
The Complexity of Searching a Graph

N. MEGIDDO

Tel-Aviv University, Tel-Aviv, Israel

S. L. HAKIMI

Northwestern University, Evanston, Illinois

M. R. GAREY AND D. S. JOHNSON

AT&T Bell Laboratories, Murray Hill, New Jersey

AND

C. H. PAPADIMITRIOU

Massachusetts Institute of Technology, Cambridge, ,Wussachusetts.
and National Technical University ofAthens, Athens, Greece

Abstract. T. Parsons originally proposed and studied the following pursuit-evasion problem on graphs:
Members of a team of searchers traverse the edges of a graph G in pursuit of a fugitive, who moves
along the edges of the graph with complete knowledge of the locations of the pursuers. What is the
smallest number s(G) of searchers that will suffice for guaranteeing capture of the fugitive? It is shown
that determining whether s(G) 5 K, for a given integer K, is NP-complete for general graphs but can
be solved in linear time for trees. We also provide a structural characterization of those graphs G with
s(G) I K f o r K = 1, 2, 3.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems-computations on discrete structures; sorting and searching

General Terms: Algorithms, Theory, Verification

Additional Key Words and Phrases: NP-completeness, pursuit and evasion

1 . Introduction

Let G = (V, E) be a connected undirected graph. Imagine that this graph represents
a system of tunnels in which a fugitive is hidden. Members of a team of s searchers
traverse the edges of the graph seeking to capture the fugitive, while the latter

This paper is based on "The Complexity of Searching a Graph" by N. Megiddo, S. L. Hakimi, M. R.

Garey, D. S. Johnson, and C. H. Papadimitriou, appearing in Proceedings of the 22nd Annual
Symposium on Foundations of Computer Science. IEEE, New York, 198 1, pp. 376-385. O 198 1 IEEE.

Authors' present addresses: N. Megiddo, Dept, K53, The IBM Almaden Research Center, 650 Hany
Road, San Jose, CA 95 120-6099; S. L. Hakimi, Department of Electrical and Computer Engineering,
University of California at Davis, Davis, CA 95616; M. R. Garey, Room 2D-152, AT&T Bell
Laboratories, Murray Hill, NJ 07974; D. S. Johnson, Room 2D-150, AT&T Bell Laboratories, Murray
Hill, NJ 07974; and C. H. Papadimitriou, Department of Computer Science, University of California,
San Diego, La Jolla, CA 92093.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

0 1988 ACM 0004-541 1/88/0100-0018 $01.50

Journal ofthe Association for Computing Machinery, Vol. 35, No. 1 , January 1988, pp. 18-44.

The Complexity of Searching a Graph

FIG. 1. Graph G with s (G) = 3, increasing to 4 when dotted

edge is added.

moves around the edges of the graph with unbounded speed, cunning, and luck,
trying to avoid them. Alternatively, we can think of a d@used fugitive (say, dust
or toxic gas), in which case the team is, in effect, clearing the graph. What is the
smallest number s for which there exists a successful searching strategy, that is, one
that is guaranteed to capture the fugitive?

This problem, well known in the combinatorics community, was first suggested
by Parsons [1 1, 121, who introduced itas a nondiscrete problem, with both searchers
and fugitive allowed to move continuously. However, as Parsons observed, it is not
difficult to show that the problem is equivalent to a discrete one. In fact, we can
restate the problem in a manner that is similar in style, if not detail, to many of
the pebbling problems that have been studied of late (e.g., see [7, 131). The basic
operations are (1) placing a searcher (pebble) on a vertex, (2) removing a searcher
from a vertex, and (3) moving a searcher from one vertex to another along an edge.
There is no limit on the number of searchers a vertex can hold, although a capacity
of two will always suffice.

Initially, all the edges of the graph are contaminated, that is, capable of harboring
a fugitive. An edge is cleared by placing a searcher at one end (as a guard) and
moving a second searcher along the edge itself from the guarded endpoint to the
other endpoint. If the guarded endpoint is such that all other edges incident on it
are already clear, then we can dispense with the second searcher and clear the edge
simply by moving the endpoint's guard along the edge to the other endpoint. A
clear edge remains clear so long as every path from it to a contaminated edge is
blocked by at least one guard. A clear edge is recontaminated if ever an unguarded
path to a contaminated edge comes into existence owing to the moving of a

searcher. The entire graph has been cleared, that is, successfully searched, once all
of its edges are simultaneously clear.

A search strategy is a sequence of pebbling operations that will clear an initially
contaminated graph. The search number s(G) for a graph G is the minimum
number of searchers for which a search strategy exists. The calculation of s(G),
given G, is a very tricky algorithmic problem. For example, it is probably not
immediately obvious that for the graph G in Figure 1, s(G) = 3, and that, if the
dotted edge is added, the search number increases to 4.

In this paper we present both complexity results and eficient special-case
algorithms for this problem, along with some characterization results for graphs
with small search number. In Section 2 we show that determining s(G) for an
arbitrary graph G is indeed difficult by proving that the problem: Given G

20 N. MEGIDDO ET AL.

and an integer K, is s(G) I K? is NP-complete. In Section 3 we study the search
number problem for the special case of trees and show that for such graphs
the search number can be determined in linear time and a search plan using the
minimum number of searchers can be found in time O(n1og n). In Section 4 we
present results characterizing the structure of graphs with search number K for
K = 1, 2, 3. Finally, in Section 5, we mention some open questions and some
recent results for several related problems, including some interesting ties between
the search number problem and the problem of laying out a graph on a line to
minimize its "cutwidth," which arises in connection with VLSI circuit layout.

2. Complexity Questions

It is not difficult to see that the general question: Given G and K, can G be cleared
with K or fewer searchers? is in PSPACE. With other pebbling problems, such as
the ones discussed in [7] and [13], this is the best one can hope for, because of the
possibility of "recomputation," that is, using more time, but fewer pebbles, by
repeating parts of the pebbling process. The analog of this in the graph searching
problem would be "recontamination," allowing previously cleared edges to become
contaminated again in order to save searchers. In a preliminary version of this
paper [lo], we noted that we had been unable to find any graphs that would require
more searchers if recontamination were disallowed and raised as an open problem
the question: Can recontamination help? This question has now been resolved by
LaPaugh [6], who has shown that, in our pebbling model for graph searching,
recontamination can be disallowed without changing the search number for any
graph; that is., there always exists a search plan for G with s(G) searchers that does
not involve recontamination of any edges.

It follows from this result that the decision problem belongs to NP. One need
only guess the sequence in which the edges are cleared, from which it is straight-
forward to check whether or not that sequence can be achieved using K or fewer
searchers. We now show that the problem is in fact NP-complete.

THEOREM 1. The question: Given G and K, can G be cleared with K searchers?
is NP-complete.

PROOF. We prove this by providing a transformation from the following known
NP-complete problem [2]:

MIN-CUT INTO EQUAL-SIZED SUBSETS

INSTANCE: Graph G = (V, E) with (V I even, positive integer K.
QUESTION: I[s there a partition of V into two subsets V, and V2 with I V, I = I V2 I = f I V I

!such that I ((u , V) E E: u E V,, v E V2) I 5 K?

For the proof, we need several lemmas about searching complete graphs. Let Kn
denote the complete graph with n vertices. It was observed by Parsons that, for
n r 4, s(Kn) = n. We need a somewhat different fact. At any point during the
search of a graph, call a vertex cleared if all edges incident upon it are clear.

LEMMA 1 . Suppose that at some step t during a search of KM, M 2 4, the first
vertex becomlt.s cleared. Then there must have been at least M - 1 searchers on KM
during this step.

PROOF. Siuppose that the vertex v was cleared by clearing the edge (u, v) during
step t. The other M - 2 vertices all have both clear and contaminated edges
incident upo:n them at this point, and therefore they must contain at least one

The Complexity of Searching a Graph 2 1

searcher each. Furthermore, the edge {u, v] must have been traversed by some
other searcher during this step. The lemma follows.

LEMMA 2. Suppose that the graph G contains m vertex-disjoint copies of KM
(for some M r 4). Then, in the process of searching G, there must be for each k,
1 s k 5 m, a point at which k cliques have at least one cleared vertex (with respect
only to internal clique edges), m - k have none, and there is one clique with a
cleared vertex that contains M - 1 or more searchers.

PROOF. This follows directly from Lemma 1 and the fact that at any step at
most one clique can go from zero to one (or more) such cleared vertex (vertices).

LEMMA 3. Suppose that G contains m vertex-disjoint copies of KM and that at
some step during the search of G, there is a set C, of cliques, each containing one
or more cleared vertices (again with respect only to internal clique edges), and a
set C2 of cliques containing no such cleared vertices. Then, if (u , v] is an edge of G
such that u belongs to a clique in C1 and v belongs to a clique in C2, either u or v
must contain a searcher.

PROOF. If (u , v) is clear, then v has both clear and contaminated edges incident
upon it and hence must contain a searcher. If (u , v) is contaminated, then since u
has at least one clear edge incident upon it, u must contain a searcher.

We now proceed with the proof of Theorem 1. Let G = (V, E) and K > 0
constitute a given instance of MIN-CUT INTO EQUAL-SIZED SUBSETS. We
construct a corresponding instance of GRAPH SEARCHING as follows:

Let n = I V I, let d be the maximum vertex degree in G, let N = 6(d + K), and
let M = n(n + 2) . N. The graph to be searched consists of the following parts:

(i) for each vertex vi E V, an M-clique C, ;
(ii) an additional "special" M-clique CA ;

(iii) between each pair Ci, C, of M-cliques, nN edges

N additional edges if either i or j is A,
3 additional edges if (v,, v,) E E.

The edges in (iii) are added in such a way that no clique vertex is involved
in more than one outside edge, which can be done since M = n(n + 2) . N r
n 2 N + N + 3d.

Call the resulting graph H = (U, F). The search number s to be tested is given

by

We now show that s (H) r s if and only if G has the desired cut into equal-sized
subsets.

First, suppose the desired cut exists for G, that is, there is a partition of V into
V , and V2 with I V , I = 1 V2 1 such that K' s Kedges join vertices in V, to vertices
in V2. We show how H can be cleared with at most s searchers.

First relabel the vertices (and corresponding cliques) so that V , = {vl , v2, . . . ,
v,,] and V2 = (v(,, ,~)+~, . . . , vn). We clear the cliques in the order

22 N. MEGIDDO ET AL.

To clear the clique Ci in its turn, place a searcher on each of its vertices that
currently does not contain a searcher. Then use an (M + 1)th searcher to clear all
the edges internal to Ci. Finally, clear each edge from C, to a later clique by moving
the searcher from the edge's endpoint in C, along the edge to its endpoint in the
later clique, where the searcher will be left as a guard until that later clique is
cleared.

It is easy to see that the maximum number of searchers for this procedure must
occur at some time when one of the cliques is being cleared and has M + 1

searchers itself. If the clique being cleared is not CA, the total number of searchers
is at most

If the clique being cleared is CA, then the number of searchers is

Thus s searchers suffice.
Now, suppoae H can be cleared using s searchers. Consider a step in the search

process at which (n/2) + 1 of the cliques have at least one cleared vertex (with
respect only to the internal clique edges), n/2 do not, and M - 1 searchers are on
a clique with a cleared vertex. Such a step exists by Lemma 2.

Suppose the clique with the M - 1 searchers is not CA. Then by Lemma 3 the
total number of searchers in use at that time must be at least

n

(I)' 2

n
(M - I) + - n N + - N = s + - N - (3 K + 2) > s ,

2

a contradiction. Thus the clique with M - 1 searchers must be CA, and the total
number of searchers on endpoints of edges not corresponding to edges in G must
be (by Lemma 3) at least

(M - 1) + - n N = s - (3 K + 2) . (I)'
If Vl = (v, : C, contains a cleared vertex) and V2 = (v i : C, does not contain a cleared
vertex), we must have I Vl I = I V2 I = n/2, and the number of edges in G joining
a vertex in Vl to a vertex V2 is at most L(3K + 2)/31 s K. Hence the desired cut
exists for G.

We conclude that H can be searched with s searchers if and only if G has a cut
into equal-sized subsets with K or fewer edges. Since H and s can be constructed
easily in polynomial time from G and K, we have a polynomial transformation
and the theorem is proved.

3. The Special Case of Trees

It follows from results of Parsons in [l 11 that the graph-searching problem, when
restricted to trees, is in both NP and co-NP. (He gives a recursive forbidden
subgraph characterization of those trees T with s(T) > k, for each k, and it is

The Complexity of Searching a Graph 2 3

possible to argue, using his basic lemma (even without LaPaugh7s result), that
recontamination cannot help in the case of trees.)

We show that the tree-searching problem is in P and that the search number of
a tree can in fact be found in linear time. The algorithms we use do not involve
the standard dynamic programming tricks that one so often sees for problems on
trees but use instead a rather intricate application of recursion. Our basic algorithm
runs in time O(n log n), but it can be sped up to time O(n) by making the stack
explicit and including pointers for making shortcuts. The algorithm also can be
modified to keep track of suficient additional information so that a search plan,
rather than just the search number, can be computed in time O(n log n). We do
not know whether this can be reduced to time O(n).

The basic idea behind the algorithm is given by a normal form theorem for
optimal search procedures on trees. Given a tree T = (V, E) and a vertex v E V,

we say that a subtree T' of T is a branch at v if v has degree 1 in T' and T' is a
maximal subtree having this property. Parsons [I I] proved the following lemma:

PARSONS' LEMMA. For any tree T and integer k r 1, s(T) I k + 1 ifand only
if T has a vertex v at which there are three or more branches that have search
number k or more.

Notice that this result implies that a tree with search number k must have
at least 3k-' edges, so the search number of an n node tree always satisfies
s(T) 5 I + log3(n - 1).

Moreover, this result leads us to the key concept needed for our normal form
theorem, the concept of the "avenue" of a tree. Intuitively, the avenue of a tree T
is a path v,, v2, . . . , V, of two or more vertices such that T can be cleared using
s(T) searchtm by placing a~ searcher on vl and subsequently moving it along the
avenue to v2, v3, . . . , v,, pausing long enough at each vertex vi along the path so
that the nonavenue branches at vi can be cleared (one at a time) using the remaining
s(T) - 1 searchers. Formally, a path v,, v2, . . . , v, of two or more vertices is an
avenue for T if vl and v, each have exactly one branch with search number
s(T) = s (containing v2 and v,-, , respectively) and for every j , 2 I j I r - 1, v, has
exactly two branches with search number s (containing v,-, and v,, , , respectively).
It is not hard to see that this definition implies that the avenue can be used
inductively to search T wi1.h s(T) searchers in the manner indicated above. Our
main structural result for trees is the following:

LEMMA 4. If s(T) = S, then either (i) T has a vertex v such that all branches
at v have search number smaller than s, or (ii) T has a unique avenue.

PROOF. Suppose that (i:) fails to hold for T, that is, that every vertex in T has
at least one branch with search number s. Consider the set A of all edges (u, v) of
T with the property that both the branch at u containing (u, v) and the branch at
v containing (u, v] have search number s. Notice that any branch in T that contains
an edge (u, v) of A must have search number s, since it must entirely contain either
the branch at u containing (u, v) or the branch at v containing (u, v], and adding
edges and vertices to a graph cannot reduce its search number. By definition, an
avenue can consist only of edges from A. Moreover, an avenue cannot exclude any
of the edges in A, since the vertex on the avenue closest to that excluded edge
would then have an additional branch with search number s. Thus, if an avenue
exists, it must be A. The desired result will follow by showing that A itself is an
avenue.

24 N. MEGIDDO ET AL.

First, we show that A is nonempty and hence involves at least two vertices. To
see this, for each vertex v E V let e(v) denote some edge incident on v such that
the branch at v containing e(v) has search number s. Such an e(v) must exist for
each v by our assumption above that (i) does not hold. Furthermore, since there
are only 1 V (-- 1 edges in T, there must exist two vertices u and v for which
e(u) = e(v) = e. The edge e therefore belongs to A.

We next show that A is a path. It contains no more than two edges incident
upon any single vertex, since the existence of a vertex with three such incident
edges would imply s(7') r s + 1 by Parsons' Lemma. It remains to show that A
forms a connected subgraph of T. Suppose it were not connected, and let e be any
edge on a path in T joining two disconnected components of A, that is, a path
consisting entirely of edges from T - A. For each endpoint of e, the branch at the
endpoint that includes e must contain an edge from A and hence must have search
number s. But this implies that e must belong to A, contradicting the choice of e.
Therefore, no such paths exist in T and A must be connected. Thus A is a path.

Finally, we need to show that no vertex v in the path A has more than the
required number of branches with search number s.. For this it suffices to show
that every branch at v that involves no edges from the avenue A has search number
less than s. Let u be the vertex adjacent to v in such a branch at v. Since (u, v) is
not in A, and since the branch at u containing (u, v) has search number s (it
contains an edge in A, in fact all of A), it follows immediately from the definition
of A that the branch at v containing (u, v) does not have search number s.
Therefore, A is an avenue for T and, indeed, is the unique avenue for T.

We note that the "or" of the theorem statement is exclusive, since a vertex of
the form required for (i) cannot be on the avenue, and, if it were off the avenue,
the branch at that vertex that included the avenue would have search number s,
contradicting the requirement that all its branches have search number less than s.

We call a vertex v in a tree T a hub of T if all branches at v have search number
less than s(T), and we regard such a hub as an avenue of length zero, consisting of
a single vertex. We note that in this case the avenue need not be unique. Indeed,
in a minimal tree with search number s, every vertex of degree greater than 1 is a
hub.

For purposes of exposition, it is convenient to assume in the remainder of this
section that every tree under construction has a specified vertex called the root. It
is clear later how such an assumption arises naturally from the way in which we
decompose trees to compute search numbers. (The choice of root will not affect
the search number of a tree.)

From Lemma 4, we can divide all rooted trees into four types (see Figure 2),
depending on tlhe location of the root:

(1) Type H. The root coincides with a hub (avenue of length zero) of T.
(2) Type E. The root is on a branch at one of the endpoints vl or v, of the avenue

of T (possibly it is one of the endpoints, but in this case we require that
vl # v,, that is, that the avenue have nonzero length).

(3) Type I. The root is one of the interior nodes v2, . . . , v,-~ of the avenue
for T.

(4) Type M. The root is on a (middle) branch with search number less than s(T)
at an interior node of the avenue, but not on the avenue itself.

For a tree of type M, we call the branch on which the root lies the M-tree of T.
Notice that the M-tree of T always has a search number less than that for T.

The Complexity of Searching a Graph

FIG. 2. Four types of

(a) Type E. (b) Type I.

(4 Type M.

rooted trees.

(4 Type H.

Our algorithm compute-info works by recursively computing an information
record info(T) = [type, s, M-info] associated with the tree T (whose root has been
chosen arbitrarily). The three fields are defined as follows:

(a) Type. One of H, E, I, M, the type of T.
(b) s. The search number for T.
(c) M-info. If the type is H, E, or I, then M-info is nil. Otherwise, M-info is the

info-record for the M-tree of T.

The computation of info(T) for a rooted tree T proceeds as follows, based on
the degree of the root r of T:

(I) If r has degree 1, there are two cases. If T is just an edge, then info(T) is the
record [E, 1, nil]. Otherwise, we let T' be obtained from T by moving its root
from r to the single neighbor of r, recursively compute info(T'), and transform
this into info(T) using a special routine called re-root.

(2) If r has degree 2 or more, we then split T into two trees T, and T2, both
rooted at r and having no other nodes in common (subject to this requirement and
the requirement that each contain at least one edge, the two trees can be chosen
arbitrarily). We then recursively compute info(T,) and info(T,), and we compute
info(T) from these using the special routine merge, which is the heart of our
algorithm.

The routine re-root is simple, and we explain it first. Suppose info(Tf) =

[type', s f , M-info']. Then info(T) = [type, s, M-info] is determined as follows:
The search number s is the same as s f (since T and T' are identical trees, differing
only in the choice of root). The value of type (and M-info when type = M) is as
follows:

(1) If T' is type E, then type = E.
(2) If T' is type H, then type = E, since a leaf cannot be a hub.
(3) If T' is type I, and s f = 1 (i.e., T' is a path), then type = E. If T' is type I and

s f # 1, then type = M and M-info = [E, 1, nil].
(4) If T' is type M, then type = M and M-info = re-root(M-info').

26 N. MEGIDDO ET AL.

It is easy to verify from this description that re-root works as required:

LEMMA 5. For any tree T that is not just a single edge, the algorithm re-root
correctly computes info(T) from info(T '), where T is rooted at a leaf r and where
T' is identical to T except for being rooted at the neighbor of r.

We now come to the routine merge, which can be described in terms of the
following cases:

We are mergmg two trees T, and T2 with info-records [typel, s l , M-infol] and
[type2, s2, M-info21, respectively, to form the info-record [type, s, M-info] for T.
Without loss of generality, we may assume that s l r s2.

If s l = s2, we have the following five cases:

Case 1. If typel = type2 = H, then the info-record for T is [H, s l , nil].

Case 2. If typel = H, and type2 = E, or vice versa, then the info-record for T
is [E, s l , nil].

Case 3. If typel = type2 = E, then the info-record for T is [I, s l , nil].

Case 4. If typel = I and type2 = H, or vice versa, then the info-record for T is
[I, s l , nil].

Case 5. (At least one of TI, T2 is type M, both are type I, or one is type I and
the other is type E.) The info-record for T is [H, s l + 1, nil].

If s l > s2, we have the following two cases:

Case 6. If typel = H, E, or I, then the info-record for T is [typel, s l , nil].

Case 7. (Note that typel = M and s l > s2.) Call merge on the two info-records
M-info1 and [type2, s2, M-info21, with the result [type', s f , M-info']. If s f < s l ,
then the info-record for T is [M, s l , [type', s f , M-info']]. If s ' = s l (we cannot
have s f > s l) , then the info-record for T is [H, s l + 1, nil].

LEMMA 6. The algorithm merge correctly computes info(T) from info(Tl) and
info(T2), where T is a tree rooted at r, and TI and T2 are trees rooted at r, otherwise
disjoint, whose union is T.

PROOF. The proof is by case analysis, corresponding to the cases in the descrip-
tion of the algorithm.

Case 1. s l = s2, typel = type2 = H (Figure 3a). In this case, both trees have
the root as hub, and their union is a tree in which all branches at the root have
search number less than s l = s2. Since the search number cannot decrease, it stays
at s l and the new tree has the root as a hub.

Case 2. s l = s2, typel = H, type2 = E (Figure 3b). The new tree can be
searched with sl = s2 searchers by marching along the avenue of T2 and down the
branch containing r until r is reached. T has an avenue of length at least one, with
r as an endpoint, and hence it is type E.

Case 3. sl = s2, typel = type2 = E (Figure 3c). The avenue of T is the shortest
path that contains both the avenues of T, and T2, and this avenue can be used to
search T with s l searchers. Since r is one of the interior points on the avenue, T is
type I.

Case 4. s l ,= s2, typel = I, type2 = H (Figure 3d). The root of T, is a node
on the interior of its avenue, and after combination with the off-avenue branches

The Complexity of Searching a Graph

P
FIG. 3. Cases of procedure merge. (a) T I , T2 Type

H -+ T Type H. (b) TI Type H, T2 Type E +
T' T Type E. (c) T I , T2 Type E -+ T Type I. (d) T,

Type I, T2 Type N -+ T Type I. (e) TI Type M or
I -+ T Type H. (f) TI Type H. E, or I -+ T i y p e H,

E, or I. (g) TI Type M + T Type M or H.

at that root will all continue to have a search number less than sl = s2. Thus,
T has the same info-record as T I , that is [I, s l , nil].

Case 5. sl = s2, typel = I , type2 = E or I, or typel = M (Figure 3e). Let r'
be the root of T I if typel = I, or the node on the avenue of TI closest to the root
of TI if typel = M. It is easy to see that r' is a node with three branches having
search number s l , so sl + 1 searchers are needed for T. Since sl + 1 searchers are
obviously also sufficient and since the root of T has only branches with search
number less than sl + 1, T is of type H and has search number sl + 1.

Case 6. sl > s2, typel is H, E, or I (Figure 3f). If typel is H, then the root
continues to have only branches with search number less than sl in T, so T has
search number sl and is of type H. If typel is E, then T can be searched with sl

searchers by marching along the avenue of TI and down the branch containing r

28 N. MEGIDDO ET AL.

until r is reached. Thus T has an avenue of length at least one, with r on a branch
at an endpoint (possibly it is the endpoint), so T is of type E. If type1 = I, the
argument of Case 4 applies, so T is of type I and has search number sl .

Case 7. s l > s2 and type1 = M (Figure 3g). The search number for Tdepends
on the search number s(Tf) of the union of the M-tree for TI with T2. The search
number for T' cannot be greater than s l , since the M-tree has search number less
than s l , and so does T2. If sf = s (Tf) < s l , then the avenue of T is exactly the
same as the avenue of TI, the same search number s l suffices, and T' is now the
M-tree of T. If s f = s l , then the head of the branch corresponding to T' in T
has three branches with search number s l , so the search number of T is at
least s l + 1. Moreover, the root r has only branches with search number less
than s l + 1, so s l + 1 searchers suffice and T is type H.

THEOREM 2. The algorithm compute-info correctly computes info(T) for any
rooted tree T with n nodes in O(n logn) time.

PROOF. The correctness of the algorithm follows immediately from the preced-
ing two lemmas. For the time bound, let S(T) denote the time required to compute
the search number (info-record) for T. Then we have

where R(T) is the cost of calling re-root at most once, TI and T2 are the trees that
T is split into, and M(TI , T2) is the cost of executing merge for these two trees.
Since the recursive calls to re-root have arguments with strictly decreasing search
numbers, we immediately have that R(T) is O(s(T)). To estimate M(TI, T2), let
us consider it as a function M(sl, s2), of the search numbers of the two subtrees.
In Cases 1-6, M(sl, s2) is simply a constant. In Case 7, however, there is a recursive
call of merge in which s, is decreased by at least 1. Hence,

and the procedure terminates after at most s l 5 s(T) such calls. Therefore,

It follows that S(T) = O(n. s(T)) and, since s(T) = O(logn), S(T) =

O(n1ogn).

In order to reduce this time bound to O(n), we need to avoid (or shortcut) the
recursive calls of re-root so that R(T) will be a constant, and we similarly need to
shortcut the recursive calls to merge that occur in Case 7. By a careful use of
pointers, we can indeed avoid much of the time that is spent traversing up and
down the implicit M-info stack and hence obtain the following:

THEOREM 3. The search number for a tree can be computed in linear time.

PROOF. A tree of type M heads a chain of M-trees having strictly decreasing
search numbers described by its M-info field. The recursive calls of re-root and
merge descend along this chain. In our improved implementation, we represent
this chain explicitly by a doubly linked list with several additional pointers that
will allow us to make shortcuts. Specifically, we replace the M-info field for a tree
T with the follwing pointers:

(1) a pointer to the info-record for the M-tree of T, labeled t (for "tight") if the
search number of the M-tree is exactly one less than that of T, and otherwise
labeled 1 (for "loose");

The Complexity of Searching a Graph

FIG. 4. An M-tree chain with pointers.

(2) the reverse of this pointer, labeled 7 or 7, depending on whether the original
pointer was labeled t or I;

(3) the closures of the pointers labeled t and 7 (these are pointers t* and i *
pointing to the endpoints of the longest chains of t or i pointers, respectively,
starting at T and are undefined for trees that are strictly in the interior of such
a chain);

(4) a pointer m* to the endpoint of the M-info chain starting at T, that is, to the
info-record reached from T by following t and I pointers until a tree with nil
M-tree pointer is encountered.

These pointers are illustrated in Figure 4. It is easy to see how such pointers
can be maintained within the algorithm without changing its asymptotic time
complexity.

It is now immediate that re-root can be performed in constant time. The recursive
calls to re-root simply travel down the M-tree chain to its end, where in constant
time the algorithm modifies the info-record for that last tree appropriately. Since
the end of the M-tree chain can be be accessed directly in constant time via the
m* pointer, the entire procedure can be performed in constant time.

We now come to the procedure merge. The first six cases of merge continue to
require only constant time. In Case 7, the algorithm recursively calls merge on the
info-records for T2 and the M-tree of T,. Repeated recursive calls then travel down
the M-tree chain for T, until either it ends or a tree with search number s2 or less
is encountered. If the chain includes a tree with search number less than s2, but
none with search number equal to s2, then recursive calls to merge may continue
but will now travel down the M-tree chain for T2; otherwise, there will be no
further recursive calls to merge.

We can provide a shortcut for this procedure by examining the info-record for
the tree T* pointed at by the t* pointer of TI and by using our other pointers
appropriately. (If TI does not have a t* pointer, we define T* = TI .) We have two
cases:

Case 1. s(T*) I s(T2). In this case, by definition of the t and t* pointers,
there is some tree T3 in the M-tree chain for TI, between T, and T*, having
s(T3) = s(T2). In the original algorithm, the recursive calls to merge end after
merging T3 and T2. Since s(T3) = s(T2), we also know that this last merge must be
in one of Cases 1-5. We consider separately two possibilities: (a) the last merge is
in one of Cases 1-4 and (b) the last merge is in Case 5. To see that we can
determine which of these two holds in constant time, observe that whenever (a)
holds, T3 cannot be of type M, and hence we must have T3 = T*. Thus we can
determine whether (a) holds by first following the t* pointer for T, to T*, then

30 N. MEGIDDO ET AL.

testing whether s (P) = s(T2), and finally checking that T* and T2 satisfy the
criteria for one of Cases 1-4.

If (a) holds, we know from Cases 1-4 of merge that the result of merging T2 and
T3 = T* is an info-record of the form [type", s2, nil], and we can compute that
info-record in constant time. As the recursion is unwound, the first subcase of
Case 7 will apply at each level, so the final result of merging TI and T2 will be an
info-record with type M, search number s l , and M-info chain identical to that for
TI down to T3 = T*, with T3 = T* replaced by [type", s2, nil]. Thus we can make
this change in constant time without explicitly performing the recursion.

If (b) holds, we know that the result of merging T3 and T2 will be the info-record
[H, s2 + 1, nil]. Hence, as the recursion is unwound, the second subcase of
Case 7 will apply at each level; so the final result of merging TI and T2 will be
the info-record [H, s l + 1, nil]. Again, this can be computed in constant
time without explicitly performing the recursion (and without explicitly finding
T3). Therefore, it follows that merge can be performed in constant time whenever
s(T*) 5 s(T2).

Case 2. s(T*) > s(T2). In this case, we first check the endpoint of the M-tree
chain from TI using the pointer m*. If its search number is greater than that for
T2, then we know that the original algorithm would continue the recursive calls to
merge down to that point, with the last call being in Case 6 of merge. This last
merge simply results in the info-record of the tree with the larger search number,
namely, the one on the end of the chain for TI, and hence the outcome of merging
TI and T2 is just the info-record for TI.

Otherwise, we locate two special trees T3 and T3 on the M-tree chain for TI . The
tree T3 is the first on the chain to have s(Tj) I s(T2). The tree F3 is the last on the
chain to have s(T3) > s(T2) and that does not have an incoming t pointer. These
trees can be found on 0(s(T2)) time by following first the m* pointer from TI and
then backing up the chain using the 7 and T* pointers. Moreover, it is
easy to see that the recursive calls to merge will continue down to T3 and that the
M-tree chain for T (the result of merging TI and T2) will be identical to that for TI
on the portion preceding F3. Thus we need only call merge recursively on T3 and
T2 and modify the portion of the chain from T3 on accordingly, much as was done
in Case 1. If the result of merging T3 and T2 has search number less than that for
the predecessor of T3 on the chain, then the resulting info-record (along with its
chain) simply replaces the portion of the chain from T3 on. Otherwise, the portion
from T3 on is replaced by the single info-record having type H, search number one
greater than that for F3, and nil M-tree chain. A constant amount of time may
also be needed to repair pointers.

We now combine the results of Cases 1 and 2 to improve our timing analysis
from Theorem 2. We have just shown how to implement merge in time
M(s(T,), s(T2)) satisfying

since the tree T3 in our last case has s(T3) I s(T2). By the recurrence

shown in the proof of Theorem 2 (which is easily extended to the new and faster
version of the algorithm being analyzed here), we can now conclude that

The Complexity (of Searching a Graph

This yields S(T) = O((TI), as claimed. (It is well known that the recurrence
defined by f(1) =: f(2) = 1 and, for n 2 3,

f(n) = imax (rlog2(min(i, n + 1 - i]) l + f(i) + f(n + 1 - i)]
I <r<n

satisfies f(n) = O(n). An easy way to verify this is to prove that, for n r 2,
f(n) 5 3n - 4 - rlog2nl by a straightforward induction.)

In addition, a slight modification of our algorithm allows us to keep track of
enough information to compute a search plan for T that uses s(T) searchers,
although we need to apply the algorithm repeatedly in such a way that a total of
O(n 1ogn)-time is needed to find the complete plan.

We do this by augmenting each info-record to include an additional entry path,
which gives the endpoints of a path in the tree that is guaranteed to contain the
avenue. The routine re-root has no effect on path. The routine merge updates the
path as follows, where we let path(T,) = [a,, b l] and path(T2) = [a2, 621:

Case 1. path(T) = [r, r], where r denotes the root.

Case 2. Assuime typel = H. path(T) = [r, b2], where b2 is the endpoint of
path(T2) farther fiom the root.

Case 3. path(T) = [a,, b2], where a, and b2 are the endpoints of path(T,) and
path(T2) farthest from the root.

Case 4. path(T) = [a, , b,].

Case 5. path('T) = [r, r].

Case 6. path(T) = [a,, b,] if typel = H or I. Otherwise, path(T) = [a, , r],
where a , is the endpoint of path(TI) farther from the root.

Case 7. path(T) = [r, r] if s ' = s l , and, otherwise, path(T) = [a,, bl 1.

The correctness of the computation of path follows immediately from the
arguments given in the proof of Lemma 6. Note that our linear-time algorithm for
computing search number can be modified so that it also computes path informa-
tion while still running in linear time.

In order to construct a search plan for T using the resulting value of path(T), we
proceed as follows: Let path(T) = [a, b], and let a = ul , u2, . . . , up = b denote the
path in T joining a and b. The edges of T that are not in the path are partitioned
into branches TI , T2, . . . , T,,,, each of which contains exactly one vertex on the
path and has search number at most s(T) - 1, since the path contains the avenue
of T. A search plan using s(T) searchers is obtained by placing one searcher on ul
clearing all branches at u, by using the remaining searchers, moving the single
searcher along the edge from u, to u2, clearing the branches at u2 by using the
remaining searchers, and so on. Thus the search plan can be constructed simply
by inserting search plans for each of T I , T2, . . . , T, in the appropriate places in
this "skeletal" search plan for T, which describes the movements for exactly one of
the searchers. This can be done by recursively calling the search plan construction
algorithm, which itself calls the algorithm for constructing path. The recursion tree

32 N. MEGIDDO ET AL.

has depth at most s(T), since the search numbers for the branches always decrease.
The total number of nodes in the subproblems at each level is O(n), because the
branches are connected and partition the edges of T. It follows that the time to
construct the complete search plan is O(n log n), since path is constructed in linear
time for each tree, as is the skeletal search plan for the tree. Thus we have

THEOREM 4. A search plan using s(T) searchers can be constructed for any tree
T in time O(n logn), where n = I TI.

Although we do not know whether this can be reduced to O(n), we observe that,
if one requires that searchers always be moved from place to place along edges of
the graph (i.e., cannot be removed from the graph completely and later placed
elsewhere) and that a search plan must describe each move along a single edge
individually, then there exist trees whose search plans require O(n log n) steps. One
such class of trees can be constructed as follows: Let Tk be a tree with search
number k having 3k-' + 1 vertices. Such a tree is easily constructed using Parsons'
lemma. Let TZ be the tree constructed by taking two copies of Tk and joining
them by a path of length 3k. The search number of the resulting tree is either k or
k + 1 (depending on the vertices of the copies of T k we select to join by the path),
and the tree has 0(3&) vertices. However, it is easy to see that at least k searchers
must traverse the path from one copy of Tk to the other, and hence a search plan
that describes each move along an edge individually must have length at least
k . 3k, which is Q(n logn). By attaching a leaf to each vertex of the path, we can
obtain a similar example without degree-2 vertices.

4. Characterizing Graphs with Search Number K

Although the search number of a graph does not seem to correspond directly to
any of the standard measures on graphs, it is not difficult to see relationships
between search number and connectivity. Our NP-completeness proof related the
search number to the minimum cut of a graph into equal-sized subsets. It is also
easy to see that any K-vertex-connected graph requires at least K searchers. (A
graph has vertex connectivity equal to the minimum number of vertices whose
deletion will disconnect the graph.) This particular relationship goes only one way,
however; it is easy to construct trees with arbitrarily high search number, even
though all trees have vertex connectivity one. The problem of characterizing
precisely those graphs with search number K or less (K fixed) turns out to be
interesting and nontrivial, even for K as small as 2 or 3. In this section we describe
our characterization results for K I 3.

We allow multiple edges and self-loops in all our graphs. The reduction of a
graph is the graph that results by repeatedly applying the operation of replacing
any degree-2 vertex and its two incident edges by a single edge (a, b) joining its
two neighbors (where possibly a = b) until no degree-2 vertices remain. Two graphs
are homeomorphic if they have the same reduction, and each is said to be a
homeomorph of the other. Homeomorphism provides a topological notion of
"equivalence" for graphs, when viewed as structures to be searched, and homeo-
morphic graphs clearly have the same search number. Hence, there will be no loss
of generality in restricting our characterizations to reduced graphs.

It is also useful to have a topological notion of one graph being "contained"
in another. Roughly speaking, we would like to say that a graph H is contained
in a graph G if the structure of H is embedded in G in such a way that any
plan for searching G with k searchers must also tell us how to search H using

The Complexity ofsearching a Graph 3 3

k searchers. For instance, if H is a subgraph of G, or of any homeomorph of G,
then s(H) I s(G), and any search plan for G can be easily translated into a search
plan for H that needs no additional searchers. However, we can make our notion
of containment even stronger than this, while still preserving the intuitive concept
we wish to capture, by allowing the additional operation of "contraction." A
contraction of a graph G is any graph obtained from it by repeatedly applying the
operation of choosing an edge, coalescing its endpoints, and then deleting the edge
(now a loop). It is, easy to see that a contraction H of a graph G can have no greater
search number than G. Moreover, given any edge-clearing sequence for G, its
restriction to just those edges that belong to H must yield an edge-clearing sequence
for H that requires no additional searchers. Thus, we say that the graph G contains
the graph H whenever some homeomorph of G has a subgraph contractible to H.
An equivalent way of saying this is that the graph G contains the graph H if and
only if H can be obtained from G by a sequence of operations of the following
three types:

(1) Replace any 'edge {u,v) by the two edges {u, w) and (w, v), where w is a new
degree-2 vertex;

(2) Delete any edge or vertex;
(3) Coalesce the lendpoints of any edge and delete that edge.

It is immediate that if G contains H, then s(G) r s(H), since none of these
operations can increase the search number. Notice that, although Operation 1 can
be used to increase the number of edges and vertices in the graph, it merely
transforms the graph to another that is equivalent under homeomorphism and,
therefore, that is topologically no more complicated.

It is easy to see that the 1-searchable graphs are just the paths (graphs homeo-
morphic to an edge). Our characterization result for K = 2 is as follows:

THEOREM 5. For any reduced graph G, the following are equivalent:

(a) s(G) I 2;
(b) G does not contain any of the graphs in Figure 5;
(c) G consists of a path a, , a*, . . . , a, in which each consecutive pair a , , a,,, is

joined by either one or two edges, along with an arbitrary number of individual
edges and self-loops attached to each a, (and otherwise disjoint).

(a) + (b). By inspection, it is easy to verify that none of the graphs in Figure 5
can be searched by two searchers. Thus, if G were to contain one of these graphs,
its search number would necessarily exceed 2.

(b) + (c). Assume that (b) holds for G. Since G does not contain the graph of
Figure 5c, all biconnected components of G must be either edges or cycles. A cycle
can have at most two vertices of degree 3 or more, for otherwise G would contain
the graph in Figure 5b. Hence, the only biconnected components of G are single
edges, self-loops, or pairs of parallel edges. This implies that G must be a tree,
except possibly for loops and for tree edges that occur in parallel pairs. We claim
that the removal of all degree- 1 vertices from G must result in a path, again possibly
with loops or path edges that occur in parallel pairs, which is identical to the form
given by (c). Suppose not. Then there must be a node in G adjacent to three distinct
vertices, other than itself, none of which is a leaf. Each of those vertices must have
degree 3 or more in G, since G has no vertices of degree 2. But then the containment
operations can be applied to G to produce the graph in Figure 5a (notice that the

N. MEGIDDO ET AL.

FIG. 5. Forbidden subgraphs for 2-searchable reduced graphs.

FIG. 6. Typical graph G with s(G) = 2

degree-3 vertices may have incident loops, which can be transformed into pairs of
edges using a combination of Operations 1 and 2). This is a contradiction to our
assumption that G does not contain this graph, from which it follows that G must
have the required form.

(c) + (a). The graph G can be searched by two searchers by having them march
along the path given by condition (c), clearing the edges and pairs of edges on the
path as they move along. At each node of the path, one of them is free to clear the
hanging edges and self-loops at that node.

Figure 6 illustrates a typical 2-searchable graph.
The situation for K = 3 is somewhat more complicated, particularly for graphs

that are not biconnected. We first characterize the biconnected graphs that have
search number three. A biconnected graph G is outerplanar if it has a planar
embedding in which a single face includes all of its vertices. The edges of that face
are called boundary edges, and the remaining edges are called chords. Fix an
outerplanar embedding of G, so that the boundary edges and chords are well
defined, and consider any simple path P forming part of the boundary of G. A
chord joining two vertices of P spans all the edges of P in the subpath joining its
two endpoints. Two such chords are nested if there is some edge of P spanned by
both of them. We say that two boundary edges of G are opposing poles if neither
of the two boundary paths joining their endpoints (excluding the two edges
themselves) has a pair of nested chords. Whenever such a pair of opposing poles
exists for some outerplanar embedding of G, we say that G is bipolar. The special
biconnected graph consisting of a single edge will be declared to be bipolar by
default, and its single edge will be regarded as an opposing pole with itself.

For example, the graph G of Figure 7 is bipolar, because the edges { v8, vg J and
{v4, v5) are opposing poles. Notice that the edges (v,, v2) and (~ 6 , V, J are not
opposing poles, because the path v,, vlo, v9, vs, V, has a pair of nested chords.

The key to our characterization for K = 3 is the following:

LEMMA 7. For a reduced biconnected graph G, the following are equivalent:

(a) s(G) 5 3;
(6) G does not contain any of the graphs in Figure 8;
(c) G is outerplanar and bipolar.

The Complexity of Searching a Graph

FIG. 7. An outerplanar graph with two poles

FIG. 8. Forbidden subgraphs for 3-searchable reduced bicon-

nected graphs.

PROOF

(a) (b). By inspection, it is easy to verify that none of the graphs in Figure 8
can be searched by three searchers. Thus, if G were to contain one of these graphs,
its search number would necessarily exceed 3.

(b) + (c). It follows from the standard forbidden subgraph characterization of
outerplanar graphs (e.g., see [4]) that a reduced biconnected graph is outerplanar
if and only if its does not contain either of the graphs in Figures 8a and b. Since G
does not contain either of these graphs by assumption, it is outerplanar. To see
that G must also be bipolar, fix an outerplanar embedding of G and consider a
maximal-length boundary path P that has no nested pair of chords (conceivably, it
might be just a single vertex). If P includes all edges on the boundary of G, then
we are done, since its two extreme edges must be opposing poles. Similarly, we are
also done if P includes all but one edge of the boundary, since then the excluded
edge and either extreme edge of P must be opposing poles. Otherwise, let e and e'
denote the two boundary edges adjacent to P on either side. Then, by the
maximality of P, the addition of either e or e' to P would cause it to have a pair
of nested chords, with e or e' being a common boundary edge spanned by the
nested chords. Hence, the longer path P' formed by adding both e and e' to P
must include two pairs of nested chords that (by the outerplanarity of G) are
"disjoint" in the sense that the "longer" chords from the two pairs have disjoint
spans. Hence, the boundary path complementary to P' cannot also have a nested
pair of chords, or we would immediately have that G contains the graph of
Figure 8c. It follows that e and e' are opposing poles for G, because neither of the
two boundary paths joining their endpoints has a pair of nested chords.

36 N. MEGIDDO ET AL.

(c) + (a). Let e and e' be a pair of opposing poles for G under some fixed
outerplanar embedding. We show how to clear G with three searchers in such a
way that e is cleared first and e' last. Note that G consists of the two opposing
poles, two boundary paths joining the endpoints of the poles (with some edges in
these boundary paths possibly having a single edge in parallel with them), and a

collection of "cross-chords," each of which joins a vertex in one of the boundary

paths to a vertex in the other boundary path. To clear G, we initially place two
searchers on the ends of e and use the third searcher to clear e and any cross-chords
that are in parallel with it, leaving the two searchers on the ends of e as guards.
These two searchers will be used subsequently only for clearing the boundary paths
they are on, with the third searcher being used to clear all chords and parallel
edges. The clearing process proceeds by repeatedly applying one of the following
operations, as appropriate: If either of the two boundary searchers is not on an
endpoint of e ' and has exactly one incident-contaminated edge (necessarily on the
boundary), clear that edge by moving the searcher along it. Otherwise, if either of
the two searchers is not on an endpoint of e' and has exactly two incident-
contaminated edges, one on the boundary and the other a parallel copy of it, place
the third searcher on the same vertex as the first, clear the parallel edge with it,
clear the boundary edge with the first searcher, and remove the third searcher from
the graph. If neither of the above applies, but one of the boundary searchers is not
yet on an endpoint of e ' , then by outerplanarity we know that there must be a
cross-chord joining the two vertices currently occupied by the two boundary
searchers. In this case, we simply clear the cross-chord with the third searcher and
continue. Finally, if both searchers are on the endpoints of e ' , we can finish by
clearing e' and any parallel cross-chords using the third searcher. It is straightfor-
ward to verify that this procedure suffices to clear G using three searchers, as
required. 0

To complete the characterization for K = 3, we must, in addition, specify how
the 3-searchable biconnected components can be interconnected and where the
components of lesser search number can be attached. We begin by giving several
definitions that will be useful in describing the attached components.

Let H be a reduced graph with s(H) = 2. By Theorem 5(c), if we remove from
Hall loops artd edges to leaves, the resulting graph must simply be a path, possibly
with some edges occurring in parallel pairs. The only way to clear H using two
searchers is to first clear all off-path edges at one end of the path, then clear the
path edges to the next vertex on the path, and so on, always clearing all off-path
edges at a vertex on the path before moving along to the next vertex on the path,
and ending by clearing all off-path edges at the other end of the path. Thus, we say
that a vertex is an endpoint of H if it is either one of the two ends of the path or
a leaf of H adjacent to one of the ends. Two endpoints are opposite endpoints if
(1) they are the opposite ends of the path, (2) they are leaves adjacent to the
opposite ends of the path, or (3) one is an end of the path and the other is a leaf
adjacent to the opposite end. Any sequence for clearing the edges of H using two
searchers must begin by clearing some edge incident on an endpoint of H and must
end by clearing an edge incident on an opposite endpoint of H.

A graph is called a pinched graph if it is 2-searchable or can be obtained from a
2-searchable ,graph by coalescing two or more of its degree-1 vertices into a single
vertex. If a pinched graph is 2-searchable, we can regard any of its vertices as its
coalesced node; otherwise, the coalesced node of a pinched graph is its single
coalesced vertex. Note that all pinched graphs are 3-searchable: If we first place

The Complexity of Searching a Graph 37

one searcher on the coalesced node, a 2-searcher search strategy for the original
(unpinched) graph will suffice to clear all the edges.

Clearly, each biconnected component B of a 3-searchable graph G must itself be
3-searchable. Hence, by Lemma 7, the reduced graph B ' of B must be outerplanar
and bipolar. However, even if we restrict our attention to reduced graphs G, B
itself need not be reduced, since it might contain degree-2 vertices at which other
biconnected components of G are attached. For this reason, it is convenient to
extend the definitions of boundary edges and opposing poles from the reduced
graph B' to B itself. Let us say that an edge e of B reduces to an edge e' of B' if
either e and e' are the same edge or e belongs to a path of B that becomes the edge
e' when B is reduced to B '. We then say that an edge is a boundary edge of B if it
reduces to a boundary edge of B', and we say that two boundary edges of B are
opposingpoles for B if they reduce to opposing poles for B '. Any two vertices u, v
that are endpoints of opposing poles {u, u') and (v, v' 1 for B are called antipodal
points of B.

Let B,, B2, . . . , B, be 3-searchable biconnected components of a connected
3-searchable graph G that are "chained together" in the sense that there exists
a sequence 4, a l , . . . , a, of distinct vertices of G such that, for 1 r j r r - 1 ,

a, is an articulation point of G belonging to both B, and B,+l, and such that,
for 0 I j 5 r - 1, a, and a,+~ are antipodal points for B,+, . In this case we say
that C = (h, Bl, a , , B2, a2, . . . , a,-1, B,, a,) is a chain for G. A valid set of
opposing poles for such a chain C is any sequence of edges (ao, X I), { a l , yl),
{a, , x 2) , . . . , (a,, y,) such that, for 1 r j I r, {a,- x,), and {aJ , y, J are opposing
poles for B,. We write V(C) to denote the union of all the vertices in components
of the chain C and A(C) to denote the corresponding set {a, , a*, . . . , a,-] J of
articulation points. Given a valid set of opposing poles for C, we also use N (C) to
denote the corresponding set (x l , y l , x2, y2, . . . , x,, y,] of "neighboring" points.

For any component B, of the chain C and its specified opposing poles, xJ)
and (a,, y,), consider either of the two boundary paths P joining the endpoints of
those poles. Let Hp denote the subgraph of B, consisting of P and all edges of B,
that reduce to chords joining vertices of P when B, is reduced. We call a vertex of
H p free if it is an articulation point of Hp, or if it belongs to A(C) U N(C) . The

collection of all free vertices of C is denoted by F(C). The free vertices will turn
out to be the only vertices at which other components can be attached to the chain.

We say that a subgraph H of a graph G with chain C hangsfrom the vertex v in
V(C) if v is the unique articulation point joining H to the rest of G. In this case
the subgraph H is also said to be hanging b.v the vertex v of H.

Our characterization for K = 3 is then the following:

THEOREM 6. A reduced connected graph G has s(G) s 3 ifand only ifG consists
of a chain C = (Q, B I , a l , B2, . . . , a,-l, B,, a,), with valid set of opposing poles
(ao, X I 1, (a l , y,), {a , , x 2) , . . . , {a,, y,), along with components of the following forms
hangingfrom the vertices in V(C):

(a) an arbitrary number of edges and self-loops hanging from each vertex in F(C);
(b) an arbitrary number of pinched graphs hanging by their coalesced nodes form

each vertex in A(C);
(c) for 1 I j r r, at most one 2-searchable graph hanging by one of its endpoints

from each of x, and y, , or, ifx, = y, , at most two such subgraphs hangingfrom
the single vertex x, = y,.

PROOF. We first show how to search a reduced graph G of the above form using
three searchers.

3 8 N. MEGIDDO ET AL.

The biconnected components in the chain are cleared in order of occurrence,
using essentially the same procedure described in the proof of Lemma 7 for each
of them. As a matter of convenience, we use the term trivial subgraph to refer to
self-loops and edges that end at leaves.

In general, before clearing component B,, we shall have cleared all components
B,, 1 a j < i, and all subgraphs not in the chain that hang from the vertices of such
B, , including any subgraphs hanging from the articulation point a,-l. We shall also
have a single :searcher on a,-, to guard between the cleared and uncleared portions
of G, with the other two searchers being free. It is easy to achieve this initially,
simply by placing a searcher on a,,, using one of the remaining two searchers to
clear any edg~es and self-loops that hang from ao (there can be no pinched graphs
by hypothesis). To clear B, and its corresponding hanging subgraphs, we proceed
as follows: If there is a nontrivial Zsearchable subgraph hanging from x,, we first
clear that subgraph using the two free searchers, in such a way as to end at x,,
leaving a single searcher on x, as a guard. We then clear any trivial subgraphs
hanging from x, using the remaining searcher and clear the edge (a,-1, x, 1, also
with that searcher. At this point, we proceed to clear the remaining edges of B,, as
in the proof of Lemma 7, so as to end with the edge (a,, y,), clearing trivial
subgraphs hanging from vertices in F(C) along the way using the roving searcher.
It is easy to check that F(C) has been defined in just such a way that this can be
done, that is, that for each such vertex v there is always some time at which v has
a searcher on it and the roving searcher is free for clearing the trivial subgraphs
hanging from v. We end with all of B, being clear, and a searcher on each of a, and
y,, with the third searcher being free at this point. If there are any trivial subgraphs
hanging from y,, we clear them now with the third searcher. We then use that
searcher and the searcher on y, to clear any 2-searchable subgraph hanging from
y,, starting from the end that y, is on. Finally, with one searcher remaining on a,
as a guard, we use the two remaining searchers to clear each of the pinched graphs
hanging from a,. This leaves us in the position required for starting to clear B,+, ,
as described earlier, with the entire graph G having been cleared if i = r.

It is not difficult to see that this strategy will successfully clear G using three
searchers, as claimed, and hence any graph of the stated form must be 3-searchable.

Now we show that any reduced 3-searchable graph must have the specified form.
Let G be any reduced 3-searchable graph that is not 2-searchable (a 2-searchable
graph is trivially of the required form). Using LaPaugh's result that recontamination
is never needed, we know that there exists an edge sequence, with no repetitions,
for clearing (5 using three searchers. Fix a choice of such an edge sequence. For
purposes of uniformity, it is convenient to modify G and the selected edge-clearing
sequence as follows: Insert a new degree-2 vertex in the middle of the first edge
cleared, add three edges joining that new vertex to a second new vertex, and place
those three new edges at the head of the clearing sequence, immediately followed
by the two edges resulting from subdividing the old first-cleared edge. Make the
analogous change with the last edge cleared, using another two new vertices, this
time placing the three new edges at the tail of the edge-clearing sequence, imme-
diately preceded by the two edges resulting from subdividing the old last-cleared
edge. It is easy to see that the resulting edge-clearing sequence will still suffice for
clearing the new graph with three searchers, and that the new graph will have the
desired form only if the original did. Thus, there will be no loss of generality in
regarding the new graph as the graph G under consideration, with its given edge-
clearing sequence as obtained above.

The Complexity of Searching a Graph 39

Let el and em denote the first and last edges cleared according to the current
edge-clearing sequence. Let BI and B, denote the biconnected components of G
containing el and em, respectively, and let Bl , B2, . . . , B, denote the unique
"path" of biconnected components in G joining Bl to B,, that is, such that
every simple path from B1 to B, consists of a (possibly empty) path in Bl,
followed by a nonempty path in B2, followed by a nonempty path in
B3, . . . , followed by a nonempty path in B,- followed by a (possibly empty) path
in B,. The existence and uniqueness of this sequence of biconnected components
follow from the way in which biconnected components partition a graph. For
1 5 i r r - 1, let a, denote the unique articulation point of G common to both
B, and Bi+I, and let a. and a, be the remaining vertices of Bl and B, (each of these
components has only two vertices, by construction). One of our goals is to show
that (ao, B1, a , , BZ, . . . , B,, a,) is a chain.

A key fact that we use frequently in the remainder of the proof is that, in order
to prevent recontamination of e l , every path from el to em must contain at least
one searcher throughout the process of clearing G.

The first implication of this pertains to the structure of the subgraph H hanging
from any articulation point a,. Since every simple path from el to em must contain
a searcher and since ai itself is the only vertex of H included in any such paths, it
follows that H must be cleared using only two searchers, possibly along with a third
searcher fixed as a guard on a,. Thus the graph obtained from H by splitting the
vertex a, into distinct new leaves, one for each edge of H incident on a,, must be
2-searchable, although it may include several separate connected components. By
the definition of pinched graph, this simply says that the original subgraph H
consists of a collection of pinched graphs, all having coalesced node a,, as claimed
in the theorem statement. Hence we may ignore these edges for the remainder of
the proof.

For 1 5 i r r, let B: denote the subgraph of G consisting of B, and all subgraphs
hanging from vertices of B; other than a,-I and a;. We next show that we can
normalize the given edge-clearing sequence so that, for I I i I r, all edges of B:
are cleared before any edges of BE,. By construction, this already holds for i = I .
Given that it holds for 1, 2, . . . , i - 1, we show how to modify the edge clearing
sequence so that it also holds for i. Let e be the first edge in the clearing sequence
that belongs to some B,* for j > i, and let e' be the last edge of B: in the sequence.
If e follows e' in the sequence, we are done. Otherwise, note that from the time
that e is cleared until the time at which e' is cleared, there must be at least one
searcher on some vertex (other than a,) of B;, to guard between the contaminated
portion of B, and the cleared edges of B,-I , and there must be at least one searcher
on some vertex (other than a,) of some Bk for k 5 j, to guard between em and the
cleared portion of B,. Thus all edges of B: cleared during the interval are cleared
using at most two searchers on B:, and all edges of components B,*, for k > i,
cleared during that interval are cleared using at most two searchers on that part of
G. It follows immediately that we can modify our edge-clearing sequence, without
requiring more than three searchers overall, by moving all edges of B: just before
e in the sequence, but keeping them in the same order relative to one another. The
fact that three searchers still suffice can be easily seen using the observation that
we could leave a guard on the vertex a, throughout the clearing of B: and
throughout the clearing of the other edges that were originally cleared before e',
using only the two remaining searchers to clear B: and those other edges. Hence
repeated application of this transformation will result in an edge-clearing sequence

40 N. MEGIDDO ET AL.

for G of the desired form, and there will be no loss of generality in assuming that
the sequence we have is of this form.

We can now focus on the edges in each B: individually, since we know that they
occur consecutively in the edge-clearing sequence, and we need only show that
each of these "extended" components has the form specified in the theorem. We
already know that BY and BF have this form, so consider any B t with 1 < i < r.

By Lemma 7, we know that the reduced graph of B, must be outerplanar and
bipolar. We also know that the clearing of BT must begin with a searcher on the
vertex a,- in order to guard between the cleared edges of B,- , and the contaminated
edges of B,. ISB: consists of a single edge, or a collection of parallel edges, then it
trivially has the required form. So suppose BT has at least three vertices and three
edges (since C; is reduced, it cannot consists of three vertices and only two edges).

We begin by showing the existence in B t of a neighbor v of a,-, and a (possibly
empty) 2-searchable subgraph H, hanging by one of its endpoints from v, such that
the clearing sequence for B: can be transformed to begin by first clearing all the
edges of H fo'llowed immediately by the edge {a,- ,, v].

This is easy to see if the first edge of B: that is cleared also belongs to B,, for
then we claim that this edge must already join ai-I to some neighboring vertex v
(and hence that the subgraph H is empty). If this first cleared edge does not have
a , - ~ as an endlpoint, then, immediately after the edge is cleared, the three searchers
would be on the two ends of that edge and on the vertex a,-,. But each of these
three vertices must still have two or more incident contaminated edges (since G is
reduced), so none of those searchers would be able to move, contradicting our
assumption that we have an edge sequence that suffices for clearing G with three
searchers.

On the other hand, if there are edges of B: that are cleared before the first edge
of B,, then they must all belong to subgraphs hanging from some single vertex v of
B,; for, otherwise, the two searchers not on a,-, would be needed as guards on their
respective subgraphs until after the first edge of B, is cleared, preventing us
from ever clearing a first edge of B,. Let H be the union of all the subgraphs
hanging frorn v that contain those cleared edges (there may be other sub-
graphs hanging from v with no edges that are cleared before the first edge of B,).

Then an argument like that used above for transforming the edge-clearing sequence
to separate the components B,* from one another can be used again to transform
the sequence for B: so that all edges of H are cleared before the first edge of Bi is
cleared. Thus, in our new edge-clearing sequence, an edge of B t is cleared before
the first edge of B, if and only if it belongs to H. Moreover, since the subgraph H
is cleared using only two searchers, ending with a guard on v, H must be a
2-searchable graph with v as an endpoint.

We want 1:o claim that a,-, and v must be adjacent. Suppose not. Then just
before the fir:st edge of B, is cleared we must have a searcher on a;- I and a searcher
on v, with every vertex of Bi other than these two having at least three incident
contaminated edges (because G is reduced). Since B; is biconnected and we have
only one additional searcher, the first edge of B, that is cleared must be incident
on either a;-, or v. Suppose this edge is incident on v and that its other endpoint is
u # a,-, . (The case in which it is incident on a,-., instead is handled identically.)
Just after {u, v) has been cleared, u must still have two incident uncleared edges,
so the searcher on it cannot move. The vertex a;-, also has two incident contami-
nated edges, so the only searcher that might still be able to move is the one on v.
If at this point v has more than a single incident contaminated edge, none of our

The Complexity of Searching a Graph

searchers can move, contradicting the assumption that this sequence clears G. If v
has only a single incident contaminated edge, the searcher on it must next move
to clear that edge, ending at a vertex u' differing from both ai-I and u. At this
point, all three searchers must be on vertices that each have at least two incident
contaminated edges, so none of them can move, again giving us a contradiction.
Therefore, it must be the case that v is adajcent to ai-I. Moreover, since there must
be guards on both a,-, and v until the edge (a,-,, v J is cleared, we can further
transform our clearing sequence for B: so that the edge (ai-,, v J is cleared first.

This gives us what we wanted for the initial portion of the clearing sequence for
B:. A symmetric argument can then be used to show the existence of a neighbor
v' of ai and a (possibly empty) 2-searchable subgraph H' hanging by one of its
endpoints from v', such that the clearing sequence for BT can be further trans-
formed to have the property that it ends by clearing the single edge (a; , v') followed
immediately by all the edges in H ' . We explicitly allow v = v' here.

Let e denote the edge (a,-,, v) and let e' denote the edge (a , , v'). Suppose that
e and e' were not opposing poles for Bi. Then one of the two boundary paths of
B, joining e and e' must have a pair of nested chords (or paths that reduce to
nested chords when Bi is reduced). From the time that e has been cleared until the
time that e' is cleared, there must be at least one searcher on the opposite boundary
path to guard between e and e' . Thus the boundary path with the pair of nested
chords must be cleared entirely using only two searchers, which is impossible
because this subgraph of Bi contains the forbidden subgraph of Figure 5c. Therefore,
e and e' most be opposing poles for Bi, and ai- , and a, are antipodal points of B, ,
as required.

Note that we now have all that is required of each Bi in order for C =

(ao, B , , a , , B2, . . . , B,, a,) to be a chain and that a valid set of opposing
poles for C consists of the corresponding collection of poles e, e' for the B,.

To complete the proof, we need only show that all edges of BT cleared between
the times that e and e' are cleared must either be edges of Bi or trivial subgraphs
hanging from vertices in F(C). Clearly, any such edges not in Bi can only be trivial
subgraphs, since there have to be two searchers on B, itself throughout this interval,
leaving at most one searcher available for use in clearing those edges. Suppose a
trivial subgraph hangs from some vertex u not in F(C). By the definition of F(C),
there must exist a pair of vertex disjoint paths joining the opposing poles of Bi,
neither of which passes through u, and each of those paths must contain at least
one searcher as a guard throughout the interval during which Bi is being cleared.
Thus all edges incident on u must be cleared using only a single searcher, possibly
with guards on adjacent vertices. However, since G is reduced, u must have degree
at least 3, so the subgraph to be cleared by this single searcher contains a three-
edge star, which cannot possibly be cleared by a single searcher. Therefore, trivial
subgraphs can hang only from vertices in F(C), and we have shown that G must
be of the form given in the theorem statement.

Theorem 6 also leads naturally to an efficient algorithm for recognizing
3-searchable graphs.

THEOREM 7. There is a linear-time algorithm for recognizinggraphs with search
number 3.

PROOF. An outline of such an algorithm goes as follows: Without loss of
generality, we can restrict attention to graphs G that are connected and reduced

42 N. MEGIDDO ET AL.

(since a graph can be reduced in linear time). We begin by identifying the
biconnected components of the given graph G in linear time using the method of
[14]. As is well known, the biconnected components of any graph are joined
together in a tree structure, with all simple paths joining any fixed pair of
biconnected coimponents passing through a unique sequence of the other bicon-
nected componients.

By working in from the "leaves" of this tree, we can identify the subgraphs of G
that can hang {off a chain like that given by Theorem 6. The first of these are
the "trivial" sutgraphs, individual edges and loops joined to the rest of G at a single
articulation point, which we call I-pieces. Next are the 2-searchable subgraphs that
can hang from vertices in V(C) and their neighboring vertices in the chain
components. Temporarily ignoring any hanging 1-pieces, we note that each of
these is just a path composed of single and double edges, attached to the rest of the
graph at only a single articulation point that is an endpoint of the path. The
maximal such paths, along with their hanging 1-pieces, are called 2-pieces. Finally,
we have the subgraphs that correspond to non-Zsearchable pinched graphs. Each
of these consisls of a single biconnected component (having at least two edges),
along with any hanging 1- and 2-pieces, such that the subgraph is joined to the rest
of G at only ii single articulation point and such that the subgraph becomes
2-searchable when that articulation point is split into distinct degree-1 vertices
for each of its incident edges. We call these 2 '-pieces. It is not hard to see that the
1-, 2-, and 2'-pieces of G can be identified in linear time.

If all biconnected components of G belong to 1-, 2-, and 2'-pieces, we immedi-
ately have from Theorem 6 that s(G) 5 3. Otherwise, call any remaining bicon-
nected components 3-pieces. From Theorem 6, we know that each 3-piece must
be outerplanar (notice that this is stronger than just saying its reduced graph is
outerplanar). It is straightforward to check this property for all the 3-pieces in
linear time. Moreover, it is easy to see that the outerplanar embedding of each
3-piece is essentially unique, with the only choices being the relative placement
of parallel edges. Thus we can also choose a fixed outerplanar embedding of each
3-piece.

If the 3-pieces of G do not all belong to a single path P in the biconnected
component tree, we are done, since s(G) must then exceed 3. Otherwise, it remains
for us to verify that they form a chain. Since they are joined together in a path, we
only need to determine whether each 3-piece, along with its associated hanging I-,
2-, and 2'-pieces, has the form required by Theorem 6.

For any 3-piece that is not one of the ends of P, its two articulation points in
the chain, which must be antipodal points of that component, are determined by
where its two neighboring 3-pieces are joined. This immediately allows us to use
Theorem 6 and its associated definitions, along with the identified 1-, 2-, and
2 '-pieces, to verify that it has the required form. Essentially all we need to do is to
try to search il. (plus any hanging subgraphs), beginning at one articulation point
and ending at the other, following the algorithm given in the proofs of Lemma 7
and Theorem 6. (Given the articulation points, there are at most four possible
combinations of opposing poles. It suffices to try each combination separately,
although with a little care one can test for the desired form in about the time it
takes to try out just one such combination.)

For the 3-pieces on the ends of P, if there are two of them, their articulation
points interior to the chain are determined by where the rest of the chain is
connected. Thus we can check whether each is of the required form by essentially
the same method, that is, by attempting to search it (and its hanging subgraphs),

The Complexity of Searching a Graph 43

beginning at the corresponding articulation point and following the algorithm from
the proofs of Lemma 7 and Theorem 6. Our knowledge of the 1 -, 2-, and 2 '-pieces
provides obvious constraints and makes this easy to do.

Finally, we have the case in which P consists of only a single 3-piece. If that
3-piece has a hanging 2- or 2'-piece, then we know that the vertex from which
the 2- or 2'-piece hangs, or one of its two neighbors on the boundary of the
3-piece, must be part of a pair of antipodal points and hence be suitable for
starting the search of the 3-piece and its hanging subgraphs. Thus, we can try each
of these three possibilities, proceeding exactly as above. If the 3-piece has no
hanging 2- or 2 '-pieces, we simply choose some vertex on its boundary and proceed
around the boundary in one direction until the first time that the path traversed
has a nested pair of chords. In order to break that nested pair, some edge spanned
by the longer of the pair must belong to a pair of opposing poles. In fact, it is not
hard to see that either the first or the last edge spanned by that longer chord must
belong to a pair of opposing poles, since the other edges it spans can only break a
subset of the nested chords broken by one of these. Therefore, we need only
consider, at most, four possibilities, the four endpoints of those two edges, for
where a search of the 3-piece might start, and we can check each of them as
described above. The original graph G is 3-searchable if and only if we succeed in
searching each of the 3-pieces,-along with its associated hanging subgraphs, in this
way.

5. Further Results and Open Problems

Since the results in this paper were origmally announced, additional progress on
the problem has been made. As mentioned above, LaPaugh [6] has proved that
"recontamination" does not help, and hence the problem of determining the
search number is in NP. Makedon et al. [9] have shown that the problem remains
NP-complete for graphs with a maximum vertex degree of 3, using a clever
modification of our proof in which the large cliques are replaced by structures
resembling brick walls. (Still open, however, is the complexity of determining s(G)
when G is a planar graph.)

Attention has also been drawn to the relation between search number and other
measures of graph complexity. The maximum degree-3 case holds particular
interest because in this case the search number of G is known to be identical to the
cutwidth of G. The cutwidth of a graph G is the minimum, over all orderings of
the vertex set V(G) of G, of the maximum for 1 < i s I V(G) I of the number of
edges whose left endpoint is to the left of the ith vertex in the ordering and whose
right endpoint is equal to or to the right of the ith vertex. The cutwidth problem,
like the search number problem, is known to be NP-complete for general graphs
([3] and L. Stockmeyer, private communication, 1974 (See [2])), and Yannakakis
[15] has recently shown that it can be solved in time O(n log n) for trees. The tree
algorithm has a recursive structure similar to our search number algorithm for
trees, although the two algorithms maintain rather different information about the
subtrees occurring as subproblems. It is not difficult to see (as first observed to us
by I. H. Sudborough) that the search number of a graph cannot exceed its cutwidth.
Any cutwidth ordering (of the vertices) induces a search number ordering (of the
edges) by increasing order of the left endpoints, breaking ties by right endpoints,
and this search order requires a number of searchers that are, at most, equal to the
cutwidth. The equality of cutwidth and search number is shown for degree-3 trees
in [I] and for general degree-3 graphs in [8] and [9]. For arbitrary graphs, the

44 N. MEGIDDO ET AL.

cutwidth and search number need not be the same, since the "star" S,, on n vertices
has search numlber 2 and cutwidth LnI2J.

For the relation between search number and other measures, such as "topological
bandwidth," "pebble demand," and "interval thickness," see 151, [8], and [9].

REFERENCES

1. CHUNG, M., MAKEDON, F., SUDBOROUGH, I. H., AND TURNER, J. Polynomial time algorithms for
the min cut prc'blem on degree restricted trees. SIAM J. Comput. 14 (1985), 158-177.

2. CAREY, M. R., AND JOHNSON, D. S. Computers and Intractability: A Guide to the Theory of

NP-Completentss. Freeman, San Francisco, 1979.
3. GAVRIL, F. Some NP-complete problems on graphs. In Proceedings of the 11th Conference on

Information Sc,:ences and Systems. Johns Hopkins Univ., Baltimore, Md., 1977, pp. 91-95.
4. HARARY, F. Graph Theory. Addison-Wesley, Reading, Mass., 1969, pp. 106-107.
5. KIROUSIS, L. h!L, AND PAPADIMITRIOU, C. H. Searching and pebbling. Theoret. Comput. Sci. 47

(1 986), 205-2 18.
6. LAPAUGH, A. I,. Recontamination does not help. Manuscript, 1982.
7. LENGAUER, T., AND TARJAN, R. E. Asymptotically tight bounds on time-space trade-offs in a

pebble game. J ACM 29,4 (Oct. 1982), 1087-1 130.

8. MAKEDON, F. IS. Layout problems and their complexity. Ph.D. dissertation, Dept. of Electrical
Engineering and Computer Science, Northwestern Univ., Evanston, Ill., 1982.

9. MAKEDON, F. ti., PAPADIMITRIOU, C. H., AND SUDBOROUGH, I. H. Topological bandwidth. SIAM

J. Algebraic Discrete Meth. 6 (1985), 4 18-444.
10. MEGIDW, N., HAKIMI, S. L., CAREY, M. R., JOHNSON, D. S., AND PAPADIMITRIOU, C. H. The

complexity of searching a graph (preliminary version). In Proceedings of the 22nd Annual Sympo-
sium on Founa'ations of Computer Science. IEEE, New York, 1981, pp. 376-385.

I I . PARSONS, T. D. Pursuit-evasion in a graph. In Theory and Applications of Graphs, Y . Alavi and
D. Lick, Eds. Springer-Verlag, Berlin, 1976, pp. 426-441.

12. PARSONS, T. D. The search number of a connected graph. In Proceedings of the 9th Southeastern
Conference on Combinatorics, Graph Theory, and Computing. Utilitas Mathematica, Winnipeg,

Canada, 1978, pp. 549-554.
13. PIPPINGER, N. Pebbling. Rep. No. RC8275. IBM Thomas J. Watson Research Center, Yorktown

Heights, N.Y., 1980.
14. TARJAN, R. E. Depth-first search and linear graph algorithms. SIAM J. Comput. 1 (1972),

146- 160.
15. YANNAKAKIS, M. A polynomial algorithm for the min-cut linear arrangement of trees. J. ACM

32,4 (Oct. 1985), 950-988.

RECEIVED SEPTEMBER 1983; REVISED SEPTEMBER 1985, MAY 1987; ACCEPTED MAY 1987

Journal of the Association for Computing Machinery, Vol. 35, No. I . January 1988

