
The Complexity of Temporal Vertex Cover in Small-Degree Graphs

Thekla Hamm1, Nina Klobas2, George B. Mertzios2*, Paul G. Spirakis3,4†

1 Algorithms and Complexity Group, TU Wien, Austria
2 Department of Computer Science, Durham University, UK

3 Department of Computer Science, University of Liverpool, UK
4 Computer Engineering & Informatics Department, University of Patras, Greece

thamm@ac.tuwien.ac.at, {nina.klobas, george.mertzios}@durham.ac.uk, p.spirakis@liverpool.ac.uk

Abstract

Temporal graphs naturally model graphs whose underlying
topology changes over time. Recently, the problems TEM-
PORAL VERTEX COVER (or TVC) and SLIDING-WINDOW
TEMPORAL VERTEX COVER (or ∆-TVC for time-windows
of a fixed-length ∆) have been established as natural exten-
sions of the classic VERTEX COVER problem on static graphs
with connections to areas such as surveillance in sensor net-
works.
In this paper we initiate a systematic study of the complex-
ity of TVC and ∆-TVC on sparse graphs. Our main result
shows that for every ∆ ≥ 2, ∆-TVC is NP-hard even when
the underlying topology is described by a path or a cycle.
This resolves an open problem from literature and shows a
surprising contrast between ∆-TVC and TVC for which we
provide a polynomial-time algorithm in the same setting. To
circumvent this hardness, we present a number of exact and
approximation algorithms for temporal graphs whose under-
lying topologies are given by a path, that have bounded vertex
degree in every time step, or that admit a small-sized temporal
vertex cover.

1 Introduction
A great variety of modern, as well as of traditional networks,
are dynamic in nature as their link availability changes over
time. Information and communication networks, social net-
works, transportation networks, and various physical sys-
tems are only a few indicative examples of such inherently
dynamic networks (Holme and Saramäki 2013; Michail and
Spirakis 2018). All these application areas share the com-
mon characteristic that the network structure, i.e. the un-
derlying graph topology, is subject to discrete changes over
time. In this paper, embarking from the foundational work
of Kempe et al. (Kempe, Kleinberg, and Kumar 2002), we
adopt the following simple and natural model for time-
varying networks, which is given by a graph with sets of
time-labels associated with its edges, while the vertex set is
fixed.
Definition 1 (Temporal Graph). A temporal graph is a pair
(G,λ), where G = (V,E) is an underlying (static) graph

*Supported by the EPSRC grant EP/P020372/1.
†Supported by the EPSRC grant EP/P02002X/1.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and λ : E → 2N is a time-labeling function which assigns
to every edge of G a set of discrete-time labels.

For an edge e ∈ E in the underlying graph G of a tempo-
ral graph (G,λ), if t ∈ λ(e) then we also say that e is active
at time t in (G,λ). That is, for every edge e ∈ E, λ(e) de-
notes the set of time slots at which e is active. Due to their
relevance and applicability in many areas, temporal graphs
have been studied from various perspectives and under dif-
ferent names such as dynamic (Giakkoupis, Sauerwald, and
Stauffer 2014; Casteigts et al. 2012), evolving (Bui-Xuan,
Ferreira, and Jarry 2003; Ferreira 2004; Clementi et al.
2010), time-varying (Flocchini, Mans, and Santoro 2009;
Tang et al. 2010; Aaron, Krizanc, and Meyerson 2014),
and graphs over time (Leskovec, Kleinberg, and Faloutsos
2007). For a comprehensive overview on the existing models
and results on temporal graphs from a distributed computing
perspective see the surveys (Casteigts et al. 2012; Casteigts
and Flocchini 2013a,b).

Mainly motivated by the fact that, due to causality, in-
formation can be transfered in a temporal graph along se-
quences of edges whose time-labels are increasing, the
most traditional research on temporal graphs has focused
on temporal paths and other “path-related” notions, such
as e.g. temporal analogues of distance, reachability, explo-
ration and centrality (Klobas et al. 2021; Heeger et al. 2021;
Akrida et al. 2016; Erlebach, Hoffmann, and Kammer 2021;
Mertzios, Michail, and Spirakis 2019; Michail and Spirakis
2016; Akrida et al. 2017; Enright et al. 2021; Zschoche et al.
2020; Casteigts et al. 2021). To complement this direction,
several attempts have been recently made to define mean-
ingful “non-path” temporal graph problems which appro-
priately model specific applications. Motivated by the con-
tact patterns among high-school students, Viard et al. (Viard,
Latapy, and Magnien 2016), introduced ∆-cliques, an ex-
tension of the concept of cliques to temporal graphs (see
also (Himmel et al. 2017; Bentert et al. 2018)). Chen et
al. (Chen et al. 2018) presented an extension of the clus-
ter editing problem to temporal graphs, in which all vertices
interact with each other at least once every ∆ consecutive
time steps within a given time interval. Furthermore, Akrida
et al. (Akrida et al. 2020) introduced the notion of tempo-
ral vertex cover (also with a sliding time window), moti-
vated by applications of covering problems in sensor net-
works. Further examples of meaningful “non-path” temporal

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

10193

graph problems include variations of temporal graph color-
ing (Mertzios, Molter, and Zamaraev 2021; Yu et al. 2013;
Ghosal and Ghosh 2015) in the context of planning and
channel assignment in mobile sensor networks, and the tem-
porally transitive orientations of temporal graphs (Mertzios
et al. 2021).

The problems TEMPORAL VERTEX COVER (or TVC)
and SLIDING-WINDOW TEMPORAL VERTEX COVER (or
∆-TVC for time-windows of a fixed-length ∆) have been
established as natural extensions of the well-known VER-
TEX COVER problem on static graphs (Akrida et al. 2020).
Given a temporal graph G, the aim of TVC is to cover every
edge at least once during the lifetime T of G, where an edge
can be covered by one of its endpoints, and only at a time
step when it is active. For any ∆ ∈ N, the aim of the more
“pragmatic” problem ∆-TVC is to cover every edge at least
once at every ∆ consecutive time steps. In both problems,
we try to minimize the number of “vertex appearances” in
the resulting cover, where a vertex appearance is a pair (v, t)
for some vertex v and t ∈ {1, 2, . . . , T}.

TVC and ∆-TVC naturally generalize the applications of
the static problem VERTEX COVER to more dynamic inputs,
especially in the areas of wireless ad hoc networks, as well
as network security and scheduling. In the case of a static
graph, the vertex cover can contain trusted vertices which
have the ability to monitor/surveil all transmissions (Ileri
et al. 2016; Richter, Helmert, and Gretton 2007) or all link
failures (Kavalci, Ural, and Dagdeviren 2014) between any
pair of vertices through the edges of the graph. In the tempo-
ral setting, it makes sense to monitor the transmissions and
to check for link failures within every sliding time window
of an appropriate length ∆ (which is exactly modeled by ∆-
TVC).

It is already known that both TVC and ∆-TVC are NP-
hard; for ∆-TVC this is even the case when ∆ = 2 and the
minimum degree of the underlying graphG is just 3 (Akrida
et al. 2020). One of the most intriguing questions left open
(see Problem 1 in (Akrida et al. 2020)) is whether ∆-TVC
(or, more generally, SLIDING-WINDOW TEMPORAL VER-
TEX COVER) can be solved in polynomial time.

Our Contribution. In this paper we initiate the study of
the complexity of TVC and ∆-TVC on sparse graphs. Our
main result (see Section 3.1) is that, for every ∆ ≥ 2, ∆-
TVC is NP-hard even when G is a path or a cycle, while
TVC can be solved in polynomial time on paths and cycles.
This resolves the first open question (Problem 1) of (Akrida
et al. 2020). In contrast, we show that TVC (see Section 3.2)
can be solved in polynomial time on temporal paths and cy-
cles. Moreover, for any ∆ ≥ 2, we provide a Polynomial-
Time Approximation Scheme (PTAS) for ∆-TVC on tempo-
ral paths and cycles (see Section 3.2), which also comple-
ments our hardness result for paths.

The NP-hardness of Section 3.1 signifies that an optimum
solution for ∆-TVC is hard to compute, even for ∆ = 2
and under severe degree restrictions of the input instance.
To counter this hardness for more general temporal graphs
than those with underlying paths and cycles as in Section 3,
in Section 4 we give three algorithms for every ∆ ≥ 2: First

we present an exact algorithm for ∆-TVC with exponential
running time dependency on the number of edges in the un-
derlying graph (see Section 4.1). Using this algorithm we
are able to devise for any d ≥ 3 a polynomial-time (d− 1)-
approximation (see Section 4.2), where d is the maximum
vertex degree in any time step, i. e., in any part of the tem-
poral graph that is active at the same time. This improves
the currently best known d-approximation algorithm for ∆-
TVC (Akrida et al. 2020) and thus also answers another
open question (Problem 2 in (Akrida et al. 2020)). Finally,
we present a simple fixed-parameter tractable algorithm with
respect to the size of an optimum solution (see Section 4.3).

2 Preliminaries
Given a (static) graph G = (V,E) with vertices in V and
edges in E, an edge between two vertices u and v is de-
noted by uv, and in this case u and v are said to be ad-
jacent in G. For every i, j ∈ N, where i ≤ j, we let
[i, j] = {i, i+ 1, . . . , j} and [j] = [1, j]. Throughout the pa-
per we consider temporal graphs whose underlying graphs
are finite and whose time-labeling functions only map to fi-
nite sets. This implies that there is some t ∈ N such that, for
every t′ > t, no edge ofG is active at t′ in (G,λ). We denote
the smallest such t by T , i. e., T = max{t ∈ λ(e) | e ∈ E},
and call T the lifetime of (G,λ). Unless otherwise specified,
n denotes the number of vertices in the underlying graph
G, and T denotes the lifetime of the temporal graph G. We
refer to each integer t ∈ [T] as a time slot of (G,λ). The
instance (or snapshot) of (G,λ) at time t is the static graph
Gt = (V,Et), where Et = {e ∈ E : t ∈ λ(e)}.

A temporal path of length k is a temporal graph
P = (P, λ), where the underlying graph P is the path
(v0, v1, v2, . . . , vk) on k+1 vertices, with edges ei = vi−1vi
for i = 1, 2, . . . , k. In many places throughout the pa-
per, we visualize a temporal path as a 2-dimensional array
V (P)× [T], where two vertices (x, t), (y, t′) ∈ V (P)× [T]
are connected in this array if and only if t = t′ ∈ λ(xy) and
xy ∈ E(P). For example see Figure 1.

⇒
v1 v2 v3 v4 v5

v1 v2 v3 v4 v5

t = 1

t = 2

t = 3

t = 4

t = 5

{1, 3, 5} {2, 4} {2, 3, 4} {1} {2, 3}

v0

v0

Figure 1: An example of visualizing a temporal path graph
G as a 2-dimensional array, in which every edge corresponds
to a time-edge of G.

For every t = 1, . . . , T −∆ + 1, let Wt = [t, t+ ∆− 1]
be the ∆-time window that starts at time t. For every v ∈ V
and every time slot t, we denote the appearance of vertex
v at time t by the pair (v, t) and the edge appearance (or
time-edge) of e at time t by (e, t).

A temporal vertex subset of (G,λ) is a set of vertex ap-
pearances in (G,λ), i.e. a set of the form S ⊆ {(v, t) | v ∈

10194

V, t ∈ [T]}. For a temporal vertex subset S and some ∆-
time window Wi within the lifetime of (G,λ), we denote by
S[Wi] = {(v, t) ∈ S | t ∈ Wi} the subset of all vertex
appearances in S in the ∆-time window Wi. For a ∆-time
window Wi within the lifetime of a temporal graph (G,λ),
we denote by E[Wi] = {e ∈ E | λ(e) ∩Wi 6= ∅} the set of
all edges which appear at some time slot within Wi.

A temporal vertex subset C is a sliding ∆-time window
temporal vertex cover, or ∆-TVC for short, of a temporal
graph (G,λ) if, for every ∆-time windowWi within the life-
time of (G,λ) and for every edge in E[Wi], there is some
(v, t) ∈ C[Wi] such that v ∈ e, i.e. v is an endpoint of e,
and t ∈ λ(e). Here we also say (v, t) covers (e, t) in time
window Wi.

3 Paths and Cycles
In Section 3.1 we provide our main NP-hardness result for
∆-TVC, for any ∆ ≥ 2, on instances whose underlying
graph is a path or a cycle (see Theorem 3 and Corollary 4). In
Section 3.2 we prove that TVC on underlying paths and cy-
cles is polynomially solvable, and we also provide our PTAS
for ∆-TVC on underlying paths and cycles, for every ∆ ≥ 2.

3.1 Hardness on Temporal Paths and Cycles
Our NP-hardness reduction of Theorem 3 is done from the
NP-hard problem planar monotone rectilinear 3 satisfia-
bility (or planar monotone rectilinear 3SAT), see (de Berg
and Khosravi 2010). This is a specialization of the classi-
cal Boolean 3-satisfiability problem to a planar incidence
graph. A Boolean satisfiability formula φ in conjunctive nor-
mal form (CNF) is called monotone, if each clause of φ con-
sists of only positive or only negative literals. We refer to
these clauses as positive and negative clauses, respectively.
By possibly repeating literals, we may assume without loss
of generality that every clause contains exactly three (not
necessarily different) literals.

In an instance of planar monotone rectilinear 3SAT, each
variable and each clause is represented with a horizontal line
segment, as follows. The line segments of all variables lie
on the same horizontal line on the plane, which we call the
variable-axis. For every clause C = (xi ∨ xj ∨ xk) (or
C = (xi ∨xj ∨xk)), the line segment of C is connected via
straight vertical line segments to the line segments of xi, xj
and of xk, such that every two (horizontal or vertical) line
segments are pairwise non-intersecting. Furthermore, every
line segment of a positive (resp. negative) clause lies above
(resp. below) the variable-axis. Finally, by possibly slightly
moving the clause line segments higher or lower, we can
assume without loss of generality that every clause line seg-
ment lies on a different horizontal line on the plane.

Let φ be an arbitrary instance of planar monotone recti-
linear 3SAT, where X = {x1, . . . , xn} is its set of Boolean
variables and φ(X) = {C1, . . . , Cm} is its set of clauses.
We construct from φ a temporal path Gφ and prove that there
exists a truth assignment of X which satisfies φ(X) if and
only if the optimum value of 2-TVC on Gφ is at most f(Gφ).
The exact value of f(Gφ) will be defined later.

High-Level Description Given a representation (i.e. em-
bedding) Rφ of an instance φ of planar monotone rectilinear
3SAT, we construct a 2-dimensional array of the temporal
path Gφ, where:
• every vertical line segment in Rφ is associated with an

edge of Gφ that appears in consecutive time steps,
• every variable (horizontal) line segment in Rφ is asso-

ciated with one or more segment blocks (to be formally
defined below) in Gφ, and

• every clause (horizontal) line segment in Rφ, corre-
sponding to the clause C = (xi ∨ xj ∨ xk) (resp. C =
(xi ∨ xj ∨ xk)), is associated with a clause gadget in Gφ,
which consists of three segment blocks (one for each of
xi, xj , xk) together with a path connecting them in the
2-dimensional array for G (we call this path the clause
gadget connector).

The exact description of the variables’ and clauses’ gad-
gets is given below; first we need to precisely define the seg-
ment blocks.

Segment Blocks are used to represent variables. Every
segment block consists of a path of length 7 on vertices
(u0, u1, . . . , u7), where the first and last edges (i. e., u0u1

and u6u7) appear at 9 consecutive time steps starting at time
t and ending at time t + 8, with all other edges appearing
only two times, i. e., at times t+ 1 and t+ 7.

Time-edges which correspond to the first and last ap-
pearances of u0u1 and u6u7 in a segment block are called
dummy time-edges, all remaining time-edges form two (bot-
tom and top) horizontal paths, and two (left and right) ver-
tical sequences of time-edges (which we call here vertical
paths), . Using the next technical lemma will allow us to
model the two different truth values of each variable xi
(True, resp. False) via two different optimum solutions of
2-TVC on a segment block (namely the “orange and green”,
resp. “orange and red” temporal vertex covers of the segment
block, see Figure 2).
Lemma 2. There are exactly two different optimum solu-
tions for 2-TVC of a segment block, both of size 15.

Proof. Let C be a 2-TVC of a segment block on vertices
u0, . . . , u7 that starts at time t and finishes at time t+ 8.

In order to cover the dummy time-edges in time windows
Wt−1 and Wt+8 one of their endpoints has to be in C. Now
let us start with the covering of the first edge (u0u1) at time
t + 1. Since the dummy time-edges are covered, the edge
u0u1 is covered in the time window Wt but it is not yet cov-
ered in the time window Wt+1. We have two options, either
cover it at time t+ 1 or t+ 2.

• Suppose that we cover the edge u0u1 at t + 1, then the
next time step it has to be covered is t + 3, the next one
t + 5 and the last one t + 7. Now that the left vertical
path is covered we proceed to cover the bottom and top
horizontal paths. The middle 5 edges, from u1 to u6, ap-
pear only at time steps t+ 1 and t+ 7. Since we covered
the edge u0u1 at time t + 1, we can argue that the opti-
mum solution includes the temporal vertex (u1, t+1) and
therefore the edge u1u2 is also covered. Extending this

10195

covering optimally to the whole path we need to add ev-
ery second vertex to C, i. e., vertex appearances (u3, t+1)
and (u5, t + 1). Similarly it holds for the vertex appear-
ances of vertices u1, . . . , u6 at time t + 7. The last thing
we need to cover is the right vertical path. Since the edge
u6u7 is covered at time t, the next time step we have to
cover it is t+2, which forces the next cover to be at t+4
and last one at t + 6. In total C consists of 4 endpoints
of the dummy time-edges, 4 vertices of the left and 3 of
the right vertical path, 2 vertices of the bottom and 2 of
the top horizontal path. All together we used 11 vertices
to cover vertical and horizontal paths and 4 for dummy
time-edges. The above described 2-TVC corresponds to
the red coloring of the odd segment block depicted in the
Figure 2 (left).
Let us also emphasize that, with the exception of times
t+ 1 and t+ 7, we do not distinguish between the solu-
tions that uses a different endpoint to cover the first and
last edge. For example if a solution covers the edge u0u1

at time t+ 2 then we do not care which of (u0, t+ 2) or
(u1, t+ 2) is in the TVC.

• Covering the edge u0u1 at time t + 2 produces the 2-
TVC that is a mirror version of the previous one on the
vertical and horizontal paths. More precisely, in this case
the covering consists of 3 vertices of the left and 4 of
the right vertical path and again 2 vertices of the bottom
and 2 of the top horizontal path, together with 4 vertices
covering the dummy time-edges.
This 2-TVC corresponds to the green coloring of the odd
segment block depicted in the Figure 2.

Starting with vertex appearances from one optimum solution
adding vertex appearances from the other optimum solution
either creates a 2-TVC of bigger size or leaves some edges
uncovered.

Figure 2: An example of two optimum covers (red and
green) of a segment block, where the orange vertices are al-
ways included in the solution.

For each variable xi we create multiple copies of segment
blocks, and some specific pairs of these segment blocks
are connected to each other via the so-called “horizontal
bridges” or “vertical bridges”. Two segment blocks, which
are connected via a horizontal bridge, start at the same time

t but are built on different sets of vertices (i. e., one is to the
left of the other in the 2-dimensional array) Similarly, two
segment blocks, which are connected via a vertical bridge,
are built on the same set of vertices but in different time steps
(i. e., one is above the other in the 2-dimensional array).

All the copies have to be created in such a way, that their
optimum 2-TVCs depend on each other. In the following we
describe two ways to connect two different segment blocks
(both for the same variable xi). As we prove, there are two
ways to optimally cover these constructions: one using the
“orange and green”, and one using the “orange and red”
temporal vertex appearances (thus modeling the truth values
True and False of variable xi in our reduction).

x1 x2 x3 x4 x5

(x2 ∨ x3 ∨ x4)

(x1 ∨ x2 ∨ x4)

(x1 ∨ x4 ∨ x5)

(x2 ∨ x3 ∨ x5)

(x1 ∨ x2 ∨ x5)

x3 x3x2 x2x1x1 x1 x2 x2 x5 x5 x5x4 x4 x4

Figure 3: An example of the construction of temporal graph
from a planar rectilinear embedding of monotone 3SAT.

As, for every ∆ ≥ 2, there is a known polynomial-time
reduction from ∆-TVC to (∆+1)-TVC (Akrida et al. 2020),
we obtain the following.

Theorem 3. For every ∆ ≥ 2, ∆-TVC on instances on an
underlying path is NP-hard.

With a slight modification to the Gφ we can create the
temporal cycle from Rφ and therefore the following holds.

Corollary 4. For every ∆ ≥ 2, ∆-TVC on instances on an
underlying cycle is NP-hard.

Proof. We follow the same procedure as above where we
add one extra vertex w, to the underlying graph P of Gφ. We
add also two time-edges connecting the first and the last ver-
tex of the temporal path graph Gφ at time 1. This increases
the size of the 2-TVC by 1 (as we need to include the vertex
appearance (w, 1)) and it transforms the underlying path P
into a cycle.

3.2 Algorithmic Results
To complement the hardness presented in Section 3.1, we
present two polynomial-time algorithms: Firstly, a dynamic
program for solving TVC on instances with underlying
paths and cycles shows that the hardness is inherently linked

10196

to the sliding time windows. Secondly, we give a PTAS for
∆-TVC on instances with underlying paths. This approx-
imation scheme can be obtained using a powerful general
purpose result commonly used for approximating geometric
problems (Mustafa and Ray 2010).

Theorem 5. TVC can be solved in polynomial time on in-
stances with a path/cycle as their underlying graph.

Next we turn to approximating ∆-TVC on underlying
paths. The GEOMETRIC HITTING SET problem takes as in-
stance a set of geometric objects, e.g. shapes in the plane,
and a set of points. The task is to find the smallest set of
points, that hit all of the objects. In the paper by Mustafa and
Ray (Mustafa and Ray 2010) the authors present a PTAS for
the problem, when the geometrical objects are r-admissible
set regions. We transform an arbitrary temporal path to the
setting of the geometric hitting set. As a result, we obtain a
PTAS for the ∆-TVC problem.

Theorem 6. For every ε > 0, there exists an (1 + ε)-
approximation algorithm for ∆-TVC on instances with a
path as their underlying graph, which runs in time

O
(
n(T −∆ + 1) · (T (n+ 1))O(ε−2)

)
=

O
(

(T (n+ 1))O(ε−2)
)
,

i. e., the problem admits a PTAS.

Proof. Let G = (G,λ) be a temporal path, on vertices
{v1, v2, . . . , vn}, with lifetime T . We first have to create the
range space R = (P,D), where P ⊆ V × [T] is a set of
vertex appearances and D is a set of 2-admissible regions.

Set P of time vertices consist of vertex appearances (vi, t)
for which t ∈ λ(ei) ∪ λ(ei+1). Intuitively, if edges incident
to v do not appear at time t, then (v, t) is not in P . Set D
of 2-admissible regions consists of rectangles of 2 differ-
ent sizes. For every edge ei that appears in the time win-
dow Wt we create one rectangle Rti , that includes all ver-
tex appearances incident to ei in Wt. For example, if edge
ei appears in the time window Wt at times t1 and t2, then
the corresponding rectangle Rti contains vertex appearances
(vi−1, t1), (vi, t1), (vi−1, t2) and (vi, t2).

It is not hard to see that |P | ≤ |V | · T = (n + 1)T and
|D| ≤ |E|(T −∆ + 1) = n(T −∆ + 1).

Formal Construction. Since D will be defined to be a set
of 2-admissible regions, the boundary of any two rectangles
we construct should intersect at most 2 times. For this pur-
pose we use rectangles, of two different sizes. Let us denote
with A the rectangle of size a1 × a2 and with B be the rect-
angle of size b1 × b2, where a1 > b1 > b2 > a2.

As we said, for every edge ei that appears in the time win-
dow Wt we construct exactly one rectangle. These are the
rules we use to correctly construct them.

1. For a fixed time window Wt we construct the rectangles
in such a way, that they intersect only in the case when
their corresponding edges ei, ej share the same endpoint
in the underlying graph G. Since G is a path, the inter-
section happens only in the case when j = i+ 1. We can

observe also, that there are no three (or more) edges shar-
ing the same endpoint and therefore no three rectangles
intersect.
We require also, that the rectangles corresponding to a
pair of the adjacent edges are not the same, i. e., they al-
ternate between form A and B.

2. For any edge ei, rectangles corresponding to two consec-
utive time windowsWt,Wt+1 are not the same, i. e., they
alternate between the form A and B. For an example see
Figure 4a.

(a) Alternating regions for an
edge.

(b) Regions for an edge with
shift, when ∆ = 4. Each re-
gion Wi starts at same horizon-
tal position as Wi−4.

Figure 4: Creating regions for one edge.

When the time windows are of size ∆, there are at most
∆ rectangles intersecting at every time step t. This holds,
because if the edge ei appears at time t it is a part of the
time windows Wt∆+1,Wt∆+2, . . . ,Wt.
Since the constructed rectangles are of two sizes, if
∆ ≥ 3 we create intersections with infinite number of
points between the boundary of some rectangles, if we
just “stack” the rectangles upon each other. Therefore,
we need to shift (in the horizontal direction) rectangles
of the same form in one ∆ time window. Since the time
window Wt never intersects with Wt+∆, we can shift the
time windows Wt+1, . . . ,Wt+∆−1 and fix the Wt+∆ at
the same horizontal position as Wt . For an example see
Figure 4b.

Combining both of the above rules we get a grid of rect-
angles. Moving along the x axis corresponds to moving
through the edges of the path and moving along the y axis
corresponds to moving through the time steps.

By construction, rectangles alternate between the form A
and B in both dimensions. If an edge ei does not appear in
the time window Wt, then we do not construct the corre-
sponding rectangle Rti . The absence of a rectangle from a
grid does not change the pattern of others rectangles. To de-
termine of what form a rectangle corresponding to edge ei
at time-window Wt is, we use the following condition:

10197

Rti =

{
A if i+ t ≡ 0 (mod 2),
B else.

Now we define where the points are placed. We use the
following conditions.

a. If an edge ei = vi−1vi appears at time t we add vertex
appearances (vi−1, t), (vi, t) to all of the rectangles Rt

′

i ,
where t−∆ + 1 ≤ t′ ≤ t, if they exist.
Equivalently, we add the vertex appearances
(vi−1, t), (vi, t) in the intersection of the rectangles
corresponding to the edge ei in the time windows
Wt−∆+1, . . . ,Wt. For an example see Figure 5a.

b. If an edge ei does not appear at time t, then the time ver-
tices (vi−1, t), (vi, t) are not included in the rectangles
Rt
′

i (t−∆ + 1 ≤ t′ ≤ t), if they exist.
c. If two adjacent edges ei, ei+1 appear at the same time t,

we add to the intersection of the rectangles Rt
′

i , R
t′

i+1 the
vertex (vi, t), where t−∆ + 1 ≤ t′ ≤ t. For an example
see Figure 5b.

(vi, 5)

(vi−1, 5)

(a) Edge ei appearing at time
5 and the corresponding place-
ment of vertex appearances to
the rectangles, when ∆ = 4.

(vi+1, 5)

(vi, 5)

(vi−1, 5)

ei ei+1

(b) Edges ei and ei+1 appearing
at time 5 and the corresponding
vertex appearances placement in
the rectangles, when ∆ = 4.

Figure 5: Example of placement of the vertices into the rect-
angles when ∆ = 4.

It is straightforward to verify that finding the minimum
hitting set of the range space is equivalent to finding the
minimum ∆-TVC for G. On the constructed range space we
use the local search algorithm from (Mustafa and Ray 2010)
which proves our result.

4 Algorithms for Bounded Degree Temporal
Graphs

In this section we extend our focus from temporal graphs
with underlying paths or cycles to instances of ∆-TVC with
more general degree restrictions.

In particular we present an algorithm for solving ∆-TVC
exactly in time that is exponential in the number of edges
of the underlying graph, then use this algorithm to give a
(d−1)-factor approximation algorithm (where d is the max-
imum vertex degree in any time step) and finally give an
FPT-algorithm parameterized by the size of a solution. For
the approximation algorithm in particular the following gen-
eralized notion (sub)instances will be useful, already when
formulating the exact exponential time algorithm.

Definition 7 (PARTIAL ∆-TVC). Let (G,λ) be a tempo-
ral graph. An instance of PARTIAL ∆-TVC is given by
(G,λ, `, h, α, β) where ` : E(G) → [T] and h : E(G) →
[T] map each edge to the starting time of its lowest uncov-
ered window and highest uncovered window respectively,
and α, β ∈ [T] are the covering start and end respectively.
The task is to find a cardinality minimal temporal vertex sub-
set C such that for every edge e ∈ E(G) and every time win-
dow Wi with `(e) ≤ i ≤ h(e) if e ∈ E[Wi] then there is
some (v, t) ∈ C[Wi] such that v ∈ e, t ∈ λ(e), and addition-
ally for all (v, t) ∈ C, α ≤ t ≤ β.

Obviously PARTIAL ∆-TVC generalizes ∆-TVC by let-
ting `(e) = 0 and h(e) = T −∆ + 1 for all e ∈ E(G), and
α = 0 and β = T .

4.1 Exact Algorithm
In the following we denote by dG the degree of the underly-
ing graph of the considered instances of PARTIAL ∆-TVC.
We can give a dynamic programming algorithm with run-
ning time O(T∆O(|E(G)|)) as the next theorem states.

Theorem 8. For every ∆ ≥ 2, a solution to PARTIAL ∆-
TVC can be computed in time complexity O(TcO(|E(G)|))
where c = min{2dG ,∆} and T is the life time of the tempo-
ral graph in the instance.

In fact the same algorithm and analysis gives a running
time bound which is exponential in the maximum ∆-window
vertex degree d∆ which is the maximum vertex degree in
any part of G that appears together in an arbitrary ∆-time
window. Observe that d∆ ≤ dG but there are also instances
in which dG is much larger than d∆:

Remark: The above algorithm solves PARTIAL ∆-TVC
in O(TcO(|E(G)|)) where c = min{2d∆ ,∆}.

Note that this algorithm also has implications for the pa-
rameterized complexity (Cygan et al. 2015; Downey and
Fellows 2013; Niedermeier 2006) of ∆-TVC.

Corollary 9. For every ∆ ≥ 2, ∆-TVC can be solved in
time in O(Tc|E(G)|) where c = min{2O(|E(G)|),∆}, and
thus ∆-TVC is in FPT parameterized by |E(G)|.

4.2 Approximation Ratio Better Than d

Next we turn to our approximation algorithms; recall that a
d-factor approximation is known (Akrida et al. 2020). The
idea of this algorithm is simple; solve each subinstance in-
duced by an edge independently and optimally and then
combine these solutions. At each temporal vertex at most
d time-edges which were considered separately in subin-
stances by the approximation algorithm occur. To cover each
of these edges we might have chosen the ‘wrong’ endpoint
in a subinstance rather than the shared endpoint.

Now our new exact algorithm for solving instances can be
used to mitigate the error we can make at high degree ver-
tices. For instance, if we build our subinstances by iteratively
covering paths with two edges (P3) instead of single edges
we will incur an error of at most d− 1 at vertices which are
centers of at least one P3 which was chosen as a subinstance.

Based on this idea we can formulate a (d − 1)-
approximation.

10198

Description of the Algorithm We iteratively extend an
initially empty set X to a sliding ∆-window TVC in the fol-
lowing way: While there is some e ∈ E(G) with an occur-
rence that is not covered in some time window in the lifetime
of G we have to extend X ; otherwise X is a ∆-TVC which
we can return. We proceed in two phases:
Phase 1: While we find two such edges e1, e2 that are adja-
cent and appear at the same time step and both appearances
are not covered in some time window Wi then we consider
the following subinstances of PARTIAL ∆-TVC: Let S be
the set of all time steps in which e1 and e2 appear together
and are both not covered by X in some time window Wi

with i ∈ [minS −∆ + 1,maxS −∆ + 1]. We can subdi-
vide S into subsets S1, . . . , Sk with k ≤ T such that S1

contains the smallest elements of S such that there is no
gap of at least 2∆ − 1 between its elements, S2 contains
the smallest elements of S between the first and second gap
of at least 2∆ − 1, and so on. Now we consider the subin-
stances given by (G[e1, e2], λ′, `, h,minSi,maxSi) with λ′
defined as the restriction of λ to {e1, e2} ∩ λ−1([minSi −
∆ + 1,maxSi−∆ + 1]), `(e1) = `(e2) is the smallest time
step t such that (e1,minSi) and (e2,minSi) are not covered
in time window Wt by X , and h(e1) = h(e2) is the largest
time step t such that (e1,maxSi) and (e2,maxSi) are not
covered in time window Wt by X . We use the algorithm
from Section 4.1 to solve these subinstances and extend X
by the union of the solutions.
Phase 2: If no such edges are adjacent and appear at the
same time step and both appearances are not covered in
some time window Wi let F be the set of edges e ∈ E(G)
with occurrences which is not covered in some time win-
dow in the lifetime of G by X . We consider the following
subinstances of PARTIAL ∆-TVC: For e ∈ F , let Se be
the set of all time steps in which e appears and is not cov-
ered by X in some time window Wi with i ∈ [minSe −
∆ + 1,maxSe −∆ + 1] and t ∈ Se. We can subdivide Se
into subsets Se1 , . . . S

e
k with k ≤ T such that Se1 contains

the smallest elements of Se such that there is no gap of at
least 2∆− 1 between its elements, Se2 contains the smallest
elements of Se between the first and second gap of at least
2∆− 1, and so on. Now we consider the subinstances given
by (G[e], λ′, `, h,minSei ,maxSei) with λ′ defined as the re-
striction of λ to {e}∩λ−1([minSei −∆ + 1,maxSei + ∆]),
`(e) is the smallest time step t such that (e,minSei) is not
covered in time window Wt by X , and h(e) is the largest
time step t such that (e,maxSei) is not covered in time win-
dow Wt by X . We use the algorithm from Section 4.1 to
solve these subinstances and extend X by the union of the
solutions.

It follows from the above construction that the produced
set X of vertex appearances is a ∆-TVC of G. Furthermore,
using a double counting argument, we can show that the ap-
proximation ratio is at most d− 1.

Running Time The number of subinstances considered in
Phase 1 is easily bounded by the number of combinations
of two edges in E(G) multiplied by T . Similarly the num-
ber of subinstances considered in Phase 2 is bounded by the
number of edges inE(G) multiplied by T . The subinstances

require a running time of O(T) to solve. Thus the overall
running time lies in O(|E(G)|2T 2).

Overall this shows the desired approximation result.
Theorem 10. For every ∆ ≥ 2 and d ≥ 3, ∆-TVC can be
(d− 1)-approximated in time O(|E(G)|2T 2).

4.3 An FPT Algorithm With Respect to the
Solution Size

Our final result settles the complexity of ∆-TVC from the
viewpoint of parameterized complexity theory (Cygan et al.
2015; Downey and Fellows 2013; Niedermeier 2006) with
respect to the standard parameterization of the size of an op-
timum solution.
Theorem 11. For every ∆ ≥ 2, ∆-TVC can be solved in
O((2∆)kTn2) time, where k is the size of an optimum solu-
tion. In particular ∆-TVC is in FPT parameterized by k.

References
Aaron, E.; Krizanc, D.; and Meyerson, E. 2014. DMVP:
Foremost waypoint coverage of time-varying graphs. In
Proceedings of the 40th International Workshop on Graph-
Theoretic Concepts in Computer Science (WG), 29–41.
Akrida, E. C.; Gasieniec, L.; Mertzios, G. B.; and Spirakis,
P. G. 2016. Ephemeral networks with random availability
of links: The case of fast networks. Journal of Parallel and
Distributed Computing, 87: 109–120.
Akrida, E. C.; Gasieniec, L.; Mertzios, G. B.; and Spirakis,
P. G. 2017. The complexity of optimal design of temporally
connected graphs. Theory of Computing Systems, 61(3):
907–944.
Akrida, E. C.; Mertzios, G. B.; Spirakis, P. G.; and Zama-
raev, V. 2020. Temporal vertex cover with a sliding time
window. Journal of Computer and System Sciences, 107:
108–123.
Bentert, M.; Himmel, A.-S.; Molter, H.; Morik, M.; Nieder-
meier, R.; and Saitenmacher, R. 2018. Listing all maximal
k-plexes in temporal graphs. In Proceedings of the 2018
IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining (ASONAM), 41–46.
Bui-Xuan, B.-M.; Ferreira, A.; and Jarry, A. 2003. Comput-
ing shortest, fastest, and foremost journeys in dynamic net-
works. International Journal of Foundations of Computer
Science, 14(2): 267–285.
Casteigts, A.; and Flocchini, P. 2013a. Deterministic algo-
rithms in dynamic networks: Formal models and metrics.
Technical report, Defence R&D Canada.
Casteigts, A.; and Flocchini, P. 2013b. Deterministic algo-
rithms in dynamic networks: Problems, analysis, and algo-
rithmic tools. Technical report, Defence R&D Canada.
Casteigts, A.; Flocchini, P.; Quattrociocchi, W.; and Santoro,
N. 2012. Time-varying graphs and dynamic networks. In-
ternational Journal of Parallel, Emergent and Distributed
Systems, 27(5): 387–408.
Casteigts, A.; Himmel, A.; Molter, H.; and Zschoche, P.
2021. Finding temporal paths under waiting time con-
straints. Algorithmica, 83(9): 2754–2802.

10199

Chen, J.; Molter, H.; Sorge, M.; and Suchý, O. 2018. Clus-
ter editing in multi-layer and temporal graphs. In Hsu, W.;
Lee, D.; and Liao, C., eds., Proceedings of the 29th Interna-
tional Symposium on Algorithms and Computation (ISAAC),
volume 123, 24:1–24:13.
Clementi, A. E. F.; Macci, C.; Monti, A.; Pasquale, F.; and
Silvestri, R. 2010. Flooding time of edge-markovian evolv-
ing graphs. SIAM Journal on Discrete Mathematics, 24(4):
1694–1712.
Cygan, M.; Fomin, F. V.; Kowalik, L.; Lokshtanov, D.;
Marx, D.; Pilipczuk, M.; Pilipczuk, M.; and Saurabh, S.
2015. Parameterized Algorithms. Springer. ISBN 978-3-
319-21274-6.
de Berg, M.; and Khosravi, A. 2010. Optimal binary space
partitions in the plane. In Computing and combinatorics,
volume 6196 of Lecture Notes in Computer Science, 216–
225. Springer, Berlin.
Downey, R. G.; and Fellows, M. R. 2013. Fundamentals
of Parameterized Complexity. Texts in Computer Science.
London: Springer. ISBN 978-1-4471-5558-4.
Enright, J. A.; Meeks, K.; Mertzios, G. B.; and Zamaraev,
V. 2021. Deleting edges to restrict the size of an epidemic
in temporal networks. Journal of Computer and System Sci-
ences, 119: 60–77.
Erlebach, T.; Hoffmann, M.; and Kammer, F. 2021. On tem-
poral graph exploration. Journal of Computer and System
Sciences, 119: 1–18.
Ferreira, A. 2004. Building a reference combinatorial model
for MANETs. IEEE Network, 18(5): 24–29.
Flocchini, P.; Mans, B.; and Santoro, N. 2009. Exploration
of periodically varying graphs. In Proceedings of the 20th
International Symposium on Algorithms and Computation
(ISAAC), 534–543.
Ghosal, S.; and Ghosh, S. C. 2015. Channel assignment in
mobile networks based on geometric prediction and random
coloring. In Proceedings of the 40th IEEE Conference on
Local Computer Networks (LCN), 237–240.
Giakkoupis, G.; Sauerwald, T.; and Stauffer, A. 2014. Ran-
domized rumor spreading in dynamic graphs. In Proceed-
ings of the 41st International Colloquium on Automata, Lan-
guages and Programming (ICALP), 495–507.
Heeger, K.; Hermelin, D.; Mertzios, G. B.; Molter, H.; Nie-
dermeier, R.; and Shabtay, D. 2021. Equitable scheduling on
a single machine. In Proceedings of the 35th AAAI Confer-
ence on Artificial Intelligence (AAAI), 11818–11825. AAAI
Press.
Himmel, A.; Molter, H.; Niedermeier, R.; and Sorge, M.
2017. Adapting the Bron-Kerbosch algorithm for enumer-
ating maximal cliques in temporal graphs. Social Network
Analysis and Mining, 7(1): 35:1–35:16.
Holme, P.; and Saramäki, J., eds. 2013. Temporal networks.
Springer.
Ileri, C. U.; Ural, C. A.; Dagdeviren, O.; and Kavalci, V.
2016. On vertex cover problems in distributed systems. In
Advanced Methods for Complex Network Analysis, 1–29.
IGI Global.

Kavalci, V.; Ural, A.; and Dagdeviren, O. 2014. Distributed
vertex cover algorithms for wireless sensor networks. Inter-
national Journal of Computer Networks & Communications,
6(1): 95–110.
Kempe, D.; Kleinberg, J.; and Kumar, A. 2002. Connectivity
and inference problems for temporal networks. Journal of
Computer and System Sciences, 64(4): 820–842.
Klobas, N.; Mertzios, G. B.; Molter, H.; Niedermeier, R.;
and Zschoche, P. 2021. Interference-free walks in time:
Temporally disjoint paths. In Zhou, Z., ed., Proceedings of
the 30th International Joint Conference on Artificial Intelli-
gence (IJCAI), 4090–4096.
Leskovec, J.; Kleinberg, J. M.; and Faloutsos, C. 2007.
Graph evolution: Densification and shrinking diameters.
ACM Transactions on Knowledge Discovery from Data,
1(1).
Mertzios, G. B.; Michail, O.; and Spirakis, P. G. 2019.
Temporal network optimization subject to connectivity con-
straints. Algorithmica, 81(4): 1416–1449.
Mertzios, G. B.; Molter, H.; Renken, M.; Spirakis, P. G.; and
Zschoche, P. 2021. The complexity of transitively orienting
temporal graphs. In Proceedings of the 46th International
Symposium on Mathematical Foundations of Computer Sci-
ence (MFCS), 75:1–75:18.
Mertzios, G. B.; Molter, H.; and Zamaraev, V. 2021. Sliding
window temporal graph coloring. Journal of Computer and
System Sciences, 120: 97–115.
Michail, O.; and Spirakis, P. G. 2016. Traveling salesman
problems in temporal graphs. Theoretical Computer Sci-
ence, 634: 1–23.
Michail, O.; and Spirakis, P. G. 2018. Elements of the theory
of dynamic networks. Communications of the ACM, 61(2):
72–72.
Mustafa, N. H.; and Ray, S. 2010. Improved results on ge-
ometric hitting set problems. Discrete and Computational
Geometry, 44(4): 883–895.
Niedermeier, R. 2006. Invitation to Fixed-Parameter Algo-
rithms. Oxford Lecture Series in Mathematics and its Appli-
cations. Oxford: Oxford University Press. ISBN 978-0-19-
856607-6.
Richter, S.; Helmert, M.; and Gretton, C. 2007. A Stochas-
tic Local Search Approach to Vertex Cover. In Proceedings
of the 30th Annual German Conference on Artificial Intelli-
gence (KI), 412–426.
Tang, J. K.; Musolesi, M.; Mascolo, C.; and Latora, V. 2010.
Characterising temporal distance and reachability in mobile
and online social networks. Computer Communication Re-
view, 40(1): 118–124.
Viard, T.; Latapy, M.; and Magnien, C. 2016. Computing
maximal cliques in link streams. Theoretical Computer Sci-
ence, 609: 245–252.
Yu, F.; Bar-Noy, A.; Basu, P.; and Ramanathan, R. 2013.
Algorithms for channel assignment in mobile wireless net-
works using temporal coloring. In Proceedings of the 16th
ACM international conference on Modeling, analysis & sim-
ulation of wireless and mobile systems (MSWiM), 49–58.

10200

Zschoche, P.; Fluschnik, T.; Molter, H.; and Niedermeier, R.
2020. The complexity of finding small separators in tempo-
ral graphs. Journal of Computer and System Sciences, 107:
72–92.

10201

