
HAL Id: hal-03189648
https://hal.archives-ouvertes.fr/hal-03189648

Submitted on 4 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Complexity of Regularity in Grammar Logics and
Related Modal Logics

Stéphane Demri

To cite this version:
Stéphane Demri. The Complexity of Regularity in Grammar Logics and Related Modal Logics. Jour-
nal of Logic and Computation, Oxford University Press (OUP), 2001, 11 (6), pp.933-960. �10.1093/log-
com/11.6.933�. �hal-03189648�

https://hal.archives-ouvertes.fr/hal-03189648
https://hal.archives-ouvertes.fr

The Complexity of Regularity in
Grammar Logics

(long version)

Stéphane Demri ∗

Lab. Spécification et Vérification
ENS de Cachan & CNRS UMR 8643

61 Av. Pdt. Wilson
94235 Cachan Cedex, France

email: demri@lsv.ens-cachan.fr

Abstract

A modal reduction principle of the form [i1] . . . [in]p ⇒ [j1] . . . [jn′]p can be
viewed as a production rule i1 · . . . · in → j1 · . . . · jn′ in a formal grammar.
We study the extensions of the multimodal logic Km with m independent K
modal connectives by finite addition of axiom schemes of the above form such
that the associated finite set of production rules forms a regular grammar. We
show that given a regular grammar G and a modal formula φ, deciding whether
the formula is satisfiable in the extension of Km with axiom schemes from G
can be done in deterministic exponential-time in the size of G and φ, and this
problem is complete for this complexity class. Such an extension of Km is called
a regular grammar logic. The proof of the exponential-time upper bound is
extended to PDL-like extensions of Km and to global logical consequence and
global satisfiability problems. Using an equational characterization of context-
free languages, we show that by replacing the regular grammars by linear ones,
the above problem becomes undecidable. The last part of the paper presents
non-trivial classes of exponential time complete regular grammar logics.

This is a long version of a paper to appear in Journal of Logic
and Computation.

Keywords: computational complexity, modal logic, formal gram-
mar, regular language, finite automaton.

∗On leave from Laboratoire LEIBNIZ, Grenoble, France.

1

1 Introduction

Capturing the decidability/complexity status of modal logics.
A nowadays popular approach to establish the decidability of modal log-
ics consists in studying the decidability status of fragments of first-order
logic [Var97, ANB98] (see also [Gab81]). Sometime, these fragments are
augmented by features that are not present in the standard first-order
language allowing more expressive power, often at the cost of losing de-
cidability (see e.g. [GOR97]). By contrast, the guarded fixed point logic
µLGF [GW99] is a decidable fragment of fixed-point first-order logic in
which can be naturally embedded the modal µ-calculus (see e.g. [Koz83]).
Once an interesting decidable fragment is identified, the design of deci-
sion procedures that meet the best worst-case complexity upper bounds
is often the next step (see e.g. [Sch97, Niv98, Hus99]). However, even if
your favorite modal logic can be embedded in a known decidable frag-
ment of second-order logic, the characterization of the worst-case com-
plexity of your logic is not straightforward from the complexity of the
second-order fragment. For instance, the standard modal logic K can
be embedded into FO2, the fragment of classical predicate logic with
only two individual variables and without function symbols but FO2-
satisfiability is NEXPTIME-complete whereas K-satisfiability is “only”
PSPACE-complete [Lad77] (see e.g. [Pap94] for a thorough introduction
to computational complexity). Therefore, there is a need to develop gen-
eral methods dedicated to the computational complexity of modal logics.
Spaan’s thesis [Spa93] can be considered as an important step towards
this direction. Indeed, the worst-case complexity of independent fusion
of modal logics is studied there (see also [Hem94]). The study of the com-
plexity of PDL-like logics (e.g. the modal µ-calculus, Combinatory PDL)
can be understood as the modal counterpart for the study of decidable
fragments of second-order logic. Indeed, many modal logics can be natu-
rally embedded into PDL-like logics (see e.g. [Tuo90, Sch91, Gia95]) and
therefore the design of efficient decision procedures for PDL-like logics is
another way to study the complexity of modal logics in a uniform frame-
work. Typically, there is some natural transformation from satisfiability
for the standard modal logics B, S4, S5 into PDL with converse (see e.g.
[FL79]). However, such translations have not been studied in a system-
atic way. In the present paper, the main object of study is a countably
infinite class of polymodal logics such that the satisfiability problem can
be embedded in linear-time to first-order logic. Unfortunately, the target

2

fragment is not known to belong to identified decidable fragments and
therefore decidability and complexity shall be established by modal-like
techniques partly based on formal language theory.

Grammar logics. An important idea in logic programming is to trans-
late the special purpose formalism of formal (context-free) grammars into
a general purpose one, namely first-order predicate logics. In [FdCP88],
a similar approach is suggested where the analysis or generation of a
sentence is transformed to theorem proving for modal logics. The modal
logics (called “grammar logics”) introduced in [FdCP88] are closely re-
lated to formal grammars. Namely, with each production rule i1 ·. . .·in →
j1 · . . . · jn′ in the grammar is associated a modal axiom [i1] . . . [in]p ⇒
[j1] . . . [jn′]p. Such axioms are called reduction principles in [Ben76, CS94]
and they are a special type of Sahlqvist formulae [Sah75] and primitive
formulae [Kra96]. They are typical in modal logic. In this paper, we
study the extensions of the multimodal logic Km with m independent K
modal connectives by finite addition of axiom schemes of the above form
such that the associated finite set of production rules forms a regular
formal grammar.

Having in mind the initial motivation to introduce the grammar logics
in [FdCP88], it is worth observing that the regular grammar logics are
too expressive to encode the generation of strings by regular grammars.
Indeed, whether a string belongs to a context-free language (defined by a
context-free grammar) is a P-complete problem (see e.g. [JL76, Corollary
11]) whereas the satisfiability problem of any regular grammar logic shall
be shown to be PSPACE-hard. In a sense, introducing regular gram-
mar logics to analyze regular languages is not very efficient. However,
we claim that it is more interesting to take advantage of the wealth of
knowledge about regular languages in order to analyze the computational
complexity of regular grammar logics.

Related modal logics. Although the grammar logics may seem ar-
tificial, many polymodal logics containing fragments that are regular
grammar logics can be found in the literature (see e.g. [FL79, Cat89,
HM92, Gas94, FdCH95, Hem96, HM97] to quote a few examples). More
importantly, Description Logics (DLs) that are used to represent termi-
nological knowledge (see e.g. [SSS91]) are strongly related to grammar
logics. A current line of research in DLs community consists in studying
more and more expressive description logics as soon as they are mean-

3

ingful for knowledge representation languages (see e.g. [Wol99, HST00]).
Typically, in order to obtain expressive roles, one can either add role
constructors or constraint the interpretation of roles. Inverse roles, tran-
sitive roles, role value inclusions and role hierarchies are features of DLs
that allow a gain of expressive power for roles (see e.g. [HS99, HM00,
HST00, Are00]). The grammatical constraints on relations considered in
the present paper can be viewed as role inclusion axioms for roles built
from atomic roles and finite composition.

That is why understanding the complexity of grammar logics can help
understanding the complexity of other related modal logics, including
DLs.

Our contribution. We show that every regular grammar logic is de-
cidable. Up to now, it is only known that every right linear grammar
logic is decidable [Bal98, BGM98] and this solves an open problem men-
tioned in [Bal98, BGM98]. It is worth observing that although the right
linear grammars generate the same class of languages as the left lin-
ear grammars, this correspondence is not relevant at the level of regular
grammar logics. It is fair to mention that the initial motivation for this
work was to understand why the decidability proof in [Bal98, BGM98]
cannot be naturally extended to left linear grammars. Our decidability
proof consists in defining transformations into the satisfiability problem
for PDL. This allows us to prove that the satisfiability problem for any
regular grammar logic is in EXPTIME and this result can be extended
to PDL-like logics, to description logics with inclusion axioms (some re-
strictions are made here), to the global logical consequence problem and
to the global satisfiability problem. Up to now, it is only known that
the satisfiability problem for any right linear grammar logics is in NEX-
PTIME [Bal98, BGM98]. Unfortunately, our transformation is not in
polynomial-time in the size of the regular grammars. We then show that
given a regular grammar G and a modal formula φ, deciding whether the
formula is satisfiable in the extension of Km with axiom schemes from
G can be done in deterministic exponential-time in the size of G and φ.
We refer to this problem as the general satisfiability problem for regular
grammar logics. The complexity upper bound is established by defin-
ing a polynomial time transformations into the satisfiability problem for
PDL with finite automata. PDL with automata is a succinct variant
of PDL where the regular expressions are replaced by finite automata.
Up to now, it is only known that the general satisfiability problem re-

4

stricted to right linear grammars is in N2EXPTIME [Bal98, BGM98].
In [Bal98, BGM98], it is shown that the general satisfiability problem
for context-free grammars logics is undecidable by reducing the empty
intersection problem for context-free grammars which is undecidable (see
e.g. [RS94]). The proof is based on the completeness of tableaux-based
proof systems. Alternatively, we prove here that the general satisfiabil-
ity problem for linear grammar logics is undecidable and the core of our
proof uses a method based on properties of formal languages only. The
undecidability proof is extended to other classes of context-free grammar
logics.

Finally, we present non-trivial classes of EXPTIME-complete gram-
mar logics and a class of PSPACE-complete regular grammar logics.
Throughout the paper, we illustrate the main complexity results by ex-
amples. Moreover, none of the proofs are based on tableaux techniques
as in [Bal98, BGM98] (see e.g. the proofs of Theorem 6 and Lemma 27).

Related work. Formal language theory and automata theory are al-
ready used for logics such as modal µ-calculus, Propositional Dynamic
Logic PDL, Propositional Temporal Logic PTL, CTL* (see e.g. [VW86,
VW94, EJ99]) but from a different perspective than here. We can also
mention the Extended Temporal Logic (ETL) that can express proper-
ties of a sequence definable by a right linear grammar [Wol83, VW94].
In our work, we are only dealing with automata on finite words. Further-
more, our work continues the line of research relating regular expressions
and Propositional Dynamic Logic (see e.g. [BM75, Pra79, FL79, Pra81,
HPS83, HKT00]).

Plan of the paper. The rest of the paper is structured as follows.
In Section 2 and Section 3, we define the class of grammar logics as
well as other PDL-like logics. Some basic definitions about formal gram-
mars are also recalled. In Section 4, we show that the general satisfia-
bility problem for regular grammar logics is EXPTIME-complete. In
Section 5 we extend this result to other logical problems. In Section
6, we show that the general satisfiability problem for linear grammar
logics is undecidable by using an equational characterization of context-
free languages. In Section 7, we show that every regular grammar logic
has a PSPACE-hard satisfiability problem and we introduce a class of
PSPACE-complete regular grammar logics. In Section 8, we present
various classes of EXPTIME-complete regular grammar logics. Section

5

9 concludes the paper by mentioning open problems.

2 Logics

A modal language L is determined by a countable set Π of modal expres-
sions and by a countable set PRP of atomic formulae. Modal expressions
in Π are intended to represent (indices of) binary relations that determine
modal connectives. The set FOR of L-formulae is defined as the smallest
set such that PRP ⊆ FOR and, if φ, ψ ∈ FOR, then φ ∧ ψ ∈ FOR,
¬φ ∈ FOR and for π ∈ Π, [π]φ ∈ FOR. Standard abbreviations include
⇒, 〈π〉, >.

Example 1 For m ≥ 1, we write Lm to denote the modal language de-
termined by the set {ci : i ∈ {1, . . . ,m}} of modal expressions (say “pro-
gram constants”) and by the set PRP = {pi : i ≥ 0} of propositional vari-
ables. By abusing our notations, we often identify {ci : i ∈ {1, . . . ,m}}
with {1, . . . ,m}. We write LN to denote the modal language deter-
mined by the set {ci : i ≥ 1} of modal expressions and by the set
PRP = {pi : i ≥ 0} of propositional variables.

Given a set Π0 = {ci : i ≥ 1} of program constants, a set {pi : i ≥ 0}
of propositional variables and a set {ii : i ≥ 0} of nominals (interpreted
by singletons in the possible-worlds semantics), the set Πfull of modal
expressions and the set FORfull of formulae for the language Lfull are
inductively defined as follows using the BNF notation:

Πfull 3 π ::= ci | U | π ∪ π′ | π; π′ | π−1 | π∗ | φ?

FORfull 3 φ ::= pi | ii | φ ∧ ψ | ¬φ | [π]φ.

In the rest of the paper, we shall study logics whose languages are
fragments of Lfull: the whole language contains all that we need. We

write πα as an abbreviation for
α times︷ ︸︸ ︷
π; . . . ; π and by convention π0 is >?, also

noted id (also known as self in the DL literature).

Given a modal language L, an L-frame is a structure F = 〈W, (Rπ)π∈Π〉
such that W is a nonempty set and for π ∈ Π, Rπ is a binary rela-
tion on W . An L-model is a structure M = 〈W, (Rπ)π∈Π, V 〉 such that
〈W, (Rπ)π∈Π〉 is an L-frame and V is a valuation V : PRP→ P(W). The
diagonal relation {〈x, x〉 : x ∈ W} is denoted by IdW . We say that the
formula φ is satisfied in the modelM by the state x (writtenM, x |= φ)
if the following conditions are satisfied:

6

• M, x |= p
def⇔ x ∈ V (p) for p ∈ PRP;

• M, x |= φ1 ∧ φ2
def⇔ M, x |= φ1 andM, x |= φ2;

• M, x |= ¬φ def⇔ notM, x |= φ;

• M, x |= [π]φ
def⇔ for all x′ ∈ Rπ(x), M, x′ |= φ where Rπ(x)

def
=

{x′ ∈ W : xRπx
′}.

An L-formula φ is said to be true in the L-model M (written M |= φ)
def⇔ for all x ∈ W ,M, x |= φ.

A modal logic L is a pair 〈L,S〉 where L is a modal language and
S is a nonempty class of L-models. The class S is usually defined in
terms of properties that the relations in the models of S are supposed to
satisfy. The set of formulae of the logic L is naturally defined as the set

of L-formulae. An L-formula is said to be L-satisfiable
def⇔ there is an

L-model M ∈ S and x ∈ W such that M, x |= φ. An L-formula is said

to be L-valid
def⇔ for all the L-modelsM∈ S,M |= φ.

Example 2 The standard Lfull-models are the Lfull-models of the form
M = 〈W, (Rπ)π∈Πfull

, V 〉 such that for i ≥ 0, π, π′ ∈ Πfull, φ ∈ FORfull

we have:

• V (ii) is a singleton set Rφ? = {〈x, x〉 :M, x |= φ}; RU = W×W ;

• Rπ∪π′ = Rπ ∪Rπ′ Rπ;π′ = Rπ ◦Rπ′ Rπ∗ = R∗
π Rπ−1 = R−1

π .

Many PDL-like logics can be then defined by restricting the language
Lfull and by considering the natural corresponding restriction on the class
of standard Lfull-models.

• Combinatory Propositional Dynamic Logic with Converse (converse-
CPDL) [PT91]: based on Lfull;

• Combinatory Propositional Dynamic Logic (CPDL) [PT91]: based
on Lfull without −1;

• Propositional Dynamic Logic (PDL) [FL79, Pra79]: based on Lfull

without −1, U and {ii : i ≥ 0};
• Test-free Propositional Dynamic Logic (PDL(0)) [Har84]: based on

Lfull without −1, ?, U and {ii : i ≥ 0};
• Test-free Propositional Dynamic Logic with Identity (PDL(0)+id):

based on Lfull without −1, ?, U and {ii : i ≥ 0} but with id.

7

The satisfiability problem of any above logic between PDL(0) and converse-
CPDL is EXPTIME-complete (see e.g. [FL79, Pra79, PT91, ABM00]).

For m ≥ 1, the multimodal logic Lm is defined as the pair 〈Lm,Sm〉
such that Sm is the set of all the Lm-models. Similarly, the multimodal
logic LN is defined as the pair 〈LN,SN〉 such that SN is the set of all the
LN-models.

3 Grammar logics

In this section, we define the notion of grammar logics. Before its intro-
duction, we recall a few definitions and results about formal languages
and grammars.

3.1 Formal languages

For any alphabet Σ (finite set of symbols), we write Σ∗ [resp. Σ+] to
denote the set of [resp. non-empty] finite strings built over elements
of Σ. As is usual, ε denotes the empty string and u1 · u2 denotes the
concatenation of two strings. For any finite string u ∈ Σ∗, we write |u|
to denote its length and we write uk to denote the string composed of k
copies of u. By convention, u0 = ε. A language is defined as a subset of Σ∗

for some finite alphabet Σ. We use the following standard operations on
languages: union (∪), concatenation (·) and iteration (∗). For instance,

given a language L on Σ, L∗
def
= {ε}∪{u1 · . . . ·un : u1, . . . , un ∈ L, n ≥ 1}.

3.2 Formal grammars

A (formal) grammar G is a quadruple G = 〈N,Σ, P, S〉 such that N and
Σ are disjoint finite sets of nonterminal symbols and terminal symbols,
respectively. P is a finite set of production rules, each production rule
is of the form u → v such that u ∈ (N ∪ Σ)∗ · N · (N ∪ Σ)∗ and v ∈
(N ∪Σ)∗. Finally, S ∈ N is a special symbol called the start symbol (see
e.g. [HU79]). For the grammar G, the size of G, denoted |G|, is

|G| def
= (card(N)+card(Σ)+Σu→v∈P (|u ·v|+1))×log(card(N)+card(Σ)).

Let ⇒G be the direct derivation relation defined as the subset of (N ∪
Σ)∗ × (N ∪ Σ)∗ such that u ⇒G v

def⇔ there is a production rule u′ →
v′ ∈ P such that u = u1 ·u′ ·u2, v = u1 ·v′ ·u2, u1, u2 ∈ (N ∪Σ)∗. Let⇒∗

G

8

be the reflexive and transitive closure of⇒G. The language generated by
G, denoted L(G) is the set of strings {u ∈ Σ∗ : S ⇒∗

G u}. For i ∈ N ∪ Σ,
we write Li(G) to denote the set of terminal strings {u ∈ Σ∗ : i ⇒∗

G u}
generated by the symbol i. For instance, for i ∈ Σ, Li(G) = {i}.

The well-known Chomsky hierarchy of grammars and languages is
defined by imposing conditions on the form of the production rules of
the grammars. A grammar G is

• context-free (in CF)
def⇔ all the production rules u → v satisfy

u ∈ N ;

• linear (in LIN)
def⇔ all the production rules u → v satisfy u ∈ N

and at most one nonterminal occurs in v;

• right linear (in RLIN)
def⇔ G is linear and all the production rules

u→ v satisfy v ∈ Σ∗ ∪ Σ∗ ·N ;

• left linear (in LLIN)
def⇔ G is linear and all the production rules

u→ v satisfy v ∈ Σ∗ ∪N · Σ∗.

It is known that a language is generated by a right linear grammar iff
it is generated by a left linear grammar. A language is said to be regular
iff there is a right linear grammar that generates it. By extension, by
a regular grammar (in REG) we mean either a left linear grammar or a
right linear grammar. This is slightly different from the usual conven-
tion in the formal language theory literature but it simplifies subsequent
developments.

Example 3 Let G be the left linear grammar G = 〈{1}, {2}, {1 → 1 ·
2, 1→ ε}, 1〉. We have L(G) = L1(G) = {2α : α ≥ 0} = {2}∗.

In the technical developments of the paper, unless otherwise stated
we assume that each grammar G = 〈N,Σ, P, S〉 satisfies N = {1, . . . , k}
for some k ≥ 1, Σ = {k + 1, . . . ,m} for some k ≤ m (we allow Σ to be
empty) and S = 1.

3.3 A known characterization of regular languages

We recall below standard facts about regular formal languages. They are
included to make the paper more self-contained. An introduction to reg-
ular languages can be found in [Per90]. Regular languages coincide with
languages accepted by finite automata. Regular languages also coincide

9

with languages generated by regular expressions. Let Σ be a finite alpha-
bet. The set EΣ of regular expressions on the alphabet Σ are the expres-
sions below using the BNF notation: e ::= ∅ | ε | i | e1∪e2 | e1·e2 | e∗
where i ∈ Σ. The language LAN(e) represented by the regular expression
e is inductively defined as follows:

• LAN(∅) = ∅ LAN(ε) = {ε} LAN(i) = {i};
• LAN(e1 ∪ e2) = LAN(e1) ∪ LAN(e2);

• LAN(e1 · e2) = LAN(e1) · LAN(e2) LAN(e∗) = LAN(e)∗.

The symbols ∅, ε, ∪, · and ∗ are overloaded here. We will reduce satisfia-
bility for regular grammar logics into PDL(0)+id-satisfiability. The regular
expressions are the terms that allow us to relate the regular grammars
for grammar logics and program expressions of PDL(0)+id.

Theorem 4 [Kle56] Let L be a language on the alphabet Σ. L is a
regular language iff there is a regular expression e such that LAN(e) = L.

Moreover, there is an effective procedure to compute e from a regular
grammar G in exponential-time in |G| (see e.g. [HU79, Chapter 2]).
Given a regular language L, we write eL to denote a regular expression
such that LAN(eL) = L. When L is defined from a regular grammar G,
for i ∈ N ∪ Σ, we write eG(i) to denote a regular expression such that
LAN(eG(i)) = Li(G). Observe that |eG(i)| is in O(2|G|) in the worst case
[EZ76] and there are known algorithms to compute some eG(i) from G
and i (see e.g. [HU79, Chapter 2]).

3.4 Logics

Let G be a grammar and L be a modal language such that the set of
modal expressions of L includes {c1, . . . , cm} and S be a set of L-models.
We write SG to denote the subset of S such that for anyM∈ S,M∈ SG
def⇔ for any production rule i1 . . . ik → j1 . . . jk′ in G, we have Rcj1

◦ . . . ◦
Rcjk′

⊆ Rci1
◦ . . .◦Rcik

. For the logic L = 〈L,S〉, we write LG to denote

the logic 〈L,SG〉.
For any string u = i1 · . . . · in in {i : i ≥ 1}∗, we write Ru to denote

Rci1
◦ . . . ◦ Rcin

. When u = ε, Ru
def
= IdW . For any u ∈ {1, . . . ,m}∗, we

write [u]φ to denote the Lm-formula [ci1] . . . [cin]φ where u = i1 · . . . · in.
If u = ε, then [u]φ is simply φ.

10

Definition 5 [FdCP88] Let G = 〈N,Σ, P, S〉 be a grammar such that
card(N ∪ Σ) = m ≥ 1. The logic LGm = 〈Lm,SGm〉 such that Lm contains
m modal constants and SGm is the class of Lm-models such that i1 . . . ik →
j1 . . . jk′ ∈ P implies Rcj1

◦ . . . ◦Rcjk′
⊆ Rci1

◦ . . . ◦Rcik
, is said to be a

grammar logic.

The LGm-models are also noted 〈W,R1, . . . , Rm, V 〉, identifying the
Ri’s with the Rci

’s for i ∈ {1, . . . ,m}. Theorem 6 below states equivalent
properties between grammar derivations, validity and frame conditions.

Theorem 6 Let G be a formal grammar. For u, v ∈ (N∪Σ)∗, (I) u⇒∗
G v

iff (II) [u]p⇒ [v]p is LGm-valid iff (III) for all LGm-models Rv ⊆ Ru.

The equivalence between (II) and (III) is a classical correspondence
result in modal logic theory (see e.g. [Sah75, Ben84]). (I) implies (II) can
be proved by induction on the length of the derivation. (II) implies (I)
can be shown by easily adapting the proof of [Bal98, Theorem IV.2.1].
Actually, (II) implies (I) can be also proved without any reference to
tableaux calculi. Indeed, the proof of [CS94, Theorem 3] allows us to
show (II) implies (I) by using the well-known fact that every ordered
monoid can be embedded in an ordered monoid of binary relations (see
the details in [CS94]). In order to study the grammar logic LGm, what
is essential is the value of the set P of production rules whereas once
P is fixed, the value of the start symbol S and the distribution of the
terminal and non terminal symbols are immaterial for LGm-satisfiability.
Typically, we even allow the unusual situation in the grammar with Σ
empty. Hence, we could have equivalently defined the grammar logics
from semi Thue systems.

3.5 Problems

Although we shall study the satisfiability complexity of particular gram-
mar logics LGm, we are also interested in the satisfiability complexity when
both the grammar G and the formulae are inputs. Let C be a class of
formal grammars (e.g., REG, LLIN, RLIN, LIN, CF). The general satis-
fiability problem GSP(C) for grammar logics in C is defined as follows:

• Inputs: a grammar G in C and an Lm-formula φ;

• Question: Is φ LGm-satisfiable?

11

Dually, we define the general validity problem GVP(C) for grammar
logics in C by asking whether φ is LGm-valid. Since φ is LGm-valid iff ¬φ
is not LGm-satisfiable, the complexity of the problems GVP(C) and the
complexity of the problems GSP(C) are strongly related. The principal
object of study in the paper is the problem GSP(REG).

General satisfiability problems easily lead to undecidability as stated
below.

Theorem 7 [Bal98, BGM98] GSP(CF) is undecidable and GSP(RLIN)
is decidable.

From the decidability proof of GSP(RLIN) in [Bal98, BGM98], one
can also conclude that GSP(RLIN) is in N2EXPTIME, since it is shown
that every LGm-satisfiable formula φ has a finite LGm-model of cardinality

O(2|G|×2|G|×|φ|).
Grammatical constraints on models can be also defined for logics

whose languages extend Lm. Let L be a logic such that the set of modal
expressions contains the countably infinite set {ci : i ≥ 1} of program
constants. The general satisfiability problem for regular logics from L,
denoted GSP-REG(L) is defined as follows:

• Inputs: a regular grammar G and an LG-formula φ;

• Question: Is φ LG-satisfiable?

In the sequel we show that GSP-REG(converse-CPDL) and GSP-
REG(LN) are decidable.

3.6 A few more properties

We list below a few more properties that can be easily shown by taking
advantage of known results from the literature (see e.g. [BRV01] for
adequate references).

1. Using the standard translation from modal logic into classical pred-
icate logic, LGm-satisfiability [resp. LGm-validity] can be linearly re-
duced to satisfiability [resp. validity] for the fragment of classical
predicate logic with at most max(2, 2α) individual variables where
α is the maximal length of strings occurring in production rules of
G. By Löwenheim-Skolem Theorem for classical predicate logic, we
can restrict ourselves to countable LGm-models in the sequel.

12

2. For any decidable class C of formal grammars (e.g. LIN, REG),
the set of pairs 〈G, φ〉 such that G is in C and φ is LGm-valid is
recursively enumerable.

3. A sound and complete Hilbert-style proof system for LGm consists
of the axiom schemes (tautologies of propositional calculus, normal
axiom scheme) and inference rules (modus ponens and necessita-
tion) for Km, the modal logic with m independent K modal connec-
tives, plus the axiom schemes [u]p⇒ [v]p for u→ v ∈ P . So given
a formal grammar, we associate with each production rule a modal
axiom scheme. The logics LGm admit other nice proof-theoretical
properties (see e.g. [Kra96, Bal98]).

4. Given a decidable class C of formal grammars, if GSP(C) is un-
decidable, then there exist a grammar GC in C and a formula φC

such that φC is LGC
m -satisfiable and none of the LGC

m -models of φC

are finite. Indeed, uniformly, one can design a finite axiomatiza-
tion for LGC

m and by using standard arguments from [Har58] (see
also [BRV01, Chapter 6]), the undecidability of GSP(C) entails the
existence of such GC and φC. Undecidable problems of the form
GSP(C) can be found in Section 6.2 and Section 6.3.

4 EXPTIME-completeness of GSP(REG)

In this section, we establish that GSP(REG) is an EXPTIME-complete
problem. First we show decidability of GSP(REG) by designing a trans-
formation from GSP(REG) into PDL(0)+id-satisfiability. This provides
an 2EXPTIME upper bound for GSP(REG) but more importantly we
exhibit a natural relationship between the languages of sentential forms
of G and program expressions in PDL(0)+id (Lemma 10). In order to get
the EXPTIME upper bound, the representation of the above mentioned
program expressions as finite automata allows to get a polynomial-time
transformation from GSP(REG) into PDL with finite automata (Theo-
rem 16). The EXPTIME lower bound for GSP(REG) is by reduction
from the global satisfiability problem for the standard modal logic K (see
also Section 8).

13

4.1 Transformation from GSP(REG) into PDL(0)+id-
satisfiability

Given a grammar G, the least we can do to understand the complexity
of LGm-satisfiability is to study the language L(G). Indeed, for u ∈ L(G),
[1]p⇒ [u]p is LGm-valid. However, this is not enough since more generally,
for u ⇒∗

G v, [u]p ⇒ [v]p is also LGm-valid (see Theorem 6). Actually, the
key point here is really to study the language of the sentential forms
of G. For i ∈ Σ ∪ N , we write SFi(G) to denote the language {u ∈
(Σ ∪ N)∗ : i ⇒∗

G u} of sentential forms of G generated from the symbol
i. It is not difficult to design in linear-time in |G| a grammar G ′i that
generates the language SFi(G). Moreover, we can guarantee that if G is
right linear [resp. left linear, linear, context-free] then G ′i is also right
linear [resp. left linear, linear, context-free]. For instance, in the course
of the paper, we shall show that there are regular grammars G1 and
G2 satisfying L(G1) = L(G2) and sharing the same set of terminal and
nonterminal symbols such that LG1

m -satisfiability is PSPACE-complete
and LG2

m -satisfiability is EXPTIME-complete. However, G1 and G2 differ
essentially in their language of sentential forms. By anticipating a little,
we can say that this corresponds to the biggest complexity gap between
two regular grammar logics.

In the sequel, G is assumed to be a context-free grammar such that for
i ∈ N , SFi(G) is a regular language. This includes the regular grammars
for which eSFi(G) can be effectively computed (see e.g. [HU79, Chapter
2]). For the other context-free grammars, we assume the existence of
eSFi(G). There is no way to have a constructive way to obtain eSFi(G)

since checking whether a linear grammar generates a regular language is
an undecidable problem (see e.g. [MS97, page 31]).

Lemma 8 below states a basic property about the languages of sen-
tential forms.

Lemma 8 If i→ i1 · . . . · in ∈ P , then SFi1(G) · . . . · SFin(G) ⊆ SFi(G).

Now, let us define a map f from the set of Lm-formulae into the set
of PDL(0)+id-formulae:

1. f(p)
def
= p for any propositional variable p;

2. f is homomorphic with respect to the Boolean connectives;

3. f([i]φ)
def
= [f(eSFi(G))]f(φ) for i ∈ N ∪ Σ;

14

where f is extended to regular expressions from EΣ∪N as follows:

4. f(ε)
def
= id f(i)

def
= i for i ∈ Σ ∪N ,

5. f(e1∪e2)
def
= f(e1)∪f(e2) f(e1 ·e2)

def
= f(e1); f(e2) f(e∗)

def
= f(e)∗.

The symbols ∪ and ∗ are overloaded here. For a fixed grammar G, f(φ)
can be computed in logarithmic space in |φ|. To be precise we should
write fG instead of f but such a subscript is omitted since no confusion
will arise.

Example 9 Let G be the left linear grammar G = 〈{1}, {2}, {1 →
1 · 2, 1 → ε}, 1〉. We have SF1(G) = {ε, 1} · {2}∗ and SF2(G) = {2}.
So eSF1(G) can take the value (ε ∪ 1) · 2∗. In the formula map f , every
occurrence of the modal connective [2] is replaced by [c2] and every oc-
currence of the modal connective [1] is replaced by [(id∪c1); c

∗
2]. In order

to be precise one should say that eSF1(G) is equivalent to (ε ∪ 1) · 2∗, but
this type of distinction is immaterial in the rest of the paper.

The restriction of the map f to regular expressions simply takes ad-
vantage of the fact that any regular expression e over N ∪ Σ without
occurrence of ∅ can be easily viewed as a syntactic variant of the pro-
gram expression f(e). The semantical counterpart of this property is
stated in Lemma 10.

Lemma 10 LetM be a PDL(0)+id-model and e be a regular expression
in EΣ∪N such that ∅ does not occur in e. Then, Rf(e) =

⋃
{Ru : u ∈

LAN(e)}.

Proof The proof is by induction on the structure of e.
The base cases e = ε, e = i for some i ∈ N∪Σ are by an easy verification.
Induction step:
Case 1: e = e1 ∪ e2.
Rf(e1∪e2) = Rf(e1)∪f(e2) by definition of f and Rf(e1)∪f(e2) = Rf(e1)∪Rf(e2)

by definition of the PDL(0)+id semantics. By the induction hypothe-
sis, for i ∈ {1, 2}, Rf(ei) =

⋃
{Ru : u ∈ LAN(ei)}. Consequently,

Rf(e1∪e2) =
⋃
{Ru : u ∈ LAN(e1)} ∪

⋃
{Ru : u ∈ LAN(e2)}. By an

easy manipulation on the union set operator and on the union operator
on languages, we get Rf(e1∪e2) =

⋃
{Ru : u ∈ LAN(e1 ∪ e2)}.

Case 2: e = e1 · e2.
The proof is similar to Case 1 modulo the adequate obvious modifica-
tions.

15

Case 3: e = e∗1.
Rf(e∗1) = Rf(e1)∗ by definition of f and Rf(e1)∗ = R∗

f(e1) by definition of the

PDL(0)+id semantics. By the induction hypothesis, Rf(e1) =
⋃
{Ru : u ∈

LAN(e1)}. Hence, R∗
f(e1) =

⋃
{Ru1 ◦ . . . ◦ Ruk : u1, . . . , uk ∈ LAN(e1)}.

By definition of the Kleene star operation on languages, we get R∗
f(e1) =⋃

{Ru : u ∈ LAN(e1)
∗}. This implies that Rf(e∗1) =

⋃
{Ru : u ∈

LAN(e∗1)}.

Although the class of regular languages is closed under complemen-
tation, intersection and reverse operation (see e.g. [Per90]), adding one
of these corresponding operations on relations to PDL(0)+id and to the
construction of regular expressions is sufficient to refute Lemma 10. This
provides to the operations ∗, · and ∪ a special status among the operations
on languages that preserve regularity of languages. These operators are
already known to be rather peculiar since they are safe for bisimulation
(see e.g. [Ben98b]) unlike intersection, converse and complement.

Lemma 10 allows us to characterize the class of LGm-models as sub-
structures of PDL(0)+id-models. This is the object of the two next lem-
mas. LetM = 〈W, (Rπ)π∈Π, V 〉 be a PDL(0)+id-model. We write G(M) =
〈W,R′

1, . . . , R
′
m, V 〉 to denote the Lm-model such that for i ∈ N ∪ Σ,

R′
i

def
= Rf(eSFi(G)).

Lemma 11 LetM be a PDL(0)+id-model. Then G(M) is an LGm-model.

Proof Assume that i→ i1 · . . . · in ∈ P from G. We have to show that
Rf(eSFi1

(G)) ◦ . . .◦Rf(eSFin (G)) ⊆ Rf(eSFi(G)). By Lemma 10, Rf(eSFi1
(G)) ◦ . . .◦

Rf(eSFin (G)) =
⋃
{Ru : u ∈ LAN(eSFi1

(G))}◦. . .◦
⋃
{Ru : u ∈ LAN(eSFin (G))}.

Consequently, Rf(eSFi1
(G)) ◦ . . . ◦Rf(eSFin (G)) =

⋃
{Ru : u ∈ LAN(eSFi1

(G)) ·
. . . · LAN(eSFin (G))}. This means that Rf(eSFi1

(G)) ◦ . . . ◦ Rf(eSFin (G)) =⋃
{Ru : u ∈ SFi1(G) · . . . ·SFin(G)}. By Lemma 8, SFi1(G) · . . . ·SFin(G) ⊆

SFi(G). Hence Rf(eSFi1
(G)) ◦ . . . ◦ Rf(eSFin (G)) ⊆

⋃
{Ru : u ∈ SFi(G)} and

by Lemma 10, Rf(eSFi1
(G)) ◦ . . . ◦Rf(SFin (G)) ⊆ Rf(eSFi1

(G)).

One can also show the other inclusion.

Lemma 12 {G(M) : M is a PDL(0)+id−model} is the class of LGm-
models.

16

Proof One inclusion is from Lemma 11. Let M = 〈W,R′
1, . . . , R

′
m, V 〉

be an LGm-model. We build an PDL(0)+id-model M′ such that G(M′) =
M. LetM′ = 〈W, (Rπ)π∈Π, V 〉 be the PDL(0)+id-model such that

• for i ∈ N ∪ Σ, Rci

def
= R′

i; for i ≥ m+ 1, Rci

def
= ∅ (arbitrary value);

• the relations indexed by constructed program terms are uniquely
defined from the definition of the relations by the program con-
stants.

Let us show that for i ∈ N ∪ Σ, Rf(eSFi(G)) = R′
i. This is obvious when

i ∈ Σ since in that case Rf(eSFi(G)) = Rci
and by definition of Rci

,
Rci

= R′
i. Now consider the case i ∈ N . By Lemma 10, Rf(eSFi(G)) =⋃

{Ru : u ∈ SFi(G)}. Since i ∈ SFi(G), we have Rci
⊆ Rf(eSFi(G)). So,

R′
i ⊆ Rf(eSFi(G)). Now suppose that R′

i ⊂ Rf(eSFi(G)) (strict inclusion).

So there is u ∈ SFi(G) and 〈x, y〉 ∈ Rci1
◦ . . . ◦ Rcin

such that u =
i1 · . . . · in and 〈x, y〉 6∈ R′

i. Consequently, i ⇒∗
G u and by Theorem 6,

Rci1
◦. . .◦Rcin

= R′
i1
◦. . .◦R′

in ⊆ R′
i, a contradiction. So Rf(eSFi(G)) = R′

i.

Consequently,M = G(M′).

Lemma 12 is interesting not only because it characterizes the class of
LGm-models but also because it allows us to consider the logic LGm as the
fragment of PDL(0)+id restricted to the program expressions f(eSFi(G)) for
i ∈ N ∪ Σ.

Now we are in position to show that f is satisfiability preserving and
this can be done smoothly.

Theorem 13 Let G be a context-free grammar such that for i ∈ N ,
SFi(G) is a regular language. For any Lm-formula φ, φ is LGm-satisfiable
iff f(φ) is PDL(0)+id-satisfiable.

Proof (→) Suppose that φ is LGm-satisfiable. Let 〈W,R1, . . . , Rm, V 〉
be an LGm-model and w ∈ W such thatM, w |= φ. By Lemma 12, there
is an PDL(0)+id-model M′ = 〈W, (Rπ)π∈Π, V 〉 such that for i ∈ N ∪ Σ,
Rf(eSFi(G)) = R′

i which entails thatM′, w |= f(φ).

(←) Suppose that f(φ) is PDL(0)+id-satisfiable. There exist a PDL(0)+id-
model M = 〈W, (Rπ)π∈Π, V 〉 and w ∈ W such that M, w |= f(φ). By
Lemma 11, G(M) is an LGm-model and obviously G(M), w |= φ.

By the proof of Theorem 13 and since PDL has the finite model
property (see e.g. [HKT00]), LGm has the finite model property and LGm-
satisfiability is in EXPTIME. Additionally, GSP(REG) is in 2EXP-
TIME: each grammar G is an input and therefore each length |f(eSFi(G))|

17

is not anymore considered as a constant of the problem. This causes an
exponential blow-up due to the fact that in the worst-case, |f(eSFi(G))| is
in O(2|G|) [EZ76].

It is natural to wonder what is the relationship between GSP(REG)
and PDL(0)+id. In fact, for α ≥ 2, there is no regular grammar G such
that f(eSF1(G)) = cα

1 . Consequently, GSP(REG) encodes a proper sub-
set of program expressions from PDL(0)+id (even if the star operator ∗

is not taken into account). Furthermore, GSP(REG) captures a form
of recursion weaker than PDL(0)+id but as will be shown later, this re-
striction preserves the deterministic exponential-time complexity lower
bound. Typically, given a program expression π of PDL(0)+id, there may
not exist a regular grammar G and i ∈ N ∪ Σ such that f(eSFi(G)) is
equivalent to π. Hence, f cannot be applied backwards in a systematic
way.

4.2 A digression on context-free grammars

It is undecidable whether the language generated by a linear grammar is
regular (see e.g. [MS97, page 31]) and therefore eSFi(G) cannot be always
effectively computed. This does not happen when G is regular. However,
there are situations when we can decide whether a context-free grammar
generates a regular language (see e.g. [HU79, EHR83]).

Example 14 Let G = 〈{1}, ∅, {1 → 1k1 , . . . , 1 → 1kn}, 1〉 be a context-
free grammar for some n ≥ 1 and 0 ≤ k1 < k2 < . . . < kn. If k1 ≥ 1,
then SF1(G) = {1} · {(1)k1−1, . . . , (1)kn−1}∗. If k1 = 0 and n ≥ 2, then
SF1(G) = {1}∗ otherwise if k1 = 0 and n = 1, then SF1(G) = {1, ε}. LG1 -
satisfiability is in EXPTIME and when k1 ≥ 1, the map f transforms
[1] into [c1; (c

k1−1
1 ∪ . . . ∪ ckn−1

1)∗]. Observe that for the classical cases
n = 1, k1 = 1 (modal logic K), n = 1, k1 = 0 (modal logic T) n = 1,
k1 = 2 (modal logic K4), and n = 2, k1 = 0, k2 = 2 (modal logic S4),
we get uniformly that [1] is translated into [c1; (id)

∗] (equivalent to [c1]),
[c1 ∪ id], [c1; c

∗
1] and [c∗1], respectively.

In the monomodal case, more general decidability results than those
in Example 14 exist in the literature. For instance, in [Zak97] it is proved
that any normal extension of S4 by a finite amount of formulae of one
variable has the finite model property and is decidable. Observe that the
reduction principles of the form [u]p ⇒ [v]p contain a unique proposi-
tional variable.

18

Example 15 Let G = 〈{1, 2}, {3}, {1 → 2 · 1 · 2, 2 → ε, 2 → 3, 2 →
2 · 2}, 1〉 be a context-free grammar. One can show that

SF1(G) = {2, 3}∗ · {1} · {2, 3}∗ SF2(G) = {2, 3}∗ SF3(G) = {3}.

The map f transforms [1] [resp. [2], [3]] into [(c2 ∪ c3)
∗; c1; (c2 ∪ c3)

∗]
[resp. [(c2 ∪ c3)

∗], [c3]]. Hence, LG3 -satisfiability is in EXPTIME.

It is tempting to extend the previous result for GSP(REG) to a larger
class of grammars by appropriately extending PDL. There is a polyno-
mial time transformation from GSP(CF) into satisfiability for PDL with
pushdown automata. Indeed, pushdown automata characterizes the class
of context-free languages and one can build in polynomial-time a push-
down automata recognizing the language of a context-free grammar (see
e.g. [HU79, Chapter 5]). However, the validity problem for PDL with the
single addition of the context-free program a∆ba∆ defined as

⋃
i≥0 a

i; b; ai

is already highly undecidable (Π1
1-complete) (see e.g. [HKT00, Chapter

9]). In the sequel, we shall also establish that GSP(LIN) is undecidable.
Hence, it seems that the regular grammar logics are a very special sub-
set of grammar logics providing an interesting analogy with the place of
regular languages among the class of formal languages. Decidable non
regular extensions of PDL can be found in [HR93, HKT00].

4.3 Complexity upper and lower bounds

In PDL, regular languages are represented by regular expressions. In
PDL with finite automata (APDL) (see e.g. [HKT00]), regular lan-
guages are represented by finite nondeterministic automata. APDL can
be thought of PDL with finite-state automata taking the place of program
expressions (regular expressions). Although the technique to use Kleene’s
translation from finite automata to regular expressions [Kle56] costs an
additional exponential in the worst case [EZ76], APDL-satisfiability is
also in EXPTIME (see e.g. [HKT00]).

Theorem 16 GSP(REG) is in EXPTIME.

Proof Every right linear grammar can be transformed into a finite non-
deterministic automaton in polynomial time. Hence, consider the map
f previously defined where f(eSFi(G)) is replaced by the finite automa-
ton Ai accepting SFi(G). Say we get the map fA. Let G ′i be a right

19

linear grammar generating SFi(G). G ′i can be built in linear-time in G
and therefore |G ′i| is in O(|G|). Ai can be computed in polynomial time
from G ′i by roughly associating transitions between states in Ai to each
production rule of G ′i. Using the proof of Theorem 13 one can then show
that φ is LGm-satisfiable iff fA(φ) is satisfiable in APDL. Furthermore,
fA(φ) can be computed in polynomial time in |G| + |φ|. If G is a left
linear grammar, then let G1 be the right linear grammar obtained from
G by replacing the production rules i → u by i → u−1. Obviously, for
i ∈ N , Li(G)−1 = Li(G1). Now, let A−1

i be the finite automaton accepting
SFi(G1). The finite automaton Ai accepting SFi(G) is obtained from A−1

i

by swapping the final states and the initial state and by reversing the
transitions. Some details are omitted here but this is the essence of the
transformation. In all the cases (left or right linear grammar), for i ∈ N ,
the finite automata Ai accepting SFi(G) can be computed in polynomial
time in |G|. Consequently, there is a transformation in polynomial time
from GSP(REG) into APDL-satisfiability.

Corollary 17 GVP(REG) and GSP-REG(LN) are in EXPTIME.

In order to show that GSP(REG) is EXPTIME-hard, it is sufficient
to find a regular grammar such that LGm-satisfiability is EXPTIME-
hard.

Lemma 18 Let G0 be the left linear grammar 〈{1}, {2}, {1→ 1 · 2}, 1〉.
Then, LG0

2 -satisfiability is EXPTIME-hard.

As far as we know, the logic LG0
2 is the simplest extension of K2

(bimodal logic with two independent K modal connectives) that is EXP-
TIME-hard. Indeed, only the axiom schema [1]p ⇒ [1][2]p is added to
K2 axiomatization. The proof of Lemma 18 is omitted at this stage of the
paper since Lemma 18 is generalized by Theorem 38 for which a detailed
proof is given in Section 8.

Theorem 19 GSP(REG), GVP(REG) and GSP-REG(LN) are EXPTIME-
hard.

Theorem 19 is a consequence of Lemma 18.

5 Other EXPTIME-complete problems

Results in Section 4 can be extended to other logics and problems.

20

5.1 Global logical consequence and global satisfia-
bility

GSP(REG) and GVP(REG) are EXPTIME-complete problems. These
results can be lifted to logical consequence and global satisfiability that
are also standard problems for modal logics. The general global logical
consequence problem for regular logics GGLC(REG) is defined as follows:

• Inputs: a regular grammar G and two Lm-formulae φ, ψ;

• Question: Is it the case that for all LGm-modelsM,M |= φ implies
M |= ψ?

Similarly, the general global satisfiability problem for regular logics GGSAT(REG)
is defined as follows:

• Inputs: a regular grammar G and an Lm-formula φ;

• Question: Is there an LGm-modelM such thatM |= φ?

For any regular grammar G, GLC(LGm) [resp. GSAT(LGm)] denotes the
problem obtained from GGLC(REG) [resp. GGSAT(REG)] by fixing the
grammar to G. We write GLC(PDL(0)+id) [resp. GSAT(PDL(0)+id)] to
denote the global logical consequence problem [resp. the global satisfia-
bility problem] for PDL(0)+id.

Theorem 20 GGLC(REG) and GGSAT(REG) are in EXPTIME.

Proof Let G be a regular grammar and φ, ψ be Lm-formulae. Using
the model constructions from the proof of Theorem 13, one can show
that 〈φ, ψ〉 ∈ GLC(LGm) (or equivalently 〈G, φ, ψ〉 ∈ GGLC(REG)) iff
〈f(φ), f(ψ)〉 ∈ GLC(PDL(0)+id). Similarly, φ ∈ GSAT(LGm) (or equiva-
lently 〈G, φ〉 ∈ GGSAT(REG)) iff f(φ) ∈ GSAT(PDL(0)+id).

The only program constants occurring in f(φ), f(ψ) are c1, . . . , cm.
So 〈f(φ), f(ψ)〉 ∈ GLC(PDL(0)+id) iff [(c1 ∪ . . . ∪ cm)∗]f(φ) ⇒ f(ψ) is
PDL(0)+id-valid and f(φ) ∈ GSAT(PDL(0)+id) iff [(c1 ∪ . . .∪ cm)∗]f(φ) is
PDL(0)+id-satisfiable.

Hence, 〈G, φ, ψ〉 ∈ GGLC(REG) iff [A]fA(φ)⇒ fA(ψ) is APDL-valid
and 〈G, φ〉 ∈ GGSAT(REG) iff [A]fA(φ) is APDL-satisfiable where

• A is a finite automaton recognizing (N ∪ Σ)∗ of size O(card(N) +
card(Σ));

21

• fA(φ), fA(ψ) are obtained from f(φ), f(ψ) respectively by replacing
f(eSFi(G)) by the finite automaton Ai accepting SFi(G) as done in
the proof of Theorem 16.

Consequently, GGLC(REG) and GGSAT(REG) are in EXPTIME.

This entails that for any regular grammar G, GLC(LGm) and GSAT(LGm)
are in EXPTIME. In order to establish the EXPTIME lower bound
one can show the following result.

Lemma 21 Let G be a formal grammar (not necessarily regular). If
GSAT(LGm) is EXPTIME-hard, then GLC(LGm) is also EXPTIME-
hard.

The proof of Lemma 21 uses the property that GSAT(LGm) is a sub-
problem of GLC(LGm), the complement problem of GLC(LGm). Moreover,
since EXPTIME = coEXPTIME [Pap94, Chapter 7], GLC(LGm) is
EXPTIME-hard iff GLC(LGm) is EXPTIME-hard.

Proof Let GLC(LGm) be the complement problem of GLC(LGm), that is
GLC(LGm) is the set of pairs 〈φ, ψ〉 of Lm-formulae such that there is an
LGm-model M and w in M such that M |= φ and M, w 6|= ψ. Hence,
GSAT(LGm) is a subproblem of GLC(LGm) by taking ψ =⊥. Assume that
GSAT(LGm) is EXPTIME-hard. This implies that GLC(LGm) is also
EXPTIME-hard. So for any language L in EXPTIME, there is a
polynomial-time transformation g such that for any finite string x ∈ Σ∗

1

(Σ1 alphabet of L), x ∈ L iff g(x) ∈ GLC(LGm). Consequently, for any
L in EXPTIME, there is a P-time transformation g such that for any
x ∈ Σ∗

1, x 6∈ L (L complement language of L) iff g(x) 6∈ GLC(LGm). That
is, for any L in EXPTIME, there is a P-time transformation g such that
for any string x ∈ Σ∗

1, x ∈ L iff g(x) ∈ GLC(LGm). Since EXPTIME =
coEXPTIME (see e.g. [Pap94, Chapter 7]), one can conclude that for
any L in EXPTIME, there is a P-time transformation g such that for
any string x ∈ Σ∗

1, x ∈ L iff g(x) ∈ GLC(LGm).

Lemma 21 can be generalized to other deterministic complexity classes
but its current form is all that we need here.

Theorem 22 For any regular grammar G, GSAT(LGm) is EXPTIME-
hard.

22

The EXPTIME lower bound is established by reducing the global
satisfiability problem for either the modal logic K or T into GSAT(LGm).

Proof Let K-GSAT [resp. T-GSAT] be the set of monomodal formulae
φ for which there is a [resp. reflexive] Kripke structure M = 〈W,R, V 〉
satisfying M |= φ. ’K-GSAT’ [resp. ’T-GSAT’] stands for the global
satisfiability problem for the standard modal logic K [resp. T] that is
known to be EXPTIME-hard [CL94, Theorem 1] (see also [Hem96]).
As in the proof of Theorem 32, we distinguish two cases according to
Σ = ∅ or not.
Case 1: k′ ∈ Σ.
Let us define a logarithmic space transformation from K-GSAT into
GSAT(LGm). Indeed, one can show that φ ∈ K-GSAT iff φ′ ∈ GSAT(LGm)
where φ′ is obtained from φ by replacing every occurrence of 2 by [k′].
The details are similar to Case 1 in the proof of Theorem 32.
Case 2: Σ = ∅.
As in Case 2 in the proof of Theorem 32, let k′ ∈ Xmin and k′ ⇒∗

G ε.
One can show that φ ∈ T-GSAT iff φ′ ∈ GSAT(LGm) where φ′ is obtained
from φ by replacing every occurrence of 2 by [k′].

We know that as far as satisfiability is concerned, there exist reg-
ular grammar logics that are PSPACE-complete (the standard modal
logic K for instance) and there exist regular grammar logics that are
EXPTIME-complete (see Lemma 18). Such a dichotomy does not exist
for the global logical consequence and global satisfiability.

Corollary 23 (I) For any regular grammar G, GLC(LGm) and GSAT(LGm)
are EXPTIME-complete.
(II) GGLC(REG) and GGSAT(REG) are EXPTIME-complete.

In Corollary 23(I), the assumption on the regularity of G is essential.
For instance, the global logical consequence problem for the context-free
grammar logic S4 is in PSPACE (see e.g. [ABM00, Mas00]) whereas
the global satisfiability problem for S4 is “only” NP-complete [TK91].

5.2 PDL-like logics

The map f from Lm-formulae into PDL(0)+id-formulae defined in Section
4.1 can be generalized to more expressive source logics while preserving
the very essence of f : replace every occurrence of ci, i ∈ N ∪ Σ, by

23

f(eSFi(G)) and the other syntactic objects in program expressions remain
unchanged.

We give some examples below although other extensions of PDL(0)+id

could be treated similarly (modal µ-calculus, intersection-PDL, . . .).
This is omitted here to avoid the boredom of repetitive arguments.

Theorem 24 Let G be a regular grammar. converse-CPDLG-satisfiability
is EXPTIME-complete.

The proof of Theorem 24 contains a logarithmic space transformation
from converse-CPDLG-satisfiability into converse-CPDL-satisfiability.

Proof Roughly speaking, the modal connectives [cm+1] and [c∗m+1] be-
have independently of the modal connectives involving exclusively the
program constants c1, . . . , cm. By [Spa93], converse-CPDLG-satisfiability
is EXPTIME-hard. converse-CPDL is in EXPTIME [Gia95, ABM00]
(see also [PT91]). Let us define a logarithmic space transformation f ′

from converse-CPDLG-satisfiability into converse-CPDL-satisfiability. f ′

is defined as f from LGm into PDL(0)+id except that

• the point 1. is replaced by: for any atomic formula p (either propo-

sitional variable or nominal) f(p)
def
= p.

• the points 3., 4. and 5. are replaced by: f ′([π]φ)
def
= [f ′(π)]f ′(φ)

where f ′ is extended as follows:

1. f ′(U)
def
= U;

2. for i ∈ N ∪ Σ, f ′(ci)
def
= f ′′(eSFi(G)) with

(a) f ′′(j)
def
= cj for j ∈ Σ ∪N f ′′(e ∪ e′) def

= f ′′(e) ∪ f ′′(e′),
(b) f ′′(e∗)

def
= f ′′(e)∗ f ′′(e · e′) def

= f ′′(e); f ′′(e′),

3. for i > m, f ′(ci)
def
= ci;

4. f ′(e1 ∪ e2)
def
= f ′(e1) ∪ f ′(e2) f ′(e−1

1)
def
= f ′(e1)

−1,

5. f ′(e1; e2)
def
= f ′(e1); f

′(e2),

6. f ′(e∗)
def
= f ′(e)∗ f ′(ϕ?)

def
= f ′(ϕ)?.

One can show that φ is converse-CPDLG-satisfiable iff f ′(φ) is converse-
CPDL-satisfiable.

24

The converse operator −1 cannot be used to express grammatical con-
straints between relations (see the remarks after Lemma 10) but we can
use it to build constructed program expressions. The proof of The-
orem 24 also provides an exponential-time transformation from REG-
GSP(converse-CPDL) into converse-CPDL satisfiability. Since converse-
CPDL satisfiability is in EXPTIME [ABM00] we obtain the following
result. As a corollary, REG-GSP(converse-CPDL) is in 2EXPTIME.

By combining the proof of Theorem 24 (restricted to PDL(0) only)
and the proof of Theorem 16, one can easily show the following result.

Theorem 25 REG-GSP(PDL(0)) is EXPTIME-complete.

Proof REG-GSP(PDL(0)) is EXPTIME-hard because GSP(REG) is
EXPTIME-hard and GSP(REG) is a subproblem of REG-GSP(PDL(0)).
Since PDL(0) is a fragment of converse-CPDL, REG-GSP(PDL) is also in
2EXPTIME. However, this upper bound is not sharp enough. Actually,
REG-GSP(PDL(0)) can be transformed in polynomial time to APDL-
satisfiability which provides the required EXPTIME upper bound for
REG-GSP(PDL(0)). Observe that any program expression of PDL(0) can
be transformed in polynomial time to a finite automaton recognizing the
same language (see e.g. [HU79, Chapter 2]). We introduce a slight change
in such a process for building finite automata from regular expressions:
for i ∈ N ∪ Σ, each occurrence of ci is replaced by the finite automata
Ai recognizing the language generated by f(eSFi(G)) (this can be done in
polynomial time in G, see also the proof of Theorem 13).

5.3 Description logics with inclusion axioms

The standard description logicALC (see e.g. [SSS91, DLNN97]) is known
to be a syntactic variant of the multimodal logic LN [Sch91]. Corollary
17 can be reformulated in the DLs lingua. Let ALCComp be the ex-
tension of ALC by adding the composition operator for atomic roles. A
role hierarchy is defined as a finite set of expressions of the form R v S
where R and S are (composed) roles (see e.g. [HS99, HM00]). An ex-
pression of the form R v S is also known as a role value inclusion in
the DL literature (with composed atomic roles). With each role inclu-
sion axiom R v S, we associate a production rule S → R. The sat-
isfiability problem for ALCComp with respect to a role hierarchy is to
determine given a concept and a role hierarchy whether the concept has
a nonempty interpretation verifying the role hierarchy. A consequence of

25

Corollary 17 and Theorem 19 is the following: the satisfiability problem
for ALCComp with role hierarchies defining a set of production rules from
a regular grammar is EXPTIME-complete. In Section 6, we show that
the satisfiability problem for ALCComp with role hierarchies defining a
set of production rules from a linear grammar is undecidable. The above
EXPTIME-completeness characterization is however more robust when
considering extensions of ALC. Let C(0) be the description logic (see e.g.
[GL94]) corresponding to PDL(0). We get rid of the test operator ‘?’ for
the sake of simplicity. A reformulation of Theorem 25 is the following:
the satisfiability problem for C(0) with role hierarchies defining a set of
production rules from a regular grammar is EXPTIME-complete.

6 Undecidability of GSP(LIN)

Concept subsumption in the description logic AL with role value maps
admitting composition of atomic roles is known to be undecidable [SS89]
by reduction from the undecidable word problem for semigroups. Besides,
in [Bal98, BGM98], it is shown that GSP(CF) is undecidable by reduc-
ing the problem of empty intersection between context-free languages
into GSP(CF). The emptiness problem for the intersection of linear lan-
guages is also known to be undecidable [RS94, Theorem 2.11]. Using the
proof technique from [Bal98, BGM98], one can show that GSP(LIN)
is also undecidable. This proof technique relies on the completeness
of a prefixed tableaux calculus for grammar logics. In the sequel, we
propose an alternative proof that only relies on the characterization of
context-free languages. Namely, context-free languages are minimal so-
lutions of a system of equations the solutions for which are obtainable
by means of successive approximations, starting from the empty set (see
e.g. [ABB97]). Our proof below illustrates once more that although it is
doubtful whether grammar logics are useful to analyze formal languages,
formal languages theory can provide insight into issues for multimodal
logics.

6.1 The syntactic LGm-frame

In the rest of this section, G = 〈N,Σ, P, S〉 denotes a context-free gram-
mar such that N ∪ Σ = {1, . . . ,m}, N = {1, . . . , k}, k < m and S = 1.
For i ∈ {1, . . . , k}, there is li ≥ 0 such that i→ ui,1, . . . , i→ ui,li are the
only production rules in P having i as left-hand side.

26

Let W be a nonempty countable set and Rk+1, . . . , Rm be binary
relations on W . Let g : P(W×W)k → P(W×W)k be the map such that

g(R1, . . . , Rk)
def
= 〈

⋃
1≤j≤l1

Ru1,j
, . . . ,

⋃
1≤j≤lk

Ruk,j
〉. To be more precise,

one should subscript g by Rk+1, . . . , Rm. This is omitted for the sake of
clarity. Let ≤ be the binary relation on P(W ×W)k defined as follows:

〈R1, . . . , Rk〉 ≤ 〈R′
1, . . . , R

′
k〉

def⇔ for all i ∈ {1, . . . , k}, Ri ⊆ R′
i. The

structure 〈P(W ×W)k,≤〉 is a complete lattice and g is continuous and
order-preserving. By Kleene’s Theorem, the least fixed point of g exists
and is equal to

µ(g) =
⋃
i∈N

gi(∅, . . . , ∅) def
= 〈R1, . . . ,Rk〉.

Observe that for i ∈ {1, . . . , k}, Ri ⊆ (Rk+1 ∪ . . . ∪Rm)∗.
Now, let us build the syntactic LGm-frame Fsyn = 〈Wsyn, R1,syn, . . . , Rm,syn〉:

• Wsyn
def
= {k + 1, . . . ,m}∗;

• uRi,synu
′ def⇔ u′ = u · i for some i ∈ {k + 1, . . . ,m}, u, u′ ∈ Wsyn;

• 〈R1,syn, . . . , Rk,syn〉 is the least fixed point of g defined from Wsyn,
Rk+1,syn, . . . , Rm,syn.

Consequently,

• (
⋃

j∈ΣRj,syn)∗(ε) = Wsyn and for i ∈ N , Ri,syn ⊆ (
⋃

j∈ΣRj,syn)∗;

• for u, v ∈ Wsyn, Ru(v) = {v · u}.

The subscript ’syn’ is omitted when no confusion can arise. Obviously,
Fsyn = 〈Wsyn, Rk+1,syn, . . . , Rm,syn〉 is an (m− k)-ary infinite tree. Fsync

is a canonical structure for LGm since not only it is an LGm-frame but it
encodes explicitly the languages Li(G) for i ∈ N (see Lemma 26 below).

Lemma 26 For i ∈ N , for u ∈ Wsyn, u ∈ Ri(ε) iff u ∈ Li(G).

The proof of Lemma 26 is based on the property that the context-
free languages L1(G), . . . , Lk(G) are minimal solutions of the system of
equations defined from the context-free grammar G.

Proof Let g′ : [{k+ 1, . . . ,m}∗]k → [{k+ 1, . . . ,m}∗]k be the map such
that

g′(L1, . . . ,Lk)
def
= 〈

⋃
1≤j≤l1

u′1,j, . . . ,
⋃

1≤j≤lk

u′k,j〉

27

where u′i,j is obtained from ui,j by replacing the elements of j′ ∈ Σ by
the language {j′} and the elements of i′ ∈ N by Li′ . Here, the concate-
nation operator · acts on languages. Let ≤′ be the binary relation on

[{k + 1, . . . ,m}∗]k defined as follows: 〈L1, . . . ,Lk〉 ≤′ 〈L′1, . . . ,L′k〉
def⇔

for all i ∈ {1, . . . , k}, Li ⊆ L′i. The structure 〈[{k + 1, . . . ,m}∗]k,≤′〉
is a complete lattice and g′ is continuous and order-preserving. By
Kleene’s Theorem, the least fixed point of g′ exists and is equal to
µ(g′) =

⋃
i∈N g

′i(∅, . . . , ∅). By Schützenberger’s Theorem [Sch62], for
u ∈ {k + 1, . . . ,m}∗, for i ∈ {1, . . . , k}, u ∈ Li(G) iff u ∈ µ(g′)[i] (ith
element of the tuple µ(g′)). Indeed, the context-free languages L1(G),
. . . , Lk(G) are minimal solutions of the system of equations defined from
the context-free grammar G. By an induction on i, we show that for
i ≥ 0, for j ∈ {1, . . . , k}, gi(∅, . . . , ∅)[j] =

⋃
{Ru : u ∈ g′i(∅, . . . , ∅)[j]}.

Base case 1: i = 0.
gi(∅, . . . , ∅) = 〈∅, . . . , ∅〉 and g

′i(∅, . . . , ∅) = 〈∅, . . . , ∅〉. Hence, gi(∅, . . . , ∅)[j] =
∅ =

⋃
{Ru : u ∈ ∅} =

⋃
{Ru : u ∈ g′i(∅, . . . , ∅)[j]}.

Base case 2: i = 1.
g(∅, . . . , ∅)[j] =

⋃
j′∈{1,...,lj},uj,j′∈Σ∗ Ruj,j′

. Besides, g′(∅, . . . , ∅)[j] =
⋃
{uj,j′ :

j′ ∈ {1, . . . , lj}, uj,j′ ∈ Σ∗}. So g(∅, . . . , ∅)[j] =
⋃
{Ru : u ∈ g′(∅, . . . , ∅)[j]}.

Induction step:
By definition of gi+1, g(gi(∅, . . . , ∅))[j] =

⋃
j′∈{1,...,lj}Ru′

j,j′
where Ru′

j,j′
is

obtained from Ruj,j′
by replacing for α ∈ {1, . . . , k}, Rα by gi(∅, . . . , ∅)[α].

Similarly, g′(g
′i(∅, . . . , ∅))[j] =

⋃
j′∈{1,...,lj} u

′′
j,j′ where u′′j,j′ is obtained

from uj,j′ by replacing for α ∈ {1, . . . , k}, α by the language g
′i(∅, . . . , ∅)[α]

and for α ∈ {k + 1, . . . ,m}, α by the language {α}.
Let (i) 〈x, y〉 ∈ gi+1(∅, . . . , ∅)[j]. (i) holds true iff there is j′ ∈

{1, . . . , lj} such that 〈x, y〉 ∈ Ru′
j,j′

. Assume that uj,j′ has the form uj,j′ =

w1 ·i1 ·w2 ·i2 . . .·il ·wl+1 with i1, . . . , il ∈ {1, . . . , k} and w1, . . . , wl+1 ∈ Σ∗.
Hence, (i) iff (ii) 〈x, y〉 ∈ Rw1 ◦gi(∅, . . . , ∅)[i1]◦ . . .◦gi(∅, . . . , ∅)[il]◦Rwl+1

.
Furthermore, (ii) iff there is a finite family (xi)i∈{0,...,2×l+1} such that

• x0 = x; x2×l+1 = y;

• for s ∈ {1, . . . , l}, 〈x2×s, x2×s+1〉 ∈ Rws+1 ;

• for s ∈ {0, . . . , l − 1}, 〈x2×s+1, x2×s+2〉 ∈ gi(∅, . . . , ∅)[is+1].

By the induction hypothesis, for s ∈ {0, . . . , l − 1},

〈x2×s+1, x2×s+2〉 ∈
⋃
{Ru′ : u′ ∈ g′i(∅, . . . , ∅)[is+1]}

28

This means that for s ∈ {0, . . . , l − 1}, there is u′s ∈ g
′i(∅, . . . , ∅)[is+1]

such that 〈x2×s+1, x2×s+2〉 ∈ Ru′s . Hence, (ii) iff 〈x, y〉 ∈ Rw1 ◦ Ru′1
◦

. . . ◦ Ru′l
◦ Rwl+1

for some u′1, . . . , u′l such that for s ∈ {0, . . . , l − 1},
u′s ∈ g

′i(∅, . . . , ∅)[is+1]. However, precisely, w1 · u′1 · . . . · u′l · wl+1 ∈
g
′i+1(∅, . . . , ∅)[j]. Consequently, (ii) iff there is u ∈ g′i+1(∅, . . . , ∅)[j] such

that 〈x, y〉 ∈ Ru.

This entails that for u ∈ Wsyn, for i ∈ {1, . . . , k}, u ∈ Ri,syn(ε) iff
u ∈ Li(G). Indeed, suppose that u ∈ Ri,syn(ε). So there is α ∈ N such
that 〈ε, u〉 ∈ gα(∅, . . . , ∅)[i]. By the above result proved by induction, this
is equivalent to the existence of some v ∈ g′α(∅, . . . , ∅)[i] such that 〈ε, u〉 ∈
Rv. However both u and v are in Σ∗, so by construction of the syntactic
frame, u = v and therefore u ∈ g

′α(∅, . . . , ∅)[i]. By Schützenberger’s
Theorem, this implies u ∈ Li(G). The proof for the other direction is
similar

6.2 The empty intersection problem reduced to GSP(LIN)

The ideas behind the reduction given below are from [Bal98, BGM98]
and therefore the modal encoding below is given in order to make the
paper self-contained. However, the proof differs in its use of the syntactic
frames instead of tableaux proofs.

In order to encode the empty intersection question for two context-
free grammars G1 and G2, we introduce a third grammar G for which
LGm-satisfiability can express the empty intersection question. Basically,
G contains both G1 and G2 with the additional ability to generate all the
words of the terminal alphabet. Let G1 = 〈{1, . . . , k}, {k+1, . . . ,m}, P1, 1〉,
G2 = 〈{1, . . . , k}, {k + 1, . . . ,m}, P2, 1〉 be context-free grammars with
k + 1 ≤ m. Let G = 〈N ′,Σ′, P ′

1 ∪ P ′
2 ∪ P ′, 1〉 be the grammar such that

1. N ′ def
= {1, . . . , 2× k + 1}; Σ′ def

= {2× k + 2, . . . ,m+ k + 1};

2. P ′ def
= {1→ i, 1→ 1 · i : i ∈ Σ′};

3. For u → v ∈ P1 we write u1 → v1 to denote the production rule
in G obtained by replacing each i ∈ {1, . . . , k} by i + 1 and each

j ∈ {k + 1, . . . ,m} by j + k + 1. P ′
1

def
= {u1 → v1 : u→ v ∈ P1}.

4. For u→ v ∈ P2 we write u2 → v2 to denote the production rule in
G obtained by replacing each i ∈ {1, . . . , k} by i + k + 1 and each

j ∈ {k + 1, . . . ,m} by j + k + 1. P ′
2

def
= {u2 → v2 : u→ v ∈ P2}.

29

Observe that if G1,G2 are both context-free [resp. linear], then G is
context-free [resp. linear]. G is actually obtained from G1 and G2 by
adding a nonterminal symbol (namely 1), {2, . . . , k+1} in N ′ corresponds
to {1, . . . , k} in N1 and {k + 2, . . . , 2 × k + 1} in N ′ corresponds to
{1, . . . , k} in N2. Roughly speaking, Σ′ corresponds to the alphabet of
G1 [resp. to the alphabet of G2] by operating a shift of k + 1. The
non terminal symbol 1 in G generates all the words in Σ

′∗. Moreover,
L2(G) = {u+(k+1) : u ∈ L(G1)} and Lk+2(G) = {u+(k+1) : u ∈ L(G2)}.
The string u+(k+1) is obtained from u by adding k+1 to each element
of u. Let φ∩ be the Lm+k+1-formula below:

φ∩
def
= (

∧
i∈Σ′

(〈i〉> ∧ [1]〈i〉>))⇒ ([2]p⇒ 〈k + 2〉p)

The condition
∧

i∈Σ′(〈i〉> ∧ [1]〈i〉>) is satisfied in an Lm+k+1-model

at x iff all words in Σ
′∗ can be found starting at x.

Lemma 27 (I) φ∩ is LGm+k+1-valid iff (II) L(G1) ∩ L(G2) 6= ∅.

In order to prove that (I) implies (II), Lemma 26 is used in some
essential way.

Proof (II) → (I) Assume that u0 ∈ L(G1)∩ L(G2). Hence, [1]p⇒ [u0]p
is both LG1

m -valid and LG2
m -valid and, [2]p⇒ [u0 +(k+1)]p and [k+2]p⇒

[u0+(k+1)]p are LGm+k+1-valid. u0+(k+1) is obtained from u0 by adding

k+1 to each element of u0. LetM = 〈W,R1, . . . , Rm, V 〉 be an LGm+k+1-
model and w ∈ W . Assume thatM, w |= (

∧
i∈Σ′(〈i〉> ∧ [1]〈i〉>)) ∧ [2]p.

So for u ∈ Σ
′∗, Ru(w) 6= ∅ and Ru0+(k+1) ⊆ R2. Hence, there is w′ ∈

Ru0+(k+1)(w) such thatM, w′ |= p. Furthermore, [k+2]p⇒ [u0+(k+1)]p
is LGm+k+1-valid which implies Ru0+(k+1) ⊆ Rk+2 (by Theorem 6). So
M, w |= 〈k + 2〉p.
(I) → (II) Assume that φ∩ is LGm+k+1-valid. LetM be an LGm+k+1-model

〈Wsyn, R1,syn, . . . , Rm+k+1,syn, V 〉 based on the syntactic frame of LGm+k+1

such that V (p)
def
= R2,syn(ε). By construction, M, ε |=

∧
i∈Σ′(〈i〉> ∧

[1]〈i〉>) andM, ε |= [2]p. By validity of the formula φ∩,M, ε |= 〈k+2〉p.
Hence, there is u0 ∈ Rk+2,syn(ε) such that M, u0 |= p. By Lemma 26,
u0 ∈ Lk+2(G) which is equivalent to u−0 ∈ L(G2) where u−0 is obtained from
u0 by replacing each occurrence of j ∈ Σ′ by j − k − 1. By definition of
V (p), u0 ∈ R2,syn(ε) sinceM, u0 |= p, which is equivalent to u−0 ∈ L(G1)
by Lemma 26. Hence, u−0 ∈ L(G1) ∩ L(G2).

30

Theorem 28 GSP(LIN) is undecidable.

Indeed, any two linear grammars G1 and G2 with nonempty sets of ter-
minal symbols can be isomorphically put into the above form. Since the
problem of empty intersection between linear grammars is undecidable,
by Lemma 27, GVP(LIN) is undecidable and equivalently GSP(LIN) is
undecidable.

The undecidability of GSP(LIN) provides a partial negative answer
to the decidability status of the modal µ-calculus with systems of relation
fixed points [Ben98a, Section 4]. Hence, expressing recursion over binary
relations in a modal logic even though restricted to the present linear
case, leads to undecidability. By contrast, by adequately adapting the
proof of Theorem 24, GSP-REG(modal µ-calculus) can be shown to be
decidable. Regularity might be a line of attack to show decidability of
modal logics.

6.3 Other undecidable subproblems of GSP(CF)

The technique to prove that GSP(LIN) is undecidable can be extended
to other classes of context-free grammars, even if the length of the right-
hand sides of the production rules is at most two. Let CHOM be the
class of context-free grammars G in Chomsky normal form, that is for any
production rule i→ u of G, u ∈ N2 ∪ Σ. Similarly, let 2CF be the class
of context-free grammars G such that for any production rule i→ u of G,
u ∈ N2∪{i · i : i ∈ Σ}. We consider GSP(CHOM) and GSP(2CF) in this
work since GSP(2CF) is closely related to a fragment of a description
logic with role inclusion axioms including those of the form S ◦ T v R,
that is mentioned in [WHM00, Section 4]. The grammars in CHOM are
particularly interesting since for any context-free grammar G such that
ε 6∈ L(G), one can effectively construct a grammar G ′ in CHOM such
that L(G) = L(G ′) (see e.g. [HU79, Section 4.5]). Consequently, it is not
hard to show that the problem of empty intersection between context-free
grammars in CHOM is also undecidable.

Theorem 29 GSP(CHOM) is undecidable.

Proof Given G1, G2 in CHOM, let G be the context-free grammar de-
fined as in Section 6.2 except that P ′ takes the value {1→ 1 · 1} ∪ {1→
i : i ∈ Σ′}. As in the proof of Lemma 27, one can show that φ∩ is
LGm+k+1-valid iff L(G1) ∩ L(G2) 6= ∅. Since the constructed G is also in
CHOM, this entails the undecidability of GSP(CHOM).

31

Using a small trick one can also show that GSP(2CF) is undecidable.

Theorem 30 GSP(2CF) is undecidable.

Proof Let G = 〈N,Σ, P, S〉 be in CHOM. We write double(G) = 〈N,Σ, P ′, S〉
to denote the grammar in 2CF such that

P ′ def
= {i→ u ∈ P : |u| = 2} ∪ {i→ j · j : i→ j ∈ P, j ∈ Σ}.

It is easy to show that L(double(G)) = {i1 · i1 · . . . in · in : i1 · . . . ·
in ∈ L(G)}. Since the words of L(double(G)) are obtained from those of
L(G) by copying twice each terminal symbol, for any G1, G2 in CHOM,
L(double(G1)) ∩ L(double(G2)) = ∅ iff L(G1) ∩ L(G2) = ∅.

Let G1 and G2 be in CHOM and G be the context-free grammar defined
as in Section 6.2 from double(G1) and double(G2) except that P ′ takes
the value {1→ 1 · 1}∪{1→ i · i : i ∈ Σ′}. Let φ∩ be the Lm+k+1-formula
below:

φ∩
def
= (

∧
i∈Σ′

(〈i〉〈i〉> ∧ [1]〈i〉〈i〉>))⇒ ([2]p⇒ 〈k + 2〉p)

As in the proof of Lemma 27, one can show that φ∩ is LGm+k+1-valid iff

L(double(G1))∩ L(double(G2)) 6= ∅. Consequently, φ∩ is LGm+k+1-valid iff
L(G1) ∩ L(G2) 6= ∅ and G is in 2CF, which entails the undecidability of
GSP(2CF).

By the point 4. in Section 3.6, we obtain the following result.

Corollary 31 For any class C in {LIN, CHOM, 2CF}, there exist a
grammar G in C and a formula φ such that φ is LGm-satisfiable and none
of the LGm-models of φ are finite.

7 PSPACE-complete grammar logics

The multimodal logic Km, has a PSPACE-complete satisfiability prob-
lem (see e.g. [HM92]). Adding a regular set of modal axioms preserves
the PSPACE lower bound.

Theorem 32 Let G be either a regular grammar or a context-free gram-
mar such that Σ 6= ∅. Then, LGm-satisfiability is PSPACE-hard.

32

Proof We distinguish two cases according to Σ = ∅ or not.
Case 1: k′ ∈ Σ.
Let us define a logarithmic space many-one reduction f from satisfi-
ability for the modal logic K into LGm-satisfiability. K-satisfiability is
known to be PSPACE-complete [Lad77]. f(φ) is obtained from φ by
replacing every occurrence of 2 by [k′]. Suppose there is an LGm-model
M = 〈W,R1, . . . , Rm, V 〉 and w ∈ W such that M, w |= g(φ). Ob-
viously, 〈W,Rk′ , V 〉, w |= φ. Now, suppose that there is a K-model
M = 〈W,R, V 〉 and w ∈ W such that M, w |= φ. By using the
least fixed point of g in Section 6, we can conclude that there is an
LGm-model M′ = 〈W,R1, . . . , Rm, V 〉 such that Rk′ = R. Moreover,
M′, w |= f(φ). The only difficulty here is the existence of the LGm-model
such that Rk′ = R.
Case 2: Σ = ∅.
All the production rules in P are either of the form i→ j or of the form
i → ε for some i, j ∈ N . Let ≈ be the restriction of ⇒∗

G ∩(⇒∗
G)

−1 to
N . ≈ is obviously an equivalence relation on N . There is an equivalence
class Xmin of ≈ such that for all i ∈ Xmin, there is no j ∈ N \ Xmin

such that i → j ∈ P . Since Xmin is nonempty, take an arbitrary k′

in Xmin. If for some i ∈ Xmin, i → ε, then we define a logarithmic
space transformation f from the modal logic T into LGm-satisfiability.
Otherwise, we define a logarithmic space transformation f ′ from the
modal logic K into LGm-satisfiability. T-satisfiability is also known to
be PSPACE-complete [Lad77]. Actually f and f ′ are identical. f(φ)
is obtained from φ by replacing every occurrence of 2 by [k′]. Now
suppose that for some i ∈ Xmin, i → ε. The other case is omitted to
avoid the boredom of repetitive arguments. Suppose there is an LGm-
model M = 〈W,R1, . . . , Rm, V 〉 and w ∈ W such that M, w |= f(φ).
Obviously, 〈W,Rk′ , V 〉, w |= φ and Rk′ is reflexive since k′ ⇒∗

G ε. Now,
suppose that there is a T-model M = 〈W,R, V 〉 and w ∈ W such that
M, w |= φ. Let M′ = 〈W ′, R′

1, . . . , R
′
m, V

′〉 be the LGm-model defined as
follows:

• W ′ def
= W ; V ′ def

= V ; for i ∈ Xmin, Ri
def
= R;

• for j ∈ N \Xmin, if j ⇒∗
G k

′, then R′
j

def
= R otherwise Rj

def
= IdW .

One can show that for i, j ∈ N , IdW ⊆ Ri and if i⇒∗
G j, then Rj ⊆ Ri.

Hence,M′ is really an LGm-model and obviouslyM′, w |= f(φ).

Since for any regular grammar G defining a regular grammar logic,
LGm-satisfiability is PSPACE-hard and in EXPTIME, the most relevant

33

question about the computational complexity of LGm is to know whether
the problem is in PSPACE or EXPTIME-hard (unless PSPACE =
EXPTIME). The rest of the paper is dedicated to characterize either
PSPACE regular grammar logics or EXPTIME-hard regular grammar
logics.

Lemma 33 Let G be a context-free grammar such that for i ∈ N , SFi(G)
is finite. Then LGm-satisfiability is in PSPACE.

Proof Assume that for i ∈ N , SFi(G) is finite. Observe that for i ∈ Σ,
SFi(G) = {i} and therefore SFi(G) is also finite. For i ∈ N , the regular
expression eSFi(G) in EΣ∪N can be the finite union of regular expressions of
the form either ε or i1·. . .·in with {i1, . . . , in} ⊆ Σ. Hence, the map f from
Section 4.1 transforms Lm-formulae into PDL(0)+id-formulae without the
star operator ∗, without converse −1 and with no union operator ∪ in
the scope of the composition operator ;. One can show that this very
fragment of PDL(0)+id has a satisfiability problem in PSPACE.

The condition for i ∈ N , SFi(G) is finite implies that L(G) is finite but
the converse is generally not true. It is decidable whether a context-free
grammar generates an infinite language and the problem is P-complete
[JL76, Gol81]. So it is tractable to check whether the languages of sen-
tential forms generated by a context-free grammar are all finite.

Lemma 33 does not imply that the general satisfiability problem for
the class REGsf−fin of regular grammars such that for i ∈ N , SFi(G) is
finite, is in PSPACE since eSFi(G) may be in exponential size in |G| even
when G ∈ REGsf−fin . However one can show the following result.

Lemma 34 Let G be a regular grammar such that for i ∈ N , Li(G) is
finite. Then, for i ∈ N , one can compute in polynomial time in |G| a
regular expression ei ∈ EΣ such that LAN(ei) = Li(G).

The proof of Lemma 34 takes advantage of the fact that Li(G) can be
generated by an acyclic finite automaton.

Proof Assume that G is right linear. The case when G is left linear
is omitted here but it is very similar. Without any loss of generality,
we can assume that for i, j ∈ N , i ⇒∗

G j and j ⇒∗
G i imply i = j. Any

regular grammar can be put in that form at a polynomial-time cost while
preserving the generated languages (but not the languages of sentential
forms).

34

Let G = 〈N,R〉 be the directed graph whose nodes are the nontermi-

nal symbols of G such that for i, j ∈ N , iRj
def⇔ i→ u · j ∈ P for some

P in G (u ∈ Σ∗).
Let i0 ∈ N be a nonterminal symbol for which we wish to compute

ei0 . Let Ni0 be the following subset of N : R∗(i0)∩{i ∈ N : iR∗j, j → u ∈
P, u ∈ Σ∗}. Since Li0(G) is finite, the restriction of G to Ni0 is a DAG.
The passage to a restrictive graph allows to get rid of the non productive
nonterminal symbols. The set Ni0 can be computed in polynomial-time

in G. If Ni0 is empty, then ei0
def
= ∅ (regular expression interpreted as the

empty language). Otherwise, let α ≥ 1 be the unique natural number
such that Rα(i0) 6= ∅ and Rα+1(i0) = ∅. Let us define the partition
X0, . . . , Xα of Ni0 in the following way:

• X0
def
= {j ∈ Ni0 : R(j) = ∅};

• for s ∈ {0, . . . , α− 1}, Xs
def
= {j ∈ Ni0 : jRj′, j′ ∈ Xs−1}.

Consequently, Xα = {i0}. Since the restriction of G to Ni0 is a DAG,
and by construction of α, X0, . . . , Xα can be checked to be a partition of
Ni0 . Now, let us define for j ∈ Ni0 , the regular expression ej:

• for j ∈ X0, ej
def
=

⋃
{u : j → u ∈ P};

• for s ∈ {1, . . . , α}, for j ∈ Xs,

ej
def
=

⋃
{u : j → u ∈ P}

⋃
⋃
{(

⋃
{u : j → u · j′ ∈ P}) · ej′ : j′ ∈ Xs−1, j → u′ · j′ ∈ P}.

One can check that the whole process to compute ei0 can be done in
polynomial time in |G|.

Example 35 For n ≥ 2, let Gn be the right linear grammar

〈{1, . . . , n}, {n+1, n+2}, {j → (n+1)·(j+1), j → (n+2)·(j+1) : 1 ≤ j ≤ n−1}, 1〉

The cardinality of SF1(Gn) is in O(2n) but the regular expression for
eSF1(Gn) computed from the proof of Lemma 34 is 1∪ (n+1∪n+2) · (2∪
(n+ 1 ∪ n+ 2) · (3 . . . ((n− 1) ∪ (n+ 1 ∪ n+ 2) · n))).

Theorem 36 GSP(REGsf−fin) is PSPACE-complete.

35

Proof PSPACE-hardness is from Theorem 32. PSPACE-easiness can
be shown by taking the proof of Lemma 33 and by considering in the
map into the star-free fragment of PDL(0)+id the regular expressions from
Lemma 34.

The PSPACE-easiness of GSP(REGsf−fin) is reminiscent to the PSPACE-
easiness of the satisfiability of concepts with respect to acyclic termi-
nologies in ALC [Lut99] (see also the renaming technique in [Min88]).
Acyclicity is however related to concepts in [Lut99] whereas it is related
to roles in our current investigation.

Besides, Theorem 36 does not exhaust all the possibilities of regular
grammar logics in PSPACE. There exist regular grammar logics such
that for some i ∈ N , SFi(G) is infinite (that is f(eSFi(G)) necessarily
contains an occurrence of ∗) and LGm-satisfiability is still in PSPACE.
This is the subject of the companion paper [Dem01] where PSPACE
upper bounds are established by proof-theoretical means. Let RLINfin

[resp. LLINfin] be the class of right [resp. left] linear grammars such that
for i ∈ N , Li(G) is finite (unlike the grammars in REGsf−fin, SFi(G) is
allowed to be infinite). Then,

Theorem 37 [Dem01] GSP(RLINfin) is PSPACE-complete.

By contrast, GSP(LLINfin) is EXPTIME-complete by Lemma 18
and Theorem 16.

8 Conditions for EXPTIME-hardness

In this section, we shall identify sufficient conditions to guarantee that
the satisfiability problem of a regular grammar logic is EXPTIME-hard.
While Section 8.1 deals with left linear grammars, Section 8.2 deals with
right linear grammars. Such a separation between regular grammars
is due to an asymmetry as far as EXPTIME-hardness is concerned.
However, we identify decidable fragments of such sufficient conditions in
Section 8.3.

All the EXPTIME-hardness proof in Section 8 are obtained by
reducing the global satisfiability problem for the modal logic K (simi-
lar to the essence of some proofs in [Spa93, Sat96]). Let K-GSAT be
the set of monomodal formulae φ for which there is a Kripke structure

36

M = 〈W,R, V 〉 satisfying M |= φ. ’K-GSAT’ stands for the global sat-
isfiability problem for the standard modal logic K that is known to be
EXPTIME-hard [CL94, Theorem 1] (see also [Hem96]).

8.1 Left linear grammars

Let G be a left linear grammar such that card(N ∪ Σ) ≥ 2.

Theorem 38 Assume that i ⇒∗
G i · uk′ for some i ∈ N , k′ ≥ 1, u =

i1 · . . . · in, n ≥ 1 and j ∈ {1, . . . , n} such that ij occurs only once in u.
Then, LGm-satisfiability is EXPTIME-hard.

Proof Let us define a logarithmic space transformation from K-GSAT
into LGm-satisfiability. Let φ be a monomodal formula. Let g(φ) be the
formula 〈i〉>∧

∧
0≤α≤k′−1[i][u

α]φ′ where φ′ is obtained from the formula φ
by replacing every occurrence of 2 by [u]. Let us show that (i) φ belongs
to K-GSAT iff (ii) g(φ) is LGm-satisfiable.
(i) → (ii) Assume that φ belongs to K-GSAT. Hence, there is a Kripke
modelM = 〈W,R, V 〉 such thatM |= φ. Without any loss of generality,
we can assume that W = R∗(w0) for some w0 ∈ W .

We shall define an LGm-model M′ = 〈W ′, R1, . . . , Rm, V
′〉 such that

W ′ = W and V ′ = V . To do so, we introduce an auxiliary PDL(0)+id-
frame 〈W, (R′

π)π∈Π〉 defined as follows:

• R′
ij

def
= R and for l ∈ (N ∪ Σ) \ {ij}, R′

cl

def
= IdW ;

• for any program constant different from cl for some l ∈ N ∪Σ, R′
cl

takes an arbitrary value, say the empty set;

• the relationsR′
π indexed by constructed program terms are uniquely

defined from the definition of the relations by the program con-
stants.

Now we are in position to assign values to Rl for l ∈ N ∪ Σ: Rl
def
=

R′
f(eSFl(G))

. Since for l ∈ Σ \ {ij}, Rl = IdW and by assumption ij occurs

only once in u, we have Rij = Ru = R. By Lemma 11, M′ is an LGm-
model and Ri ◦ (

⋃
α∈{0,...,k′−1}R

α
u) ⊆ W ×W . Since R∗

u(w0) = W and

〈w0, w0〉 ∈ Ri, we haveM′, w0 |= 〈i〉> ∧
∧

0≤α≤k′−1[i][u
α]φ′.

(ii)→ (i) Assume that 〈i〉>∧
∧

0≤α≤k′−1[i][u
α]φ′ is LGm-satisfiable. So there

is an LGm-modelM = 〈W,R1, . . . , Rm, V 〉 and w ∈ W such thatM, w |=
〈i〉> ∧

∧
0≤α≤k′−1[i][u]

αφ′. We have Ri ◦ (Rk′
u)∗ ⊆ Ri. More generally, for

37

α ∈ {0, . . . , k′−1}, we have Ri ◦ (Rk′
u)∗ ◦Rα

u = Ri ◦Rα
u ◦ (Rk′

u)∗ ⊆ Ri ◦Rα
u .

Hence, Ri ◦ (Ru)
∗ ⊆ Ri ◦ (

⋃
α∈{0,...,k′−1}R

α
u). There is w0 ∈ Ri(w) and

for all w′ ∈ R∗
u(w0), M, w′ |= φ′. Let M′ = 〈W ′, R′, V ′〉 be the Kripke

structure such that W ′ def
= R∗

u(w0), R
′ is the restriction of Ru to W ′ and

V ′ is the restriction of V to W ′. For all w ∈ W ′,M′, w |= φ.

In Theorem 38, the existence of some terminal symbol ij occurring
exactly once in u is required for technical reasons (see the part (i)→ (ii)
of the proof of Theorem 38). It is an open question whether Theorem 38
can be extended by allowing any u ∈ Σ+.

Example 39 For m ≥ 2, i ≥ 1, let Gm,i be 〈{1}, {2, . . . ,m}, {1 →
1 · 2i}, 1〉. By Theorem 38, LGm,i

m -satisfiability is EXPTIME-hard. For

distinct prime numbers i, i′, LGm,i
m -satisfiability and LGm,i′

m -satisfiability
are distinct problems. Moreover, for any left linear grammar of the form
G+ = 〈{1}, {2, . . . ,m}, {1 → 1 · 2i} ∪ P+, 1〉, LG+

m -satisfiability is also
EXPTIME-hard.

The condition for the existence of the nonterminal symbol ij in The-
orem 38 can be replaced by another condition as done in Theorem 40
below. This requires another construction of LGm-models.

Theorem 40 Assume that i⇒∗
G i · u such that

• i ∈ N ; u = i1 · . . . · in; n ≥ 2;

• for all l ∈ {1, . . . , n}, il occurs at least twice in u;

• LAN(u∗ · (i1∪ (i1 · i2)∪ . . .∪ (i1 · . . . · in−1)))∩LAN(eG′(i)) = ∅ where
G ′ is G augmented with the production rule i→ ε.

Then, LGm-satisfiability is EXPTIME-hard.

Proof Without any loss of generality we can assume that the set N of
non terminal symbols of G is {1, . . . , k} for some k < m. Let us define
a logarithmic space transformation from K-GSAT into LGm-satisfiability.
Let φ be a monomodal formula. Let g(φ) be the formula 〈i〉> ∧ [i]φ′

where φ′ is obtained from the formula φ by replacing every occurrence
of 2 by [u]. Let us show that (i) φ belongs to K-GSAT iff (ii) g(φ) is
LGm-satisfiable.
(i) → (ii) Assume that φ belongs to K-GSAT. Hence, there is a Kripke

38

structureM = 〈W,R, V 〉 such thatM |= φ. Without any loss of gener-
ality, we can assume that W = R∗(w0) for some w0 ∈ W .

We shall define an LGm-model M′ = 〈W ′, R1, . . . , Rm, V
′〉 such that

W ′ def
= W∪(R×{1, . . . , n−1}), V ′ restricted toW is V and V ′ is arbitrarily

defined forR×{1, . . . , n−1}. The motivation to introduceW ′ is to encode
xRy inM by the sequence x R′′

1 〈〈x, y〉, 1〉R′′
2 〈〈x, y〉, 2〉 . . . R′′

n−1 〈〈x, y〉, n−
1〉R′′

n y whereR′′
1, . . . , R

′′
n are auxiliary binary relations. Formally, R′′

1, . . . , R
′′
n

are defined as follows:

• R′′
1

def
= {〈x, 〈〈x, y〉, 1〉〉 : 〈x, y〉 ∈ R};

• R′′
n

def
= {〈〈〈x, y〉, n− 1〉, y〉 : 〈x, y〉 ∈ R};

• for j ∈ {2, . . . , n − 1}, R′′
j

def
= {〈〈〈x, y〉, j − 1〉, 〈〈x, y〉, j〉〉 : 〈x, y〉 ∈

R}.

Now it remains to relate the R′′
i s with the Ris. Typically, if the jth

element occurring in u is l then we enforce R′′
j ⊆ Rl. To do so, we

introduce an auxiliary PDL(0)+id-frame 〈W, (R′
π)π∈Π〉 defined as follows:

• for l ∈ N \ {i}, R′
cl

def
= ∅; R′

ci

def
= IdW ;

• for l ∈ Σ, R′
cl

def
=

⋃
{R′′

j : ij = l, j ∈ {1, . . . , n}} (remember u =
i1 · . . . · in);

• for any program constant different from cl for some l ∈ N ∪Σ, R′
cl

takes an arbitrary value, say the empty set;

• the relationsR′
π indexed by constructed program terms are uniquely

defined from the definition of the relations by the program con-
stants.

Now we are in position to assign values to Rl for l ∈ N ∪ Σ: Rl
def
=

R′
f(eSFl(G))

. M′ is an LGm-model by Lemma 11. By construction, for

w ∈ W ⊆ W ′, Ru(w) = R(w) and 〈w0, w0〉 ∈ Ri. Additionally, LAN(u∗ ·
(i1 ∪ (i1 · i2) ∪ . . . ∪ (i1 · . . . · in−1))) ∩ LAN(eG′(i)) = ∅ implies that for
w ∈ W ⊆ W ′, Ri(w) ⊆ W .

Let us prove this latter property. Assume that LAN(u∗ · (i1 ∪ (i1 ·
i2)∪ . . .∪ (i1 · . . . · in−1)))∩LAN(eG′(i)) = ∅ and suppose that there exist
w′ ∈ W and w′′ ∈ W ′ \W such that 〈w′, w′′〉 ∈ Ri. By Definition of Ri

and by Lemma 10, we have

Ri = R′
f(eSFi(G))

= {R′
u : u ∈ SFi(G)}.

39

Equivalently, Ri = {R′
u : u ∈ SFi(G ′)} by imposing R′

ci
= IdW . Since

for l ∈ N \ {i}, we already have that R′
cl

= ∅, this entails that Ri =
{R′

u : u ∈ SFi(G ′) ∩ Σ∗} by imposing R′
ci

= IdW . Consequently, Ri =
{R′

u : u ∈ LAN(eG′(i))}. So there is v ∈ LAN(eG′(i)) such that w′R′
vw

′′.
Since w′ ∈ W and w′′ ∈ W ′ \W , we also have that v ∈ LAN(u∗ · (i1 ∪
(i1 · i2) ∪ . . . ∪ (i1 · . . . · in−1))), a contradiction.

Hence, since Ri(w0) ⊆ R∗
u(w0) = W and 〈w0, w0〉 ∈ Ri, M′, w0 |=

〈i〉> ∧ [i]φ′.
(ii) → (i). Assume that 〈i〉> ∧ [i]φ′ is LGm-satisfiable. So, there is a
LGm-model M = 〈W,R1, . . . , Rm, V 〉 and w ∈ W such that M, w |=
〈i〉>∧ [i]φ′. So, there is w0 ∈ Ri(w) and for all w′ ∈ R∗

u(w0),M, w′ |= φ′

since Ri ◦ R∗
u ⊆ Ri. Let M′ = 〈W ′, R′, V ′〉 be the Kripke structure

such that W ′ def
= R∗

u(w0), R
′ is the restriction of Ru to W ′ and V ′ is the

restriction of V to W ′. For all w ∈ W ′,M′, w |= φ.

We recall that the problem of deciding whether LAN(e)∩LAN(e′) = ∅
is in P (see e.g. [HRS76]) where e and e′ are regular expressions.

Example 41 Let G = 〈{1}, {2, . . . ,m}, {1→ 1 ·2 ·2 ·3 ·3 · . . . ·m ·m}, 1〉
be a regular grammar for some m ≥ 3. LGm-satisfiability is EXPTIME-
complete.

Corollary 42 Let G be a left linear grammar with a unique production
rule of the form i → i · u for some i ∈ N and u ∈ Σ+. Then, LGm-
satisfiability is EXPTIME-hard.

By contrast, for any right linear grammar G with a unique production
rule, LGm-satisfiability is in PSPACE (see Theorem 37).

8.2 Right linear grammars

Let G be a right linear grammar such that card(N ∪ Σ) ≥ 2. Theorem
38 has a counterpart for right linear grammars.

Theorem 43 Assume that i⇒∗
G u

k′′ · i and i⇒∗
G u

k′ · v such that

• i ∈ N ; u = i1 · . . . · in; n, k′′ ≥ 1;

• k′ ≥ 0; v = i1 · . . . · in′ ; n′ ∈ {0, . . . , n− 1} (if n′ = 0, then v = ε);

• there is j ∈ {1, . . . , n} such that ij occurs only once in u.

40

Then, LGm-satisfiability is EXPTIME-hard.

From Theorem 43, we can reasonably conjecture that EXPTIME-
hardness is less common for right linear grammar logics than for left
linear grammar logics (to be compared with Theorem 38).

Proof Some preliminary remarks are necessary. LetM = 〈W,R1, . . . , Rm, V 〉
be an LGm-model. By Theorem 6, (Rk′′

u)∗ ◦ Ri ⊆ Ri and (Rk′
u) ◦ Rv ⊆ Ri.

Consequently, for α ∈ {0, . . . , k′′−1}, Rα
u ◦ (Rk′′

u)∗ ◦Ri ⊆ Rα
u ◦Ri. Hence,

R∗
u ◦ Ri ⊆ (

⋃
0≤α≤k′′−1R

α
u) ◦ Ri. Since ◦ is a monotonous operation on

relations, we have

R∗
u ◦Rk′

u ◦Rv ⊆ (
⋃

0≤α≤k′′−1

Rα
u) ◦Ri.

Hence,

R∗
u ◦Rk′+1

u ⊆ (
⋃

0≤α≤k′′−1

Rα
u) ◦Ri ◦Rin′+1·...·in .

Consequently, R∗
u ⊆ (

⋃
0≤α≤k′′−1R

α
u) ◦ Ri ◦ Rin′+1·...in ∪ (

⋃
0≤α≤k′ R

α
u). If

i ⇒∗
G ε, then R∗

u ⊆ (
⋃

0≤α≤k′′−1R
α
u) ◦ Ri. Let us define a logarithmic

space transformation from K-GSAT into LGm-satisfiability. Let φ be a
monomodal formula. Let g(φ) be the formula∧

0≤α≤k′′−1

[uα · i · in′+1 · . . . · in]φ′ ∧
∧

0≤α≤k′

[uα]φ′

where φ′ is obtained from the formula φ by replacing every occurrence of
2 by [u]. If i⇒∗

G ε, then g(φ) can be simplified into
∧

0≤α≤k′′−1[u
α · i]φ′.

Let us show that (i) φ belongs to K-GSAT iff (ii) g(φ) is LGm-satisfiable.
(i) → (ii) Assume that φ belongs to K-GSAT. Hence, there is a Kripke
structure M = 〈W,R, V 〉 such that M |= φ. Without any loss of gen-
erality, we can assume that W = R∗(w0) for some w0 ∈ W . We define
an LGm-modelM′ = 〈W ′, R1, . . . , Rm, V

′〉 as in the proof of Theorem 38,
part (i) → (ii). Since for l ∈ Σ \ {ij}, Rl = IdW and by assumption ij
occurs only once in u, we have Rij = Ru = R. By Lemma 11, M′ is an
LGm-model. Since R∗

u(w0) = W ,M′, w0 |= g(φ).
(ii) → (i) Assume that g(φ) is LGm-satisfiable. So, there is a LGm-model
M = 〈W,R1, . . . , Rm, V 〉 and w0 ∈ W such that M, w0 |= g(φ). So
for all w′ ∈ R∗

u(w0), M, w′ |= φ′. Let M′ = 〈W ′, R′, V ′〉 be the Kripke

structure such that W ′ def
= R∗

u(w0), R
′ is the restriction of Ru to W ′ and

V ′ is the restriction of V to W ′. For all w ∈ W ′,M′, w |= φ.

41

Example 44 Let G = 〈{1}, {2, . . . ,m}, {1 → ε, 1 → (m · m − 1 · . . . ·
2)m · 1}, 1〉 be a right linear grammar for some m ≥ 2. By application
of Theorem 43, LGm-satisfiability is EXPTIME-hard. Moreover, for any
regular grammar of the form G+ = 〈{1}, {2, . . . ,m}, {1→ ε, 1→ (m·m−
1 · . . . · 2)m · 1} ∪ P+, 1〉, LG+

m -satisfiability is also EXPTIME-complete.

Example 45 For m ≥ 2, i ≥ 1, let Gm,i be 〈{1}, {2, . . . ,m}, {1 →
2i · 1, 1 → ε}, 1〉. By Theorem 43, LGm,i

m -satisfiability is EXPTIME-

hard. For distinct prime numbers i, i′, LGm,i
m -satisfiability and LGm,i′

m -
satisfiability are distinct problems.

Theorem 43 can be easily generalized as follows.

Theorem 46 Assume there are u1, . . . , us ∈ (Σ ∪ N)∗ and u = i1 ·
. . . · in ∈ Σ+ such that for some j ∈ {1, . . . , n}, ij occurs only once
in u. If {u}∗ ⊆

⋃
1≤i≤n{u′ ∈ Σ∗ : ui ⇒∗

G u′}, then LGm-satisfiability is
EXPTIME-hard.

In order to prove Theorem 46, replace in the proof of Theorem 43,
the definition of g by g(φ) =

⋃
1≤α≤n[ui]φ

′ where φ′ is obtained from
φ by replacing 2 by [u]. Furthermore, although Theorem 46 seems to
be quite general, it does not capture all the right linear grammars that
generate exponential-time hard logics. For instance, one can show (using
some quite ad hoc method) that LG3 -satisfiability is EXPTIME-hard
with G = 〈{1}, {2, 3}, {1 → 2 · 2 · 3 · 3 · 1, 1 → 2}, 1〉. G does not fall
into any previous identified cases. Extensions of the EXPTIME lower
bound to weakly transitive (poly)modal logics (see e.g. [Kra99]) are also
expected.

8.3 Decidable criteria for classification

Theorem 38, Theorem 40 and Theorem 43 provide sufficient conditions
to guarantee that a given regular grammar logic has an EXPTIME-
hard satisfiability problem. Those results are partly satisfactory since
no equivalence conditions for EXPTIME-hardness are provided1 (this
could be part of future work) and we ignore whether the assumptions in

1Since it is open whether PSPACE = EXPTIME, the best we could do is to find
a partition {X1, X2} of REG such that for G ∈ X1 [resp. G ∈ X2], LGm-satisfiability
is in PSPACE [resp. is EXPTIME-hard].

42

the three above mentioned theorems are decidable. For instance, we do
not know whether the problem below (related to Theorem 38) is decid-
able:

• Input: A left linear grammar G.
• Question: Are there a nonterminal symbol i, k′ ≥ 1 and a terminal

string u with at least one terminal symbol occurring exactly once
such that i⇒∗

G i · uk′?

In order to overcome the difficulty of the decidability of the assumptions
in Theorems 38, 40 and 43, one can replace in the statements of those the-
orems the relation⇒∗

G by decidable subrelations. Let g be a computable
map from the class REG of regular grammars into the set of natural
numbers. For any regular grammar G we write ⇒≤g(G) to denote the
restriction of ⇒∗

G by considering at most g(G) steps for ⇒G derivations.

Lemma 47 Let (TG)G∈REG be a family of relations such that for G ∈
REG, TG ⊆⇒≤g(G). For any regular grammar G, for u ∈ (N ∪ Σ)∗,
{v ∈ (N ∪Σ)∗ : uTGv} has at most (g(G)× (card(P)×|u|)g(G)) elements.

Proof The elements of {v ∈ (N ∪ Σ)∗ : uTGv} can be organized as a
tree of maximal depth g(G) and of branching factor card(P)×|u|, which
roughly provides the announced cardinality bound.

Example 48 Let G be a regular grammar. A non-recursive derivation
(see e.g. [Bal98]) is a sequence of the form u0 ⇒G u1 ⇒G . . .⇒G uα such
that u0 ∈ N and every nonterminal symbol different from u0 occurring in
u0 · . . . · uα occurs exactly once and u0 occurs at most twice. The binary
relation TG subrelation of⇒∗

G is defined as the set of pairs 〈u0, uα〉. Since
α ≤ card(N), TG ⊆⇒|G|. The non-recursive derivations have been used
in [Bal98, BGM98] to show decidability of right linear grammar logics.

Theorem 49 Let g be a computable map g : REG→ N and (TG)G∈REG

be a family of relations such that for G ∈ REG, TG ⊆⇒≤g(G). Then, (I)
the statements of Theorems 38, 40 and 43 hold true if we replace ⇒∗

G
by TG and (II) the assumptions on grammars of the new theorems are
decidable.

Proof (I) Immediate since TG ⊆⇒∗
G. (II) Immediate by Lemma 47.

43

When TG is defined as in Example 48, checking whether a grammar
satisfies the assumptions of any new theorem in Theorem 49(I) can be
done in at most exponential time in |G|.

The class LLIN of left linear grammars generates the same class of
formal languages as the class of RLIN of right linear grammars. From the
previous results, there is an asymmetry between such classes of grammars
as far as EXPTIME-hardness of grammar logics is concerned. It is not
difficult to show that {SFi(G) : i ∈ G, G ∈ LLIN} and {SFi(G) :
i ∈ G, G ∈ RLIN} are distinct classes of languages which may provide a
clue to explain the above mentioned asymmetry. Nevertheless, one might
observe that our complexity results do not exhaust all the possibilities for
regular grammar logics and therefore, we cannot exclude the possibility
that the current asymmetry could be only due to our partial knowledge.

9 Concluding remarks

Let us mention a few open problems that are worth investigating follow-
ing the results presented in this work.

Classification. Is it the case that any regular grammar logic has a
satisfiability problem that is either EXPTIME-hard or in PSPACE?
If the answer is positive, then is it a decidable problem to check whether
a regular grammar logic is EXPTIME-hard or in PSPACE?

First-order fragments. In [GMV99], it is shown that the guarded
fragment without equality, with five built-in transitive relations, and two
variables is undecidable (see also [Grä99a]). Is there a simple first-order
extension of either FO2 or the guarded fragment that is decidable and
such that GSP(REG) can be naturally translated into it? We already
know that the satisfiability problem of every regular grammar logic can
be translated into satisfiability for the guarded fixed point logic µLGF
that is in EXPTIME [Grä99b] when the relation symbols have bounded
arity. Indeed, PDL can be translated into the modal µ-calculus and the
modal µ-calculus can be translated in polynomial-time into µLGF . The
design of a simple polynomial-time transformation from GSP(REG) into
satisfiability for µLGF is open (for instance µLGF does not allow fixed
point predicates in guards). We only know that a polynomial-time many-
one reduction exists from the respective complexity characterization of

44

GSP(REG) and µLGF with bounded arity.

Formula size as parameter. Parametrized complexity is a power-
ful framework to study the complexity of problems where in the in-
puts, parameters can be distinguished (see e.g. [DF99]). It would be
worth investigating the parametric complexity of the parametric ver-
sion of GSP(REG) where the size of the input formula is the parameter.
Where does it belong to the so-called W hierarchy of Downey and Fellows
(if it belongs to it)?

Acknowledgments: The remarks and suggestions of the anonymous
referees on a previous version of this work were extremely valuable and
helpful to improve the quality of this paper.

References

[ABB97] J.M. Autebert, J. Berstel, and L. Boasson. Context-free languages.
In G. Rozenberg and A. Salomaa, editors, Handbook of Formal
Languages, pages 111–174. Springer-Verlag, 1997. Preprint avail-
able via http://www-igm.univ-mlv.fr/∼berstel/Recherche.html.

[ABM00] C. Areces, P. Blackburn, and M. Marx. Complexity of hybrid tem-
poral logics. Journal of the IGPL, 8(5):653–679, 2000. Available
via http://www3.oup.co.uk/igpl/contents/ on WWW.

[ANB98] H. Andreka, I. Nemeti, and J. van Benthem. Modal languages and
bounded fragments of predicate logic. Journal of Philosophical
Logic, 27(3):217–274, 1998.

[Are00] C. Areces. Logic Engineering: The Case of Description and Hybrid
Logics. PhD thesis, University of Amsterdam, 2000. Available via
http://turing.wins.uva.nl/∼carlos/ on WWW.

[Bal98] M. Baldoni. Normal Multimodal Logics: Automated Deduction and
Logic Programming. PhD thesis, Università degli Studi di Torino,
1998. Available via http://www.di.unito.it/∼baldoni on WWW.

[Ben76] J. van Benthem. Modal reduction principles. The Journal of Sym-
bolic Logic, 2:301–312, 1976.

[Ben84] J. van Benthem. Correspondence Theory. In D. Gabbay and
F. Günthner, editors, Handbook of Philosophical Logic, Volume II,
pages 167–247. Reidel, Dordrecht, 1984.

45

[Ben98a] J. van Benthem. Modal Logic in Two Gestalts. Techni-
cal Report ML-98-12, ILLC, Amsterdam, 1998. Available via
http://turing.wins.uva.nl/∼johan/papers90.html on WWW.

[Ben98b] J. van Benthem. Program constructions that are safe for bisimu-
lation. Studia Logica, 60:311–330, 1998.

[BGM98] M. Baldoni, L. Giordano, and A. Martelli. A tableau calculus
for multimodal logics and some (un)decidability results. In H. de
Swart, editor, TABLEAUX-8, pages 44–59. LNAI 1397, Springer-
Verlag, 1998. Available via http://www.di.unito.it/∼baldoni on
WWW.

[BM75] J. de Bakker and G. Meertens. On the completeness of the induc-
tive assertion method. Journal of Computer and System Sciences,
11:323–357, 1975.

[BRV01] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic.
Cambridge University Press, 2001. Preprint available via
http://turing.wins.uva.nl/∼mdr/ on WWW.

[Cat89] L. Catach. Les logiques multimodales. PhD thesis, Université Pierre
et Marie Curie (Paris 6), 1989.

[CL94] C. Chen and I. Lin. The complexity of propositional modal theories
and the complexity of consistency of propositional modal theories.
In A. Nerode and Yu. V. Matiyasevich, editors, LFCS-3, St. Pe-
tersburg, pages 69–80. Springer-Verlag, LNCS 813, 1994.

[CS94] A. Chagrov and V. Shehtman. Algorithmic aspects of proposi-
tional tense logics. In L. Pacholski and J. Tiuryn, editors, CSL-
8, Kazinierz, Poland, pages 442–455. LNCS 933, Springer Verlag,
1994.

[Dem01] S. Demri. Modal logics with weak forms of recursion: PSPACE
specimens. In M. de Rijke, H. Wansing, F. Wolter, and M. Za-
kharyaschev, editors, Selected papers from 3rd Workshop on Ad-
vances in Modal Logics (AIML’2000), Leipzig, Germany, Oct.
2000. CSLI, 2001. To appear. Preliminary version available via
http://www.lsv.ens-cachan.fr/∼demri/ on WWW.

[DF99] R. Downey and M. Fellows. Parameterized complexity. Springer-
Verlag, 1999.

[DLNN97] F. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of
concept languages. Information and Computation, 134:1–58, 1997.

[EHR83] A. Ehrenfeucht, D. Haussler, and G. Rozenberg. On regularity of
context-free languages. Theoretical Computer Science, 27:311–332,
1983.

46

[EJ99] A. Emerson and C. Jutla. The complexity of tree automata and
logics of programs. SIAM Journal of Computing, 29:132–158, 1999.
Journal version of the FOCS’88 paper.

[EZ76] A. Ehrenfeucht and P. Zeiger. Complexity measures for regular
expressions. Journal of Computer and System Sciences, 12:134–
146, 1976.

[FdCH95] L. Fariñas del Cerro and A. Herzig. Modal deduction with ap-
plications in epistemic and temporal logics. In D. Gabbay, C. J.
Hogger, and J. A. Robinson, editors, Handbook of Logic in Artifi-
cial Intelligence and Logic Programming, pages 499–593, 1995.

[FdCP88] L. Fariñas del Cerro and M. Penttonen. Grammar logics. Logique
et Analyse, 121-122:123–134, 1988.

[FL79] M. Fischer and R. Ladner. Propositional dynamic logic of regular
programs. Journal of Computer and System Sciences, 18:194–211,
1979.

[Gab81] D. Gabbay. Expressive functional completeness in tense logic. In
U. Mönnich, editor, Aspects of Philosophical Logic, pages 91–117.
Reidel, Dordrecht, 1981.

[Gas94] O. Gasquet. Déduction automatique en logique multi-modale par
traduction. PhD thesis, Université Paul Sabatier, Toulouse, 1994.
Available via http://www.irit.fr/ on WWW.

[Gia95] G. de Giacomo. Decidability of Class-Based Knowl-
edge Representation Formalisms. PhD thesis, Universita
Degli Studi Di Roma ’La Sapienza’, 1995. Available via
http://www.dis.uniroma1.it/∼degiacom/publications.html on
WWW.

[GL94] G. de Giacomo and M. Lenzerini. Boosting the correspondence
between description logics and propositional dynamic logics. In
AAAI’94, pages 205–212. AAAI Press/The MIT Press, 1994.

[GMV99] H. Ganzinger, C. Meyer, and M. Veanes. The two-variable guarded
fragment with transitive relations (extended abstract). In LICS’99,
pages 24–34, 1999. Available via http://www.mpi-sb.mpg.de/∼hg
on WWW.

[Gol81] L. Goldschlager. ε-productions in context-free grammars. Acta
Informatica, 16(3):303–308, 1981.

[GOR97] E. Grädel, M. Otto, and E. Rosen. Undecidability re-
sults on two-variable logics. In STACS-14, pages 249–260.
LNCS 1200, Springer-Verlag, 1997. Available via http://www-
mgi.informatik.rwth.aachen.de/Publications on WWW.

47

[Grä99a] E. Grädel. On the restraining power of guards. The Journal of
Symbolic Logic, 64(4):1719–1742, 1999.

[Grä99b] E. Grädel. Why are modal logics so robustly decidable? Bulletin
of the EATCS, 68:90–103, 1999.

[GW99] E. Grädel and I. Walukiewicz. Guarded fixed point logic. In
LICS’99, pages 45–54, 1999.

[Har58] R. Harrop. On the existence of finite models and decision pro-
cedures for propositional calculi. Proceedings of the Cambridge
Philosophical Society, 54:1–13, 1958.

[Har84] D. Harel. Dynamic logic. In D. Gabbay and F. Günthner, editors,
Handbook of Philosophical Logic, Volume II, pages 497–604. Reidel,
Dordrecht, 1984.

[Hem94] E. Hemaspaandra. Complexity transfer for modal logic (extended
abstract). In LICS-9, pages 164–173, 1994.

[Hem96] E. Hemaspaandra. The price of universality. Notre Dame Journal
of Formal Logic, 37(2):173–203, 1996.

[HKT00] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press,
2000.

[HM92] J. Halpern and Y. Moses. A guide to completeness and complexity
for modal logics of knowledge and belief. Artificial Intelligence,
54:319–379, 1992.

[HM97] W. van der Hoek and J.-J. Meyer. A complete epistemic logic for
multiple agents - combining distributed and common knowledge. In
P. Mongin, M. Bacharach, L. Gerard-Valet, and H. Shin, editors,
Epistemic Logic and the Theory of Games and Decisions, pages
35–68, 1997.

[HM00] V. Haarslev and R. Möller. Expressive ABox reasoning with num-
ber restrictions, role hierarchies, and transitively closed roles. In
F. Giunchiglia and B. Selman, editors, 7th International Con-
ference on Principles of Knowledge Representation and Reason-
ing, pages 273–284. Morgan Kaufmann, 2000. Preprint avail-
able via http://kogs-www.informatik.uni-hamburg.de/∼haarslev/
on WWW.

[HPS83] D. Harel, A. Pnueli, and J. Stavi. Propositional dynamic logic of
nonregular programs. Journal of Computer and System Sciences,
26:222–243, 1983.

[HR93] D. Harel and D. Raz. Deciding properties of nonregular programs.
SIAM Journal on Computing, 22:857–874, 1993.

48

[HRS76] H. Hunt, D. Rosenkrantz, and Th. Szymanski. On the equivalence,
containment, and covering problems for the regular and context-
free languages. Journal of Computer and System Sciences, 12:222–
268, 1976.

[HS99] I. Horrocks and U. Sattler. A description logic with transitive and
inverse roles and role hierarchies. Journal of Logic and Computa-
tion, 9(3):385–410, 1999.

[HST00] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for very
expressive description logics. Logic Journal of IGPL, 8(3):239–
263, 2000. Available via http://www3.oup.co.uk/igpl/contents/
on WWW.

[HU79] J. Hopcroft and J. Ullman. Introduction to automata theory, lan-
guages, and computation. Addison-Wesley Publishing Company,
Reading, M.A., 1979.

[Hus99] U. Hustadt. Resolution-Based Decision Procedures for Subclasses
of First-Order Logic. PhD thesis, Fakultät der Universität des
Saarlandes, 1999.

[JL76] N. Jones and W. Laaser. Complete problems for determinis-
tic polynomial-time. Theoretical Computer Science, 3(1):105–117,
1976.

[Kle56] S. Kleene. Representation of events in nerve nets. In C. Shannon
and J. McCarthy, editors, Automata studies, pages 3–40. Princeton
University Press, Princeton, NJ, 1956.

[Koz83] D. Kozen. Results on the propositional µ-calculus. Theoretical
Computer Science, 27:333–354, 1983.

[Kra96] M. Kracht. Power and weakness of the modal display cal-
culus. In H. Wansing, editor, Proof theory of modal logic,
pages 93–121. Kluwer, 1996. Available via http://www.math.fu-
berlin.de/user/kracht/ on WWW.

[Kra99] M. Kracht. Tools and Techniques in Modal Logic. Elsevier, 1999.

[Lad77] R. Ladner. The computational complexity of provability in sys-
tems of modal propositional logic. SIAM Journal of Computing,
6(3):467–480, 1977.

[Lut99] C. Lutz. Complexity of terminological reasoning revisited.
In LPAR’99. LNAI 1795, 1999. Available via http://www-
lti.informatik.rwth-aachen.de/∼clu/papers/index.html on WWW.

49

[Mas00] F. Massacci. Single steps tableaux for modal logics. Jour-
nal of Automated Reasoning, 24(3):319–364, 2000. Available via
http://www.dis.uniroma1.it/∼massacci/papers/ on WWW.

[Min88] G. Mints. Gentzen-type and resolution rules part I: propositional
logic. In P. Martin-Löf and Grigori Mints, editors, International
Conference on Computer Logic, Tallinn, pages 198–231. Springer
Verlag, LNCS 417, 1988.

[MS97] A. Mateescu and A. Salomaa. Formal languages: an introduc-
tion and a synopsis. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages - Volume 1: Word, Language and
Grammar, pages 1–40. Springer, 1997.

[Niv98] H. de Nivelle. A resolution decision procedure for the guarded
fragment. In C. Kirchner and H. Kirchner, editors, CADE-15, Lin-
dau, Germany, pages 191–204. LNAI 1421, Springer-Verlag, 1998.
Available via http://www.mpi-sb.mpg.de/∼nivelle/ on WWW.

[Pap94] Ch. Papadimitriou. Computational Complexity. Addison-Wesley
Publishing Company, 1994.

[Per90] D. Perrin. Finite automata. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, Volume B, Formal models and
semantics, pages 1–57. Elsevier, 1990.

[Pra79] V. Pratt. Models of program logics. In Proceedings of the 20th
IEEE Symposium on Foundations of Computer Science, pages 115–
122, 1979.

[Pra81] V. Pratt. Using graphs to understand PDL. In D. Kozen, edi-
tor, Workshop on Logics of Programs, pages 387–396. LNCS 131,
Springer-Verlag, 1981.

[PT91] S. Passy and T. Tinchev. An essay in combinatory dynamic logic.
Information and Computation, 93:263–332, 1991.

[RS94] G. Rozenberg and A. Salomaa. Cornerstones of Undecidability.
Prentice Hall, 1994.

[Sah75] H. Sahlqvist. Completeness and correspondence in the first and
second order semantics for modal logics. In S. Kanger, editor,
3rd Scandinavian Logic Symposium, Uppsala, Sweden, 1973, pages
110–143. North Holland, 1975.

[Sat96] U. Sattler. A concept language extended with different kinds of
transitive roles. In 20. Deutsche Jahrestagung für Künstliche In-
telligenz. LNM 1137, Springer, 1996.

50

[Sch62] M. Schützenberger. On a theorem of R. Jungen. Proc. Amer.
Math. Soc., 13:885–889, 1962.

[Sch91] K. Schild. A correspondence theory for terminological logics: pre-
liminary report. In IJCAI-12, pages 466–471, 1991.

[Sch97] R. Schmidt. Optimised Modal Translation and Resolution. PhD
thesis, Fakultät der Universität des Saarlandes, 1997.

[Spa93] E. Spaan. Complexity of Modal Logics. PhD thesis, ILLC, Ams-
terdam University, 1993.

[SS89] M. Schmidt-Schauss. Subsumption in KL-ONE is undecidable. In
R. Brachman, H. Levesque, and R. Reiter, editors, KR’89, pages
421–431. Morgan Kaufmann, 1989.

[SSS91] M. Schmidt-Schauss and G. Smolka. Attribute concept descriptions
with complements. Artificial Intelligence, 48(1):1–26, 1991.

[TK91] M. Tiomkin and M. Kaminsky. Nonmonotonic default modal log-
ics. Journal of the Association for Computing Machinery, 38:963–
984, 1991.

[Tuo90] H. Tuominen. Dynamic logic as a uniform framework for theorem
proving in intensional logic. In M. E. Stickel, editor, CADE-10,
pages 514–527. LNCS 449, Springer-Verlag, 1990.

[Var97] M. Vardi. Why is modal logic so robustly decidable? In DIMACS
Series in Discrete Mathematics and Theoretical Computer Science
31, American Mathematical Society, pages 149–183, 1997. Avail-
able via http://www.cs.rice.edu/∼vardi/ on WWW.

[VW86] M. Vardi and P. Wolper. Automata-theoretic techniques for modal
logics of programs. Journal of Computer and System Sciences,
32:183–221, 1986.

[VW94] M. Vardi and P. Wolper. Reasoning about infinite computations.
Information and Computation, 115:1–37, 1994. Journal version of
the FOCS’83 paper.

[WHM00] M. Wessel, V. Haarslev, and R. Möller. ALCRA - ALC with role
axioms. In F. Baader and U. Sattler, editors, International Work-
shop in Description Logics, pages 267–276, 2000. Available via
http://sunsite.informatik.rwth.aachen.de/Publications/CEUR-
WS/Vol-33 on WWW.

[Wol83] P. Wolper. Temporal logic can be more expressive. Information
and Control, 56:72–99, 1983.

[Wol99] F. Wolter. The decision problem for combined (modal) logics.
Kluwer Academic Publishers, Dordrecht, 1999. to appear.

51

[Zak97] M. Zakharyaschev. Canonical formulas for K4. part III: the finite
model property. The Journal of Symbolic Logic, 62(3):950–975,
1997.

52

