
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(10) Player 2 wins instantly if there does not exist i ≤ |D2| − |D3| such that for
all j < |C2| − |C1|,

node(|E2|) extends a sequence in M(g(i, j), |T |).

(11) Player 1 may start a new iteration; in that case the game is continued with
step (3).

Player 1 wins GA iff he wins in steps (3) or (6), or at the end

[D2 is infinite ∧ D2 − D1 is finite ∧ C2 − C1 is infinite] ∨(6.1)
[D2 − D1 is infinite ∧ D2 − D3 is finite].(6.2)

Using our methods from the previous sections, GA can be uniformly implemented
as a mixed game. It remains to prove the correctness.

For s ≥ 0, let Xs denote the value of set X at the end of the s-th iteration.
a) Suppose that player 1 has a winning strategy in GA; then we have to show

that he also has a winning strategy in G(A). We translate the enumerations of E1

and E2 into respective moves in G(A) and vice versa. In addition we let player 2
in GA play the following additional strategy on D3:

If in iteration s + 1 player 1 enumerates the i-th element of D2,s+1 − D1,s into
D1, then player 2 enumerates for all j ≥ i with j < |D2,s+1−D3,s| the j-th element
of D2,s+1 − D3,s into D3. (This is a well-known strategy from recursion theory,
called dumping ; see [41], p. 197.)

It follows that if D2−D1 is infinite, then D2−D3 is infinite, too. Therefore, since
player 1 is winning the game, at the end (6.1) holds. Let i = |D2−D1|. Then, since
D2 is infinite, at infinitely many iterations s+1 the i-th element of D2,s+1−D1,s is
enumerated into D1,s+1. At all of these stages we have |D2,s+1−D3,s+1| ≤ i. Since
|C2,s+1| − |C1,s+1| goes to infinity and player 2 cannot win in step (10) (otherwise
we would not have a winning strategy for player 1), it follows that there must be a
k ≤ i such that

(∀j)(∃a ∈ Wg(k,j))[f extends node(a)],

where f is the function played in G(A). Thus f ∈ A and player 1 wins G(A) with
the translated strategy.

b) Suppose that player 1 has a winning strategy in G(A); then we have to show
that he also has a winning strategy in GA. Again we translate the moves in G(A)
into enumerations of E1 and E2 and vice versa. For the following we assume that
player 2 always enumerates proper successors of the nodes of player 1 (otherwise
player 1 already wins in step (6)). We show how player 1 has to enumerate the sets
C1, C2, D1, D2, T in order to win in GA.

First, he lets D2,s+1 = C2,s+1 = Ts+1 = {0, . . . , s}.
Second, he defines an auxiliary function f(i, s) as follows:

f(i, 0) = i,

f(i, s + 1) = f(i, s) + 1, if |D2,s − D3,s| < i,

f(i, s + 1) = f(i, s), else.

f is used to implement the well-known kicking strategy from recursion theory; see
[41], p. 67.
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Third, let

m(i, s + 1)

= max{k ≤ s : (∀j < k)(∃a ∈ M(g(i, j), s + 1))[node(|E2,s+1|) extends a]}.
Note that m is nondecreasing in its second argument.

In iteration s + 1, at step (7), let is+1 be the minimal i such that m(i, s + 1) >
m(i, s) if such an i exists and is+1 = s otherwise. Enumerate, if it exists, the
f(is+1, s+1)-th element of D2,s+1−D1,s into D1. (The use of m is also well known
from recursion theory; cf. [37], §12.6, Theorem XIX.)

In step (9) compute m(s + 1) = max{m(k, s + 1) : k ≤ |D2,s+1 − D3,s+1|}
and enumerate the j-th element of C2,s+1 − C1,s into C1, for all j ≥ m(s + 1)
with j < |C2,s+1 − C1,s| (another instance of dumping). Thus we have |C2,s+1| −
|C1,s+1| ≤ m(s + 1) and player 1 will not lose in step (10).

Let us now verify that with these definitions player 1 wins in GA. We have
already seen that he does not lose in a finite number of iterations. Therefore it
suffices to show that condition (6.1) or (6.2) holds.

Since player 1 is using a winning strategy in G(A) the resulting f belongs to A.
Therefore there must be an i such that m(i, s) goes to infinity. Let i′ be the least
such i.

If infinitely often |D2,s+1 − D3,s+1| < i′, then f(i′, s + 1) goes to infinity and
therefore D2−D1 is infinite, but D2−D3 is finite. Then player 1 wins by condition
(6.2).

Otherwise there is s0 such that |D2,s − D3,s| ≥ i′ for all s ≥ s0. Thus m(s + 1)
goes to infinity and C2 − C1 is infinite. Also f(i′, s + 1) = f(i′, s0) for all s ≥ s0

which implies that D2 − D1 is finite. So condition (6.1) holds and player 1 again
wins.

This completes the correctness proof.
In an analogous way as in the proof of the previous theorem the construction

can be generalized to Boolean combinations of Σ0
3-sets. �

Again, the proof shows a stronger result in that winning strategies can be effec-
tively translated back and forth.

B0
3 also belongs to ∆1

2, and it is not difficult to prove that B0
3 is not Turing

reducible to B0
2 . Thus it follows that there is no effective way to compute for

a requirement of a mixed game an equivalent (in the sense that the winner is
preserved) requirement of a basic game.

B0
3 is hard for the class G(Σ0

3) that was studied in effective descriptive set theory.
This class seems to be rather complex; cf. [26], Theorem E. In [15] a characterization
of the class and of the complexity of winning strategies in terms of recursion in
higher types is obtained. Related results appear in unpublished work of Martin
and Solovay [27].

7. Games with infinitely many requirements

Usually in recursion theory one has to satisfy an infinite r.e. sequence of require-
ments, not just a single one. As in [22] we can extend our games to model this
case.

To this end we have an infinite r.e. sequence of formulas Fi, i ∈ ω, as in Defini-
tion 2.1, but now with an infinite supply of variables u0, u1, . . . and v0, v1, . . .. In
each round a player may enumerate finitely many numbers into finitely many of his
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sets. Player 1 has the infinite sequence of sets Ui, i ∈ ω, and player 2 the infinite
sequence of sets Vi, i ∈ ω. Player 1 wins iff after ω rounds all Fi are satisfied by
the enumerated sets.

Let Pinf and Pmix
inf be the corresponding decision problems for infinite basic and

mixed games.
As in the previous sections we may define Π0

3-sets and Π0
4-sets. Let Qi be the

i-th Π0
3-set and let Ri be the i-th Π0

4-set.
Let P 0

3 = {k ∈ ω : Player 1 has a winning strategy in G(Qk)} and P 0
4 = {k ∈

ω : Player 1 has a winning strategy in G(Rk)}.
It is easy to see that for each infinite basic game there is in a uniform way an

equivalent Π0
3-game.9 Also for each infinite mixed game there is in a uniform way

an equivalent Π0
4-game.

The converse can be shown in a similar way as in the previous sections. For
details we refer the reader to the Appendix. Thus we get the following result:

Theorem 7.1. P 0
3 ≡ Pinf and P 0

4 ≡ Pmix
inf .

One can also consider infinitary games with the only predicate isFinite(x). Lach-
lan [22], p. 305, gave an example where player 1 has a winning strategy for each
finite subsequence of the requirements, but not for the whole sequence. Therefore,
a quick reduction to the case of a single requirement (which is decidable) fails. We
leave it open to classify the complexity of this problem. Cf. also question (ii) of
Lachlan [22], p. 309.

8. Conclusion

Our results seem to be devastating for Lachlan’s orginal program of effectivizing
the proof search by analyzing single requirements in terms of games. However, in
practice this approach turns out to be very useful.10 Is there an explanation for
this discrepancy?

We conclude with some directions for further research for the recursion theorist,
the complexity theorist and the philosopher.

First, is there a nice characterization of the Turing degrees of B0
2 , B0

3 , P 0
3 , P 0

4 and
the other levels of the effective Borel hierarchy? Are there other natural problems,
not necessarily about games, that are equivalent to these sets or higher levels?
There was much interest in these issues in the Seventies, but it may be worthwhile
to re-examine them. One can also consider variants of the basic games with other
predicates.

Second, it may be of interest to study resource bounded enumeration games.
For instance, one could add a parameter s to the input and play the games on the
finite domain {0, . . . , s}. What is the complexity of determining which player has
a winning strategy? If s is given in unary, the problem of whether player 1 has a
winning strategy for a given formula F (with the predicate isEmpty(x)) and s is
PSPACE-complete. Many other questions can be asked.

9Therefore it follows from Theorem 6.1 that for each r.e. index of an infinite basic game G we
can uniformly compute an equivalent single mixed formula F (i.e., player 1 has a winning strategy
in G iff he has a one in GF ).

10This was already observed by Lachlan [22], p. 307, in connection with an analogous situation
for his ‘enumeration games’.
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Third, what is the impact on philosophy of the infinite games studied in recursion
theory (or more generally in logic)? For a starting point of this question we refer
the reader to [6, 40].

9. Appendix

Details of the proof of Theorem 5.1. We present the details of how the game
GS from Section 5 is implemented as a basic game. First, using Corollary 3.8, it
follows that there are formulas F1(X, Y, . . .), F2(X, Y, . . .), F3(X, Y, Z, . . .) with cor-
responding effectively determined basic games G1, G2, G3 such that for any canon-
ically given finite sets X, Y, Z: Player 1 has a winning strategy in G1 iff node(|X|)
is not the father of node(|Y |). Player 1 has a winning strategy in G2 iff node(|Y |)
is the father of node(|X|). Player 1 has a winning strategy in G3 iff node(|X|) does
not extend any sequence in M(g(|Y |), |Z|). Let r denote the code of the empty
sequence.

Now we can write down the formula FS which implements the game GS . Here
the variables C, D, E1, E

′
2, M1, M2, M3, T

′, U, U1, U2, X belong to player 1 and the
variables A, D′, E′

1, E2, N1, . . . , N4, T, V1, . . ., Vr+2, Y1, Y2 belong to player 2. The
primed variables are used for double-checking. A is the loop counter, M1, M2, M3

are the step counters of player 1 and N1, . . . , N4 are the step counters of player 2.
FS is the following formula:

¬(N1, N2, N3, N4 ⊆ A ∧ E′
1 ⊆ E1 ∧ D′ ⊆ D) ∨(9.0)

|A − M3| > 1 ∨(9.1)
(A = ∅ ∧ E′

2 = E2) ∨(9.2)
(E1 = ∅ ∧ A �= ∅ ∧ E′

2 ⊆ E2 ∧
¬Equalr(E

′
2, V1, . . . , Vr, U1, U2)) ∨(9.3)

(X �= ∅ ∧ E′
2 ⊆ E2 ∧ A = M1 = N1 = N2 ∧ F1(E′

1, E
′
2, . . .)) ∨(9.4)

[ X = ∅ ∧ M1, M2, M3 ⊆ A ∧ E′
2 ⊆ E2 ∧ T ′ ⊆ T ∧(9.5)

(Y1 = Y2 = ∅ ∧ A �= M1 → E′
1 �= E1) ∧(9.6)

(Y1 �= ∅ ∧ A = M1 ∧ A �= N1 → F2(E′
1, E

′
2, . . .)) ∧(9.7)

(Y1 = Y2 = ∅ ∧ A = M1 = N1 ∧ A �= N2 → E′
2 = E2) ∧(9.8)

(Y1 = Y2 = ∅ ∧ A = M1 = N1 = N2 ∧ A �= N3 → T ′ = T ) ∧(9.9)
(Y1 = Y2 = ∅ ∧ A = M1 = N1 = N2 = N3 ∧ A �= M2 → D′ �= D) ∧(9.10)
(Y2 �= ∅ ∧ A = M1 = N1 = N2 = N3 = M2 ∧ A �= N4 →

F3(E′
2, D

′, T ′, . . .)) ∧(9.11)
(Y1 = Y2 = ∅ ∧ A = M1 = N1 = N2 = N3 = M2 = N4 → M3 = A) ∧(9.12)
(Y1 = Y2 = ∅ → Greater(U, D′, U1, U2, Vr+1, Vr+2)) ].(9.13)

Subformula (9.4) corrsponds to step (6), (9.5) is a consistency condition, and
the other subformulas (9.2)–(9.11) correspond to steps (1)–(9), respectively. The
formal correctness proof is done in the same way as the correctness proof for Mult.

Details of the proof of Theorem 7.1. We present the details of how to uniformly
compute for any given Π0

3-set A an r.e. sequence of formulas Hi, i ∈ ω, such that
player 1 has a winning strategy in the corresponding infinite basic game G iff
player 1 has a winning strategy in G(A). So, suppose A is such a set. Then there
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uniformly exists a recursive function g, strictly increasing in the second argument,
such that for all f ∈ N ,

f ∈ A ⇐⇒ (∀i)(∃j)(∀a ∈ Wg(i,j))[f does not extend node(a)].

We define formulas Hi with the following intuition:
H0 implements the following game G0, where player 1 enumerates E1 and player 2

enumerates E2:
(1) Player 2 enumerates finitely many numbers into E2.
(2) Player 1 wins instantly if |E2| does not code the empty sequence.
(3) Player 1 enlarges E1 by some finite amount.
(4) Player 2 wins instantly if node(|E2|) is not the father of of node(|E1|).
(5) Player 2 enlarges E2 by some finite amount.
(6) Player 1 wins instantly if node(|E1|) is not the father of node(|E2|).
(7) Player 1 may perform a new iteration; in that case the game is continued

with step (3).
Player 1 wins iff he wins finitely in steps (2) or (6), or infinitely many iterations
are performed. G0 is just the first part of the game from the proof of Theorem 5.1
(cf. steps (1)–(6) there).

Hi+1 implements a game Gi+1 which player 1 should be able to win iff for the
f built in G0 by successive approximations there exists a j such that f does not
extend node(a) for all a in Wg(i,j). Gi+1 corresponds to the second part of the game
from the proof of Theorem 5.1 (cf. steps (7)–(10) there). Player 1 enumerates Di

and player 2 enumerates Ti:
(1) Player 2 enlarges Ti by some finite amount.
(2) Player 1 enlarges Di by some finite amount.
(3) Player 2 wins instantly if node(|E2|) extends a sequence in

M(g(i, |Di|), |Ti|).
(4) Player 2 may start a new iteration; in that case the game is continued with

step (1).
Player 1 wins iff he does not lose in step (3) and Di is finite.

This description is incomplete, since we did not specify the winner in case some
of the games are blocked. Therefore the actual implementation below is more
complicated.

As in the proof of Theorem 5.1, it should follow that player 1 has a winning
strategy for all Gi iff player 1 has a winning strategy in G(A).

There is a subtlety in playing the Di’s which is resolved below: Player 1 has to
make sure that the condition in step (3) is satisfied in a save way, i.e., node(|E2|)
may not extend at some later time any node in M(g(i, |Di|), |Ti|) when player 2
blocks Gi+1, and therefore freezes Di, but enlarges E2 in G0.

We now present the details for the formulas.
H0 is defined as follows, where the sets E1, E

′
2, L, L1, L2, U1, U2, X belong to

player 1 and E′
1, E2, K1, . . . , K4, V, V1, V2, Y, Z belong to player 2. Let F1, F2 be for-

mulas as in the previous subsection and let r denote the code of the empty sequence.
The set L is the loop counter, now under control of player 1. L1, L2, K2, K3, K4

are step counters, and K1, X, Y, Z are signaling sets, indicating, if nonempty, that
player 2 has prepared for step (2), or player 1 tries to win in step (6), in G0, or
player 2 tries to win in step (4), in G0, or step (3), in some Gi+1, respectively. The
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U ’s and V ’s are used to play a formula Greater.

|L − K4| ≤ 1 ∧ L1, L2 ⊆ L ∧ E′
2 ⊆ E2 ∧(9.0)

[ Z �= ∅(9.1)
∨ ¬(K1, K2, K3, K4 ⊆ L ∧ E′

1 ⊆ E1)(9.2)
∨ (L �= ∅ ∧ K1 = ∅ ∧ E′

2 = E2)(9.3)
∨ (E1 = ∅ ∧ K1 �= ∅ ∧ |E′

2| �= r)(9.4)
∨ (X �= ∅ ∧ L = L1 = K2 = K3 ∧ L2 �= L ∧ F1(E′

1, E
′
2, . . .))(9.5)

∨ ( X = ∅ ∧(9.6)
(Y = ∅ ∧ L �= L1 → E′

1 �= E1) ∧(9.7)
(Y �= ∅ ∧ L = L1 ∧ K2 �= L → F2(E′

1, E
′
2, . . .)) ∧(9.8)

(Y = ∅ ∧ L = L1 = K2 ∧ K3 �= L → E′
2 = E2) ∧(9.9)

(Y = ∅ ∧ L = L1 = K2 = K3 → L = L2) ∧(9.10)
(Y = ∅ ∧ L = L1 = K2 = K3 = L2 = K4

→ ¬Greater(V, L, V1, V2, U1, U2)) ) ].(9.11)

By Corollary 3.8, there uniformly exists, for each i, a formula F i
3(X, Y, Z, . . .)

such that for any canonically given finite sets X, Y, Z player 1 has a winning strat-
egy in the corresponding basic game iff node(|X|) does not extend any sequence
in M(g(i, |Y |), |Z|). We assume that the additional set variables are not used else-
where.

Now we are ready to define the formula Hi+1. The variables Di, Ki,0, Ki,1, T
′
i ,

Ui,0, . . . , Ui,5 belong to player 1 and the variables D′
i, Li,0, Li,1, Li,2, Ti, Vi,0, . . ., Vi,3

belong to player 2. In addition there are the variables E′
2, L, L1, L2, Z of player 1

and K2, K3, K4 of player 2 that were already used in H0. Li,0 is the loop counter
and Ki,0, Ki,1, Li,1, Li,2 are step counters.

¬(Li,1, Li,2 ⊆ Li,0 ∧ D′
i ⊆ Di)(9.12)

∨ |Li,0 − Ki,1| > 1(9.13)
∨ (Z = ∅ ∧ Greater(Ui,0, L, Ui,1, Ui,2, Vi,0, Vi,1))(9.14)
∨ [ (Ki,1 ⊆ Ki,0 ⊆ Li,0 ∧ T ′

i ⊆ Ti) ∧(9.15)
(Z = ∅ ∧ Li,0 �= Li,1 → T ′

i = Ti) ∧(9.16)
(Z = ∅ ∧ Li,0 = Li,1 ∧ Li,0 �= Ki,0 → D′

i �= Di) ∧(9.17)
(Z �= ∅ ∧ L = L1 = K2 = K3 = L2 ∧ K4 ⊆ L ∧ K4 �= L ∧
Li,0 = Li,1 = Ki,0 ∧ Li,0 �= Li,2 → F i

3(E
′
2, D

′
i, T

′
i , . . .)) ∧(9.18)

(Z = ∅ ∧ Li,0 = Li,1 = Ki,0 = Li,2 → Ki,1 = Li,0) ∧(9.19)
(Z = ∅ → Greater(Ui,3, D

′
i, Ui,4, Ui,5, Vi,2, Vi,3)) ].(9.20)

a) Suppose player 1 has a winning strategy in G(A). He translates the moves
of the f played in G(A) into the sets E1, E2, back and forth, as in the proof of
Theorem 5.1.

So he enumerates as specified in the formula H0 successive nodes into E1 and
double checks the moves of player 2. If player 2 does not enumerate successors of
E1 in (9.9), player 1 wins GH0 by making X �= ∅ and playing formula (9.5).

On each stage s player 1 plays the sets in all formulas Hi with i < s. He
always plays the formulas (9.14) and (9.20), and he wins Greater(Ui,0, L, . . .) and
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Greater(Ui,3, D
′
i, . . .) if L is finite or D′

i is finite, respectively. Therefore if player 2
loses GH0 in (9.5), then L is finite and player 1 wins each GHi+1 in (9.14) (if player 2
wants to escape by making Z �= ∅, he loses by (9.18)).

By the same reasoning player 2 loses if he makes Y �= ∅ and wants to win GH0 by
(9.8). He loses this subformula because player 1 made node(|E1|) a direct successor
of node(|E2|). So, in this case player 1 wins GH0 and he wins each GHi+1 by (9.14)
and (9.18).

Therefore we may assume that player 2 enumerates, as intended, successive nodes
into E2. Player 1 always starts a new iteration of GH0 , if possible, and enumerates
into E1 the node specified by the winning strategy. In addition, player 1 plays the
formula ¬Greater(V, L, . . .) such that he wins it if L is infinite. If player 2 blocks in
some round, player 1 wins GH0 and, by (9.14), each GHi+1 . We still have to argue
that he is able to avoid losing in (9.18) and (9.20).

To this end, if player 2 enumerates Ti in step (9.16), which is double-checked
by player 1 as T ′

i , then player 1 waits in GHi+1 and plays GH0 until the length of
node(|E′

2|) in step (9.9) is greater than the length of each node in M(g(i, d), |T ′
i |)

for all d ∈ ω (this is the subtlety alluded to above; note that we need to check only
finitely many sets, since g is strictly increasing in d and M(x, t) = ∅ for x ≥ t).
If this never happens, because player 2 blocks, player 1 wins, as discussed above.
Otherwise, player 1 chooses the least d ≥ |Di| such that node(|E′

2|) does not extend
any sequence in M(g(i, d), |T ′

i |) and makes |Di| = d. In this way he wins (9.20)
since the f played belongs to A and therefore in the end each Di is finite.

If player 2 tries to win by (9.18) and makes Z �= ∅, then player 1 freezes E′
2. He

has already won GH0 by (9.1). Then he checks if the hypothesis of (9.18) holds. If
not, he has won GHi+1 . If it holds, he applies the winning strategy to the subgame
F i

3(E
′
2, D

′
i, T

′
i , . . .) and wins it by the choice of Di = D′

i.
Therefore, player 1 wins each GHi+1 and the whole game.
b) Suppose player 1 does not have a winning strategy in G(A). Then, using

determinacy,11 player 2 has one. We show that player 2 has a winning strategy in
the infinite basic game.

He translates the moves on f in G(A) into the sets E1, E2, back and forth, as
above. In this way player 1 loses GH0 in (9.8) if he does not also enumerate into
E1 successive nodes. If player 1 avoids that loss, he will win GH0 , but, as we will
see in a moment, he will lose one of the GHi+1 .

On each stage s player 2 plays the sets in all formulas Hi with i < s. In particular
he always plays the formulas Greater(Ui,0, L, . . .) in (9.14) and Greater(Ui,3, D′

i, . . .)
in (9.20) which he wins if L is infinite or D′

i is infinite, respectively. He also always
plays the formula ¬Greater(V, L, . . .) in (9.11). He wins it if L is finite. Therefore
he forces player 1 to perform infinitely many iterations in GH0 , unless player 1 loses
prematurely.

On Hi+1, in step (9.16), player 2 will increase Ti each time he comes along.
Each time player 1 has committed the double-checked set D′

i = Di in (9.17) by
making Li,0 = Ki,0, player 2 waits in GHi+1 and plays GH0 until the condition
L = L1 = K2 = K3 = L2 and K4 �= L holds (this happens after player 1 was forced
to make E′

2 equal to the new value of E2 in step (9.9) and refrained from playing
(9.5)). Then he checks whether node(|E2|) extends a node in M(g(i, |D′

i|), |T ′
i |). If

11We could, with a little bit more work, avoid using this hypothesis and show that player 1
has a winning strategy in G(A) if he has one in the basic game.
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this is the case he makes Z �= ∅ (if not already done for some other Hj+1) and wins
the game on F i

3(E
′
2, D

′
i, T

′
i , . . .) in (9.18) and therefore the game on Hi+1 and the

whole game.
Now suppose player 1 avoids losing prematurely in (9.8) and (9.18), and that he

does not block; he would also lose. Then in each GHj
infinitely many iterations are

performed and, since the f played does not belong to A, player 1 is forced to make
one of the Di infinite, say for i = i0. But then player 2 wins in the end formula
(9.20) which falsifies Hi0+1 and wins the whole game for player 2.

The detailed way of how to play the sets does not need any new ideas and is left
to the reader.
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