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1 .  Introduction 

Let G = (V, E) be a connected undirected graph. Imagine that this graph represents 
a system of tunnels in which a fugitive is hidden. Members of a team of s searchers 
traverse the edges of the graph seeking to capture the fugitive, while the latter 
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FIG. 1. Graph G with s (G)  = 3, increasing to 4 when dotted 

edge is added. 

moves around the edges of the graph with unbounded speed, cunning, and luck, 
trying to avoid them. Alternatively, we can think of a d@used fugitive (say, dust 
or toxic gas), in which case the team is, in effect, clearing the graph. What is the 
smallest number s for which there exists a successful searching strategy, that is, one 
that is guaranteed to capture the fugitive? 

This problem, well known in the combinatorics community, was first suggested 
by Parsons [ 1 1, 121, who introduced itas a nondiscrete problem, with both searchers 
and fugitive allowed to move continuously. However, as Parsons observed, it is not 
difficult to show that the problem is equivalent to a discrete one. In fact, we can 
restate the problem in a manner that is similar in style, if not detail, to many of 
the pebbling problems that have been studied of late (e.g., see [7, 131). The basic 
operations are (1) placing a searcher (pebble) on a vertex, (2) removing a searcher 
from a vertex, and (3) moving a searcher from one vertex to another along an edge. 
There is no limit on the number of searchers a vertex can hold, although a capacity 
of two will always suffice. 

Initially, all the edges of the graph are contaminated, that is, capable of harboring 
a fugitive. An edge is cleared by placing a searcher at one end (as a guard) and 
moving a second searcher along the edge itself from the guarded endpoint to the 
other endpoint. If the guarded endpoint is such that all other edges incident on it 
are already clear, then we can dispense with the second searcher and clear the edge 
simply by moving the endpoint's guard along the edge to the other endpoint. A 
clear edge remains clear so long as every path from it to a contaminated edge is 
blocked by at least one guard. A clear edge is recontaminated if ever an unguarded 
path to a contaminated edge comes into existence owing to the moving of a 

searcher. The entire graph has been cleared, that is, successfully searched, once all 
of its edges are simultaneously clear. 

A search strategy is a sequence of pebbling operations that will clear an initially 
contaminated graph. The search number s(G) for a graph G is the minimum 
number of searchers for which a search strategy exists. The calculation of s(G), 
given G, is a very tricky algorithmic problem. For example, it is probably not 
immediately obvious that for the graph G in Figure 1, s(G) = 3, and that, if the 
dotted edge is added, the search number increases to 4. 

In this paper we present both complexity results and eficient special-case 
algorithms for this problem, along with some characterization results for graphs 
with small search number. In Section 2 we show that determining s(G) for an 
arbitrary graph G is indeed difficult by proving that the problem: Given G 
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and an integer K, is s(G) I K? is NP-complete. In Section 3 we study the search 
number problem for the special case of trees and show that for such graphs 
the search number can be determined in linear time and a search plan using the 
minimum number of searchers can be found in time O(n1og n). In Section 4 we 
present results characterizing the structure of graphs with search number K for 
K = 1, 2, 3. Finally, in Section 5, we mention some open questions and some 
recent results for several related problems, including some interesting ties between 
the search number problem and the problem of laying out a graph on a line to 
minimize its "cutwidth," which arises in connection with VLSI circuit layout. 

2. Complexity Questions 

It is not difficult to see that the general question: Given G and K, can G be cleared 
with K or fewer searchers? is in PSPACE. With other pebbling problems, such as 
the ones discussed in [7] and [13], this is the best one can hope for, because of the 
possibility of "recomputation," that is, using more time, but fewer pebbles, by 
repeating parts of the pebbling process. The analog of this in the graph searching 
problem would be "recontamination," allowing previously cleared edges to become 
contaminated again in order to save searchers. In a preliminary version of this 
paper [lo], we noted that we had been unable to find any graphs that would require 
more searchers if recontamination were disallowed and raised as an open problem 
the question: Can recontamination help? This question has now been resolved by 
LaPaugh [6], who has shown that, in our pebbling model for graph searching, 
recontamination can be disallowed without changing the search number for any 
graph; that is., there always exists a search plan for G with s(G) searchers that does 
not involve recontamination of any edges. 

It follows from this result that the decision problem belongs to NP. One need 
only guess the sequence in which the edges are cleared, from which it is straight- 
forward to check whether or not that sequence can be achieved using K or fewer 
searchers. We now show that the problem is in fact NP-complete. 

THEOREM 1. The question: Given G and K, can G be cleared with K searchers? 
is NP-complete. 

PROOF. We prove this by providing a transformation from the following known 
NP-complete problem [2]: 

MIN-CUT INTO EQUAL-SIZED SUBSETS 

INSTANCE: Graph G = (V, E )  with ( V I even, positive integer K. 
QUESTION: I[s there a partition of V into two subsets V, and V2 with I V, I = I V2 I = f I V I 

!such that I ( ( u ,  V )  E E: u  E V,,  v E V2) I 5 K? 

For the proof, we need several lemmas about searching complete graphs. Let Kn 
denote the complete graph with n vertices. It was observed by Parsons that, for 
n r 4, s(Kn) = n. We need a somewhat different fact. At any point during the 
search of a graph, call a vertex cleared if all edges incident upon it are clear. 

LEMMA 1 .  Suppose that at some step t during a search of KM, M 2 4, the first 
vertex becomlt.s cleared. Then there must have been at least M - 1 searchers on KM 
during this step. 

PROOF. Siuppose that the vertex v was cleared by clearing the edge (u,  v )  during 
step t. The other M - 2 vertices all have both clear and contaminated edges 
incident upo:n them at this point, and therefore they must contain at least one 
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searcher each. Furthermore, the edge {u,  v] must have been traversed by some 
other searcher during this step. The lemma follows. 

LEMMA 2. Suppose that the graph G contains m vertex-disjoint copies of KM 
(for some M r 4). Then, in the process of searching G, there must be for each k, 
1 s k 5 m,  a point at which k cliques have at least one cleared vertex (with respect 
only to internal clique edges), m - k have none, and there is one clique with a 
cleared vertex that contains M - 1 or more searchers. 

PROOF. This follows directly from Lemma 1 and the fact that at any step at 
most one clique can go from zero to one (or more) such cleared vertex (vertices). 

LEMMA 3. Suppose that G contains m vertex-disjoint copies of KM and that at 
some step during the search of G, there is a set C, of cliques, each containing one 
or more cleared vertices (again with respect only to internal clique edges), and a 
set C2 of cliques containing no such cleared vertices. Then, if (u ,  v ]  is an edge of G 
such that u belongs to a clique in C1 and v belongs to a clique in C2, either u or v 
must contain a searcher. 

PROOF. If (u ,  v )  is clear, then v has both clear and contaminated edges incident 
upon it and hence must contain a searcher. If (u ,  v )  is contaminated, then since u 
has at least one clear edge incident upon it, u must contain a searcher. 

We now proceed with the proof of Theorem 1. Let G = (V, E)  and K > 0 
constitute a given instance of MIN-CUT INTO EQUAL-SIZED SUBSETS. We 
construct a corresponding instance of GRAPH SEARCHING as follows: 

Let n = I V I, let d be the maximum vertex degree in G, let N = 6(d + K), and 
let M = n(n + 2) . N. The graph to be searched consists of the following parts: 

(i) for each vertex vi E V, an M-clique C, ; 
(ii) an additional "special" M-clique CA ; 

(iii) between each pair Ci, C, of M-cliques, nN edges 

N additional edges if either i or j is A, 
3 additional edges if (v,, v, ) E E. 

The edges in (iii) are added in such a way that no clique vertex is involved 
in more than one outside edge, which can be done since M = n(n + 2) .  N r 
n 2 N +  N +  3d. 

Call the resulting graph H = (U,  F). The search number s to be tested is given 

by 

We now show that s (H)  r s if and only if G has the desired cut into equal-sized 
subsets. 

First, suppose the desired cut exists for G, that is, there is a partition of V into 
V ,  and V2 with I V ,  I = 1 V2 1 such that K'  s Kedges join vertices in V,  to vertices 
in V2. We show how H can be cleared with at most s searchers. 

First relabel the vertices (and corresponding cliques) so that V ,  = {vl  , v2, . . . , 
v,,] and V2 = (v(,, ,~)+~, . . . , vn). We clear the cliques in the order 
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To clear the clique Ci in its turn, place a searcher on each of its vertices that 
currently does not contain a searcher. Then use an (M + 1)th searcher to clear all 
the edges internal to Ci. Finally, clear each edge from C, to a later clique by moving 
the searcher from the edge's endpoint in C, along the edge to its endpoint in the 
later clique, where the searcher will be left as a guard until that later clique is 
cleared. 

It is easy to see that the maximum number of searchers for this procedure must 
occur at some time when one of the cliques is being cleared and has M + 1 

searchers itself. If the clique being cleared is not CA, the total number of searchers 
is at most 

If the clique being cleared is CA, then the number of searchers is 

Thus s searchers suffice. 
Now, suppoae H can be cleared using s searchers. Consider a step in the search 

process at which (n/2) + 1 of the cliques have at least one cleared vertex (with 
respect only to the internal clique edges), n/2 do not, and M - 1 searchers are on 
a clique with a cleared vertex. Such a step exists by Lemma 2. 

Suppose the clique with the M - 1 searchers is not CA. Then by Lemma 3 the 
total number of searchers in use at that time must be at least 

n 

(I)' 2 

n 
( M -  I ) +  - n N + - N = s + - N - ( 3 K + 2 ) > s ,  

2 

a contradiction. Thus the clique with M - 1 searchers must be CA, and the total 
number of searchers on endpoints of edges not corresponding to edges in G must 
be (by Lemma 3) at least 

( M -  1 ) +  - n N = s - ( 3 K + 2 ) .  (I)' 
If Vl = ( v, : C, contains a cleared vertex) and V2 = ( v i  : C, does not contain a cleared 
vertex), we must have I Vl  I = I V2 I = n/2, and the number of edges in G joining 
a vertex in Vl  to a vertex V2 is at most L(3K + 2)/31 s K. Hence the desired cut 
exists for G. 

We conclude that H can be searched with s searchers if and only if G has a cut 
into equal-sized subsets with K or fewer edges. Since H and s can be constructed 
easily in polynomial time from G and K, we have a polynomial transformation 
and the theorem is proved. 

3. The Special Case of Trees 

It follows from results of Parsons in [ l  11 that the graph-searching problem, when 
restricted to trees, is in both NP and co-NP. (He gives a recursive forbidden 
subgraph characterization of those trees T with s(T) > k, for each k, and it is 
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possible to argue, using his basic lemma (even without LaPaugh7s result), that 
recontamination cannot help in the case of trees.) 

We show that the tree-searching problem is in P and that the search number of 
a tree can in fact be found in linear time. The algorithms we use do not involve 
the standard dynamic programming tricks that one so often sees for problems on 
trees but use instead a rather intricate application of recursion. Our basic algorithm 
runs in time O(n log n), but it can be sped up to time O(n) by making the stack 
explicit and including pointers for making shortcuts. The algorithm also can be 
modified to keep track of suficient additional information so that a search plan, 
rather than just the search number, can be computed in time O(n log n). We do 
not know whether this can be reduced to time O(n). 

The basic idea behind the algorithm is given by a normal form theorem for 
optimal search procedures on trees. Given a tree T = (V, E) and a vertex v E V, 

we say that a subtree T' of T is a branch at v if v has degree 1 in T' and T' is a 
maximal subtree having this property. Parsons [I I ]  proved the following lemma: 

PARSONS' LEMMA. For any tree T and integer k r 1, s(T) I k + 1 ifand only 
if T has a vertex v at which there are three or more branches that have search 
number k or more. 

Notice that this result implies that a tree with search number k must have 
at least 3k-' edges, so the search number of an n node tree always satisfies 
s(T) 5 I + log3(n - 1). 

Moreover, this result leads us to the key concept needed for our normal form 
theorem, the concept of the "avenue" of a tree. Intuitively, the avenue of a tree T 
is a path v,, v2, . . . , V, of two or more vertices such that T can be cleared using 
s(T) searchtm by placing a~ searcher on vl and subsequently moving it along the 
avenue to v2, v3, . . . , v,, pausing long enough at each vertex vi along the path so 
that the nonavenue branches at vi can be cleared (one at a time) using the remaining 
s(T) - 1 searchers. Formally, a path v,, v2, . . . , v, of two or more vertices is an 
avenue for T if vl  and v, each have exactly one branch with search number 
s(T) = s (containing v2 and v,-, , respectively) and for every j ,  2 I j I r - 1, v, has 
exactly two branches with search number s (containing v,-, and v,, , , respectively). 
It is not hard to see that this definition implies that the avenue can be used 
inductively to search T wi1.h s(T) searchers in the manner indicated above. Our 
main structural result for trees is the following: 

LEMMA 4. If s(T) = S, then either (i) T has a vertex v such that all branches 
at v have search number smaller than s, or (ii) T has a unique avenue. 

PROOF. Suppose that (i:) fails to hold for T, that is, that every vertex in T has 
at least one branch with search number s. Consider the set A of all edges (u, v )  of 
T with the property that both the branch at u containing (u, v )  and the branch at 
v containing (u, v ]  have search number s. Notice that any branch in T that contains 
an edge (u, v )  of A must have search number s, since it must entirely contain either 
the branch at u containing (u, v )  or the branch at v containing (u, v], and adding 
edges and vertices to a graph cannot reduce its search number. By definition, an 
avenue can consist only of edges from A. Moreover, an avenue cannot exclude any 
of the edges in A, since the vertex on the avenue closest to that excluded edge 
would then have an additional branch with search number s. Thus, if an avenue 
exists, it must be A. The desired result will follow by showing that A itself is an 
avenue. 



24 N. MEGIDDO ET AL. 

First, we show that A is nonempty and hence involves at least two vertices. To 
see this, for each vertex v E V let e(v) denote some edge incident on v such that 
the branch at v containing e(v) has search number s. Such an e(v) must exist for 
each v by our assumption above that (i) does not hold. Furthermore, since there 
are only 1 V (  -- 1 edges in T, there must exist two vertices u and v for which 
e(u) = e(v) = e. The edge e therefore belongs to A. 

We next show that A is a path. It contains no more than two edges incident 
upon any single vertex, since the existence of a vertex with three such incident 
edges would imply s(7') r s + 1 by Parsons' Lemma. It remains to show that A 
forms a connected subgraph of T. Suppose it were not connected, and let e be any 
edge on a path in T joining two disconnected components of A, that is, a path 
consisting entirely of edges from T - A. For each endpoint of e, the branch at the 
endpoint that includes e must contain an edge from A and hence must have search 
number s. But this implies that e must belong to A, contradicting the choice of e. 
Therefore, no such paths exist in T and A must be connected. Thus A is a path. 

Finally, we need to show that no vertex v in the path A has more than the 
required number of branches with search number s.. For this it suffices to show 
that every branch at v that involves no edges from the avenue A has search number 
less than s. Let u be the vertex adjacent to v in such a branch at v. Since (u, v )  is 
not in A, and since the branch at u containing (u, v )  has search number s (it 
contains an edge in A, in fact all of A), it follows immediately from the definition 
of A that the branch at v containing (u, v )  does not have search number s. 
Therefore, A is an avenue for T and, indeed, is the unique avenue for T. 

We note that the "or" of the theorem statement is exclusive, since a vertex of 
the form required for (i) cannot be on the avenue, and, if it were off the avenue, 
the branch at that vertex that included the avenue would have search number s, 
contradicting the requirement that all its branches have search number less than s. 

We call a vertex v in a tree T a hub of T if all branches at v have search number 
less than s(T), and we regard such a hub as an avenue of length zero, consisting of 
a single vertex. We note that in this case the avenue need not be unique. Indeed, 
in a minimal tree with search number s, every vertex of degree greater than 1 is a 
hub. 

For purposes of exposition, it is convenient to assume in the remainder of this 
section that every tree under construction has a specified vertex called the root. It 
is clear later how such an assumption arises naturally from the way in which we 
decompose trees to compute search numbers. (The choice of root will not affect 
the search number of a tree.) 

From Lemma 4, we can divide all rooted trees into four types (see Figure 2), 
depending on tlhe location of the root: 

( 1 )  Type H. The root coincides with a hub (avenue of length zero) of T. 
(2) Type E. The root is on a branch at one of the endpoints vl or v, of the avenue 

of T (possibly it is one of the endpoints, but in this case we require that 
vl # v,, that is, that the avenue have nonzero length). 

(3) Type I. The root is one of the interior nodes v2, . . . , v,-~ of the avenue 
for T. 

(4) Type M. The root is on a (middle) branch with search number less than s(T) 
at an interior node of the avenue, but not on the avenue itself. 

For a tree of type M, we call the branch on which the root lies the M-tree of T. 
Notice that the M-tree of T always has a search number less than that for T. 
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FIG. 2. Four types of 

(a) Type E. (b) Type I. 

(4 Type M. 

rooted trees. 

(4 Type H. 

Our algorithm compute-info works by recursively computing an information 
record info(T) = [type, s, M-info] associated with the tree T (whose root has been 
chosen arbitrarily). The three fields are defined as follows: 

(a) Type. One of H, E, I, M, the type of T. 
(b) s. The search number for T. 
(c) M-info. If the type is H, E, or I, then M-info is nil. Otherwise, M-info is the 

info-record for the M-tree of T. 

The computation of info(T) for a rooted tree T proceeds as follows, based on 
the degree of the root r of T: 

(I)  If r has degree 1, there are two cases. If T is just an edge, then info(T) is the 
record [E, 1, nil]. Otherwise, we let T'  be obtained from T by moving its root 
from r to the single neighbor of r, recursively compute info(T'), and transform 
this into info(T) using a special routine called re-root. 

(2) If r has degree 2 or more, we then split T into two trees T, and T2, both 
rooted at r and having no other nodes in common (subject to this requirement and 
the requirement that each contain at least one edge, the two trees can be chosen 
arbitrarily). We then recursively compute info(T,) and info(T,), and we compute 
info(T) from these using the special routine merge, which is the heart of our 
algorithm. 

The routine re-root is simple, and we explain it first. Suppose info(Tf ) = 

[type', s f ,  M-info']. Then info(T) = [type, s, M-info] is determined as follows: 
The search number s is the same as s f  (since T and T' are identical trees, differing 
only in the choice of root). The value of type (and M-info when type = M )  is as 
follows: 

(1) If T' is type E, then type = E. 
(2) If T' is type H, then type = E, since a leaf cannot be a hub. 
(3) If T' is type I, and s f  = 1 (i.e., T' is a path), then type = E. If T'  is type I and 

s f  # 1, then type = M and M-info = [E, 1, nil]. 
(4) If T' is type M, then type = M and M-info = re-root(M-info'). 
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It is easy to verify from this description that re-root works as required: 

LEMMA 5. For any tree T that is not just a single edge, the algorithm re-root 
correctly computes info(T) from info(T ' ), where T is rooted at a leaf r and where 
T' is identical to T except for being rooted at the neighbor of r. 

We now come to the routine merge, which can be described in terms of the 
following cases: 

We are mergmg two trees T, and T2 with info-records [typel, s l ,  M-infol] and 
[type2, s2, M-info21, respectively, to form the info-record [type, s, M-info] for T. 
Without loss of generality, we may assume that s l  r s2. 

If s l  = s2, we have the following five cases: 

Case 1. If typel = type2 = H, then the info-record for T is [H, s l ,  nil]. 

Case 2. If typel = H, and type2 = E, or vice versa, then the info-record for T 
is [E, s l ,  nil]. 

Case 3. If typel = type2 = E, then the info-record for T is [I, s l ,  nil]. 

Case 4. If typel = I and type2 = H, or vice versa, then the info-record for T is 
[I, s l ,  nil]. 

Case 5. (At least one of TI,  T2 is type M, both are type I, or one is type I and 
the other is type E.) The info-record for T is [H, s l  + 1, nil]. 

If s l  > s2, we have the following two cases: 

Case 6. If typel = H, E, or I, then the info-record for T is [typel, s l ,  nil]. 

Case 7. (Note that typel = M and s l  > s2.) Call merge on the two info-records 
M-info1 and [type2, s2, M-info21, with the result [type', s f ,  M-info']. If s f  < s l ,  
then the info-record for T is [M, s l ,  [type', s f ,  M-info']]. If s '  = s l  (we cannot 
have s f  > s l ) ,  then the info-record for T is [H, s l  + 1, nil]. 

LEMMA 6. The algorithm merge correctly computes info(T) from info(Tl ) and 
info(T2), where T is a tree rooted at r, and TI and T2 are trees rooted at r, otherwise 
disjoint, whose union is T. 

PROOF. The proof is by case analysis, corresponding to the cases in the descrip- 
tion of the algorithm. 

Case 1. s l  = s2, typel = type2 = H (Figure 3a). In this case, both trees have 
the root as hub, and their union is a tree in which all branches at the root have 
search number less than s l  = s2. Since the search number cannot decrease, it stays 
at s l  and the new tree has the root as a hub. 

Case 2. s l  = s2, typel = H, type2 = E (Figure 3b). The new tree can be 
searched with sl = s2 searchers by marching along the avenue of T2 and down the 
branch containing r until r is reached. T has an avenue of length at least one, with 
r as an endpoint, and hence it is type E. 

Case 3. sl = s2, typel = type2 = E (Figure 3c). The avenue of T is the shortest 
path that contains both the avenues of T, and T2, and this avenue can be used to 
search T with s l  searchers. Since r is one of the interior points on the avenue, T is 
type I. 

Case 4. s l  ,= s2, typel = I, type2 = H (Figure 3d). The root of T, is a node 
on the interior of its avenue, and after combination with the off-avenue branches 
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P 
FIG. 3. Cases of procedure merge. (a) T I ,  T2 Type 

H -+ T  Type H. (b) TI  Type H, T2 Type E + 
T' T Type E. (c) T I ,  T2 Type E -+ T  Type I. ( d )  T, 

Type I, T2 Type N -+ T  Type I. (e) TI  Type M or 
I -+ T Type H. (f) TI Type H. E, or I -+ T i y p e  H, 

E, or I. (g) TI  Type M + T Type M or H. 

at that root will all continue to have a search number less than sl = s2. Thus, 
T has the same info-record as T I ,  that is [I, s l ,  nil]. 

Case 5. sl = s2, typel = I ,  type2 = E or I, or typel = M (Figure 3e). Let r' 
be the root of T I  if typel = I, or the node on the avenue of TI closest to the root 
of TI  if typel = M. It is easy to see that r' is a node with three branches having 
search number s l ,  so sl + 1 searchers are needed for T. Since sl + 1 searchers are 
obviously also sufficient and since the root of T has only branches with search 
number less than sl + 1, T is of type H and has search number sl + 1. 

Case 6. sl > s2, typel is H, E, or I (Figure 3f). If typel is H, then the root 
continues to have only branches with search number less than sl in T, so T has 
search number sl and is of type H. If typel is E, then T can be searched with sl 

searchers by marching along the avenue of TI and down the branch containing r 
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until r is reached. Thus T has an avenue of length at least one, with r on a branch 
at an endpoint (possibly it is the endpoint), so T is of type E. If type1 = I, the 
argument of Case 4 applies, so T is of type I and has search number sl .  

Case 7. s l  > s2 and type1 = M (Figure 3g). The search number for Tdepends 
on the search number s(Tf ) of the union of the M-tree for TI with T2. The search 
number for T'  cannot be greater than s l ,  since the M-tree has search number less 
than s l ,  and so does T2. If sf  = s (Tf  ) < s l ,  then the avenue of T is exactly the 
same as the avenue of TI, the same search number s l  suffices, and T' is now the 
M-tree of T. If s f  = s l ,  then the head of the branch corresponding to T' in T 
has three branches with search number s l ,  so the search number of T is at 
least s l  + 1. Moreover, the root r has only branches with search number less 
than s l  + 1, so s l  + 1 searchers suffice and T is type H. 

THEOREM 2. The algorithm compute-info correctly computes info(T) for any 
rooted tree T with n nodes in O(n logn) time. 

PROOF. The correctness of the algorithm follows immediately from the preced- 
ing two lemmas. For the time bound, let S(T)  denote the time required to compute 
the search number (info-record) for T. Then we have 

where R(T) is the cost of calling re-root at most once, TI and T2 are the trees that 
T is split into, and M(TI ,  T2) is the cost of executing merge for these two trees. 
Since the recursive calls to re-root have arguments with strictly decreasing search 
numbers, we immediately have that R(T) is O(s(T)). To estimate M(TI,  T2), let 
us consider it as a function M(sl, s2), of the search numbers of the two subtrees. 
In Cases 1-6, M(sl, s2) is simply a constant. In Case 7, however, there is a recursive 
call of merge in which s, is decreased by at least 1. Hence, 

and the procedure terminates after at most s l  5 s(T) such calls. Therefore, 

It follows that S(T) = O(n.  s(T)) and, since s(T) = O(logn), S(T) = 

O(n1ogn). 

In order to reduce this time bound to O(n), we need to avoid (or shortcut) the 
recursive calls of re-root so that R(T) will be a constant, and we similarly need to 
shortcut the recursive calls to merge that occur in Case 7. By a careful use of 
pointers, we can indeed avoid much of the time that is spent traversing up and 
down the implicit M-info stack and hence obtain the following: 

THEOREM 3. The search number for a tree can be computed in linear time. 

PROOF. A tree of type M heads a chain of M-trees having strictly decreasing 
search numbers described by its M-info field. The recursive calls of re-root and 
merge descend along this chain. In our improved implementation, we represent 
this chain explicitly by a doubly linked list with several additional pointers that 
will allow us to make shortcuts. Specifically, we replace the M-info field for a tree 
T with the follwing pointers: 

(1) a pointer to the info-record for the M-tree of T, labeled t (for "tight") if the 
search number of the M-tree is exactly one less than that of T, and otherwise 
labeled 1 (for "loose"); 
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FIG. 4. An M-tree chain with pointers. 

(2) the reverse of this pointer, labeled 7 or 7, depending on whether the original 
pointer was labeled t or I; 

(3) the closures of the pointers labeled t and 7 (these are pointers t* and i *  
pointing to the endpoints of the longest chains of t or i pointers, respectively, 
starting at T and are undefined for trees that are strictly in the interior of such 
a chain); 

(4) a pointer m* to the endpoint of the M-info chain starting at T, that is, to the 
info-record reached from T by following t and I pointers until a tree with nil 
M-tree pointer is encountered. 

These pointers are illustrated in Figure 4. It is easy to see how such pointers 
can be maintained within the algorithm without changing its asymptotic time 
complexity. 

It is now immediate that re-root can be performed in constant time. The recursive 
calls to re-root simply travel down the M-tree chain to its end, where in constant 
time the algorithm modifies the info-record for that last tree appropriately. Since 
the end of the M-tree chain can be be accessed directly in constant time via the 
m* pointer, the entire procedure can be performed in constant time. 

We now come to the procedure merge. The first six cases of merge continue to 
require only constant time. In Case 7, the algorithm recursively calls merge on the 
info-records for T2 and the M-tree of T,. Repeated recursive calls then travel down 
the M-tree chain for T, until either it ends or a tree with search number s2 or less 
is encountered. If the chain includes a tree with search number less than s2, but 
none with search number equal to s2, then recursive calls to merge may continue 
but will now travel down the M-tree chain for T2; otherwise, there will be no 
further recursive calls to merge. 

We can provide a shortcut for this procedure by examining the info-record for 
the tree T* pointed at by the t* pointer of TI and by using our other pointers 
appropriately. (If TI does not have a t* pointer, we define T* = TI .) We have two 
cases: 

Case 1. s(T*) I s(T2). In this case, by definition of the t and t* pointers, 
there is some tree T3 in the M-tree chain for TI,  between T, and T*, having 
s(T3) = s(T2). In the original algorithm, the recursive calls to merge end after 
merging T3 and T2. Since s(T3) = s(T2), we also know that this last merge must be 
in one of Cases 1-5. We consider separately two possibilities: (a) the last merge is 
in one of Cases 1-4 and (b) the last merge is in Case 5. To see that we can 
determine which of these two holds in constant time, observe that whenever (a) 
holds, T3 cannot be of type M, and hence we must have T3 = T*. Thus we can 
determine whether (a) holds by first following the t* pointer for T, to T*, then 



30 N. MEGIDDO ET AL. 

testing whether s ( P )  = s(T2), and finally checking that T* and T2 satisfy the 
criteria for one of Cases 1-4. 

If (a) holds, we know from Cases 1-4 of merge that the result of merging T2 and 
T3 = T* is an info-record of the form [type", s2, nil], and we can compute that 
info-record in constant time. As the recursion is unwound, the first subcase of 
Case 7 will apply at each level, so the final result of merging TI and T2 will be an 
info-record with type M, search number s l ,  and M-info chain identical to that for 
TI down to T3 = T*, with T3 = T* replaced by [type", s2, nil]. Thus we can make 
this change in constant time without explicitly performing the recursion. 

If (b) holds, we know that the result of merging T3 and T2 will be the info-record 
[H, s2 + 1, nil]. Hence, as the recursion is unwound, the second subcase of 
Case 7 will apply at each level; so the final result of merging TI and T2 will be 
the info-record [H, s l  + 1, nil]. Again, this can be computed in constant 
time without explicitly performing the recursion (and without explicitly finding 
T3). Therefore, it follows that merge can be performed in constant time whenever 
s(T*) 5 s(T2). 

Case 2. s(T*) > s(T2). In this case, we first check the endpoint of the M-tree 
chain from TI using the pointer m*. If its search number is greater than that for 
T2, then we know that the original algorithm would continue the recursive calls to 
merge down to that point, with the last call being in Case 6 of merge. This last 
merge simply results in the info-record of the tree with the larger search number, 
namely, the one on the end of the chain for TI, and hence the outcome of merging 
TI and T2 is just the info-record for TI. 

Otherwise, we locate two special trees T3 and T3 on the M-tree chain for TI .  The 
tree T3 is the first on the chain to have s(Tj) I s(T2). The tree F3 is the last on the 
chain to have s(T3) > s(T2) and that does not have an incoming t pointer. These 
trees can be found on 0(s(T2)) time by following first the m* pointer from TI and 
then backing up the chain using the 7 and T* pointers. Moreover, it is 
easy to see that the recursive calls to merge will continue down to T3 and that the 
M-tree chain for T (the result of merging TI  and T2) will be identical to that for TI 
on the portion preceding F3. Thus we need only call merge recursively on T3 and 
T2 and modify the portion of the chain from T3 on accordingly, much as was done 
in Case 1. If the result of merging T3 and T2 has search number less than that for 
the predecessor of T3 on the chain, then the resulting info-record (along with its 
chain) simply replaces the portion of the chain from T3 on. Otherwise, the portion 
from T3 on is replaced by the single info-record having type H, search number one 
greater than that for F3, and nil M-tree chain. A constant amount of time may 
also be needed to repair pointers. 

We now combine the results of Cases 1 and 2 to improve our timing analysis 
from Theorem 2. We have just shown how to implement merge in time 
M(s(T,), s(T2)) satisfying 

since the tree T3 in our last case has s(T3) I s(T2). By the recurrence 

shown in the proof of Theorem 2 (which is easily extended to the new and faster 
version of the algorithm being analyzed here), we can now conclude that 
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This yields S(T) = O( ( TI ), as claimed. (It is well known that the recurrence 
defined by f(1) =: f(2) = 1 and, for n 2 3, 

f(n) = imax (rlog2(min(i, n + 1 - i ] ) l  + f(i) + f(n + 1 - i)] 
I <r<n 

satisfies f(n) = O(n). An easy way to verify this is to prove that, for n r 2, 
f(n) 5 3n - 4 - rlog2nl by a straightforward induction.) 

In addition, a slight modification of our algorithm allows us to keep track of 
enough information to compute a search plan for T that uses s(T) searchers, 
although we need to apply the algorithm repeatedly in such a way that a total of 
O(n 1ogn)-time is needed to find the complete plan. 

We do this by augmenting each info-record to include an additional entry path, 
which gives the endpoints of a path in the tree that is guaranteed to contain the 
avenue. The routine re-root has no effect on path. The routine merge updates the 
path as follows, where we let path(T,) = [a,,  b l ]  and path(T2) = [a2, 621: 

Case 1. path(T) = [r, r], where r denotes the root. 

Case 2. Assuime typel = H. path(T) = [r, b2], where b2 is the endpoint of 
path(T2) farther fiom the root. 

Case 3. path(T) = [a,,  b2], where a, and b2 are the endpoints of path(T,) and 
path(T2) farthest from the root. 

Case 4. path(T) = [a, ,  b,]. 

Case 5. path('T) = [r, r]. 

Case 6. path(T) = [a,,  b,] if typel = H or I. Otherwise, path(T) = [a, ,  r], 
where a ,  is the endpoint of path(TI ) farther from the root. 

Case 7. path(T) = [r, r] if s '  = s l ,  and, otherwise, path(T) = [a,, bl 1. 

The correctness of the computation of path follows immediately from the 
arguments given in the proof of Lemma 6. Note that our linear-time algorithm for 
computing search number can be modified so that it also computes path informa- 
tion while still running in linear time. 

In order to construct a search plan for T using the resulting value of path(T), we 
proceed as follows: Let path(T) = [a, b], and let a = ul , u2, . . . , up = b denote the 
path in T joining a and b. The edges of T that are not in the path are partitioned 
into branches TI ,  T2, . . . , T,,,, each of which contains exactly one vertex on the 
path and has search number at most s(T) - 1, since the path contains the avenue 
of T. A search plan using s(T) searchers is obtained by placing one searcher on ul  
clearing all branches at u, by using the remaining searchers, moving the single 
searcher along the edge from u, to u2, clearing the branches at u2 by using the 
remaining searchers, and so on. Thus the search plan can be constructed simply 
by inserting search plans for each of T I ,  T2, . . . , T, in the appropriate places in 
this "skeletal" search plan for T, which describes the movements for exactly one of 
the searchers. This can be done by recursively calling the search plan construction 
algorithm, which itself calls the algorithm for constructing path. The recursion tree 
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has depth at most s(T), since the search numbers for the branches always decrease. 
The total number of nodes in the subproblems at each level is O(n), because the 
branches are connected and partition the edges of T. It follows that the time to 
construct the complete search plan is O(n log n), since path is constructed in linear 
time for each tree, as is the skeletal search plan for the tree. Thus we have 

THEOREM 4. A search plan using s(T) searchers can be constructed for any tree 
T in time O(n logn), where n = I TI. 

Although we do not know whether this can be reduced to O(n), we observe that, 
if one requires that searchers always be moved from place to place along edges of 
the graph (i.e., cannot be removed from the graph completely and later placed 
elsewhere) and that a search plan must describe each move along a single edge 
individually, then there exist trees whose search plans require O(n log n) steps. One 
such class of trees can be constructed as follows: Let Tk be a tree with search 
number k having 3k-' + 1 vertices. Such a tree is easily constructed using Parsons' 
lemma. Let TZ be the tree constructed by taking two copies of Tk and joining 
them by a path of length 3k. The search number of the resulting tree is either k or 
k + 1 (depending on the vertices of the copies of T k  we select to join by the path), 
and the tree has 0(3&) vertices. However, it is easy to see that at least k searchers 
must traverse the path from one copy of Tk to the other, and hence a search plan 
that describes each move along an edge individually must have length at least 
k . 3k, which is Q(n logn). By attaching a leaf to each vertex of the path, we can 
obtain a similar example without degree-2 vertices. 

4. Characterizing Graphs with Search Number K 

Although the search number of a graph does not seem to correspond directly to 
any of the standard measures on graphs, it is not difficult to see relationships 
between search number and connectivity. Our NP-completeness proof related the 
search number to the minimum cut of a graph into equal-sized subsets. It is also 
easy to see that any K-vertex-connected graph requires at least K searchers. (A 
graph has vertex connectivity equal to the minimum number of vertices whose 
deletion will disconnect the graph.) This particular relationship goes only one way, 
however; it is easy to construct trees with arbitrarily high search number, even 
though all trees have vertex connectivity one. The problem of characterizing 
precisely those graphs with search number K or less (K fixed) turns out to be 
interesting and nontrivial, even for K as small as 2 or 3. In this section we describe 
our characterization results for K I 3. 

We allow multiple edges and self-loops in all our graphs. The reduction of a 
graph is the graph that results by repeatedly applying the operation of replacing 
any degree-2 vertex and its two incident edges by a single edge (a, b)  joining its 
two neighbors (where possibly a = b) until no degree-2 vertices remain. Two graphs 
are homeomorphic if they have the same reduction, and each is said to be a 
homeomorph of the other. Homeomorphism provides a topological notion of 
"equivalence" for graphs, when viewed as structures to be searched, and homeo- 
morphic graphs clearly have the same search number. Hence, there will be no loss 
of generality in restricting our characterizations to reduced graphs. 

It is also useful to have a topological notion of one graph being "contained" 
in another. Roughly speaking, we would like to say that a graph H is contained 
in a graph G if the structure of H is embedded in G in such a way that any 
plan for searching G with k searchers must also tell us how to search H using 
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k searchers. For instance, if H is a subgraph of G, or of any homeomorph of G, 
then s(H) I s(G), and any search plan for G can be easily translated into a search 
plan for H that needs no additional searchers. However, we can make our notion 
of containment even stronger than this, while still preserving the intuitive concept 
we wish to capture, by allowing the additional operation of "contraction." A 
contraction of a graph G is any graph obtained from it by repeatedly applying the 
operation of choosing an edge, coalescing its endpoints, and then deleting the edge 
(now a loop). It is, easy to see that a contraction H of a graph G can have no greater 
search number than G. Moreover, given any edge-clearing sequence for G, its 
restriction to just those edges that belong to H must yield an edge-clearing sequence 
for H that requires no additional searchers. Thus, we say that the graph G contains 
the graph H whenever some homeomorph of G has a subgraph contractible to H. 
An equivalent way of saying this is that the graph G contains the graph H if and 
only if H can be obtained from G by a sequence of operations of the following 
three types: 

(1) Replace any 'edge {u,v) by the two edges {u, w) and (w,  v), where w is a new 
degree-2 vertex; 

(2) Delete any edge or vertex; 
(3) Coalesce the lendpoints of any edge and delete that edge. 

It is immediate that if G contains H, then s(G) r s(H), since none of these 
operations can increase the search number. Notice that, although Operation 1 can 
be used to increase the number of edges and vertices in the graph, it merely 
transforms the graph to another that is equivalent under homeomorphism and, 
therefore, that is topologically no more complicated. 

It is easy to see that the 1-searchable graphs are just the paths (graphs homeo- 
morphic to an edge). Our characterization result for K = 2 is as follows: 

THEOREM 5. For any reduced graph G, the following are equivalent: 

(a) s(G) I 2; 
(b) G does not contain any of the graphs in Figure 5; 
(c) G consists of a path a, ,  a*, . . . , a, in which each consecutive pair a , ,  a,,, is 

joined by either one or two edges, along with an arbitrary number of individual 
edges and self-loops attached to each a, (and otherwise disjoint). 

(a) + (b). By inspection, it is easy to verify that none of the graphs in Figure 5 
can be searched by two searchers. Thus, if G were to contain one of these graphs, 
its search number would necessarily exceed 2. 

(b) + (c). Assume that (b) holds for G. Since G does not contain the graph of 
Figure 5c, all biconnected components of G must be either edges or cycles. A cycle 
can have at most two vertices of degree 3 or more, for otherwise G would contain 
the graph in Figure 5b. Hence, the only biconnected components of G are single 
edges, self-loops, or pairs of parallel edges. This implies that G must be a tree, 
except possibly for loops and for tree edges that occur in parallel pairs. We claim 
that the removal of all degree- 1 vertices from G must result in a path, again possibly 
with loops or path edges that occur in parallel pairs, which is identical to the form 
given by (c). Suppose not. Then there must be a node in G adjacent to three distinct 
vertices, other than itself, none of which is a leaf. Each of those vertices must have 
degree 3 or more in G, since G has no vertices of degree 2. But then the containment 
operations can be applied to G to produce the graph in Figure 5a (notice that the 
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FIG. 5.  Forbidden subgraphs for 2-searchable reduced graphs. 

FIG. 6. Typical graph G with s(G) = 2 

degree-3 vertices may have incident loops, which can be transformed into pairs of 
edges using a combination of Operations 1 and 2). This is a contradiction to our 
assumption that G does not contain this graph, from which it follows that G must 
have the required form. 

(c) + (a). The graph G can be searched by two searchers by having them march 
along the path given by condition (c), clearing the edges and pairs of edges on the 
path as they move along. At each node of the path, one of them is free to clear the 
hanging edges and self-loops at that node. 

Figure 6 illustrates a typical 2-searchable graph. 
The situation for K = 3 is somewhat more complicated, particularly for graphs 

that are not biconnected. We first characterize the biconnected graphs that have 
search number three. A biconnected graph G is outerplanar if it has a planar 
embedding in which a single face includes all of its vertices. The edges of that face 
are called boundary edges, and the remaining edges are called chords. Fix an 
outerplanar embedding of G, so that the boundary edges and chords are well 
defined, and consider any simple path P forming part of the boundary of G. A 
chord joining two vertices of P spans all the edges of P in the subpath joining its 
two endpoints. Two such chords are nested if there is some edge of P spanned by 
both of them. We say that two boundary edges of G are opposing poles if neither 
of the two boundary paths joining their endpoints (excluding the two edges 
themselves) has a pair of nested chords. Whenever such a pair of opposing poles 
exists for some outerplanar embedding of G, we say that G is bipolar. The special 
biconnected graph consisting of a single edge will be declared to be bipolar by 
default, and its single edge will be regarded as an opposing pole with itself. 

For example, the graph G of Figure 7 is bipolar, because the edges { v8, vg J and 
{v4, v5) are opposing poles. Notice that the edges (v,, v2)  and ( ~ 6 ,  V, J are not 
opposing poles, because the path v,, vlo, v9, vs, V, has a pair of nested chords. 

The key to our characterization for K = 3 is the following: 

LEMMA 7. For a reduced biconnected graph G, the following are equivalent: 

(a) s(G) 5 3; 
(6) G does not contain any of the graphs in Figure 8; 
(c) G is outerplanar and bipolar. 
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FIG. 7. An outerplanar graph with two poles 

FIG. 8. Forbidden subgraphs for 3-searchable reduced bicon- 

nected graphs. 

PROOF 

(a) (b). By inspection, it is easy to verify that none of the graphs in Figure 8 
can be searched by three searchers. Thus, if G were to contain one of these graphs, 
its search number would necessarily exceed 3. 

(b) + (c). It follows from the standard forbidden subgraph characterization of 
outerplanar graphs (e.g., see [4]) that a reduced biconnected graph is outerplanar 
if and only if its does not contain either of the graphs in Figures 8a and b. Since G 
does not contain either of these graphs by assumption, it is outerplanar. To see 
that G must also be bipolar, fix an outerplanar embedding of G and consider a 
maximal-length boundary path P that has no nested pair of chords (conceivably, it 
might be just a single vertex). If P includes all edges on the boundary of G, then 
we are done, since its two extreme edges must be opposing poles. Similarly, we are 
also done if P includes all but one edge of the boundary, since then the excluded 
edge and either extreme edge of P must be opposing poles. Otherwise, let e and e' 
denote the two boundary edges adjacent to P on either side. Then, by the 
maximality of P, the addition of either e or e' to P would cause it to have a pair 
of nested chords, with e or e' being a common boundary edge spanned by the 
nested chords. Hence, the longer path P' formed by adding both e and e' to P 
must include two pairs of nested chords that (by the outerplanarity of G) are 
"disjoint" in the sense that the "longer" chords from the two pairs have disjoint 
spans. Hence, the boundary path complementary to P' cannot also have a nested 
pair of chords, or we would immediately have that G contains the graph of 
Figure 8c. It follows that e and e' are opposing poles for G, because neither of the 
two boundary paths joining their endpoints has a pair of nested chords. 
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(c) + (a). Let e and e' be a pair of opposing poles for G under some fixed 
outerplanar embedding. We show how to clear G with three searchers in such a 
way that e is cleared first and e' last. Note that G consists of the two opposing 
poles, two boundary paths joining the endpoints of the poles (with some edges in 
these boundary paths possibly having a single edge in parallel with them), and a 

collection of "cross-chords," each of which joins a vertex in one of the boundary 

paths to a vertex in the other boundary path. To clear G, we initially place two 
searchers on the ends of e and use the third searcher to clear e and any cross-chords 
that are in parallel with it, leaving the two searchers on the ends of e as guards. 
These two searchers will be used subsequently only for clearing the boundary paths 
they are on, with the third searcher being used to clear all chords and parallel 
edges. The clearing process proceeds by repeatedly applying one of the following 
operations, as appropriate: If either of the two boundary searchers is not on an 
endpoint of e '  and has exactly one incident-contaminated edge (necessarily on the 
boundary), clear that edge by moving the searcher along it. Otherwise, if either of 
the two searchers is not on an endpoint of e' and has exactly two incident- 
contaminated edges, one on the boundary and the other a parallel copy of it, place 
the third searcher on the same vertex as the first, clear the parallel edge with it, 
clear the boundary edge with the first searcher, and remove the third searcher from 
the graph. If neither of the above applies, but one of the boundary searchers is not 
yet on an endpoint of e ' ,  then by outerplanarity we know that there must be a 
cross-chord joining the two vertices currently occupied by the two boundary 
searchers. In this case, we simply clear the cross-chord with the third searcher and 
continue. Finally, if both searchers are on the endpoints of e ' ,  we can finish by 
clearing e' and any parallel cross-chords using the third searcher. It is straightfor- 
ward to verify that this procedure suffices to clear G using three searchers, as 
required. 0 

To complete the characterization for K = 3, we must, in addition, specify how 
the 3-searchable biconnected components can be interconnected and where the 
components of lesser search number can be attached. We begin by giving several 
definitions that will be useful in describing the attached components. 

Let H be a reduced graph with s(H) = 2. By Theorem 5(c), if we remove from 
Hall loops artd edges to leaves, the resulting graph must simply be a path, possibly 
with some edges occurring in parallel pairs. The only way to clear H using two 
searchers is to first clear all off-path edges at one end of the path, then clear the 
path edges to the next vertex on the path, and so on, always clearing all off-path 
edges at a vertex on the path before moving along to the next vertex on the path, 
and ending by clearing all off-path edges at the other end of the path. Thus, we say 
that a vertex is an endpoint of H if it is either one of the two ends of the path or 
a leaf of H adjacent to one of the ends. Two endpoints are opposite endpoints if 
( 1 )  they are the opposite ends of the path, (2) they are leaves adjacent to the 
opposite ends of the path, or (3) one is an end of the path and the other is a leaf 
adjacent to the opposite end. Any sequence for clearing the edges of H using two 
searchers must begin by clearing some edge incident on an endpoint of H and must 
end by clearing an edge incident on an opposite endpoint of H. 

A graph is called a pinched graph if it is 2-searchable or can be obtained from a 
2-searchable ,graph by coalescing two or more of its degree-1 vertices into a single 
vertex. If a pinched graph is 2-searchable, we can regard any of its vertices as its 
coalesced node; otherwise, the coalesced node of a pinched graph is its single 
coalesced vertex. Note that all pinched graphs are 3-searchable: If we first place 
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one searcher on the coalesced node, a 2-searcher search strategy for the original 
(unpinched) graph will suffice to clear all the edges. 

Clearly, each biconnected component B of a 3-searchable graph G must itself be 
3-searchable. Hence, by Lemma 7, the reduced graph B ' of B must be outerplanar 
and bipolar. However, even if we restrict our attention to reduced graphs G, B 
itself need not be reduced, since it might contain degree-2 vertices at which other 
biconnected components of G are attached. For this reason, it is convenient to 
extend the definitions of boundary edges and opposing poles from the reduced 
graph B' to B itself. Let us say that an edge e of B reduces to an edge e' of B' if 
either e and e' are the same edge or e belongs to a path of B that becomes the edge 
e' when B is reduced to B '. We then say that an edge is a boundary edge of B if it 
reduces to a boundary edge of B', and we say that two boundary edges of B are 
opposingpoles for B if they reduce to opposing poles for B '. Any two vertices u, v 
that are endpoints of opposing poles {u,  u' ) and (v, v' 1 for B are called antipodal 
points of B. 

Let B,, B2, . . . , B, be 3-searchable biconnected components of a connected 
3-searchable graph G that are "chained together" in the sense that there exists 
a sequence 4, a l ,  . . . , a, of distinct vertices of G such that, for 1 r j r r - 1 ,  

a, is an articulation point of G belonging to both B, and B,+l, and such that, 
for 0 I j 5 r - 1, a, and a,+~ are antipodal points for B,+, . In this case we say 
that C = (h, Bl,  a , ,  B2, a2, . . . , a,-1, B,, a,) is a chain for G. A valid set of 
opposing poles for such a chain C is any sequence of edges (ao, X I  ), { a l ,  yl ), 
{a, ,  x 2 ) ,  . . . , (a,, y,) such that, for 1 r j I r, {a,- x, ), and {aJ , y, J are opposing 
poles for B,. We write V(C) to denote the union of all the vertices in components 
of the chain C and A(C) to denote the corresponding set {a, ,  a*, . . . , a,-] J of 
articulation points. Given a valid set of opposing poles for C, we also use N ( C )  to 
denote the corresponding set ( x l ,  y l ,  x2, y2, . . . , x,, y,] of "neighboring" points. 

For any component B, of the chain C and its specified opposing poles, xJ ) 
and (a,, y, ), consider either of the two boundary paths P joining the endpoints of 
those poles. Let Hp denote the subgraph of B, consisting of P and all edges of B, 
that reduce to chords joining vertices of P when B, is reduced. We call a vertex of 
H p  free if it is an articulation point of Hp, or if it belongs to A(C)  U N(C) .  The 

collection of all free vertices of C is denoted by F(C). The free vertices will turn 
out to be the only vertices at which other components can be attached to the chain. 

We say that a subgraph H of a graph G with chain C hangsfrom the vertex v in 
V(C)  if v is the unique articulation point joining H to the rest of G. In this case 
the subgraph H is also said to be hanging b.v the vertex v of H. 

Our characterization for K = 3 is then the following: 

THEOREM 6. A reduced connected graph G has s(G) s 3 ifand only ifG consists 
of a chain C = (Q, B I ,  a l ,  B2, . . . , a,-l, B,, a,), with valid set of opposing poles 
(ao, X I  1, ( a l ,  y, ), {a , ,  x 2 ) ,  . . . , {a,, y,), along with components of the following forms 
hangingfrom the vertices in V(C): 

( a )  an arbitrary number of edges and self-loops hanging from each vertex in F(C); 
( b )  an arbitrary number of pinched graphs hanging by their coalesced nodes form 

each vertex in A(C); 
( c )  for 1 I j r r, at most one 2-searchable graph hanging by one of its endpoints 

from each of x, and y, , or, ifx, = y, , at most two such subgraphs hangingfrom 
the single vertex x, = y,. 

PROOF. We first show how to search a reduced graph G of the above form using 
three searchers. 
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The biconnected components in the chain are cleared in order of occurrence, 
using essentially the same procedure described in the proof of Lemma 7 for each 
of them. As a matter of convenience, we use the term trivial subgraph to refer to 
self-loops and edges that end at leaves. 

In general, before clearing component B,, we shall have cleared all components 
B,, 1 a j < i, and all subgraphs not in the chain that hang from the vertices of such 
B, , including any subgraphs hanging from the articulation point a,-l. We shall also 
have a single :searcher on a,-, to guard between the cleared and uncleared portions 
of G, with the other two searchers being free. It is easy to achieve this initially, 
simply by placing a searcher on a,,, using one of the remaining two searchers to 
clear any edg~es and self-loops that hang from ao (there can be no pinched graphs 
by hypothesis). To clear B, and its corresponding hanging subgraphs, we proceed 
as follows: If there is a nontrivial Zsearchable subgraph hanging from x,, we first 
clear that subgraph using the two free searchers, in such a way as to end at x,, 
leaving a single searcher on x, as a guard. We then clear any trivial subgraphs 
hanging from x, using the remaining searcher and clear the edge (a,-1, x, 1, also 
with that searcher. At this point, we proceed to clear the remaining edges of B,, as 
in the proof of Lemma 7, so as to end with the edge (a,, y,), clearing trivial 
subgraphs hanging from vertices in F(C) along the way using the roving searcher. 
It is easy to check that F(C) has been defined in just such a way that this can be 
done, that is, that for each such vertex v there is always some time at which v has 
a searcher on it and the roving searcher is free for clearing the trivial subgraphs 
hanging from v. We end with all of B, being clear, and a searcher on each of a, and 
y,, with the third searcher being free at this point. If there are any trivial subgraphs 
hanging from y,, we clear them now with the third searcher. We then use that 
searcher and the searcher on y, to clear any 2-searchable subgraph hanging from 
y,, starting from the end that y, is on. Finally, with one searcher remaining on a, 
as a guard, we use the two remaining searchers to clear each of the pinched graphs 
hanging from a,. This leaves us in the position required for starting to clear B,+, , 
as described earlier, with the entire graph G having been cleared if i = r. 

It is not difficult to see that this strategy will successfully clear G using three 
searchers, as claimed, and hence any graph of the stated form must be 3-searchable. 

Now we show that any reduced 3-searchable graph must have the specified form. 
Let G be any reduced 3-searchable graph that is not 2-searchable (a 2-searchable 
graph is trivially of the required form). Using LaPaugh's result that recontamination 
is never needed, we know that there exists an edge sequence, with no repetitions, 
for clearing (5 using three searchers. Fix a choice of such an edge sequence. For 
purposes of uniformity, it is convenient to modify G and the selected edge-clearing 
sequence as follows: Insert a new degree-2 vertex in the middle of the first edge 
cleared, add three edges joining that new vertex to a second new vertex, and place 
those three new edges at the head of the clearing sequence, immediately followed 
by the two edges resulting from subdividing the old first-cleared edge. Make the 
analogous change with the last edge cleared, using another two new vertices, this 
time placing the three new edges at the tail of the edge-clearing sequence, imme- 
diately preceded by the two edges resulting from subdividing the old last-cleared 
edge. It is easy to see that the resulting edge-clearing sequence will still suffice for 
clearing the new graph with three searchers, and that the new graph will have the 
desired form only if the original did. Thus, there will be no loss of generality in 
regarding the new graph as the graph G under consideration, with its given edge- 
clearing sequence as obtained above. 
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Let el and em denote the first and last edges cleared according to the current 
edge-clearing sequence. Let BI and B, denote the biconnected components of G 
containing el and em, respectively, and let Bl , B2, . . . , B, denote the unique 
"path" of biconnected components in G joining Bl to B,, that is, such that 
every simple path from B1 to B, consists of a (possibly empty) path in Bl, 
followed by a nonempty path in B2, followed by a nonempty path in 
B3, . . . , followed by a nonempty path in B,- followed by a (possibly empty) path 
in B,. The existence and uniqueness of this sequence of biconnected components 
follow from the way in which biconnected components partition a graph. For 
1 5 i r r - 1, let a, denote the unique articulation point of G common to both 
B, and Bi+I, and let a. and a, be the remaining vertices of Bl and B, (each of these 
components has only two vertices, by construction). One of our goals is to show 
that (ao, B1, a , ,  BZ, . . . , B,, a,) is a chain. 

A key fact that we use frequently in the remainder of the proof is that, in order 
to prevent recontamination of e l ,  every path from el to em must contain at least 
one searcher throughout the process of clearing G. 

The first implication of this pertains to the structure of the subgraph H hanging 
from any articulation point a,. Since every simple path from el to em must contain 
a searcher and since ai itself is the only vertex of H included in any such paths, it 
follows that H must be cleared using only two searchers, possibly along with a third 
searcher fixed as a guard on a,. Thus the graph obtained from H by splitting the 
vertex a, into distinct new leaves, one for each edge of H incident on a,, must be 
2-searchable, although it may include several separate connected components. By 
the definition of pinched graph, this simply says that the original subgraph H 
consists of a collection of pinched graphs, all having coalesced node a,, as claimed 
in the theorem statement. Hence we may ignore these edges for the remainder of 
the proof. 

For 1 5 i r r, let B: denote the subgraph of G consisting of B, and all subgraphs 
hanging from vertices of B; other than a,-I and a;. We next show that we can 
normalize the given edge-clearing sequence so that, for I I i I r, all edges of B: 
are cleared before any edges of BE,.  By construction, this already holds for i = I .  
Given that it holds for 1, 2, . . . , i - 1, we show how to modify the edge clearing 
sequence so that it also holds for i. Let e be the first edge in the clearing sequence 
that belongs to some B,* for j > i, and let e' be the last edge of B: in the sequence. 
If e follows e' in the sequence, we are done. Otherwise, note that from the time 
that e is cleared until the time at which e' is cleared, there must be at least one 
searcher on some vertex (other than a,)  of B;, to guard between the contaminated 
portion of B, and the cleared edges of B,-I , and there must be at least one searcher 
on some vertex (other than a,) of some Bk for k 5 j, to guard between em and the 
cleared portion of B,. Thus all edges of B: cleared during the interval are cleared 
using at most two searchers on B:, and all edges of components B,*, for k > i, 
cleared during that interval are cleared using at most two searchers on that part of 
G. It follows immediately that we can modify our edge-clearing sequence, without 
requiring more than three searchers overall, by moving all edges of B: just before 
e in the sequence, but keeping them in the same order relative to one another. The 
fact that three searchers still suffice can be easily seen using the observation that 
we could leave a guard on the vertex a, throughout the clearing of B: and 
throughout the clearing of the other edges that were originally cleared before e', 
using only the two remaining searchers to clear B: and those other edges. Hence 
repeated application of this transformation will result in an edge-clearing sequence 
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for G of the desired form, and there will be no loss of generality in assuming that 
the sequence we have is of this form. 

We can now focus on the edges in each B: individually, since we know that they 
occur consecutively in the edge-clearing sequence, and we need only show that 
each of these "extended" components has the form specified in the theorem. We 
already know that BY and BF have this form, so consider any B t  with 1 < i < r. 

By Lemma 7, we know that the reduced graph of B, must be outerplanar and 
bipolar. We also know that the clearing of BT must begin with a searcher on the 
vertex a,- in order to guard between the cleared edges of B,- , and the contaminated 
edges of B,. ISB: consists of a single edge, or a collection of parallel edges, then it 
trivially has the required form. So suppose BT has at least three vertices and three 
edges (since C; is reduced, it cannot consists of three vertices and only two edges). 

We begin by showing the existence in B t  of a neighbor v of a,-, and a (possibly 
empty) 2-searchable subgraph H, hanging by one of its endpoints from v, such that 
the clearing sequence for B: can be transformed to begin by first clearing all the 
edges of H fo'llowed immediately by the edge {a,- ,, v]. 

This is easy to see if the first edge of B: that is cleared also belongs to B,, for 
then we claim that this edge must already join ai-I to some neighboring vertex v 
(and hence that the subgraph H is empty). If this first cleared edge does not have 
a , - ~  as an endlpoint, then, immediately after the edge is cleared, the three searchers 
would be on the two ends of that edge and on the vertex a,-,. But each of these 
three vertices must still have two or more incident contaminated edges (since G is 
reduced), so none of those searchers would be able to move, contradicting our 
assumption that we have an edge sequence that suffices for clearing G with three 
searchers. 

On the other hand, if there are edges of B: that are cleared before the first edge 
of B,, then they must all belong to subgraphs hanging from some single vertex v of 
B,; for, otherwise, the two searchers not on a,-, would be needed as guards on their 
respective subgraphs until after the first edge of B, is cleared, preventing us 
from ever clearing a first edge of B,. Let H be the union of all the subgraphs 
hanging frorn v that contain those cleared edges (there may be other sub- 
graphs hanging from v with no edges that are cleared before the first edge of B,). 

Then an argument like that used above for transforming the edge-clearing sequence 
to separate the components B,* from one another can be used again to transform 
the sequence for B: so that all edges of H are cleared before the first edge of Bi is 
cleared. Thus, in our new edge-clearing sequence, an edge of B t  is cleared before 
the first edge of B, if and only if it belongs to H. Moreover, since the subgraph H 
is cleared using only two searchers, ending with a guard on v, H must be a 
2-searchable graph with v as an endpoint. 

We want 1:o claim that a,-, and v must be adjacent. Suppose not. Then just 
before the fir:st edge of B, is cleared we must have a searcher on a;- I and a searcher 
on v, with every vertex of Bi other than these two having at least three incident 
contaminated edges (because G is reduced). Since B; is biconnected and we have 
only one additional searcher, the first edge of B, that is cleared must be incident 
on either a;-, or v. Suppose this edge is incident on v and that its other endpoint is 
u # a,-, . (The case in which it is incident on a,-., instead is handled identically.) 
Just after {u, v )  has been cleared, u must still have two incident uncleared edges, 
so the searcher on it cannot move. The vertex a;-, also has two incident contami- 
nated edges, so the only searcher that might still be able to move is the one on v. 
If at this point v has more than a single incident contaminated edge, none of our 
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searchers can move, contradicting the assumption that this sequence clears G. If v 
has only a single incident contaminated edge, the searcher on it must next move 
to clear that edge, ending at a vertex u' differing from both ai-I and u. At this 
point, all three searchers must be on vertices that each have at least two incident 
contaminated edges, so none of them can move, again giving us a contradiction. 
Therefore, it must be the case that v is adajcent to ai-I.  Moreover, since there must 
be guards on both a,-, and v until the edge (a,-,, v J  is cleared, we can further 
transform our clearing sequence for B: so that the edge (ai-,, v J is cleared first. 

This gives us what we wanted for the initial portion of the clearing sequence for 
B:. A symmetric argument can then be used to show the existence of a neighbor 
v' of ai and a (possibly empty) 2-searchable subgraph H' hanging by one of its 
endpoints from v', such that the clearing sequence for BT can be further trans- 
formed to have the property that it ends by clearing the single edge (a; ,  v' ) followed 
immediately by all the edges in H ' .  We explicitly allow v = v' here. 

Let e denote the edge (a,-,, v )  and let e' denote the edge (a , ,  v' ). Suppose that 
e and e' were not opposing poles for Bi. Then one of the two boundary paths of 
B, joining e and e' must have a pair of nested chords (or paths that reduce to 
nested chords when Bi is reduced). From the time that e has been cleared until the 
time that e' is cleared, there must be at least one searcher on the opposite boundary 
path to guard between e and e' .  Thus the boundary path with the pair of nested 
chords must be cleared entirely using only two searchers, which is impossible 
because this subgraph of Bi contains the forbidden subgraph of Figure 5c. Therefore, 
e and e' most be opposing poles for Bi, and ai- , and a, are antipodal points of B, , 
as required. 

Note that we now have all that is required of each Bi in order for C = 

(ao, B , ,  a , ,  B2, . . . , B,, a,) to be a chain and that a valid set of opposing 
poles for C consists of the corresponding collection of poles e, e' for the B,. 

To complete the proof, we need only show that all edges of BT cleared between 
the times that e and e' are cleared must either be edges of Bi or trivial subgraphs 
hanging from vertices in F(C). Clearly, any such edges not in Bi can only be trivial 
subgraphs, since there have to be two searchers on B, itself throughout this interval, 
leaving at most one searcher available for use in clearing those edges. Suppose a 
trivial subgraph hangs from some vertex u not in F(C). By the definition of F(C), 
there must exist a pair of vertex disjoint paths joining the opposing poles of Bi, 
neither of which passes through u, and each of those paths must contain at least 
one searcher as a guard throughout the interval during which Bi is being cleared. 
Thus all edges incident on u must be cleared using only a single searcher, possibly 
with guards on adjacent vertices. However, since G is reduced, u must have degree 
at least 3, so the subgraph to be cleared by this single searcher contains a three- 
edge star, which cannot possibly be cleared by a single searcher. Therefore, trivial 
subgraphs can hang only from vertices in F(C), and we have shown that G must 
be of the form given in the theorem statement. 

Theorem 6 also leads naturally to an efficient algorithm for recognizing 
3-searchable graphs. 

THEOREM 7. There is a linear-time algorithm for recognizinggraphs with search 
number 3. 

PROOF. An outline of such an algorithm goes as follows: Without loss of 
generality, we can restrict attention to graphs G that are connected and reduced 
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(since a graph can be reduced in linear time). We begin by identifying the 
biconnected components of the given graph G in linear time using the method of 
[14]. As is well known, the biconnected components of any graph are joined 
together in a tree structure, with all simple paths joining any fixed pair of 
biconnected coimponents passing through a unique sequence of the other bicon- 
nected componients. 

By working in from the "leaves" of this tree, we can identify the subgraphs of G 
that can hang {off a chain like that given by Theorem 6. The first of these are 
the "trivial" sutgraphs, individual edges and loops joined to the rest of G at a single 
articulation point, which we call I-pieces. Next are the 2-searchable subgraphs that 
can hang from vertices in V(C) and their neighboring vertices in the chain 
components. Temporarily ignoring any hanging 1-pieces, we note that each of 
these is just a path composed of single and double edges, attached to the rest of the 
graph at only a single articulation point that is an endpoint of the path. The 
maximal such paths, along with their hanging 1-pieces, are called 2-pieces. Finally, 
we have the subgraphs that correspond to non-Zsearchable pinched graphs. Each 
of these consisls of a single biconnected component (having at least two edges), 
along with any hanging 1- and 2-pieces, such that the subgraph is joined to the rest 
of G at only ii single articulation point and such that the subgraph becomes 
2-searchable when that articulation point is split into distinct degree-1 vertices 
for each of its incident edges. We call these 2 '-pieces. It is not hard to see that the 
1-, 2-, and 2'-pieces of G can be identified in linear time. 

If all biconnected components of G belong to 1-, 2-, and 2'-pieces, we immedi- 
ately have from Theorem 6 that s(G) 5 3. Otherwise, call any remaining bicon- 
nected components 3-pieces. From Theorem 6, we know that each 3-piece must 
be outerplanar (notice that this is stronger than just saying its reduced graph is 
outerplanar). It is straightforward to check this property for all the 3-pieces in 
linear time. Moreover, it is easy to see that the outerplanar embedding of each 
3-piece is essentially unique, with the only choices being the relative placement 
of parallel edges. Thus we can also choose a fixed outerplanar embedding of each 
3-piece. 

If the 3-pieces of G do not all belong to a single path P in the biconnected 
component tree, we are done, since s(G) must then exceed 3. Otherwise, it remains 
for us to verify that they form a chain. Since they are joined together in a path, we 
only need to determine whether each 3-piece, along with its associated hanging I-, 
2-, and 2'-pieces, has the form required by Theorem 6. 

For any 3-piece that is not one of the ends of P, its two articulation points in 
the chain, which must be antipodal points of that component, are determined by 
where its two neighboring 3-pieces are joined. This immediately allows us to use 
Theorem 6 and its associated definitions, along with the identified 1-, 2-, and 
2 '-pieces, to verify that it has the required form. Essentially all we need to do is to 
try to search il. (plus any hanging subgraphs), beginning at one articulation point 
and ending at the other, following the algorithm given in the proofs of Lemma 7 
and Theorem 6. (Given the articulation points, there are at most four possible 
combinations of opposing poles. It suffices to try each combination separately, 
although with a little care one can test for the desired form in about the time it 
takes to try out just one such combination.) 

For the 3-pieces on the ends of P, if there are two of them, their articulation 
points interior to the chain are determined by where the rest of the chain is 
connected. Thus we can check whether each is of the required form by essentially 
the same method, that is, by attempting to search it (and its hanging subgraphs), 
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beginning at the corresponding articulation point and following the algorithm from 
the proofs of Lemma 7 and Theorem 6. Our knowledge of the 1 -, 2-, and 2 '-pieces 
provides obvious constraints and makes this easy to do. 

Finally, we have the case in which P consists of only a single 3-piece. If that 
3-piece has a hanging 2- or 2'-piece, then we know that the vertex from which 
the 2- or 2'-piece hangs, or one of its two neighbors on the boundary of the 
3-piece, must be part of a pair of antipodal points and hence be suitable for 
starting the search of the 3-piece and its hanging subgraphs. Thus, we can try each 
of these three possibilities, proceeding exactly as above. If the 3-piece has no 
hanging 2- or 2 '-pieces, we simply choose some vertex on its boundary and proceed 
around the boundary in one direction until the first time that the path traversed 
has a nested pair of chords. In order to break that nested pair, some edge spanned 
by the longer of the pair must belong to a pair of opposing poles. In fact, it is not 
hard to see that either the first or the last edge spanned by that longer chord must 
belong to a pair of opposing poles, since the other edges it spans can only break a 
subset of the nested chords broken by one of these. Therefore, we need only 
consider, at most, four possibilities, the four endpoints of those two edges, for 
where a search of the 3-piece might start, and we can check each of them as 
described above. The original graph G is 3-searchable if and only if we succeed in 
searching each of the 3-pieces,-along with its associated hanging subgraphs, in this 
way. 

5. Further Results and Open Problems 

Since the results in this paper were origmally announced, additional progress on 
the problem has been made. As mentioned above, LaPaugh [6] has proved that 
"recontamination" does not help, and hence the problem of determining the 
search number is in NP. Makedon et al. [9] have shown that the problem remains 
NP-complete for graphs with a maximum vertex degree of 3, using a clever 
modification of our proof in which the large cliques are replaced by structures 
resembling brick walls. (Still open, however, is the complexity of determining s(G) 
when G is a planar graph.) 

Attention has also been drawn to the relation between search number and other 
measures of graph complexity. The maximum degree-3 case holds particular 
interest because in this case the search number of G is known to be identical to the 
cutwidth of G. The cutwidth of a graph G is the minimum, over all orderings of 
the vertex set V(G) of G, of the maximum for 1 < i s I V(G) I of the number of 
edges whose left endpoint is to the left of the ith vertex in the ordering and whose 
right endpoint is equal to or to the right of the ith vertex. The cutwidth problem, 
like the search number problem, is known to be NP-complete for general graphs 
([3] and L. Stockmeyer, private communication, 1974 (See [2])), and Yannakakis 
[15] has recently shown that it can be solved in time O(n log n) for trees. The tree 
algorithm has a recursive structure similar to our search number algorithm for 
trees, although the two algorithms maintain rather different information about the 
subtrees occurring as subproblems. It is not difficult to see (as first observed to us 
by I. H. Sudborough) that the search number of a graph cannot exceed its cutwidth. 
Any cutwidth ordering (of the vertices) induces a search number ordering (of the 
edges) by increasing order of the left endpoints, breaking ties by right endpoints, 
and this search order requires a number of searchers that are, at most, equal to the 
cutwidth. The equality of cutwidth and search number is shown for degree-3 trees 
in [I] and for general degree-3 graphs in [8] and [9]. For arbitrary graphs, the 
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cutwidth and search number need not be the same, since the "star" S,, on n vertices 
has search numlber 2 and cutwidth LnI2J. 

For the relation between search number and other measures, such as "topological 
bandwidth," "pebble demand," and "interval thickness," see 151, [8], and [9]. 
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