
comput. complex. Online First
DOI 10.1007/s00037-010-0295-z

c© Springer Basel AG 2010

computational complexity

THE COMPLEXITY OF THE INERTIA

Thanh Minh Hoang and Thomas Thierauf

Abstract. The inertia of an n × n matrix A is defined as the triple
(i+(A), i−(A), i0(A)), where i+(A), i−(A), and i0(A) are the number of
eigenvalues of A, counting multiplicities, with positive, negative, and
zero real part. We show in this paper that the problem to compute
the inertia of an integer matrix is complete for the complexity class
PL (Probabilistic Logspace). Furthermore, we extend this result to the
problem of testing the stability of integer matrices.

Keywords. Inertia, matrix stability, logspace complexity.

Subject classification. 68Q15, 68Q25, 15A15, 15A18.

1. Introduction

The inertia of a matrix states how many of the eigenvalues of a matrix have
positive, negative, or zero real part, respectively. It plays an important role
in linear algebra and in a number of applied fields, in particular in control
theory and robotics, where one is interested in the stability of solutions of
differential equations and dynamical systems. The stability of fixed points
of linear differential equations can be analyzed using the eigenvalues of the
corresponding linear transformation. When all the eigenvalues have negative
real parts, the system is assymptotically stable. Another area is semidefinite
programming where one minimizes a linear function subject to the constraint
that an affine combination of symmetric matrices is positive semidefinite, i.e.,
all the (real) eigenvalues are ≥ 0. The inertia is therefore a fundamental topic
in linear algebra and it has been studied by many researchers (see e.g. [12],
Volume 2, Chapter XV).

In the present paper we study the computational complexity of the inertia
of an integer matrix. It was not known whether the inertia is complete for a
complexity class. Since many problems from linear algebra can be solved within
certain logspace counting classes contained in the parallel complexity class (uni-

2 Hoang & Thierauf comput. complex.

form) NC2, it is a natural question whether the inertia can be characterized
by one of these logspace counting classes.

Maybe the most important class for problems in linear algebra is the log-
space counting class GapL (studied by [3]) because it captures the complexity
of computing the determinant of an integer matrix [4, 9, 25, 29, 28]. Some other
complexity classes are defined on the basis of GapL. The class Exact Counting
in Logspace C=L consists of problems that verify the value of a GapL-function.
An example is the singularity problem that asks whether the determinant of an
integer matrix is zero. In an analogous way, the complexity class PL consists
of problems that are lower bounded by some GapL-function. For example,
the problem of testing if the determinant of a matrix is positive, is complete
for PL.

A method to compute the inertia of a matrix is due to Routh and Hurwitz
(see e.g. [12], Volume 2, Chapter XV). Using the Routh–Hurwitz method, one
has to compute the sign of the determinant of several matrices. This motivates
the conjecture that the inertia can be computed in PL. In this paper we sum-
marize the results for the inertia which have been presented in two conference
papers [15, 17]. We show in Section 4 that the inertia can be computed in PL.
In Section 5 we show that the inertia is hard for PL under logspace many-one
reductions. Hence the inertia is complete for PL. In Section 6 we apply our
results to the problem of deciding the stability of a matrix and the congruence
of two matrices.

We want to mention that Neff and Reif [22, 23] have developed a method
to approximate the roots of a polynomial. Hence the eigenvalues of an integer
matrix can be determined by approximating the roots of the characteristic
polynomial of the matrix. However, we don’t see how to use this method to
compute the interia within logspace counting classes.

2. Preliminaries

In this section we describe some basic materials and notations that are used
throughout the paper.

Complexity classes. By L we denote the class of decision problems that
can be solved by logarithmically space bounded Turing machines. FL is the
corresponding function class. NL is the nondeterministic counter part of L.

For a nondeterministic Turing machine M on input x, we denote the num-
ber of accepting and rejecting computation paths by accM(x) and rejM(x),
respectively. The difference of these two quantities is denoted by gapM(x).

The complexity of the inertia 3

That is, gapM(x) = accM(x) − rejM(x). The complexity class #L consists of
all functions f such that f = accM , for some nondeterministic logspace Tur-
ing machine M . Similarly, the class GapL consists of all functions f such
that f = gapM , for some nondeterministic logspace Turing machine M . These
classes were first introduced in the polynomial-time setting as #P [27] and
GapP [11].

To analyze the complexity of the inertia later on, we sum up some known
closure properties of GapL.

Theorem 2.1 ([3]). Let f ∈ GapL. The following functions are in GapL as
well:

(i) f(g(·)), for any g ∈ FL,

(ii)
∑|x|c

i=0 f(x, i), for any constant c,

(iii)
∏|x|c

i=0 f(x, i), for any constant c,

(iv)
(
f(x)
g(x)

)
, for any g ∈ FL such that g(x) = O(1).

The first property has been improved considerably. [1] showed that for a matrix
A = (ai,j), where each element ai,j is a GapL-function ai,j(x), the function
x �→ det(A) is in GapL. The same argument can be used to show that the
function x �→ (Am)i,j is in GapL, for given m, i, j.

Theorem 2.2 ([1]). The determinant and the m-th power of a matrix that
has GapL-computable elements can be computed in GapL.

The inverse of a matrix A can be computed in GapL in the following sense.
If A has an inverse, then we have by Cramer’s rule that A−1 = 1

det(A)
adj(A).

The entries of the adjoint matrix are determinants and can therefore be com-
puted in GapL. Hence we can compute the numerator and the denominator
of the rational elements of A−1 in GapL. In some cases it suffices to compute
the matrix det(A)A−1. Hence all the (integer) entries of this matrix can be
computed in GapL by the above properties.

Based on GapL, complexity classes C=L and PL and hierarchies based on
these classes have been defined in [3] as follows.

◦ A set L is in C=L, if there exists a f ∈ GapL such that for all x:

x ∈ L ⇐⇒ f(x) = 0 .

4 Hoang & Thierauf comput. complex.

◦ A set L is in PL, if there exists a f ∈ GapL such that for all x:

x ∈ L ⇐⇒ f(x) > 0 .

◦ The Exact Counting Logspace Hierarchy (over C=L) collapses to LC=L =
AC0(C=L) [2], where AC0(C=L) it is the class of problems AC0-reduc-
ible to some set in C=L.

◦ The Probabilistic Logspace Hierarchy (over PL) collapses to PL by the
fact AC0(PL) = NC1(PL) = PL [24, 5], i.e. PL is closed under AC0-
and NC1-reductions. In particular, PL is closed under union, intersec-
tion, and complement.

It is known that NL ⊆ C=L ⊆ AC0(C=L) ⊆ PL ⊆ NC2.

Complete problems. Logspace counting classes are interesting because of
the complete problems therein. We list some natural problems from linear
algebra which are complete for these classes. When nothing else is said, by
matrices we mean square integer matrices of order n. All hardness results are
via logspace many-one reductions.

The problem of computing one element of the m-th power of a matrix,
PowElem, and the problem of computing the determinant of a matrix, Det,
are known to be complete for GapL [25, 9, 29, 28].

Consequently, the problem of testing if the determinant of a matrix is zero,
i.e. if a matrix is singular, is complete for C=L. More general, the set

Rank≤ =
{
(A, r) | rank(A) ≤ r

}

is complete for C=L [2]. Hence the complementary set

Rank≥ =
{
(A, r) | rank(A) ≥ r

}

is complete for coC=L.
The verification of the rank can be written as the intersection of a set in

C=L and in coC=L as follows:

v-Rank =
{
(A, r) | rank(A) = r

}

= Rank≤ ∩Rank≥.

The complexity of the inertia 5

This means that v-Rank ∈ C=L ∧ coC=L. Moreover, the problem of com-
puting (one bit of) the rank, i.e. the set

Rank =
{
(A, k, b) | the k-th bit of rank(A) is b

}
.

is a complete problem for AC0(C=L) [2].
Problems complete for PL are

PosDet =
{
A | det(A) > 0

}
,

PosPowElem =
{
(A,m) | (Am)1,n > 0

}
.

The restriction to integer matrices in the above problems is not essential.
Suppose we have a rational matrix A of order n, where the elements are given
as pairs (a, b) to represent the rational a/b, for integers a and b. Let d be the
product of all denominator in A. Now let B = dA. Note that B is an integer
matrix and we have det(A) = det(B)/dn. Now both, the numerator det(B)
and the denominator dn can be computed in GapL. In this sense, we can say
that also the determinant of a rational matrix is in GapL.

The inertia. The inertia of an n × n matrix A is defined as the triple
i(A) = (i+(A), i−(A), i0(A)), where i+(A), i−(A), and i0(A) are the number
of eigenvalues of A, counting multiplicities, with positive, negative, and zero
real part. We can define (with respect to some fixed coding) the problem of
computing the k-th bit of the inertia as follows:

Inertia =
{
(A, k, b) | the k-th bit of i(A) is b

}
.

The verification of the inertia is the set

v-Inertia =
{
(A, i+, i−, i0) | i(A) = (i+, i−, i0)

}
.

Note: Inertia as defined above is a decision problem. When we say that
the inertia is in PL, we actually refer to the decision problem Inertia (and
not to a function computing the inertia).

3. Tools for polynomials

In the computation of the inertia that we present in Section 4, we need to
compute the greatest common divisor (gcd) and the division of univariate poly-
nomials with rational coefficients. Parallel algorithms for polynomial gcd and

6 Hoang & Thierauf comput. complex.

polynomial division are known [6] and there are excellent textbooks [30, 18, 19]
where these algorithms are explained in detail. Here we want to make the point
that polynomial division and gcd are not only in NC2, but in GapL.

Furthermore we present a method to compute the number of distinct real
roots of a polynomial in PL. Based on this, we show how to compute the
number of real roots of a polynomial inPL. The technique hereby is to compute
a square-free decomposition of a polynomial. We give a short summary of these
algorithms. The underlying field are the rationals.

3.1. Polynomial division. There are parallel algorithms for polynomial di-
vision with remainder. [10] showed that polynomial division with remainder is
in P-uniform TC0. This was improved by [13] to DLOGTIME-uniform TC0.
In our case it suffices to consider polynomials p and q such that q is a divisor
of p. We want to compute the polynomial t such that p = tq. Let

p = amx
m + am−1x

m−1 + · · ·+ a0 ,

q = bnx
n + bn−1x

n−1 + · · ·+ b0 ,

t = cm−nx
m−n + cm−n−1x

m−n−1 + · · ·+ c0 ,

where am, bn = 0. From the coefficients of these polynomials we define vectors
a and c, and a (m+ 1)× (m− n+ 1) matrix B as follows.

a =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

am
am−1
...
a1
a0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

bn 0 · · · 0

bn−1 bn
...

... bn−1
. . . 0

b0
...

. . . bn
0 b0 bn−1
...

...
. . .

...
0 0 · · · b0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, c =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

cm−n

cm−n−1
...
c1
c0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Then the condition p = tq is equivalent to the linear equation Bc = a. Note
that matrix B has full column rank because bn = 0. Let B̂ be the square
matrix of order m−n+1 obtained from B by deleting the last n rows, and let
â be the vector obtained from a by deleting the lower n entries. Then we have
B̂c = â, and furthermore B̂ has full rank. Therefore we get the coefficients of
polynomial t by the equation

c = B̂−1â =
1

bm−n+1
n

adj(B̂)â .

It follows that the numerator and the denominator of the rational coefficients
of polynomial t can be computed in GapL.

The complexity of the inertia 7

3.2. Polynomial GCD computation. For univariate polynomials with
leading coefficients different from zero let

p(x) = amx
m + · · ·+ a0 ,

q(x) = bnx
n + · · ·+ b0 ,

for n ≤ m. We want to compute

g = gcd(p, q) = xd + cd−1x
d−1 + · · ·+ c0 .

(W.l.o.g. we can choose g to be monic.)
The Sylvester or resultant matrix of p and q is defined as the matrix S

of order n + m, where n columns are taken from the coefficients of p, and
m columns are taken from the coefficients of q. The following Sylvester matrix
is an example for n = 2 and m = 4:

S =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a4 0 b2 0 0 0
a3 a4 b1 b2 0 0
a2 a3 b0 b1 b2 0
a1 a2 0 b0 b1 b2
a0 a1 0 0 b0 b1
0 a0 0 0 0 b0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

For 1 ≤ e ≤ n, define the following submatrices of S:

◦ S(e) is obtained from S by deleting the last e rows, the last e columns of
coefficients of p, and the last e columns of coefficients of q,

◦ Se is obtained from S by deleting the last 2e rows, the last e columns of
coefficients of p, and the last e columns of coefficients of q.

Let furthermore te be the vector (0, 0, . . . , 0, 1)T of length (m + n − 2e). The
following matrices give us an example for n = 2, m = 4, and e = 1:

S(1) =

⎛

⎜
⎜
⎜
⎜
⎝

a4 b2 0 0
a3 b1 b2 0
a2 b0 b1 b2
a1 0 b0 b1
a0 0 0 b0

⎞

⎟
⎟
⎟
⎟
⎠

, S1 =

⎛

⎜
⎜
⎝

a4 b2 0 0
a3 b1 b2 0
a2 b0 b1 b2
a1 0 b0 b1

⎞

⎟
⎟
⎠ , t1 =

⎛

⎜
⎜
⎝

0
0
0
1

⎞

⎟
⎟
⎠ .

8 Hoang & Thierauf comput. complex.

Then g can be computed by the following two steps:

1. determine the degree of g: this is the value d such that det(Sd) = 0 and
det(Se) = 0 for all e < d,

2. compute the solution x0 of the equation Sdx = td and let c = S(d)x0.
Then the vector c has length m+n−d and contains the coefficients of g,
namely c = (0, . . . , 0, 1, cd−1, . . . , c0)

T .

For the complexity of the two steps we observe that:

◦ The values det(Se) can be computed inGapL for all e ≤ n. The predicate
det(Se) = 0 is in C=L. Recall that C=L ⊆ PL.

◦ In step 2, the equation Sdx = td has the unique solution x0 = (Sd)
−1 td.

By the definition of td, this is the last column of (Sd)
−1. Therefore, the

numerator and the denominator of the rational coefficients cd−1, . . . , c0
of g can be computed in GapL.

The known closure properties of GapL don’t suffice to combine all these
GapL-functions into one GapL-function for each coefficient of g. However,
we are aiming for a PL-algorithm for the inertia and recall that PL is closed
under NC1-reductions. Hence we can afford to define several PL-predicates
and then put some NC1-circuitry on top of them. For example in step 1, it is
easy to construct an NC1-circuit (actually an AC0-circuit) that computes the
degree of g given the predicates [det(Se) = 0] for all e ≤ n. Similar in step 2,
we compute all GapL-functions in parallel for all d ≤ n, i.e. independent of the
result of the first step. Now assume that some PL-predicate is defined for the
GapL-functions that compute the coefficients of g. Then it remains to select
those that that correspond to the correct degree d of g. Again, this is easy to
achieve in NC1. We summarize the outline in the following lemma.

Lemma 3.1. Given two polynomials p and q, the degree of g = gcd(p, q) and
its coefficients can be computed in PL. Furthermore the coefficients of g are
computable in GapL in the sense that there are functions f

(d)
k ∈ GapL such

that if d = deg(g) then f
(d)
k computes the k-th coefficient of g. This holds even

when the coefficients of p and q are computable in GapL.

3.3. The number of distinct real roots of a polynomial. We will ex-
plain next a theorem from linear algebra that shows how to determine the
number of distinct real roots of a polynomial.

The complexity of the inertia 9

Let r(x) = xd + b1x
d−1 + b2x

d−2 + · · · + bd. The companion matrix of r is
the square matrix C of order d defined as

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 · · · 0 −bd
1 0 · · · 0 −bd−1

0 1 · · · 0 −bd−2
...

...
. . .

...
...

0 0 · · · 1 −b1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

The Hankel matrix H = (hi,j) associated with r(x) is defined as

hi,j = trace(C i+j−2) , for i, j = 1, . . . , d ,

where trace(C i+j−2) is the sum of all diagonal elements of C i+j−2. Note that H
is symmetric. By sig(H) we denote the signature of H which is defined by
sig(H) = i+(H)−i−(H). The following theorem can be found in [12], Volume 2,
Theorem 6 on page 202:

Theorem 3.2. Let H be the Hankel matrix associated with polynomial r(x).
Then sig(H) is the number of distinct real roots of r(x).

Note that all the elements of the Hankel matrix H are computable in GapL
and thatH is symmetric. We will show in Theorem 4.6 below that the signature
of symmetric matrices can be computed in PL, even when the entries are
computabe in GapL. That is, we have sig(H) ∈ PL, and therefore

Corollary 3.3. The number of distinct real roots of a polynomial with
GapL-computable coefficients can be determined in PL.

3.4. The number of real roots of a polynomial. In our algorithm to
compute the inertia, it will be necessairy to compute the number of real roots
of a polynomial q(x). By Corollary 3.3 we get only the number of distinct
real roots. Since the real roots of q(x) may have some multiplicity > 1 these
numbers might not be the same.

To solve this problem, we decompose q(x) into polynomials

(3.4) q(x) = q1(x)q2(x) · · · qt(x)

such that each polynomial qj has only roots of multiplicity 1. Such a polynomial
decomposition is called square-free. Observe that for each of these polynomials
the number of its real roots is the same as the number of distinct real roots,

10 Hoang & Thierauf comput. complex.

which can be determined by Corollary 3.3. Therefore, the sum of these numbers
yields the number of real roots of q(x).

There are known methods to compute a square-free decomposition for q(x)
(see e.g. [30]). We give a short outline of one such method that shows that the
coefficients of the polynomials qi(x) can be computed in GapL. Let d be the
degree of q(x).

Let α be a root of q(x) with multiplicity m, i.e.

q(x) = (x− α)m h(x) ,

where h(α) = 0. Consider the first derivative q(1) of q(x):

q(1)(x) = m(x− α)m−1 h(x) + (x− α)m h(1)(x) .

Since α is a root of q(1)(x) with multiplicity m−1, it is also a root of gcd(q, q(1))
with multiplicity m− 1. It follows that the polynomial

q1(x) =
q(x)

gcd(q, q(1))

is square-free.
More general, let α1, . . . , αr be all the distinct roots of q with multiplicities

m1, . . . ,mr, i.e. q(x) =
∏r

j=1(x−αj)
mj , and let q(i)(x) be the i-th derivative of

q(x). Then we have

gcd(q, q(i)) =
r∏

j=1
mj≥i

(x− αj)
mj−i .

It follows that gcd(q, q(i)) is a divisor of gcd(q, q(i−1)) and

qi(x) =
gcd(q, q(i−1))

gcd(q, q(i))

is square-free, for all i. That is, the polynomials qi(x) yield the desired decom-
position (3.4). The sum of the real roots of the polynomials qi(x) is the number
of real roots of q(x), counting multiplicities.

We argue that the algorithm can be implemented in PL.

◦ The coefficients of polynomial q and the derivatives q(i) are computable
in GapL, for i = 1, . . . , d.

The complexity of the inertia 11

◦ By Lemma 3.1, the gcd-algorithm on input q and q(i) computes several
vectors ofGapL-functions, one for each potential degree of the gcd, where
one of them provides the coefficients of gcd(q, q(i)).

◦ To compute polynomial qi(x), we apply the polynomial division algo-
rithm explained above to every pair of vectors from the computation of
gcd(q, q(i−1)) and gcd(q, q(i)). This provides us with polynomially many
vectors of GapL-functions. The vector that corresponds to the correct
degrees of the gcd-polynomials provides the coefficients of qi(x).

◦ Then we apply Corollary 3.3 to each of the polynomials represented by
the above vectors.

◦ Up to this point we have set up several PL-predicates. The final com-
putation is done by a NC1-circuit that uses these predicates as gates.
First we have to determine the actual degrees of gcd(q, q(i)), for all i
(Lemma 3.1). Then we can select the coefficients of polynomials qi(x),
for all i and sum up the number of real roots of q1(x), . . . , qd(x). This
yields the number of real roots of q(x).

We conclude

Lemma 3.5. Let q(x) be a polynomial with coefficients computable in GapL.
The number of real roots of q(x) can be computed in PL.

4. Computing the inertia in PL

In this section we prove the following theorem.

Theorem 4.1. Inertia and v-Inertia are in PL.

Let A be an n × n matrix. For the computation of i(A), the inertia of A,
it suffices to compute i+(A) because we have i−(A) = i+(−A) and i0(A) =
n− i+(A)− i+(−A).

The eigenvalues of A are the roots of the characteristic polynomial χA(x) =
det(xI−A). Hence the inertia has an equivalent formulation with respect to the
location of the roots of polynomials. In order to compute i+(A), we show how
to determine i+(p), the number of roots with positive real part of an integer
polynomial p(x), counting multiplicities, and apply it with p(x) = χA(x).

A known method to determine the number of roots in the right half-plane
of a given real polynomial is provided by Routh and Hurwitz (see e.g. [12],
Volume 2, Chapter XV), which we explain in the next section. However, as we

12 Hoang & Thierauf comput. complex.

will see, the Routh–Hurwitz theorem does not completely solve the problem.
There remains one case that requires considerably more effort to solve. We
show how to handle the remaining case and how to compute i+(p) in PL.

4.1. The Routh–Hurwitz theorem. Let p(x) = xn + a1x
n−1 + a2x

n−2 +
· · · + an be a polynomial with integer coefficients. Define a0 = 1. The Routh–
Hurwitz matrix of p is defined by the n× n matrix Ω(p),

Ω(p) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a1 a3 a5 a7 · · · 0
a0 a2 a4 a6 · · · 0
0 a1 a3 a5 · · · 0
0 a0 a2 a4 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · an

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

That is, the diagonal elements of Ω(p) = (ωi,j) are ωi,i = ai. In the i-th column,
the elements above the diagonal are ωi−1,i = ai+1, ωi−2,i = ai+2, . . . until we
reach either the first row ω1,i or an. In the latter case, the remaining elements
are filled with zeros. The elements below ωi,i are ωi+1,i = ai−1, ωi+2,i = ai−2,
. . . , a1, a0, 0, 0, . . . down to the last row ωn,i.

The successive leading principal minors Di of Ω(p) are called the Routh–
Hurwitz determinants. They are D1 = det(a1), D2 = det

((
a1 a3
a0 a2

))
, . . . , Dn =

det(Ω(p)). The following theorem is taken from [12], Volume 2, Chapter XV,
Theorem 5 on page 201:

Theorem 4.2 (Routh–Hurwitz). If Dn = 0, then the number of roots of the
polynomial p(x) in the right half-plane is determined by the formula

i+(A) = V

(

1, D1,
D2

D1

, . . . ,
Dn

Dn−1

)

,

where V (x1, x2, . . .) computes the number of sign alternations in the sequence
of numbers x1, x2, For the calculation of the values of V , for every group
of l successive zero Routh–Hurwitz determinants (l is always odd!)

Ds = 0 , Ds+1 = · · · = Ds+l = 0 , Ds+l+1 = 0

we have to set V (Ds

Ds−1
, Ds+1

Ds
, . . . , Ds+l+2

Ds+l+1
) = k + 1−(−1)kε

2
, where l = 2k − 1 and

ε = sign(Ds

Ds−1

Ds+l+2

Ds+l+1
). For s = 1, Ds

Ds−1
has to be replaced by D1; and for s = 0,

by a0.

The complexity of the inertia 13

Note that the assumption Dn = 0 is used in the theorem. That is, we can
apply the theorem directly only in the case that the Routh–Hurwitz matrix
Ω(p) is regular. We analyze this regular case in Section 4.2 and then turn to
the singular case where Dn = 0 in Section 4.3.

4.2. The regular case. Assume that Dn = 0. We apply the Routh–Hurwitz
Theorem 4.2 to determine i+(A). It is clear that all elements of the Routh–
Hurwitz matrix are computable in GapL. Therefore, by Theorem 2.2, all the
Routh–Hurwitz determinants Di are computable in GapL, too. It follows that
one can decide inPL whetherDi is positive, negative, or zero. The k-th bit of i+
can be therefore computed by a family of AC0-circuits with PL oracles. Since
AC0(PL) = PL, the sets Inertia and v-Inertia are in PL. By Theorem 2.2
this holds even if the elements of matrix A are computed by GapL-functions.

Theorem 4.3. For matrices, even with GapL-computable elements, that
have a regular Routh–Hurwitz matrix, Inertia and v-Inertia are in PL.

4.3. The singular case. We consider the case when Dn = 0. Our first
step is to reduce the problem to compute i+(p) to compute i0(g) for some
polynomial g derived from p.

It is known from linear algebra (see [12], Volume 2, Chapter XV, Section 7)
that Dn = 0 iff p(x) has a pair of opposite roots , i.e. there is a pair of roots x0

and −x0 such that p(x0) = p(−x0) = 0. Let us split p(x) into even and odd
terms: p(x) = p1(x) + p2(x) where

p1(x) = xn + an−2x
n−2 + an−4x

n−4 + · · · ,
p2(x) = an−1x

n−1 + an−3x
n−3 + · · · .

Note that precisely the pairs of opposite roots of p(x) are the common roots
of p1(x) and p2(x). Therefore the roots of g(x) = gcd(p1(x), p2(x)) are precisely
all the pairs of opposite roots of p(x). Now consider the decomposition

(4.4) p(x) = g(x)p0(x) .

It follows that p0(x) has no pair of opposite roots. Therefore we can determine
i+(p0) in PL by Theorem 4.3.

Since i+(p) = i+(g)+ i+(p0), it now suffices to compute i+(g). However, the
Routh–Hurwitz method doesn’t apply to g(x) because g(x) has purely pairs of
opposite roots. Nevertheless we can conclude that g(x) has an even number of
roots and is therefore of even degree, and we have

(4.5) i+(g) =
1

2

(
deg(g)− i0(g)

)
.

14 Hoang & Thierauf comput. complex.

The degree deg(g) can be determined in PL by Lemma 3.1. In order to compute
i+(g) in PL it therefore suffices to compute i0(g) in PL.

We distinguish the case whether the input matrix A is symmetric or not.

Case 1: A is symmetric. In this case all eigenvalues of A are real. There-
fore the roots of p(x), and hence of g(x) are real too. Hence i0(g) is exactly
the multiplicity of x = 0 as a root of g(x). The latter value is the smallest
exponent of x in g(x) with a nonzero coefficient. Since the coefficients of g(x)
are computable in PL by Lemma 3.1, i0(g) can be determined in PL. We
conclude

Theorem 4.6. For symmetric matrices, even with GapL-computable entries,
Inertia and v-Inertia are in PL.

Recall that we used this theorem in the proof of Corollary 3.3 which in turn
was used in the proof of Lemma 3.5. Hence, by now we can apply the lemma.

Case 2: A is non-symmetric. We reduce the problem to compute i0(g) to
the problem to compute i0(p).

By decomposition (4.4) we have

(4.7) i0(g) = i0(p)− i0(p0) .

Because p0 has no opposite roots i0(p0) can be easily determined by

i0(p0) =

{
1 if p0(0) = 0 ,

0 otherwise .

In summary, in order to compute i+(p) it suffices to compute i0(p), the number
of purely imaginary roots of p(x): from i0(p) we get i0(g) by Equation (4.7),
from which we get i+(g) by Equation (4.5). By adding i+(g) and i+(p0) we
get i+(p). Therefore it remains to show how to compute the number of purely
imaginary roots of a polynomial.

By Lemma 3.5 we can compute the number of real roots of a polynomial
with GapL-computable coefficients in PL. In order to apply this lemma to
determine i0(p), we transform p(x) into a polynomial q(x) by rotating the
complex plane by 90◦. The effect is that the purely imaginary roots of p(x)
become the purely real roots of q(x).

The complexity of the inertia 15

A 90◦ rotation. For matrices A1 and A2 of order n and m, respectively, we
denote the Kronecker or tensor product by A1⊗A2. Let λj(A1) and λk(A2) be
the eigenvalues of A1 and A2. Then the eigenvalues of A1⊗A2 are λj(A1)λk(A2),
for all j, k. For our purpose, observe that the skew-symmetric matrix E =(
0 −1
1 0

)
has the eigenvalues λ1(E) = +i and λ2(E) = −i. Define

B = E ⊗ A =

(
0 −A
A 0

)

,

where A is the given matrix with the characteristic polynomial p(x). Then
the eigenvalues of B are iλk(A) and −iλk(A), where λk(A) runs through all
eigenvalues of A. It follows that the number of real eigenvalues of B is exactly
equal to 2i0(p). Let

q(x) = χB(x) ,

the characteristic polynomial of B. Then we have

2i0(p) = the number of real roots of q .

We conclude that in order to compute i0(p), it suffices to compute the
number of real roots of q(x). The latter problem is in PL by Lemma 3.5. From
the number of real roots of q(x), a NC1 circuit can compute i+(p). Since PL
is closed under NC1-reductions, this proves Theorem 4.1.

5. The inertia is hard for PL

In this section we show a logspace reduction from PosPowElem to Inertia

and v-Inertia. Recall that PosPowElem is complete for PL. Together
with Theorem 4.1 we conclude that the inertia problem is complete for PL
under logspace reductions. In the initial step of the reduction we take an
instance of PosPowElem and construct a matrix with a certain characteristic
polynomial. This is a slight modification of a reduction presented in [16]. We
give a short outline in the following lemma.

Lemma 5.1. Given an instance A and m for PosPowElem and an integer b.
Let a = (Am)1,n. We can construct a matrix B in logspace, such that

χB(x) = xN−2m−1
(
x2m+1 − (a+ b)

)
.

Proof. Interpret the matrix A of order n as the representation of a directed,
weighted, bipartite graph G0 on 2n nodes and e edges, where e is the number

16 Hoang & Thierauf comput. complex.

of nonzero entries of A. That is, the nodes of G0 are arranged in two columns
of n nodes each. In both columns, nodes are numbered from 1 to n. If element
ak,l of A is not zero, then there is an edge with weight ak,l from node k in the
first column to node l in the second column. Next replace each edge (u, v) of
G0 by two edges (u, w) and (w, v), for a new node w with weights 1 and ak,l,
respectively. Call the new graph G1.

Now, take m copies of graph G1, put them in a sequence and identify each
second column of nodes with the first column of the next graph in the sequence.
Call the resulting graph G′. Observe that (Am)1,n is the sum of the weights of
all paths in G′ from node 1 in the first column to node n in the last column.
Call these two nodes s and t, respectively. Then we take 2m − 1 new nodes
u1, . . . , u2m−1 and add the directed path s → u1 → u2 → · · · → u2m−1 → t.
The first edge, (s, u1), gets weight b, the other edges get weight 1. Finally add
an edge from t to s with weight 1. Call the resulting graph G. Note that G
has N = m(n+ e)+n+2m− 1 nodes and all cycles in G have precisely length
2m+ 1.

Let B be the adjacency matrix of G and let χB(x) = xN +
∑N−1

i=0 cix
i be

the characteristic polynomial of B. From combinatorial matrix theory we know
that the coefficients of the characteristic polynomial ci in χB(x) equals the sum
of the disjoint weighted cycles that cover N − i nodes in G, with appropriate
sign (see [7, 8, 31, 20, 21]). Hence we get

cN−(2m−1) = −
(
(Am)1,n + b

)

and all other coefficients must be zero. This proves the lemma. �

Theorem 5.2. Inertia and v-Inertia are hard for PL under logspace re-
ductions.

Proof. Let (A,m) be an input for PosPowElem. One has to decide
whether a = (Am)1,n > 0. Apply Lemma 5.1 with b = 0. Then matrix B
has characteristic polynomial χB(x) = xN−2m−1 (x2m+1 − a). The eigenvalues
of B are the roots of χB(x) = 0. We first consider the case a = 0. The roots of

x2m+1 − a = 0 are a
1

2m+1 ei
2πk

2m+1 for k = 0, 1, . . . , 2m. Geometrically, these roots

are the corners of a regular (2m + 1)-gon inscribed in a circle of radius a
1

2m+1

with its center at the origin. Since 2m + 1 is odd, none of these roots lies on
the imaginary axis. This implies that i0(B) = N − (2m+1), and one of i+(B)
and i−(B) is m and the other is m+ 1. Moreover, these values depend on the

The complexity of the inertia 17

sign of a. Namely, if a > 0, we have

(5.3) i+(B) =

{
m+ 1 , if 2m+ 1 ≡ 1 (mod 4) ,

m , if 2m+ 1 ≡ 3 (mod 4) .

Note in particular that i+(B) is always odd in this case.
If a < 0, then the values for i+(B) just switch and i+(B) is always even.

In the case where a = 0, all the eigenvalues of B are zero, i.e. we have i(B) =
(0, 0, N). In particular, i+(B) is even.

In summary, given A and m, by equation (5.3) we can compute three num-
bers i+, i−, and i0 in logspace such that

(Am)1,n > 0 ⇐⇒ i(B) = (i+, i−, i0)(5.4)

⇐⇒ i+(B) = odd .(5.5)

Equivalence (5.4) provides a reduction from PosPowElem to v-Inertia, and
by equivalence (5.5) we get a a reduction from PosPowElem to Inertia. �

By Theorems 4.1 and 5.2 we obtain the main result of the paper.

Corollary 5.6. Inertia and v-Inertia are complete for PL.

6. Problems related to the inertia

There are several properties of matrices that depend on the number of positive
or negative eigenvalues of the matrix. In this section, we study the stability and
the congruence of matrices. All hardness results are via logspace reductions.

6.1. The stability of matrices. Recall that a matrix A said to be positive
stable, if all its eigenvalues have positive real parts, i.e. if i+(A) = n, where n
is the order of A.

Therefore, the problem of testing if A is positive stable, PosStable, is
equivalent to the problem of deciding whether the inertia of A is (n, 0, 0) and
is therefore in PL too. We show in the following theorem that stability is also
hard for PL.

Theorem 6.1. PosStable is complete for PL.

Proof. It suffices to reduce PosPowElem to PosStable. Let matrix A
and m be given. W.l.o.g. we can assume that all the elements of A are from
{−1, 0, 1} [26]. As a bound for a = (Am)1,n we have |a| ≤ nm.

18 Hoang & Thierauf comput. complex.

We apply Lemma 5.1 with b = −n2m+1. Hence B has the characteristic
polynomial

χB(x) = xN−2m−1
(
x2m+1 − (a+ b)

)
.

By our choice of b we have a+ b < 0.

The 2m+1 nonzero eigenvalues of B lie on the circle of radius r = |a+b| 1
2m+1

around the origin. Because a + b < 0 and 2m + 1 is odd the eigenvalue of B
with the smallest real part is λ1(B) = −r. Define C = nI + B, where I is the
identity matrix of order N . The eigenvalues of C are

λi(C) = n+ λi(B) , for 1 ≤ i ≤ N .

Hence, the eigenvalue of C with the smallest real part is λ1(C) = n − r.
Therefore, we have

a > 0 ⇐⇒ a+ b > b

⇐⇒ − r2m+1 > −n2m+1

⇐⇒ − r > −n

⇐⇒ λ1(C) > 0 .

In summary, we have (Am)1,n > 0 ⇐⇒ C ∈ PosStable. �

Note that thePL-hardness of v-Inertia (Theorem 5.2) also follows directly
from Theorem 6.1.

A matrix is called positive definite, if it is symmetric and positive sta-
ble. Let PosDefinite be the set of all positive definite matrices. Clearly
PosDefinite ∈ PL because the upper bound for PosStable applies to
PosDefinite as well. Unfortunately, the matrix C constructed in the proof
of Theorem 6.1 is not symmetric. Therefore we don’t get a lower bound for
PosDefinite from this proof. A trivial observation is that for any matrix A
we have:

det(A) = 0 ⇐⇒ AAT is positive definite .

Because AAT is symmetric, we have a logspace reduction from coC=L to
PosDefinite.

Proposition 6.2. PosDefinite is in PL and hard for coC=L.

6.2. The congruence of symmetric matrices. Recall that matrices A
and B of order n are called congruent (via a real matrix) if there exists a
nonsingular real matrix S such that A = SBST . Sylvester’s law of inertia

The complexity of the inertia 19

says that two symmetric matrices are congruent if and only if they have the
same inertia. Therefore, the problem of testing if two symmetric matrices
are congruent, MatCong, is in PL by Theorem 4.1. Since the matrix B
constructed in the proof of Theorem 5.2 is not symmetric it doesn’t follow
from this proof that MatCong is hard for PL. The following theorem shows
a lower bound for MatCong.

Theorem 6.3. MatCong is in PL and is hard forAC0(C=L) under logspace
reductions.

Proof. The problem of testing if two matrices have the same rank is known
to be complete for AC0(C=L) [2, 14]. We reduce this problem to MatCong.

Let A and B be two n × n matrices. We will construct two matrices C
and D, such that rank(A) = rank(B) if and only if C and D are congruent.

Define C = ATA and D = BTB. Note that C and D are symmetric and
we have

rank(A) = rank(ATA) = rank(C) .

Similarly, we have rank(B) = rank(D).
Moreover, the eigenvalues of C and D are all real and non-negative. There-

fore, we have rank(C) = sig(C) and rank(D) = sig(D). It follows that A and B
have the same rank if and only if C and D have the same rank and signature,
i.e. if and only if C and D are congruent. This proves the claim. �

Open problems

Close the gap between upper and lower bound forPosDefinite andMatCong.

Acknowledgements

We thank Eric Allender and the referees of the paper for very helpful comments.
Supported by DFG grants Scho 302/7-2.

References

[1] E. Allender, V. Arvind & M. Mahajan. Arithmetic complexity,
Kleene closure, and formal power series. Theory of Computing Systems,
36(4):303–328, 2003.

[2] E. Allender, R. Beals & M. Ogihara. The complexity of matrix
rank and feasible systems of linear equations. Computational Complexity,
8:99–126, 1999.

20 Hoang & Thierauf comput. complex.

[3] E. Allender & M. Ogihara. Relationship among PL, #L, and the
determinant. RAIRO-Theoretical Informatics and Applications, 30:1–21,
1996.

[4] S. Berkowitz. On computing the determinant in small parallel time us-
ing a small number of processors. Information Processing Letters, 18:147–
150, 1984.

[5] R. Beigel & B. Fu. Circuits over PP and PL. Journal of Computer and
System Sciences, 60:422–441, 2000.

[6] A. Borodin, J. von zur Gathen & J. Hopcroft. Fast parallel matrix
and GCD computations. Information and Control, 52:241–256, 1982.

[7] R. Brualdi & H. Ryser. Combinatorial Matrix Theory, volume 39 of
Encyclopedia of Mathematics and its Applications. Cambridge University
Press, 1991.

[8] D. Cvetković, M. Doob & H. Sachs. Spectra of Graphs, Theory and
Application. Academic Press, 1980.

[9] C. Damm. DET = L(#L). Technical Report Informatik-Preprint 8, Fach-
bereich Informatik der Humboldt-Universität zu Berlin, 1991.

[10] W. Eberly. Very fast parallel polynomial arithmetic. SIAM Journal on
Computing, 18(5):955–976, 1989.

[11] S. Fenner, L. Fortnow & S. Kurtz. Gap-definable counting classes.
Journal of Computer and System Sciences, 48:116–148, 1994.

[12] F. Gantmacher. The Theory of Matrices, volume 1 and 2. AMS Chelsea
Publishing, 1977.

[13] W. Hesse, E. Allender & D. Mix Barrington. Uniform constant-
depth threshold circuits for division and iterated multiplication. Journal
of Computer and System Sciences, 65:695–716, 2002.

[14] T.M. Hoang & T. Thierauf. The complexity of verifying the char-
acteristic polynomial and testing similarity. In 15th IEEE Conference on
Computational Complexity (CCC), pages 87–95. IEEE Computer Society
Press, 2000.

The complexity of the inertia 21

[15] T.M. Hoang & T. Thierauf. The complexity of the inertia. In
22nd Foundations of Software Technology and Theoretical Computer Sci-
ence (FSTTCS), Lecture Notes in Computer Science 2556, pages 206–217.
Springer-Verlag, 2002.

[16] T.M. Hoang & T. Thierauf. The complexity of the characteristic
and the minimal polynomial. Theoretical Computer Science, 295:205–222,
2003.

[17] T.M. Hoang & T. Thierauf. The complexity of the inertia and some
closure properties of GapL. In 20th IEEE Conference on Computational
Complexity (CCC), pages 28–37. IEEE Computer Society Press, 2005.

[18] D. Ierardi & D.C. Kozen. Parallel resultant computation. In
J.H. Reif, editor, Synthesis of Parallel Algorithms, pages 679–720. Mor-
gan Kaufmann, 1993.

[19] D. Kozen. The Design and Analysis of Algorithms. Springer-Verlag,
1991.

[20] M. Mahajan&V. Vinay. Determinant: Combinatorics, algorithms, and
complexity. Chicago Journal of Theoretical Computer Science, 1997(5),
1997.

[21] M. Mahajan & V. Vinay. Determinant: Old algorithms, new insights.
SIAM Journal on Discrete Mathematics, 12(4):474–490, 1999.

[22] C.A. Neff. Specified precision root isolation is in NC. Journal of Com-
puter and System Science, 48:429–463, 1994.

[23] C.A. Neff & J.H. Reif. An efficient algorithm for the complex roots
problem. Journal of Complexity, 12:81–115, 1996.

[24] M. Ogihara. The PL hierarchy collapses. SIAM Journal on Computing,
27:1430–1437, 1998.

[25] S. Toda. Counting problems computationally equivalent to the deter-
minant. Technical Report CSIM 91-07, Dept. of Computer Science and
Information Mathematics, University of Electro-Communications, Chofu-
shi, Tokyo 182, Japan, 1991.

[26] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal
on Computing, 20:865–877, 1991.

22 Hoang & Thierauf comput. complex.

[27] L. Valiant. The complexity of computing the permanent. Theoretical
Computer Science, 8:189–201, 1979.

[28] L. Valiant. Why is boolean complexity theory difficult. InM.S. Pater-

son, editor, Boolean Function Complexity, London Mathematical Society
Lecture Notes Series 169. Cambridge University Press, 1992.

[29] V. Vinay. Counting auxiliary pushdown automata and semi-unbounded
arithmetic circuits. In 6th IEEE Conference on Structure in Complexity
Theory, pages 270–284, 1991.

[30] J. von zur Gathen & J. Gerhard. Modern Computer Algebra. Cam-
bridge University Press, 2nd edition, 2003.

[31] D. Zeilberger. A combinatorial approach to matrix algebra. Discrete
Mathematics, 56:61–72, 1985.

Manuscript received 16 November 2007

Thanh Minh Hoang

Institut Theoretische Informatik
Universität Ulm
89069 Ulm, Germany
thanh.hoang@uni-ulm.de

www.uni-ulm.de/in/theo/mitarbeiter/hoang

Thomas Thierauf

Fakultät Elektronik und Informatik
HTW Aalen
73430 Aalen, Germany
thomas.thierauf@uni-ulm.de

image.informatik.htw-aalen.de/Thierauf/

