
ORE Open Research Exeter

TITLE

The complexity of the nucleolus in compact games

AUTHORS

Greco, G; Malizia, E; Palopoli, L; et al.

JOURNAL

ACM Transactions on Computation Theory

DEPOSITED IN ORE

20 February 2018

This version available at

http://hdl.handle.net/10871/31581

COPYRIGHT AND REUSE

Open Research Exeter makes this work available in accordance with publisher policies.

A NOTE ON VERSIONS

The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of
publication

http://hdl.handle.net/10871/31581

The Complexity of the Nucleolus in Compact Games

Gianluigi Greco

Dipartimento di Matematica e Informatica, University of Calabria, Italy

ggreco@mat.unical.it

Enrico Malizia∗, Luigi Palopoli, and Francesco Scarcello

DIMES, University of Calabria, Italy

{emalizia,palopoli,scarcello}@dimes.unical.it

Abstract

The nucleolus is a well-known solution concept for coalitional games to fairly distribute the total available
worth among the players. The nucleolus is known to be NP-hard to compute over compact coalitional games,
that is, over games whose functions specifying the worth associated with each coalition are encoded in terms
of polynomially computable functions over combinatorial structures. In particular, hardness results have
been exhibited over minimum spanning tree games, threshold games, and flow games. However, due to its
intricate definition involving reasoning over exponentially many coalitions, a non-trivial upper bound on its
complexity was missing in the literature and looked for.

The paper faces this question and precisely characterizes the complexity of the nucleolus, by exhibiting
an upper bound that holds on any class of compact games, and by showing that this bound is tight even on
the (structurally simple) class of graph games. The upper bound is established by proposing a variant of
the standard linear-programming based algorithm for nucleolus computation and by studying a framework
for reasoning about succinctly specified linear programs, which are contributions of interest in their own.
The hardness result is based on an elaborate combinatorial reduction, which is conceptually relevant for it
provides a “measure” of the computational cost to be paid for guaranteeing voluntary participation to the
distribution process. In fact, the pre-nucleolus is known to be efficiently computable over graph games, with
this solution concept being defined as the nucleolus but without guaranteeing that each player is granted
with it at least the worth she can get alone, i.e., without collaborating with the other players.

Finally, the paper identifies relevant tractable classes of coalitional games, based on the notion of type

of a player. Indeed, in most applications where many players are involved, it is often the case that such
players do belong in fact to a limited number of classes, which is known in advance and may be exploited for
computing the nucleolus in a fast way.

1 Introduction

1.1 Compact Coalitional Games and Solution Concepts

Coalitional games were introduced by von Neumann and Morgenstern [67] as tools to reason about scenarios
where players can collaborate by forming coalitions with the aim of obtaining higher worths than by acting in
isolation. Formally, a coalitional game G is a pair 〈N, v〉, where N is a finite set of players, and v is a function
associating with each non-empty set of players S ⊆ N , called coalition, the worth v(S) ∈ R that players in S can
obtain by collaborating with each other. The outcome of G is an imputation x, i.e., a vector of payoffs (xi)i∈N

meant to specify the distribution among players in N of the total worth v(N). An imputation x is required to
be efficient, i.e.,

∑
i∈N xi = v(N) (so that the whole available worth is distributed), and individually rational,

i.e., xi ≥ v({i}), for each i ∈ N (so that each player voluntarily opts for participating to the game). The set of
all imputations of G will be hereinafter denoted by X(G).

© ACM 2014. This is the author’s version of the work. It is posted here by permission of ACM for your personal use. Not for
redistribution. The definitive version was published in ACM Transactions on Computation Theory, {Vol. 7, Iss. 1, (Dec. 2014)} DOI:
10.1145/2692372.2692374

∗Part of Enrico Malizia’s work was supported by the European Commission through the European Social Fund and by Calabria
Region. Part of his work was carried out while visiting the Department of Computer Science of the University of Oxford, UK.

1

https://doi.org/10.1145/2692372.2692374

Example 1.1. Consider the production processes of three factories: p, s, and g.
Factory p produces ceramic pipes, with an annual profit of 30M dollars. The industrial process here yields

small ceramic cylinders as the production waste resulting from cutting rough long ceramic pipes to market
established sizes.

Factory s produces house objects made from large pieces of synthetic sponges, with an annual profit of 10M
dollars. In this case, production waste comes in the form of small pieces of synthetic sponge.

Moreover, production wastes of p and s might be used to produce mechanical filters for liquids to be used,
for instance, to filter small fish tank’s water. In fact, if the two factories decided to cooperate to open a common
production line, then their synergy would yield an additional profit of 20M dollars per year.

Factory g produces instead sun glasses, with a profit of 10M dollars per year. In this case, for g to cooperate
with p and/or s does not produce any economic advantage.

The situation above is easily described using a coalitional game G0 = 〈{p, s, g}, v〉, whose players are the
three factories p, s, and g, and where the worth function is such that: v({p}) = 30, v({s}) = 10, v({g}) = 10,
v({p, s}) = v({p}) + v({s}) + 20 = 60, v({p, g}) = v({p}) + v({g}) = 30 + 10 = 40, v({s, g}) = v({s}) + v({g}) =
10 + 10 = 20, v({p, s, g}) = v({p, s}) + v({g}) = 60 + 10 = 70.

An imputation of G0 is any vector x of payoffs such that: xp + xs + xg = 70 (efficiency); and xp ≥ 30, xs ≥ 10,
xg ≥ 10 (individual rationality). That is, an imputation encodes a way to distribute to total available worth
v({p, s, g}) = 70 among the factories, in a way that each factory gets at least the worth it can get without
collaborating with the two other ones. Hence, in this example, x encodes a way to distribute the surplus of 20M,
coming from the cooperation (of p and s). ⊳

In many real-world applications, computing just an arbitrary imputation is often not careful enough for the
worth distribution purposes. In fact, a fundamental problem for coalitional games is to single out the most
desirable elements of X(G) in terms of appropriate notions of fairness and stability of worth distributions, which
are usually called solution concepts (see, e.g., [46]). As an example, the core of a game G = 〈N, v〉 is a well-known
solution concept singling out the set of all imputations x ∈ X(G) that are “stable” because there is no coalition
S ⊂ N whose members can receive a higher payoff than in x by leaving the grand coalition (which is the set of
all players in the game) [22]. Formally, x ∈ X(G) is in the core of the game G if there is no coalition S ⊆ N and
vector (yi)i∈S such that

∑
i∈S yi = v(S) and yi > xi, for all i ∈ S. Equivalently, an imputation x is in the core

if
∑

i∈S xi ≥ v(S) holds, for each coalition S ⊆ N (see, e.g., [46]).

Example 1.2. In the coalitional game G0 defined in Example 1.1, consider a payoff vector x′ such that x′

p = 30,
x′

s = 10, and x′

g = 30. Basically, the surplus of 20M is entirely provided to g, which however does not play
any role in the cooperation between p and s. Hence, while being an imputation in X(G0), the vector x′ does
not appear to be an appropriate outcome of the game. Indeed, this is formalized by the fact that x′ does not
belong to the core, because there exist a coalition {p, s} and a vector y, with yp = 40 and ys = 20, such that
yp + ys = v({p, s}), yp > x′

p, and ys > x′

s. In words, x′ is not stable, because both p and s are better off by
excluding g from the collaboration.

On the other hand, consider the imputation x′′ such that x′′

p = 50, x′′

s = 10, and x′′

g = 10, and notice that x′′

belongs to the core of G0. ⊳

It is easily seen that, in many cases, the stability notion embodied by the core is not sufficient (alone) to
define an appropriate method for worth distribution. Consider, for instance, the imputation x′′ in the above
example. According to x′′, the surplus of 20M dollars (gained via the collaboration between p and s) is entirely
provided to p. Hence, while this worth distribution is “stable” according to the core, it is hardly acceptable by s,
because it completely ignores its contribution to the surplus. In words, s may perceive that the imputation x′′ is
not fair. In fact, addressing fairness issues in the worth distribution process is crucial problem in coalitional
game theory, which motivated the definition of specialized solution concepts, ideally coming as a refinement of
the core.

The focus of this paper is on the nucleolus, which is a solution concept formalized by Schmeidler [56] based
on the idea that a fair distribution of the total available worth should lexicographically minimize the sorted
vector of the excesses associated with all possible coalitions. Its (somehow involved) definition is recalled next.

Let us denote by e(S, x) the excess of a coalition S ⊆ N at the imputation x ∈ X(G), i.e., the value
e(S, x) = v(S) − x(S) measuring the dissatisfaction of S at x, with x(S) being a shorthand for

∑
i∈S xi.

Moreover, let us define θ(x) as the 2|N | − 2 dimensional vector where the various excesses of all coalitions S ⊂ N
are arranged in non-increasing order. Let θ(x)[i] be the i-th element of θ(x) and, for any imputation y ∈ X(G),
let θ(y) ≺ θ(x) denote that θ(y) is lexicographically smaller than θ(x), i.e., there exists a positive integer q such
that θ(y)[i] = θ(x)[i] for all i < q and θ(y)[q] < θ(x)[q]. Then, the nucleolus of G is defined1 as the set

N (G) = {x ∈ X(G) | ∄y ∈ X(G) s.t. θ(y) ≺ θ(x)}.
1The nucleolus can be equivalently defined as the set of all imputations lexicographically maximizing the non-decreasingly sorted

vector over the (satisfaction) values x(S) − v(S), for each coalition S ⊂ N .

2

Example 1.3. Consider, again, the setting of Example 1.1, and the imputation x̄ such that x̄p = v({p})+10 = 40,
x̄s = v({s}) + 10 = 20, and x̄g = v({g}) = 10. We claim that x̄ is the only imputation in the nucleolus of G0.

To prove the claim, observe first that the maximum excess at x̄ over all coalitions is maxS⊆{p,s,g} e(S, x̄) = 0.
In particular, e({p, s}, x̄) = v({p, s}) − x̄p − x̄s = 60 − 40 − 20 = 0 and e({g}, x̄) = v({g}) − x̄g = 10 − 10 = 0,
while e(S, x̄) = −10 holds, for each coalition S ⊂ {p, s, g} with S 6= {p, s} and S 6= {g}. Let now x̄′ be an
imputation such that x̄′ 6= x̄, and consider the following two cases. In the case where x̄′({p, s}) < x̄({p, s}), we
get that e({p, s}, x̄′) > e({p, s}, x̄′). Therefore, maxS⊂{p,s,g} e(S, x̄′) > maxS⊂{p,s,g} e(S, x̄), which implies that
θ(x̄) ≺ θ(x̄′), so that x̄′does not belong to the nucleolus. On the other hand, in the case where x̄′({p, s}) > x̄({p, s}),
we have that x̄′

g < x̄g, because x̄′

p + x̄′

s + x̄′

g = 70 holds, by the efficiency of the imputation x̄′. Thus,
e({g}, x̄′) > e({g}, x̄′) holds. Therefore, maxS⊂{p,s,g} e(S, x̄′) > maxS⊂{p,s,g} e(S, x̄), and again x̄′ does not belong
to the nucleolus. It remains to consider possible worth-redistributions between p and s such that x̄′

s + x̄′

p = 60
holds. Recall that e(S, x̄) = −10, for each coalition S ⊂ {p, s, g} with S 6= {p, s} and S 6= {g}. In particular, p
and s have the same excess at x̄. Therefore, every worth assignment that does not equally divide the surplus 20
between p and s (as in x̄) would alter this equal-excess state, so that either player would increase its excess,
leading to a vector of excesses that is lexicographically greater than θ(x̄). It follows that x̄ is in fact the only
imputation in the nucleolus. ⊳

Note that, in the above example, the only imputation x̄ in the nucleolus of the game G0 belongs to the core
of the game, too. This is not by chance: It is well-known and easy to see that, whenever the core of a game is
not empty, the nucleolus is a subset of the core [56]. The following examples elaborate slightly more involved
scenarios for nucleolus computation, where the core of the game is empty.

Example 1.4. Consider a coalitional game G1 = 〈N, v〉 over the players in N = {a, b, c}, and such that
v({a}) = v({b}) = v({c}) = 0, v({a, b}) = 1, v({a, c}) = −2, v({b, c}) = 2, and v({a, b, c}) = 1. Note that the
game is not monotone, in that adding some player to a given coalition might cause a loss of the available worth.
For instance, for b and c to collaborate with a is not beneficial and in fact leads to a loss of the available worth,
since v({b, c}) = 2 while v({a, b, c}) = 1.

Assume that x̄ is an imputation in the nucleolus of G1, and consider the following expressions for the excesses
at x̄:

• e({a}, x̄) = v({a}) − x̄a = −x̄a;

• e({b}, x̄) = v({b}) − x̄b = −x̄b;

• e({c}, x̄) = v({c}) − x̄c = −x̄c;

• e({a, b}, x̄) = v({a, b}) − x̄a − x̄b = 1 − x̄a − x̄b;

• e({a, c}, x̄) = v({a, c}) − x̄a − x̄c = −2 − x̄a − x̄c;

• e({b, c}, x̄) = v({b, c}) − x̄b − x̄c = 2 − x̄b − x̄c.

Since x̄ is an imputation, we have x̄a + x̄b + x̄c = 1, x̄a ≥ 0, x̄b ≥ 0, and x̄c ≥ 0. Therefore, e({b, c}, x̄) =
v({b, c}) − x̄b − x̄c = 2 − x̄b − x̄c ≥ 1 ≥ v(S) ≥ e(S, x̄) holds, for each coalition S 6= {b, c}. In words, the coalition
{b, c} is the one where the maximum excess is necessarily achieved at x̄, even if the whole available worth is
distributed only between b and c. In order to minimize the maximum excess, it follows that x̄ is such that x̄a = 0
and x̄b + x̄c = 1. We now distinguish two cases.

In the case where x̄b > x̄c, then the above expressions for the excesses at x̄ plus the equalities x̄a = 0 and
x̄b + x̄c = 1 lead to the vector θ(x̄) = (1, 1 − x̄b, 0, −x̄c, −x̄b, −2 − x̄c). Therefore, in order to lexicographically
minimize θ(x̄) and recalling that x̄b ≥ 0, x̄c ≥ 0 and x̄b + x̄c = 1, it must be the case that x̄b = 1 and, hence,
x̄a = x̄c = 0.

In the case where xb ≤ xc, we have instead θ(x̄) = (1, 1 − x̄b, 0, −x̄b, −x̄c, −2 − x̄c), but again we have to set
x̄b = 1 in order to lexicographically minimize θ(x̄).

In both cases, we have shown that x̄ is such that x̄a = x̄c = 0 and x̄b = 1, and that this is hence the only
imputation in the nucleolus. Therefore, the nucleolus suggests us that in the game G1 it is fair that player b
takes the whole worth for herself. On the other hand, it can be checked that the core of the game is empty. For
instance, x̄ is not “stable” according to the core, because players b and c find it convenient to leave the grand
coalition and share the worth v({b, c}) = 2 in a way that each of them receives more than in x̄ (e.g., they can
get 1 + 1

2 and 1
2 , respectively).

The above is of course an extreme scenario for worth distribution, with a player getting the whole worth
for itself. For an example going into the opposite direction, consider the game G′

1 = 〈N, v′〉 where v′({a}) =
v′({b}) = v′({c}) = 0, and v′({a, b}) = v′({a, c}) = v′({b, c}) = v′({a, b, c}) = 1. In this case, by the symmetry
of the worth function, it can be easily checked that the nucleolus consists of the vector x̄′ with x̄′

a = x̄′
b = x̄′

c = 1
3 ,

3

which is a very natural outcome for this game. However, the core of G′
1 is again empty. In particular, x̄′ is not

stable because x̄′
b + x̄′

c < v′({b, c}). ⊳

In all the examples discussed above, the nucleolus happened to be a singleton. In fact, this is not by chance
and it is actually always the case for any game G such that X(G) 6= ∅ [56]. Accordingly, for any such game G,
by N (G) we directly mean the imputation (as it is commonly done in the literature), rather than the set of
which it is the unique element.

Therefore, the nucleolus provides a “one-solution” deterministic method to fairly distribute the total worth
among the players. Moreover, we have already recalled that it is a stable imputation whenever it is possible, in
that it is a subset of the core of the game whenever the latter is not empty. This relationship with the core,
together with its uniqueness property, makes the nucleolus the solution concept of choice in modeling several
and relevant application scenarios (cf. [15]). Some of these scenarios are next discussed.

The Talmund rule A quite long-standing scenario, whose interpretation puzzled people for two millennia, comes
from the Talmund. The story is one of a man who died, by leaving debts 100, 200, and 300 (zuz) to three
distinct creditors c1, c2, and c3, respectively, totalling more than his estate E. The question is how the
estate has to be divided among the creditors. The Talmud stipulates the following division for three values
of E. For E = 100, the estate has to be equally divided. For E = 200, c1, c2, and c3 should receive 50,
75, and 75, respectively. And, for E = 300, creditors should receive 50, 100, and 150, respectively. This
obscure rule has spawned a large literature, until Aumann and Maschler [4] presented a coalitional game
that can be naturally associated with this bankruptcy problem and showed that the nucleolus of the game
precisely prescribes the numbers reported in the Talmud—whereby the Talmund was since then credited
to anticipate cooperative game theory. In fact, since the work of Aumann and Maschler [4], the nucleolus
is often considered as an appropriate solution concept for fair distribution in bankruptcy problems, as
opposed to the naïve proportional division.

Airport pricing policies Airport pricing policies have been illustrated by Littlechild and Thompson [40] in
terms of game theoretic concepts. In particular, an airport pricing policy is discussed where the common
costs of runway construction are shared among the different aircraft types according to a club principle.
Optimal runway size and fair and efficient landing fees are then analyzed in the perspective of game theory
and rules are suggested for charging costs based on the nucleolus. The model is applied to Birmingham
Airport. Airport related games and their relations with the nucleolus are also discussed by Brânzei et al.
[10].

Water supply management Water supply management policies are the application subject discussed by Young
et al. [68]. In particular, the scenario is about the allocation of limited supplies of water and related land
resources for several mutually conflicting purposes, e.g., municipal, industrial, agricultural. A concrete
application scenario refers to water distribution management in a Swedish region, where a main problem
is how to determine a fair charging policy of joint costs. Various cost allocation methods based on
the nucleolus and supposedly well-suited to model the analyzed situation are discussed, from both the
theoretical and the practical standpoints.

Computer networks A file sharing service scenario in a computer network is dealt with by Militano et al. [44].
In the described scenario, there is a service provider offering P2P group-options to its customers, and
acting as a cooperation server coordinator. To reach its economic goals, the service coordinator implements
a policy minimizing user costs, while allowing a cost distribution that they judge to be fair. These are
compulsory conditions for the cooperative process to be accepted by all parties. Users may specify some
constraints over their contribution to the proposed P2P framework. For instance, any user may impose a
limit on the amount of data to be downloaded in the P2P application. A suitable pricing function must be
defined for every non-empty group of users, which may take into account frequent buyers, customers with
high-feedbacks, and so on. Noteworthy, because of the group-discount modeled by the pricing function,
the cost assigned to each node will be always not higher than the cost that node would sustain for a
stand-alone download. In fact, the precise cost is determined according to the nucleolus of a coalitional
game naturally induced by the application.

Job assignment A further natural application modeling that can be attained by employing the nucleolus is
described by Solymosi et al. [63]. Suppose you have n jobs, with each job to be processed by one of n
available machines. Each machine can process any of the jobs, but the efficiency in doing that varies with
the machine. Suppose, further, that jobs and machines are owned by n distinct owners. In the simplest
assignment, each owner might decide to process his job on his machine. However, this may not correspond
to the best solution, which might be counter-wisely attained if involved people shared their resources in

4

job-machines assignments. Being the involved agents self-motivated, a suitable solution to the described
problem is obtained by Solymosi et al. [63] by modeling the application scenario in the form of a suitable
coalitional game and then computing its nucleolus.

Bohm-Bawerk’s horse market Finally, we mention that the nucleolus has been also applied by Núñez and
Rafels [45] to the context of Bohm-Bawerk’s horse market games, that are, two-sided market games
without product differentiation. In this context, the nucleolus emerged to enjoy several desirable economic
properties. Results on related settings have been provided by Granot and Granot [23].

1.2 Research Questions and Contributions

Looking at players’ decision processes about worth distributions, it is sensible to assume players’ reasoning
resources not to come unbounded and to use the tools of computational complexity as a viable mean to model
and reason about this bounded rationality principle [14]. In particular, it is easily noted that computational
questions arising from coalitional games are of interest whenever the function specifying the worth associated with
each possible coalition is encoded in some succinct way, in particular, when it is given in terms of polynomially
computable functions over some combinatorial structure. Indeed, all problems trivialize if we explicitly represent
the worth of every coalition, which requires exponential space in the number of involved players. Coalitional
games whose worth functions can be computed in polynomial time on top of an underlying succinct encoding
will be hereinafter called compact (coalitional) games (see [27]).

A non-exhaustive list of well known-classes of compact games includes graph and hypergraph games [14],
marginal contribution nets [30], games in multi-issue domains [12], weighted voting games [19], minimum cost
spanning tree games [43], flow games [33], linear production games [48], multi-attribute games [31], read-once
(and general) marginal contribution nets [18], skill games [6], matching games [34, 58], path disruption games [5],
(vertex) connectivity games [7], cover and clique games [11].

Coalitional games gained popularity in the context of multi-agent systems and artificial intelligence research
since the nineties, when they had been recognized in these research communities as natural models to understand
and reason about cooperative actions. In particular, inspired by the seminal paper of Deng and Papadimitriou
[14], the questions of finding representation schemes to compactly encode worth functions and assessing over
them the complexity of solution concepts have motivated most of the research on coalitional games in the
artificial intelligence field. However, despite several efforts have been spent and remarkable results have been
achieved, a clear picture of the complexity of reasoning problems involving the nucleolus over compact games
was missing.

The goal of this paper is precisely to shed lights on these complexity issues, in particular, by answering two
open research questions. The starting point of our research is the observation that various classes of compact
games have been studied over the years, and for many of them, such as minimum spanning tree games (over
arbitrary graphs) [20], threshold games [19], flow and linear production games [15], it turned out that computing
the nucleolus is an intractable problem, formally NP-hard.

However, prior to our work, a non-trivial upper bound was missing that holds on all compact games and is
possibly tight for some relevant well-known representation schemes. In fact, establishing this bound is technically
challenging as a consequence of the intricate definition of the nucleolus involving reasoning over exponentially
large vectors, and has been mentioned as an open issue in the literature [19]. Our first contribution is to address
this issue. Indeed,

(1) We focus on the “standard” approaches by Kopelowitz [36] and by Maschler et al. [42] for computing
the nucleolus of coalitional games, both based on solving a succession of linear programs. We shed lights
on the properties of their methods, by showing that the former requires in some cases exponentially
many programs to be solved (w.r.t. the number of players), as opposed to the latter which is known to
converge after linearly many iterations (see, e.g., [34]). This analysis is of independent interest to the
theory of coalitional games, given that the two methods have been sometimes (erroneously) considered as
interchangeable in the literature.

(2) We define a computation method for the nucleolus that is an adaptation of the approach by Maschler et al.
[42]. While each linear program needs to take into account exponentially many coalitions, we show that
only polynomially many representative ones have to be taken into account and computed when moving
from one step to the next. In particular, we provide analytical characterizations for such representatives
(in terms of appropriate concepts of polyhedral geometry) as well as algorithms for their computation.

(3) We show that the above computation method can be executed in polynomial time by a deterministic

5

Turing machine equipped with an NP oracle.2 In terms of complexity classes (of functions), this shows
that computing the nucleolus of any compact coalitional game is feasible in F∆

P

2
. To establish the result,

we need to develop a theory of “succinctly” specified linear programs, that is, roughly speaking, of linear
programs with n variables and O(exp(n)) inequalities, which can be encoded in O(nc) space, for some
constant c. This technical contribution is of independent interest, and may be useful in different fields of
research, because it is about such a basic mathematical tool as the systems of linear inequalities.

(4) We show that the above result is tight even on the simple class of graph games, which is a well-known
class of compact games defined by Deng and Papadimitriou in their seminal paper [14]. Indeed, deciding
whether an outcome is the nucleolus of a graph game turns out to be ∆

P

2
-complete, with this class

being the counterpart of F∆
P

2
for decision problems. The hardness result is based on a rather elaborate

combinatorial reduction, and it is interesting in the light of the fact that the pre-nucleolus of graph games
is tractable, instead. Notably, this latter notion is defined precisely as the nucleolus, but getting rid of the
individual rationality constraints. Thus, the complexity jump between these two solution concepts may be
viewed as the cost to be paid for guaranteeing the voluntary participation to the distribution process.

The complexity analysis carried out on compact coalitional games demonstrated that computing the nucleolus
is intractable in general, thus calling for identifying (possibly large) tractability islands. In particular, by
inspecting our ∆

P

2
-hardness proofs (as well as NP-hardness proofs available in the literature), it emerges that

reductions exploit settings where each player in the game may have a distinctive behavior. On the contrary, it is
everyday life experience that agents, in reasoning within a specific decision context, behave according to a few
behavioral schemes and hence can be classified in a limited number of categories, usually called types. Therefore,
it is natural to ask whether focusing on classes of games with a bounded number of distinct player types is
beneficial as far as the requirements for nucleolus computation are concerned.

The study of coalitional games w.r.t. the number of their players’ types has been recently initiated by Shrot
et al. [59], who mainly focused on graph games and games with synergies among coalitions [13], and then put
forward by Ueda et al. [64] and by Aadithya et al. [1], who extended the analysis to classes of games with
polynomial-time computable functions. Following these approaches, we say that a coalitional game is k-typed if
its players can be partitioned into at most k types, with k being a fixed natural number. Moreover, we say that
a game is (given) in type-based form if the type of each player is known a-priori, i.e., it is part of the input in the
reasoning problems.

Prior to our work, the current knowledge was that problems related to the core, such as determining whether
the core is not empty and checking whether an imputation belongs to the core, are feasible in polynomial time
over compact k-typed games that are moreover given in type-based form (or for which determining players’
types is feasible in polynomial time) [1, 64]. However, extending the analysis to further solution concepts, and in
particular to the nucleolus, has been left as an open research issue [64], which is faced in this paper. Indeed,

(5) We show that the good computational properties proved for the core hold on the nucleolus, too: computing
the nucleolus is feasible in polynomial time over compact k-typed games that are either given in type-based
form, or for which determining players’ types is feasible in polynomial time. As a noticeable specialization,
we get that it is tractable to compute the nucleolus of k-typed graph games.

(6) We go further beyond this result by answering the open question of Ueda et al. [64], thereby shedding
lights on coalitional games where players’ types are considered:

– First, we exhibit a class of compact coalitional games over which even deciding whether two players
have the same type is intractable, formally co-NP-complete. This implies that there is no efficient
method (unless P = NP) to transform an arbitrary compact coalitional game into a game in
type-based form.

– Second, we show that the above intractability result about transforming an arbitrary compact game
into a game in type-based form holds even on games whose number of types is known to be at most 2.
However, hardness is here established under randomized reductions (see [65]). Finally we show that,
under this same complexity model, the result mentioned in (5) is essentially tight, since computing
the nucleolus is intractable even on 2-typed compact games, if the classification of players by types is
not known.

1.3 Organization

The rest of the paper is organized as follows. The setting of compact games and the ∆
P

2
-hardness result that

holds even on the class of graph games is illustrated in Section 2. The linear programming tools for nucleolus
2We assume that the reader is familiar with the basic notions of complexity theory, such as polynomial-time reductions and

complexity classes in the polynomial hierarchy (see, e.g., [32]).

6

computation are illustrated in Section 3, while the analysis of problems about succinct linear programs is reported
in Section 4. These two ingredients are then put together in Section 5 to establish the corresponding membership
result that hold over any class of compact games. The analysis of k-typed compact games is provided in Section 6,
while Section 7 reports the conclusions. There are also three appendices providing, respectively, proofs of some
relevant properties for the reduction in the ∆

P

2
-hardness result, the analysis of a different linear programming

approach to nucleolus computation that is described in the literature, and the formal proof of a result about
computational problems on succinct linear programs.

2 Compact Representations and Nucleolus Computation: Graph
Games

Finding compact representation schemes for coalitional games and assessing over them the complexity of various
solution concepts have attracted much research in the artificial intelligence field, especially in the last few years
(see, for instance, the work by Ågotnes et al. [2] for a classification and discussions about existing approaches).

Following the framework recently proposed by Greco et al. [27], a compact representation R is viewed in this
paper as a method to encode a class of coalitional games, denoted by C(R). Formally, any representation R is
associated with an encoding function ξR and a worth function vR such that, for any coalitional game G = 〈N, v〉
in C(R), ξR(G) is the encoding of the game G, and the function vR(ξR(G), S) returns the worth associated with
any coalition S, according to G. Moreover, we assume that the game encoding includes the list of players, so that
|N | ≤ ||ξR(G)|| holds.3 We say that R is a polynomial-time compact representation (short: P-representation) if
vR can be computed by a deterministic transducer in time being polynomial in the size of the encoding of the
game. Whenever a compact representation R is understood, we shall write just G instead of ξR(G), and v(S)
instead of vR(ξR(G), S).

In the paper, we analyze the computational complexity of reasoning problems over games encoded according
to compact representations. In the analysis, we follow the classical complexity theory based on standard Turing
machines. As usual in this framework, numerical computations actually deal with numbers given in the fractional
form p/q, where p (resp., q) is an integer (resp., natural number) encoded in binary. Therefore, in particular,
the worth associated with any coalition is assumed to be a rational number, rather than an arbitrary (possibly
irrational) real number. For models of computations tailored to work with real numbers (as well as with other
fields), we refer the interested reader to [8]).

In this section, we start by studying the complexity of computing the nucleolus over the class of graph games
defined by Deng and Papadimitriou [14]. Before presenting our results, we next recall some basic notions and
facts on graph games.

2.1 Graph Games and (Pre-)Nucleolus Computation

Let us denote by GGR the graph-game compact representation defined by Deng and Papadimitriou [14]. According
to this representation, a coalitional game G ∈ C(GGR) is encoded as a weighted graph ξGGR(G) = 〈(N, E), w〉, whose
nodes in N denote the players, and where the list w encodes the edge weighting function, so that w(e) ∈ Q is the
weight associated with the edge e ∈ E. Then, the worth vGGR(ξGGR(G), S) is computed for every coalition S ⊆ N
by taking the sum of the weights of all edges of ξGGR(G) included in S, i.e., vGGR(ξGGR(G), S) =

∑
e∈E|e⊆S w(e).

Note that GGR is a P-representation.

Example 2.1. Consider the graph game (encoded by the weighted graph) depicted on the top-left part of Figure 1
over the set of players {a, b, c}. It is easily seen that: the coalition {a, b, c} gets a worth v({a, b, c}) = 2−2+1 = 1;
coalitions {a, b}, {a, c}, and {b, c} get worth v({a, b}) = 1, v({a, c}) = −2, and v({b, c}) = 2, respectively, and all
coalitions formed by one player get worth 0. Thus, the worth function is precisely the one of the game discussed
in Example 1.4. However, note that the graph encodes 23 coalition worths, via 3 weights only. Indeed, in this
representation, O(n2) weights succinctly encode the 2n coalition worths, where n is the number of players. ⊳

Deng and Papadimitriou [14] studied the computational complexity of a number of solution concepts over
graph games, such as the core and the pre-nucleolus. This latter solution concept is defined precisely as the
nucleolus, but by getting rid of the requirement that the outcome must be individually rational: Formally, we
say that a vector of payoffs x is a pre-imputation of a coalitional game G = 〈N, v〉 if x(N) = v(N). Then, the
pre-nucleolus of G is the set of all pre-imputations lexicographically minimizing the sorted vector of excesses
associated with all possible coalitions. In fact, as for the nucleolus, the pre-nucleolus is always a singleton (and
will be therefore identified with its unique element).

3Note that we use the standard notation where | · | denotes the cardinality of a set or a list, and || · || denotes the size of any
object encoding.

7

Figure 1: The graph game in Example 1.4.

Deng and Papadimitriou [14] observed that the pre-nucleolus of a graph game can be computed in polynomial
time, by showing that it can be characterized by a simple closed form: For any graph game G = 〈(N, E), w〉, the
pre-nucleolus x̂ is such that

x̂i =
1

2

∑

j∈N |{i,j}∈E

w({i, j}), for each i ∈ N.

Example 2.2. Consider again the graph game discussed in Example 2.1, and the pre-imputation x̂ such that
x̂a = − 1

2 , x̂b = 3
2 , and x̂c = 0 (hence x̂a + x̂b + x̂c = v({a, b, c}) = 1). Figure 1 reports the excess e(S, x̂), for

each coalition S ⊂ {a, b, c}, plus the vector θ(x̂) = (1
2 , 1

2 , 0, 0, − 3
2 , − 3

2) associated with x̂, where such excesses are
lexicographically ordered in non-increasing order.

According to the result by Deng and Papadimitriou [14], x̂ is the pre-nucleolus of the game, and hence there
is no pre-imputation x such that θ(x) ≺ θ(x̂). For instance, consider the pre-imputation x such that xa = 1 and
xb = xc = 0, and check that θ(x) = (2, 0, 0, 0, −1, −3) holds, whence θ(x̂) ≺ θ(x). ⊳

Note that if all individual rationality constraints are satisfied by the pre-nucleolus x̂, then x̂ is also the
nucleolus of the game—indeed, if by contradiction there is an imputation x such that θ(x) ≺ θ(x̂) holds, then x
would also witness that x̂ is not the pre-nucleolus. Thus, the above discussed closed form for the pre-nucleolus
might provide us (even) with the nucleolus in some lucky situations. In general, however, this is not the case.
For instance, the pre-nucleolus x̂ of the game discussed in Example 2.1 (and Example 1.4) is such that x̂a = − 1

2 ,
x̂b = 3

2 , and x̂c = 0 (in particular, it is not an imputation because of x̂a < v({a}) = 0), whereas we know by
Example 1.4 that the nucleolus x̄ is such that that x̄a = 0, x̄b = 1, and x̄c = 0.

Given that differences between the nucleolus and the pre-nucleolus are confined to the individual rationality
constraints, it is natural to expect that the nucleolus of graph games is tractable in its turn, possibly again
with a simple closed-form characterization. However, the question of whether the nucleolus of graph games is
efficiently computable was not answered by Deng and Papadimitriou [14]. Moreover, despite that the setting of
graph games has been tremendously influential in the study of compact encodings for coalitional games and that
our knowledge of the complexity issues arising there is now fairly complete, this question remained without an
answer so far. Next, we shall answer this question by surprisingly highlighting that, to guarantee individual
rationality, a significant computational cost has to be paid.

2.2 Hardness on Graph Games: The Cost of Individual Rationally

In this section, we show that given a game G ∈ C(GGR) encoded as a graph game, deciding whether a vector is
the nucleolus of G is ∆

P

2
-hard. To show this hardness result, the reduction is based on encoding 3CNF Boolean

formulae in terms of suitable graph games,4 where recall that such formulae are in conjunctive normal form and
each clause contains at most three literals, i.e., positive or negated variables.

Hereinafter, assume that a 3CNF Boolean formula φ = c1 ∧ · · · ∧ cm is given over a set {α1, . . . , αn} of
variables, with n ≥ 2.

Based on the formula φ, we first define the graph (N
N

, E
N

) as follows—an illustration is reported in Figure 2.
The set N

N
of its nodes/players is such that N

N
= Nk ∪ Nk ∪ Nr, where Nk is the set of players containing:

4This is a non-trivial extension of a reduction that can be found in the work by Greco et al. [27].

8

Figure 2: The game N (φ̂), where φ̂ = (α1 ∨ ¬α2 ∨ α3) ∧ (¬α1 ∨ α2 ∨ α3). Nodes in Nk are reported in the gray
area.

• a variable player αi, for each variable αi in φ;

• a clause player cj , for each clause cj in φ;

• a literal player ℓi,j (either ℓi,j = αi,j or ℓi,j = ¬αi,j), for each clause cj and each literal ℓi (ℓi = αi or
ℓi = ¬αi, respectively) occurring in it;

• a special player “chall”;

where Nk = {p | p ∈ Nk ∧ p 6= α1} is the set containing a (over-lined) copy of each player in Nk but α1, and
where Nr = {a, a, b, b}.

The set E
N

of its edges is such that E
N

= Ek ∪ Ek ∪ Er ∪ Eb, where (i) Ek is the set of edges containing:

• an edge {chall, αi}, for each variable αi in φ;

• an edge {cj , ℓi,j}, for each clause cj and literal ℓi occurring in it;

• an edge {ℓi,j , ℓi′,j}, for each clause cj , and for each pair of distinct literals ℓi and ℓi′ occurring in it;

• an edge {αi,j , ¬αi,j′}, for each pair of distinct clauses cj and cj′ , and for each variable αi occurring
positively in cj and negated in cj′ ;

• an edge {αi, ¬αi,j}, for each variable αi and each literal player of the form ¬αi,j (encoding that αi occurs
negated in the clause cj).

(ii) Ek = {{p, q} | {p, q} ∈ Ek ∧ {p, q} ⊆ Nk} ∪ {{α1, q} | {α1, q} ∈ Ek ∧ q ∈ Nk} is the set containing a copy
of each edge in Ek over the nodes in Nk ∪ {α1} corresponding to those in Nk, (iii) Er = {{a, b}, {a, b}, {b, b}},
and (iv) Eb = {{p, q} | p ∈ Nk \ {α1} ∧ q ∈ Nk} is the set of edges between each node in Nk \ {α1} and each
node in Nk.

We now define the weighted graph N (φ) = 〈(N
N

, E
N

), w〉 in a way that edges in E
N

can be partitioned into
the following three groups based on their weights.

9

(Positive edges)

• w({cj , ℓi,j}) = w({cj , ℓi,j}) = 2n+3, for each clause cj and literal ℓi occurring in it;

• w({chall, αi}) = w({chall, αi}) = 2i, for each 2 ≤ i ≤ n;

• w({chall, α1}) = w({chall, α1}) = 21.

(“Penalty” edges)

• w({ℓi,j , ℓi′,j}) = w({ℓi,j , ℓi′,j}) = −2m+n+7, for each clause cj and pair of distinct literals ℓi and ℓi′

occurring in it;

• w({αi,j , ¬αi,j′}) = w({αi,j , ¬αi,j′}) = −2m+n+7, for each pair of distinct clauses cj and cj′ , and for
each variable αi occurring positively in cj and negated in cj′ ;

• w({αi, ¬αi,j}) = w({αi, ¬αi,j}) = −2m+n+7, for each clause cj and variable αi with i 6= 1 occurring
negated in it;

• w({α1, ¬α1,j}) = w({α1, ¬α1,j}) = −2m+n+7, for each clause cj where α1 negatively occurs;

• w({p, q}) = −2m+n+7, for each pair of players p 6= α1 and q, with p ∈ Nk and q ∈ Nk.

(“Normalizer” edges) Let ∆ = 1 −
∑

e∈E
N

|e⊆Nk∪Nk
w(e). Then, let w({a, b}) = ∆ + 2, w({a, b}) = ∆ + 2, and

w({b, b}) = −∆ − 4.

Note that the size of the representation of all weights is polynomial in the number of variables and clauses of
φ and that, given the formula φ, the corresponding weighted graph N(φ) can be built in polynomial time. In
addition, the construction features three important properties, which are stated below.

Lemma 2.3. Let N(φ) = 〈(N
N

, E
N

), w〉 be the graph game associated with a 3CNF formula φ defined over
the set {α1, . . . , αn} of variables. Assume that n > 1. Then,

(A) ∆ > 1;

(B) D + w(e) < 0, for each penalty edge e, where D = max
S⊆Nk∪Nk

v(S) denotes the maximum worth over all

the coalitions of players in Nk ∪ Nk.

(C) v(N
N

) = 1.

Proof. Let us first show that (A) holds. Consider the values P + and P − such that

• P + =
∑

e∈E
N

,e⊆Nk∪Nk,w(e)>0 w(e), i.e., P + is the sum of the weights associated with the positive edges,
and

• P − =
∑

e∈E
N

,e⊆Nk∪Nk,w(e)<0 w(e), i.e., P − is the sum of the weights associated with the penalty edges,

and observe that ∆ = 1 − P + − P −. In particular, as n > 1 holds, N (φ) contains at least one penalty edge, and
hence −P − ≥ 2m+n+7. It follows that ∆ ≥ 1 + 2m+n+7 − P +.

Consider now the value P +. By looking at the definition of positive edges, it is immediate to check that
P + ≤ 2

(
3m2n+3 +

∑n

i=1 2i
)
. Therefore, we get:

P + ≤ 2

(
3m2n+3 +

n∑

i=1

2i

)
≤ 2

(
2m+n+5 + 2n+1

)
≤ 2m+n+6 + 2n+2 < 2m+n+7.

By combining the above relationship with the fact that ∆ ≥ 1 + 2m+n+7 − P +, we obtain that ∆ > 1 holds,
which proves (A).

In order to conclude the proof of (B), let us observe that a trivial upper bound for D = max
S⊆Nk∪Nk

v(S) is
precisely the value P + of the sum of the weights associated with the positive edges. Thus, D ≤ P + < 2m+n+7

holds, i.e, D − 2m+n+7 < 0. Eventually, (B) follows by observing that w(e) = −2m+n+7 holds, for each penalty
edge.

Finally, concerning (C), note that v(N
N

) =
∑

e∈E
N

w(e) = 1 holds, because w({a, b})+w({a, b})+w({b, b}) =

∆ = 1 −
∑

e∈E
N

|e⊆Nk∪Nk
w(e) and given that E

N
= {e ∈ E

N
| e ⊆ Nk ∪ Nk} ∪ Er with {e ∈ E

N
| e ⊆

Nk ∪ Nk} ∩ Er = ∅.

10

By exploiting the above construction and the properties in Lemma 2.3, the main result of this section can be
shown.

Theorem 2.4. On the class C(GGR) of graph games, deciding whether a vector is the nucleolus is ∆
P

2
-hard (even

if the vector is known to be an imputation).5

Proof. Let φ = c1 ∧ · · · ∧ cm be a satisfiable 3CNF formula over a set {α1, . . . , αn} of variables that
are lexicographically ordered (according to their indices). Deciding whether α1 (that is, the lexicographically
least significant variable) is true in the lexicographically maximum satisfying assignment for φ is a well-known
∆

P

2
-complete problem [37]. Assume, w.l.o.g., that n > 1, i.e., there are at least two variables, and that the

assignment mapping all variables to false is not satisfying.
Consider the graph game N(φ) = 〈(N

N
, E

N
), w〉 built based on φ. We shall show that deciding whether an

imputation is the nucleolus of N(φ) is as hard as deciding whether α1 is true in the lexicographically maximum
satisfying assignment for φ. We start by stating a useful property, whose proof is in Appendix A.

Property 2.4.(1). Let S be a coalition such that S ⊆ Nk ∪ Nk and v(S) > 0. Then, S ∩ (Nk \ {α1}) 6= ∅
if, and only if, S ∩ Nk = ∅.

A coalition solely built from players in Nk is said primal, whereas a coalition built from players in Nk ∪ {α1}
is said dual. In fact, from the definition of the game N(φ), it is immediate to observe that there is a one-
to-one correspondence between primal and dual coalitions. In particular, for each primal coalition S, let
S = {p | p ∈ S ∧ p 6= α1} ∪ {α1 | α1 ∈ S} denote its corresponding dual coalition, and observe that v(S) = v(S)
holds. Moreover, for each dual coalition S, let S = {p | p ∈ S} ∪ {α1 | α1 ∈ S} denote its corresponding primal
coalition, and observe that v(S) = v(S) holds.

Below, we shall state further properties of the construction, by focusing, w.l.o.g., on primal coalitions only.
Again, proofs are reported in Appendix A.6

For any assignment σ, we denote by σ |= φ the fact that σ satisfies φ, and by σ(αi) = true (resp.,
σ(αi) = false) the fact that αi evaluates to true (resp., false) in σ. Moreover, for any coalition S, let σS denote
the assignment such that σS(αi) = true (resp., σS(αi) = false) if αi occurs (resp., does not occur) in S.

Property 2.4.(2). maxS⊆Nk
v(S) = m2n+3 + maxσ|=φ

∑
αi|σ(αi)=true

2i. Moreover, let S∗ ⊆ Nk be a

coalition such that v(S∗) = maxS⊆Nk
v(S), and let σ∗ be the lexicographically maximum satisfying assignment.

Then, chall ∈ S∗ and σS∗
= σ∗.

Property 2.4.(3). Let S∗ ⊆ Nk be a coalition with v(S∗) = maxS⊆Nk
v(S). Then, for each coalition

S ⊆ Nk ∪ Nk with S 6= S∗ and S 6= S∗, v(S∗) = v(S∗) ≥ v(S) + 2 holds. Moreover, for each imputation y,
e(S∗, y) ≥ e(S, y) + 1 and e(S∗, y) ≥ e(S, y) + 1 hold.

Property 2.4.(4). For any coalition S, v(S) = v(S ∩ Nr) + v(S ∩ (Nk ∪ Nk)).

Property 2.4.(5). Let S∗ ⊆ Nk be a coalition with v(S∗) = maxS⊆Nk
v(S). Then, the eight coalitions

S1 = S∗ ∪{a, b}, S2 = S∗ ∪{a, b}, S3 = S∗ ∪{a, b}, S4 = S∗ ∪{a b}, S5 = S1 ∪{a}, S6 = S2 ∪{a}, S7 = S3 ∪{a},
and S8 = S4 ∪ {a} are such that v(S1) = · · · = v(S8) = max

S⊆Nk∪Nk∪Nr
v(S) = v(S∗) + ∆ + 2.

Property 2.4.(6). For each imputation y and each coalition S 6∈ {S1, . . . , S8}, it holds that e(Si, y) >
e(S, y), for each i ∈ {1, . . . , 8}.

Armed with the above properties, consider the payoff vector x that assigns 0 to all players of N(φ), but to
α1, which receives 1. Note that x is an imputation. Indeed, x is individually rational as v({p}) = 0, for each
player p ∈ N

N
, and it is efficient since v(N

N
) = 1, by Lemma 2.3.(C).

We now show that: α1 is true in the lexicographically maximum satisfying assignment σ∗ for φ ⇔ x is the
nucleolus.

(⇒) Assume that α1 is true in σ∗, and let S∗ be such that v(S∗) = maxS⊆Nk
v(S). Recall that, given the

correspondence between primal and dual coalitions, v(S∗) = v(S∗) holds. Consider the coalitions S1, . . . , S8

defined in the statement of Property 2.4.(5) and note that, by Property 2.4.(2), S1 ∩ · · · ∩ S8 = {α1} holds.
Hence, e(Si, x) = v(Si)−1 holds, for each i ∈ {1, . . . , 8}. Consider now any imputation y 6= x (so that yα1

< 1)
and note that, for each coalition Si, with i ∈ {1, . . . , 8}, y(Si) ≤ 1 holds. Indeed, y(N

N
) = v(N

N
) = 1 because

of the efficiency of y and by Lemma 2.3.(C); moreover, y must assign to each player a non-negative payoff
because of the individual rationality constraints (recall that v({p}) = 0, for each player p ∈ N

N
). Eventually,

e(Si, x) = v(Si) − 1 and y(Si) ≤ 1 lead to conclude that e(Si, y) ≥ e(Si, x) holds, for each i ∈ {1, . . . , 8}.

5In fact, from the tractability of computing the pre-nucleolus of graph-games [14], this theorem also entails that even the
knowledge of the pre-nucleolus does not help, in general.

6Some properties are only needed to prove subsequent properties. Yet, they are listed here to provide a clear picture of the flow
of the proof.

11

Now, we claim that there is a coalition Sh, with h ∈ {1, . . . , 8}, such that e(Sh, y) > e(Sh, x). Indeed,
assume for the sake of contradiction that e(Si, y) = e(Si, x), for each i ∈ {1, . . . , 8}. In particular, assume
that e(S1, y) = e(S1, x) and e(S4, y) = e(S4, x) hold. From these relationships, we can conclude that
e(S1, y) = e(S4, y), because e(S1, x) = e(S4, x) holds by Property 2.4.(5) and the fact that e(S1, x) = v(S1) − 1
and e(S4, x) = v(S4) − 1. In its turn, e(S1, y) = e(S4, y) implies that y(S1) = y(S4), so that we have in
fact y(S1) = y(S4) = 1, because v(S1) − y(S1) = e(S1, y) = e(S1, x) = v(S1) − 1. To conclude, observe that
S1 ∩ S4 = {α1} and recall that y is an imputation. Hence, y(S1) = y(S4) = 1 implies that yα1

= 1, which is
impossible.

We thus know that, for any imputation y 6= x, there is a coalition Sh, with h ∈ {1, . . . , 8}, such that
e(Sh, y) > e(Sh, x). In fact, this immediately entails that θ(x) ≺ θ(y) holds. Indeed, e(S1, x) = . . . = e(S8, x)
holds by Property 2.4.(5) and given that e(Si, x) = v(Si) − 1, for each i ∈ {1, . . . , 8}. By Property 2.4.(6), the
coalitions in {S1, . . . , S8} are those over which the maximum excess is achieved, for any specific imputation
being considered. It follows that x is the nucleolus.

(⇐) Assume that α1 is false in the lexicographically maximum satisfying assignment σ∗ for φ, and let S∗

be such that v(S∗) = v(S∗) = maxS⊆Nk
v(S). Because of Property 2.4.(2), it is the case that α1 6∈ S∗

and α1 6∈ S∗. Thus, e(S∗, x) = e(S∗, x) = v(S∗) = v(S∗). Moreover, by Property 2.4.(5), e(Si, x) =
e(S∗, x) + ∆ + 2 = e(S∗, x) + ∆ + 2 holds, for each i ∈ {1, . . . , 8}. Consider now the imputation y such that
ychall = y

chall
= 1

2 and yp = 0, for any other player p ∈ N
N

\ {chall, chall}. Note that, by the same property,
we have e(Si, y) = e(S∗, y) + ∆ + 2. Due to Property 2.4.(2), chall ∈ S∗ (and chall ∈ S∗, by duality). Thus,
e(S∗, y) = e(S∗, y) = v(S∗) − 1

2 = v(S∗) − 1
2 = e(S∗, x) − 1

2 = e(S∗, x) − 1
2 . That is, e(S∗, y) < e(S∗, x) and

e(S∗, y) < e(S∗, x). Therefore, e(Si, y) = e(S∗, y) + ∆ + 2 < e(S∗, x) + ∆ + 2 = e(Si, x) holds, for each
i ∈ {1, . . . , 8}. To conclude, recall from Property 2.4.(6) that the maximum excess is achieved over a coalition
in {S1, . . . , S8}, for any specific imputation being considered. Hence, x is not the nucleolus.

Before leaving the section, following the formal setting in [27], we note that the above result immediately
generalizes to all those classes of games that are at least as expressive as graph games.

Let R1 and R2 be a pair of game representations. We say that R2 is at least as expressive (and succinct) as R1,
denoted by R1 -e R2, if there exists a function f in FP that translates a game ξR1(G) represented in R1 into an
equivalent game ξR2(G) represented in R2, that is, into a game with the same players and the same worth function
as the former one. More precisely, we require that ξR2(G) = f(ξR1(G)) and vR1(ξR1(G), S) = vR2(ξR2(G), S),
for each coalition of players S in the game G.

With the above notions in place, we can now show the following.

Corollary 2.5. Let R be any compact representation such that GGR -e R. On the class C(R), deciding whether
a vector is the nucleolus is ∆

P

2
-hard.

Proof. From the ∆
P

2
-hardness for graph games, we know that there is a polynomial-time reduction f1 from

any ∆
P

2
problem Υ to the problem of deciding whether a vector is the nucleolus of graph games. Moreover,

recall that GGR -e R means that there exists a polynomial-time function f2 that translates any graph game
ξGGR(G) into an equivalent game f2(ξGGR(G)) belonging to C(R), that is, into a game with the same worth function
and, thus, the same nucleolus as the former one. Therefore, the composition of f1 and f2 is a polynomial-time
reduction from any ∆

P

2
problem to the the problem of deciding whether a vector is the nucleolus of games in

C(R).

As an example, the above ∆
P

2
-hardness result applies to the class of games defined by marginal contribution

nets [30], which is a well-known representation scheme at least as expressive as graph games [27].
In fact, in the following, we shall show that the bound provided by Corollary 2.5 is tight, in the sense that

computing the nucleolus of any compact coalitional game is feasible in F∆
P

2
.

3 Linear Programming Tools for Computing the Nucleolus

Several algorithms to compute the nucleolus of coalitional games have been proposed in the literature, but none
of them has been designed to deal with the issues arising from compact games. The goal of this section is to
illustrate how the classical “linear programming approach” [25, 34] may be adapted by using a bunch of new
technical tools developed for this purpose.

12

3.1 Elements of Polyhedral Geometry

We first illustrate some elements of polyhedral geometry that will be relevant to our end. We refer the reader to
the works by Papadimitriou and Steiglitz [49] and Grötschel et al. [28] for further background.

Basic Notions. Unless otherwise specified, any vector x ∈ Rn is viewed in this context as a column vector (i.e.,
an n × 1 matrix). For a row vector z, the corresponding (column) vector is obtained as the transposition of z,
denoted by zT (and vice versa). For any pair of vectors x, y ∈ Rn, xT y is their inner product

∑n

i=1 xiyi.
For any pair of natural numbers m, n > 0, we denote by Rm×n the set of all m × n matrices with entries in R.

The i-th row of a matrix A ∈ Rm×n is denoted by Ai,� (note that AT
i,� ∈ Rn), the j-th column of A is denoted by

A
�,j (note that A

�,j ∈ Rm), and the i-th entry of A
�,j (in fact, the j-th entry of AT

i,�) is denoted by Ai,j (note
that Ai,j ∈ R).

A vector x ∈ Rn is a linear combination of the vectors v1, . . . , vk ∈ Rn, if there are k real numbers λ1, . . . , λk

such that x =
∑k

h=1 λhvh; the combination is proper if neither λh = 0 for each h ∈ {1, . . . , k}, nor λh̄ = 1 for
some h̄ ∈ {1, . . . , k} and λh′ = 0 for each h′ 6= h̄. A subset S ⊆ Rn is linearly independent if none of its members
is a proper linear combination of the vectors in S; the rank of S, denoted by rank(S), is the cardinality of the
largest linearly independent subset of S.

A vector x ∈ Rn is an affine combination of the vectors v1, . . . , vk ∈ Rn, if there are k real numbers λ1, . . . , λk

such that x =
∑k

h=1 λhvh and
∑k

h=1 λh = 1. The affine hull of a non-empty set S ⊆ Rn, denoted by aff (S), is
the set of all the vectors in Rn that are affine combinations of finitely many vectors of S.

Systems of Linear Inequalities. If A ∈ Rm×n, b ∈ Rm, and x = [x1 . . . xn] is a vector of n variables, then the
set {Ai,�x ≤ bi | i ∈ {1, . . . , m}} is called a system of linear inequalities and is shortly denoted by Ax ≤ b. Any
vector x̄ ∈ Rn such that Ax̄ ≤ b (i.e., Ai,�x̄ ≤ bi, for each i ∈ {1, . . . , m}) is a (feasible) solution to the system.
The set of all solutions is a polyhedron, which will be denoted by Ω(Ax ≤ b) in the following.

A polyhedron Ω(Ax ≤ b) is bounded if there is a real number k ∈ R such that, for each x ∈ Ω(Ax ≤ b) and
each j ∈ {1, . . . , n}, it holds that −k ≤ xj ≤ k. A bounded polyhedron is also called a polytope.

Example 3.1 (Imputations of Coalitional Games). Given a coalitional game G = 〈N, v〉, the set X(G) of all
imputations is a polytope. Indeed, X(G) can be characterized as the set of all the solutions to the follow system
of linear inequalities:

A(G)x ≤ b(G) =

−x(N) ≤ −v(N)
x(N) ≤ v(N)
−xi ≤ −v({i}), ∀i ∈ N

where the first two inequalities enforce the efficiency of x, i.e., x(N) = v(N), while the remaining ones enforce
the fact that x is individually rational. ⊳

Let Ax ≤ b be a system of linear inequalities. For a vector x̄ ∈ Ω(Ax ≤ b), we denote by act(x̄) = {‘Ai,�x ≤
bi’ | Ai,�x̄ = bi} the set of the inequalities that are satisfied as equalities at x̄, and we say that they are active at
x̄. For any inequality ‘Ai,�x ≤ bi’, the vector AT

i,� is called its characteristic vector. For operations on sets of
vectors, by slightly abusing notation, we freely use inequalities to mean their characteristic vectors. Thus, for a
set of inequalities I in the system, rank(I) denotes rank({AT

i,� | ‘Ai,�x ≤ bi’ ∈ I}). A vector x̄ ∈ Ω(Ax ≤ b) is a
basic solution if rank(act(x̄)) = n. It is well-known that basic solutions can be geometrically interpreted as the
vertices of the polyhedron Ω(Ax ≤ b), and that every polytope has at least one basic solution.

For a system Ax ≤ b, we say that the inequality ‘Ai,�x ≤ bi’ is an implied equality if, for each x̄ ∈ Ω(Ax ≤ b),
‘Ai,�x ≤ bi’ ∈ act(x̄). We denote by ie(Ax ≤ b) the set of all the implied equalities of the system.

The affine hull aff (Ax ≤ b) of Ω(Ax ≤ b) is known to coincide with the set {x ∈ Rn | Ai,�x =
bi, for each implied equality ‘Ai,�x ≤ bi’ ∈ ie(Ax ≤ b)}, which can be geometrically interpreted as the smallest
affine subspace of Rn containing Ω(Ax ≤ b).

The dimension of a polyhedron Ω(Ax ≤ b) is −1 if it is empty; otherwise, it is the non-negative number
dim(Ax ≤ b) = n − rank(ie(Ax ≤ b)).

Linear Programming. Let Ax ≤ b, with A ∈ Rm×n (and b ∈ Rm), be a system of linear inequalities. A
(feasible) solution x̄ ∈ Ω(Ax ≤ b) is optimal w.r.t. a vector c ∈ Rn if its associated value cT x̄ is such that
cT x̄ = min{cT x̂ | x̂ ∈ Ω(Ax ≤ b)}.

The input to a linear programming problem is given as an expression of the following form, called a linear
program:

min cT x | Ax ≤ b.

By solving a linear program we mean computing an optimal solution x̄ ∈ Ω(Ax ≤ b) w.r.t. c (or, alternatively,
check that there is no solution, i.e., Ω(Ax ≤ b) = ∅, or that there is no optimal solution, i.e., for each

13

x̄ ∈ Ω(Ax ≤ b), there is x̄′ ∈ Ω(Ax ≤ b) such that cT x̄′ < cT x̄). The fundamental theorem of linear programming
states that, whenever a linear program has an optimal solution, it has an optimal solution that is a basic solution
to Ax ≤ b. In particular, note that if Ω(Ax ≤ b) is a non-empty polytope, then the linear program has always
an optimal solution.

In the paper we consider, as usual, linear programs such that A ∈ Qm×n, b ∈ Qm, and c ∈ Qn, and we
assume the (standard) encoding where such rational numbers are given in the fractional form. Then, the set of
solutions of such a linear program forms a so-called rational polyhedron of Rn, and the program can be solved in
polynomial time (in the program size ||c|| + ||A|| + ||b||) (see, e.g., [57]). In particular, if a solution exists and
Ω(Ax ≤ b) is a non-empty polytope, then an optimal basic solution that can be represented with polynomially
many bits exists, too.

3.2 Cutting Polyhedra by Linear Programs

The linear programming approach for nucleolus computation consists of a succession of linear programs that
monotonically shrinks the space of all (candidate) imputations until the nucleolus is singled out. Roughly
speaking, at each step t, some coalitions cannot reduce their excess (dissatisfaction) according to the current
imputation space, while other coalitions have some degree of freedom. Then, a linear program LPt is evaluated
to minimize the maximum excess over these latter coalitions. By using this excess, further inequalities are added
to the program to cut the search space. The process continues until all excesses are eventually fixed and the
imputation space consists of one point only, which is the nucleolus.

All algorithms in the literature for nucleolus computation come as variants of this scheme (see, e.g.,
[17, 25, 34, 35, 47, 51, 55, 60] and the references therein), whose idea is rooted in the procedure proposed by
Kopelowitz [36] and in its geometrical interpretation provided by Maschler et al. [42]. The salient results in these
two seminal papers are next discussed, by (basically) following the formalization of Granot et al. [25], Kern and
Paulusma [34], and Paulusma [50].

Definition 3.2. Let G = 〈N, v〉 be a coalitional game. Define LP(G) to be the sequence of linear programs
{LPt(G) | t ≥ 1} such that

LPt(G) = min ε | v(S) − x(S) ≤ ε ∀S ⊆ N, S /∈ Ft−1

v(S) − x(S) ≤ εt−1 ∀S ⊆ N, S /∈ Ft−2

...

v(S) − x(S) ≤ ε2 ∀S ⊆ N, S /∈ F1

v(S) − x(S) ≤ ε1 ∀S ⊆ N, S /∈ F0 = {∅, N}

A(G)x ≤ b(G), i.e., x ∈ X(G),

where, for each r ∈ {1, . . . , t−1}, εr is the value of an optimal solution to LPr(G) and Fr = {S ⊆ N | x(S) = y(S),
for each pair x, y such that (x, εr) and (y, εr) are optimal solutions to LPr(G)}; and where A(G)x ≤ b(G) is
the system defining the imputations of G, by enforcing efficiency and individual rationality (as described in
Example 3.1). �

Let us provide some intuition about LP(G), with the help of a running example. By means of the first
program LP1(G), having the form

LP1(G) = min ε | v(S) − x(S) ≤ ε ∀S ⊆ N, S /∈ F0 = {∅, N}

A(G)x ≤ b(G), i.e., x ∈ X(G),

we look for all those imputations that minimize the maximum excess, and we actually compute the value
ε1 of this excess. In particular, the associated—say optimal—imputations are those in the set {x ∈ X(G) |
(x, ε1) is an optimal solution to LP1(G)}.

Example 3.3. Let G = 〈N, v〉 be the coalitional game of Example 1.4. Then,

LP1(G) = min ε | v({a}) − x({a}) = 0 − xa ≤ ε

v({b}) − x({b}) = 0 − xb ≤ ε

v({c}) − x({c}) = 0 − xc ≤ ε

v({a, b}) − x({a, b}) = 1 − xa − xb ≤ ε

v({a, c}) − x({a, c}) = −2 − xa − xc ≤ ε

v({b, c}) − x({b, c}) = 2 − xb − xc ≤ ε

A(G)x ≤ b(G), i.e., xa + xb + xc = 1, xa ≥ 0, xb ≥ 0, xc ≥ 0

14

Because of the inequality 2 − xb − xc ≤ ε, it can be checked (see also the discussion in Example 1.4) that the
optimal value is ε1 = 1, and that the imputations over which this (excess) value is obtained are those in the set
{x ∈ X(G) | xb + xc = 1}. ⊳

By means of the second program, having the form

LP2(G) = min ε | v(S) − x(S) ≤ ε ∀S ⊆ N, S /∈ F1

v(S) − x(S) ≤ ε1 ∀S ⊆ N, S /∈ F0 = {∅, N}

A(G)x ≤ b(G), i.e., x ∈ X(G),

we then focus on the set {x ∈ X(G) | (x, ε1) is an optimal solution to LP1(G)}. Indeed, notice that the set of all
solutions to LP2(G) coincides with the set of all optimal solutions to LP1(G). Over this set, we put aside those
coalitions (in F1) whose excess is constant, and we minimize the maximum excess over the remaining coalitions,
in order to single out those imputations minimizing the second maximum excess.

Example 3.4. Consider again Example 3.3, and note that F1 consists of the coalitions {a, b, c}, {b, c} and
{a}. In particular observe that, for each imputation x in the set {x ∈ X(G) | xb + xc = 1}, we have that
xa + xb + xc = 1, xb + xc = 1 and, hence, xa = 0. Therefore, the second program is as follows:

LP2(G) = min ε | v({b}) − x({b}) = 0 − xb ≤ ε

v({c}) − x({c}) = 0 − xc ≤ ε

v({a, b}) − x({a, b}) = 1 − xa − xb ≤ ε

v({a, c}) − x({a, c}) = −2 − xa − xc ≤ ε

v({a}) − x({a}) = 0 − xa ≤ ε1

v({b}) − x({b}) = 0 − xb ≤ ε1

v({c}) − x({c}) = 0 − xc ≤ ε1

v({a, b}) − x({a, b}) = 1 − xa − xb ≤ ε1

v({a, c}) − x({a, c}) = −2 − xa − xc ≤ ε1

v({b, c}) − x({b, c}) = 2 − xb − xc ≤ ε1

A(G)x ≤ b(G), i.e., xa + xb + xc = 1, xa ≥ 0, xb ≥ 0, xc ≥ 0

Recall that the solutions to LP2(G) are the optimal solutions to LP1(G). Hence, for any (x, ε) satisfying the
inequalities of LP2(G), we known that x ∈ X(G) and xb + xc = 1 hold, hence xa = 0. Therefore, because of the
inequality 1 − xa − xb = 1 − xb ≤ ε, it is easily seen that the optimal value for LP2(G) is ε2 = 0, and that the
imputations over which this (excess) value is obtained are those in the set {x ∈ X(G) | xa = 0 ∧ xb = 1}. ⊳

After the second step, we get again a subset of the previous set of candidate imputations, as well as some new
coalitions whose excess is constant over it. These coalitions in turn are put aside, and the process is repeated
until a step t such that the set of the optimal solutions to LPt(G) is a singleton, in fact coinciding with the
nucleolus.

Example 3.5. In our running example, note that (x̄, ε2), where ε2 = 0 and x̄a = 0, x̄b = 1, and x̄c = 0, is the
unique optimal solution to LP2(G). As observed in Example 1.4, x̄ is the nucleolus of G. ⊳

In the above example, the process converged in just two steps. More generally, it can be noticed that, by
putting aside all coalitions in Ft−1, the dimension of the current set of optimal solutions decreases at least of 1
at each minimization step and, hence, in at most |N | steps we obtain a region containing one point that is the
nucleolus.

Formally, define V0(G) = X(G) and, for each r ∈ {1, . . . , t − 1}, Vr(G) = {x | (x, εr) is an optimal solution to
LPr(G)}. Note that

εr = min{ε | x ∈ Vr−1(G) ∧ ∀S ⊆ N, S /∈ Fr−1, v(S) − x(S) ≤ ε}. (1)

Then, the following holds.

Proposition 3.6. (cf. [34, 42, 50]) Let G = 〈N, v〉 be a coalitional game. Then, there is a natural number
t∗ ≤ |N | such that Vt∗(G) consists of a unique vector that is the nucleolus N (G).

Remark. We point out that the the “original” procedure by Kopelowitz [36] is based on a sequence of linear
programs different from the sequence LP(G) of Definition 3.2. Indeed, in the former case, at each step t, only
the coalitions minimizing the maximum excess are excluded by the subsequent optimization steps. This is in

15

contrast with our approach, based on LP(G), where all coalitions having fixed excesses (not necessarily the
minimum one), i.e., those belonging to Ft, are excluded from the subsequent optimization steps. As a matter of
fact, this subtle issue was source of confusion in the literature where the two approaches were often considered
interchangeable, in spite of the observation by Maschler et al. [42], who argued (without formal statements and
proofs) that the procedure based on the sequence LP(G) is a great enhancement over Kopelowitz’s procedure.

In order to shed some light on this subject, we precisely characterize the computational difference between
the two approaches. Indeed we formally prove in Appendix B that Kopelowitz’s procedure needs Ω(2|N |) steps
in the worst case, which is exponentially worse than the procedure based on LP(G), after Proposition 3.6. While
the proof of this result is provided in the appendix for the sake of presentation, we believe it may be a useful
reading for a deeper understanding of the computational issues behind the computation of the nucleolus.

3.3 Dealing with Compact Games

Recall from Section 2 that deciding whether a payoff vector is the nucleolus is hard for the complexity class ∆
P

2

(even over the class of graph games). A major goal of the paper is to show that this result is in fact tight, by
proving that the nucleolus can be computed in F∆

P

2
, the functional version of ∆

P

2
, over every class of games

encoded according to any polynomial-time compact representation. To this end, recall first that F∆
P

2
is the

class of all functions that can be computed by deterministic Turing transducers in polynomial time and by
using an NP Turing machine as an oracle. Therefore, to show a membership result in F∆

P

2
we must design a

polynomial time algorithm (which thus may use at most polynomial space) that may call at each step an oracle
to solve NP combinatorial tasks.

The basic idea is to use the linear programming approach suggested by Maschler et al. [42], that is, the
sequence of linear programs of Definition 3.2, which allows us to compute the nucleolus of a given game G after
a number of steps not greater than the number |N | of game players. However, in order to get a polynomial-time
algorithm (though with the possibility of calling oracles) two issues should be carefully taken into account while
dealing with each program LPt(G) in this sequence (1 ≤ t ≤ |N |):

• First, it might happen that exponentially many coalitions get a constant excess, so that it becomes
unfeasible (in F∆

P

2
) to explicitly store the whole set Ft to be used in the subsequent iteration. Therefore,

the question comes into play about whether it is possible to “implicitly” represent the set of all coalitions
with constant excesses, moreover in a way that checking membership in the set is still feasible in F∆

P

2
.

• Second, the system of linear inequalities in LPt(G) involves exponentially many inequalities w.r.t. the
number of players of G (and hence w.r.t. the size of the game encoding, in general). In this case, it is
not difficult to foresee that there is no need to “materialize” these inequalities as each of them can, in
fact, be computed in polynomial time based on the encoding of the compact game G. On the other hand,
the problem in this case is that the resulting system of linear inequalities is not given explicitly, but it is
specified in its turn in succinct form. Hence, standard results on linear programming cannot be applied to
analyze the complexity of reasoning with such a program. This calls for a theory of succinctly specified
linear programs that we develop (for what is relevant to this paper) in Section 4.

In the rest of this section, the first issue will be addressed by introducing a suitable concept of basis over a
system of linear inequalities.

Basis of Implied Equalities. Let Ax ≤ b, with A ∈ Qm×n (and b ∈ Qm), be a system of linear inequalities. For
each natural number h ∈ {1, . . . , m}, let [Ah,�, bh]T denote the vector in Qn+1 whose first n components are
those of the characteristic vector AT

h,�, and the last component is bh.

Definition 3.7. A basis of the implied equalities of a given system Ax ≤ b is any set B ⊆ ie(Ax ≤ b) satisfying
the following two conditions:

(i) |B| = rank(B);

(ii) |B| = rank(ie(Ax ≤ b)). �

In words, a basis is a maximal set of implied equalities whose characteristic vectors are linearly independent.
The intuition underlying this notion is that a basis provides us with a convenient method to encode the whole
set of all implied equalities, in a way that membership to this latter set can be reduced to checking linear
independence among suitably defined vectors. This is formalized next.

Theorem 3.8. Let B be a basis of the implied equalities of a system of linear inequalities Ax ≤ b. Then,
‘Aī,�x ≤ bī’ ∈ ie(Ax ≤ b) if, and only if,

rank({[Ai,�, bi]
T | ‘Ai,�x ≤ bi’ ∈ B}) = rank({ [Aī,�, bī]

T } ∪ {[Ai,�, bi]
T | ‘Ai,�x ≤ bi’ ∈ B}).

16

Proof. To begin with, assume that ‘Aī,�x ≤ bī’ ∈ ie(Ax ≤ b). Since B ⊆ ie(Ax ≤ b) and |B| = rank(B) =
rank(ie(Ax ≤ b)), we immediately have that |B| = rank(B ∪ {‘Aī,�x ≤ bī’}). Therefore, the characteristic
vector AT

ī,�
can be expressed as a linear combination

∑
‘Ai,�x≤bi’∈B λiA

T
i,� of the characteristic vectors of the

inequalities in B. Because all inequalities in B are, in fact, implied equalities, the system must satisfy the
additional equality ‘Aī,�x =

∑
‘Ai,�x≤bi’∈B λibi’, which entails that the latter summation must give bī, for

otherwise ‘Aī,�x ≤ bī’ /∈ ie(Ax ≤ b). We thus obtained that [Aī,�, bī]
T can be written as a linear combination of

the vectors {[Ai,�, bi]
T | ‘Ai,�x ≤ bi’ ∈ B}.

To conclude, let us show that rank({[Ai,�, bi]
T | ‘Ai,�x ≤ bi’ ∈ B}) = rank({ [Aī,�, bī]

T } ∪ {[Ai,�, bi]
T | ‘Ai,�x ≤

bi’ ∈ B}) implies ‘Aī,�x ≤ bī’ ∈ ie(Ax ≤ b). Indeed, because of the above equality, we can rewrite [Aī,�, bī]
T as a

linear combination of the vectors in {[Ai,�, bi]
T | ‘Ai,�x ≤ bi’ ∈ B}. That is, [Aī,�, bī]

T =
∑

‘Ai,�x≤bi’∈B λi[Ai,�, bi]
T ,

for suitable coefficients λi. In particular, Aī,� =
∑

‘Ai,�x≤bi’∈B λiAi,� and bī =
∑

‘Ai,�x≤bi’∈B λibi. Again, since
B is a set of implied equalities, for each x̄ ∈ Ω(Ax ≤ b) and for each ‘Ai,�x ≤ bi’ ∈ B, Ai,�x̄ = bi holds.
Therefore, for each x̄ ∈ Ω(Ax ≤ b), Aī,�x̄ =

∑
‘Ai,�x≤bi’∈B λiAi,�x̄ =

∑
‘Ai,�x≤bi’∈B λibi = bī holds, and hence

‘Aī,�x ≤ bī’ ∈ ie(Ax ≤ b).

Example 3.9. Let Ax ≤ b, with A ∈ Q10×3, be a system of linear inequalities and assume that B2 = {‘x1 +x2 ≤
1’, ‘x2 + x3 ≤ 1’} is a basis of its implied equalities. Therefore, dim(Ax ≤ b) = 3 − rank(B2) = 3 − |B2| = 1.

Moreover, assume that the system contains the following inequalities α = ‘2x1 + 3x2 + x3 ≤ 3’ and
β = ‘x1 + 2x2 + x3 ≤ 3’. Note that α can be written as a linear combination of the implied equalities in B2.
Hence, by Theorem 3.8, α is an implied equality, too. The same does not apply to β, i.e., β is not a linear
combination of the implied equalities in B2. However, the characteristic vector of β can be written as a linear
combination of the characteristic vectors associated with the inequalities in B2. Since B2 is a basis of implied
equalities, this means that every solution to the system must satisfy the equality ‘x1 + 2x2 + x3 = 1 + 1 = 2’.
In other words, β is not an implied equality of the system, but its characteristic vector identifies an (implied)
equality, though with the constant term 2 instead of the value 3 occurring in the inequality β. ⊳

Application to Compact Coalitional Games. The property of bases of inequalities described in the previous
example is crucial for the purpose of this paper. The idea is indeed to use bases for representing in a succinct way
all coalitions having constant excesses in the sequence LP(G) of Definition 3.2, as formalized by the following
result.

Let G = 〈N, v〉 be a coalitional game. For each coalition S ⊆ N , we denote by 1S the |N |-dimensional vector
whose i-th component, for each i ∈ {1, . . . , |N |}, is 1 (resp., 0) if i ∈ S (resp., i /∈ S). Moreover, consider the
linear program LPt(G), for t ≥ 1, and let A[t]x ≤ b[t] denote the system of linear inequalities obtained from
it by setting ε = εt, with εt denoting the value of variable ε in any optimal solution to LPt(G). Note that
Ω(A[t]x ≤ b[t]) coincides with Vt(G). In addition, observe that each inequality ‘Ai,�[t]x ≤ bi[t]’ in this system
identifies a coalition, in the sense that ‘Ai,�[t]x ≤ bi[t]’ is of the form α1T

S x ≤ β, for some coalition S, and where
α ∈ {1, −1} and β ∈ Q.

Theorem 3.10. Let G = 〈N, v〉 be a coalitional game such that X(G) 6= ∅, let t ≥ 1 be a natural number, let Bt

be a basis of the implied equalities of the system A[t]x ≤ b[t], and let S ⊆ N be a coalition. Then, the following
are equivalent:

(1) S ∈ Ft, where Ft = {S ⊆ N | x(S) = y(S), for each pair x, y such that (x, εt) and (y, εt) are optimal
solutions to LPt(G)} (cf. Definition 3.2);

(2) rank(Bt) = rank(Bt ∪ {1S}).7

Proof. We first show that (2) ⇒ (1). Assume that rank(Bt) = rank(Bt ∪ {1S}), and let {W1, . . . , Wq} be
the characteristic vectors of the inequalities in Bt. Then, there exist real numbers λ1, . . . , λq such that 1S =∑q

i=1 λiWi. This equation implies that

x(S) = 1
T
S x =

q∑

i=1

(λiWi
T x).

Observe that, since Bt is a basis of the implied equalities of A[t]x ≤ b[t], Wi
T x is a constant over each

point x ∈ Vt(G), for each i ∈ {1, . . . , q}. Equivalently, we have that Wi
T x̄ = Wi

T ȳ for each pair x̄, ȳ in
Vt(G) = Ω(A[t]x ≤ b[t]) and for each i ∈ {1, . . . , q}.

7Recall that, in vector operations such as the rank, we identify inequalities with their characteristic vectors, so that Bt denotes
the set of characteristic vectors of the basis inequalities.

17

Therefore, from the fact that x(S) =
∑q

i=1(λiWi
T x), we conclude that x̄(S) = ȳ(S), for each pair x̄, ȳ in

Vt(G). This immediately entails the statement S ∈ Ft, by recalling that Ft = {S ⊆ N | x(S) = y(S), for each
pair x, y such that (x, εr) and (y, εr) are optimal solutions to LPr(G)} = {S ⊆ N | x(S) = y(S), for each pair
x, y in Vt(G)}.

Second, we show that (1) ⇒ (2). Note first that Vt(G) has the following form:

Vt(G) = {x | ∀k ∈ {1, . . . , t}, ∀S ⊆ N, S /∈ Fk−1, v(S) − x(S) ≤ εk},

and that Vt(G) = Ω(A[t]x ≤ b[t]).
Let S̄ ∈ Ft. Then, this coalition has a constant excess, say εS̄ , over all points in Vt(G), hence over all solutions

to the system A[t]x ≤ b[t]. Consider now the system of linear inequalities Ā[t]x ≤ b̄[t] obtained from A[t]x ≤ b[t] by
adding the inequality 1T

S̄
x ≤ εS̄ −v(S̄). From the hypothesis on coalition S̄, ∀x̄ ∈ Ω(A[t]x ≤ b[t]),1T

S̄
x̄ = εS̄ −v(S̄),

and therefore the following two facts hold for the new inequality 1
T
S̄

x ≤ εS̄ − v(S̄):

1. it does not change the set of solutions, i.e., Ω(A[t]x ≤ b[t]) = Ω(Ā[t]x ≤ b̄[t]), and

2. it is in fact an implied equality in ie(Ā[t]x ≤ b̄[t]).

The above Fact (1) entails that dim(A[t]x ≤ b[t]) = dim(Ā[t]x ≤ b̄[t]) and thus, by definition of dimension,
that rank(ie(A[t]x ≤ b[t])) = rank(ie(Ā[t]x ≤ b̄[t])). Because the former term is equal to rank(Bt), we get

rank(Bt) = rank(ie(Ā[t]x ≤ b̄[t])).

However, Bt ⊆ ie(A[t]x ≤ b[t]) ⊆ ie(Ā[t]x ≤ b̄[t]) clearly holds. Therefore, Bt is also a basis for ie(Ā[t]x ≤ b̄[t]),
and the characteristic vector of any of these inequalities can be rewritten as a linear combination of the
characteristic vectors of inequalities in Bt. From Fact (2), this applies to the characteristic vector 1S̄ , too.

We leave the section by noticing that it is known in the literature that a small set of coalitions (often called
essentials) suffices to determine the nucleolus of any given coalitional game (see, e.g., [9, 53, 54, 62]). However,
this is generally not helpful to compute the nucleolus, as no method has been described to compute such coalitions
(without having already the nucleolus), and it is not clear how to identify them within the complexity bounds
we are interested in. In abstract terms, the above result combined with the results presented in the subsequent
sections can be viewed as leading to a method that synergically computes the nucleolus and its (small) set of
characterizing coalitions.

4 Reasoning on Succinctly Specified Linear Programs

In this section, we analyze the complexity of a number of reasoning tasks about succinctly specified linear
programs. On the one hand, these results play a crucial role in establishing membership in F∆

P

2
of the

nucleolus computation. On the other hand, they are interesting in their own, as the framework of succinct
linear programming smoothly fits many real-world settings modeled as programs involving exponentially many
inequalities w.r.t. the number of variables (or, equivalently, by duality theorems in linear programming, where
problems are considered with exponentially many variables w.r.t. the number of inequalities).

Example 4.1. Let G = (N, E) be a graph, and let s and t be two nodes in N . Consider a problem where we
need to assign non-negative weights to the edges of G such that the weights of edges in any path connecting s
and t sum at least 1, but the total weight of E does not exceed a given number K.

This problem and variants thereof frequently occur in the design of flow networks, and can be modeled via
linear programming. In fact, the set of all solutions to this problem coincides with the set of all solutions to the
following system of linear inequalities, where P denotes the set of all paths connecting s and t (with a path
being just viewed below as a set of edges) and where xe is the weight assigned to edge e:

∑
e∈E xe ≤K

−xe ≤0 ∀e ∈ E
−
∑

e∈p xe ≤−1 ∀p ∈ P

Note that the system is defined over |E| variables, while the number |P| of all paths connecting s and t is
exponentially larger than |E|, in general. ⊳

18

4.1 Problems, Computational Setting, and Overview of the Results

We consider the following decision problems, all of them defined over a given system Ax ≤ b of linear inequalities,
with A ∈ Qm×n, plus further possible inputs:

Membership: Given a system Ax ≤ b, with A ∈ Qm×n, and given a vector x̄ ∈ Qn, is x̄ ∈ Ω(Ax ≤ b) ?

NonEmptiness: Given a system Ax ≤ b, with A ∈ Qm×n, is Ω(Ax ≤ b) 6= ∅ ?

Dimension: Given a system Ax ≤ b, with A ∈ Qm×n, and a non-negative number k ≤ n + 1, is dim(Ax ≤ b) ≤
n − k ?

Moreover, we shall consider the following computational problems:

ImpliedEqualities-Computation: Given a system Ax ≤ b, with A ∈ Qm×n and Ω(Ax ≤ b) 6= ∅, compute a
basis B of the implied equalities of Ax ≤ b.

OptimalValue-Computation: Given a system Ax ≤ b, with A ∈ Qm×n and where Ω(Ax ≤ b) 6= ∅ is a
non-empty polytope,8 and given a vector c ∈ Qn, compute the value min{cT x̂ | x̂ ∈ Ω(Ax ≤ b)}.

Solution-Computation: Given a system Ax ≤ b, with A ∈ Qm×n and where Ω(Ax ≤ b) 6= ∅ is a non-empty
polytope, compute a vector x ∈ Ω(Ax ≤ b).

OptimalSolution-Computation: Given a system Ax ≤ b, with A ∈ Qm×n and where Ω(Ax ≤ b) 6= ∅ is a
non-empty polytope, and given a vector c ∈ Qn, compute a vector x̄ ∈ Ω(Ax ≤ b) such that cT x̄ = min{cT x̂ |
x̂ ∈ Ω(Ax ≤ b)}.

In the classical computational setting of linear programming, it is assumed that all the coefficients involved
in the definition of the systems of linear inequalities are explicitly provided as input. Under this standard
representation scheme, all the above reasoning tasks are known to be feasible in polynomial time (see e.g., [28,
49, 57]).

Next, we re-consider these problems in a different setting, where the input system Ax ≤ b is given in a
compact form. For instance, we have noticed that the linear program in Example 4.1, is univocally determined
by the underlying graph, which in fact can be used as a succinct implicit way to encode all the (exponentially
many) paths between s and t.

The implicit encoding approach we propose below shares the spirit of the compact game encoding discussed
in Section 2, in that exponentially many elements (here, the inequalities) are encoded via some polynomial space
representation associated with a polynomial time function to deal with it.

Definition 4.2. A compact representation Λ for systems of linear inequalities of the form Ax ≤ b, with
A ∈ Qm×n and m ∈ O(exp(n)), defines a class C(Λ) by means of two functions γΛ and LΛ. For each system
Ax ≤ b ∈ C(Λ),

(1) γΛ(Ax ≤ b) is an object, whose size is not smaller than n, that encodes the system (roughly, it is a compact
representation that contains at least one bit for each variable occurring in the system); and

(2) LΛ is a polynomial-time function that, given the encoding E = γΛ(Ax ≤ b) and any natural number i,
computes the coefficients of some inequality associated with i, if any. More precisely, LΛ(E, i) = (Ai′,�, bi′)
for some i′ ≤ m, or the empty output if no inequality is associated with i. Observe that this entails that
the size of such coefficients is bounded by a polynomial function of ||E||. It is required that the size of any
input to LΛ is bounded by some polynomial of ||E|| (i.e., the input indices i are at most exponentially
larger than ||E||), and that all inequalities of the system are in its codomain (i.e., the encoding is complete:
every inequality is associated with some input to LΛ).

Whenever a compact representation Λ is understood, we write for short γ(Ax ≤ b) and L(i) instead of γΛ(Ax ≤ b)
and LΛ(γΛ(Ax ≤ b), i), respectively. Moreover, we often abuse the notation and use L(i) to denote the inequality
Ai′,�x ≤ bi′ associated with number i via L, rather than just the coefficients (Ai′,�, bi′). �

Example 4.3. Consider again the class of systems of inequalities encoding the flow problem in Example 4.1.
Every system Ax ≤ b in this class is such that A ∈ Qm×n, with n being the number of edges of some graph
G = (N, E) and m = |P| + n + 1, where P is the set of all paths connecting two distinguished nodes s, t ∈ N ,
w.l.o.g., the first two nodes in N (so that we need no further effort to distinguish them).

8For the purpose of this paper, it suffices to study these computational problems over linear programs whose solutions form
non-empty polytopes; however, our techniques might easily be extended to deal with arbitrary (possibly empty or unbounded)
polyhedra.

19

This class has a compact encoding FLOW, defined as follows. Each system in C(FLOW) is encoded as a pair
F = (G, K), where K is the bound on the total weight and G = (N, E) is just (a suitable encoding of) the graph
associated with each instance of the flow problem. Moreover, L is a polynomial time function taking as its input
the encoding F and any (natural) binary number i ≤ 2n + n + 1. Each number i up to 2n is interpreted as a bit
vector encoding the set of edges Si = {e ∈ E | the e-th bit of i is 1}, which represents a candidate path from s
to t. The numbers above 2n encode the further n + 1 inequalities of the system. Moreover, we assume that edges
are encoded as natural numbers (from 1 to n). Then, the function L behaves as follows:

• L(F, i) = −
∑

e∈Si
xe ≤ −1, if i ≤ 2n and the edges in Si encode a path in P;

• L(F, i) = −xe ≤ 0, if i = 2n + e (e is an edge in E);

• L(F, i) =
∑

e∈E xe ≤ K, if i = 2n + n + 1; and

• L(F, i) returns the empty output in all other cases, i.e., whenever i ≤ 2n but the edges in Si does not
encode a path in P.

Note that C(FLOW) is the class of systems described in Example 4.1, and that FLOW is in fact a compact
representation. In particular, observe that ||F || = ||G|| + ||K|| ≥ |E| = n, and that L can be evaluated in
polynomial time by a deterministic Turing machine. ⊳

The reader that is familiar with linear programming might have already recognized that, while being encoded
via a system over exponentially many inequalities, the above problem is actually solvable in polynomial time
by using the ellipsoid method with a polynomial-time separation oracle (see, e.g., Grötschel et al. [28]). Here,
we recall that a separation oracle is an algorithm that given a point x, either establishes the feasibility of x
or produces a violated inequality. In Example 4.1, the following polynomial-time algorithm is a separation
oracle: First, for every 2n + 1 ≤ i ≤ 2n + n + 1, it can explicitly check whether the given weight assignment x
satisfies the inequality identified by L(F, i). If this is not the case, then a violated inequality is computed as its
output. Otherwise, i.e., if all such inequalities are satisfied by x, then the algorithm continues by computing a
path p from s to t having minimum weight according to x. If the weight of path p is smaller than 1, then x is
not feasible and the inequality associated with p is violated. In this case, the algorithm outputs the inequality
L(F, i), where i is the bit vector encoding the set of edges Si occurring in p. Otherwise, x is feasible, as the
weight of all other paths in P cannot be less than the weight of p.

Of course, there are classes of systems having no polynomial-time separation oracle. We are interested in
finding upper bounds for the evaluation of any classes of systems having a compact representation, including
those classes encoding hard combinatorial problems such as most problems about (compact) coalitional games
(see, e.g., [26, 27] and the references therein).

Example 4.4 (Core non-emptiness in Graph Games). Consider the class of graph games C(GGR), and the class
of systems of inequalities encoding the problem of checking whether the core of any given game G in this class is
not empty. Recall that, if the set of players of G is N , such a system consists of the following 2|N | + 1 inequalities:
for each coalition S ⊆ N , −

∑
i∈S xi ≤ −v(S); and

∑
i∈N xi ≤ v(N).

This class of systems has a compact encoding CoreGG, defined as follows. Each system in C(CoreGG) is
encoded as a weighted graph G = 〈(N, E), w〉, and L is a polynomial time function taking as its input G and
any (natural) binary number i ≤ 2|N | + 1. In a similar way as in the previous example, any value of i up to 2|N |

is interpreted as a bit vector encoding the coalition of players Si = {p ∈ N | the p-th bit of i is 1}, while the
last value 2|N | + 1 encodes the last inequality of the system (the efficiency constraint for the grand-coalition).
Formally, define

• L(G, i) = −
∑

i∈S xi ≤ −v(Si), if i ≤ 2|N | (where v(Si) =
∑

e∈E|e⊆Si
w(e)); and

• L(G, i) =
∑

i∈N xi ≤ v(N), if i = 2|N | + 1.

Note that CoreGG is a compact representation. In particular, L can be evaluated in polynomial time by a
deterministic Turing machine. Moreover, any system in the class C(CoreGG) has some solution if, and only if, its
associated game has a non-empty core. ⊳

We are now ready to study such succinctly specified systems of linear inequalities. For each problem P
illustrated at the beginning of this section, let Succint-P be its succinct variant where the input system of
linear inequalities is encoded via some fixed compact representation C(Λ). A summary of our complexity results
for these problems is illustrated in Figure 3.

Note that completeness results are given in Figure 3 for the three decision problems we have considered. In
particular, membership results hold over every class C(Λ), with Λ being any compact representation, whereas

20

Problem Result

Succint-Membership co-NP-complete
Succint-NonEmptiness co-NP-complete
Succint-Dimension NP-complete

Succint-ImpliedEqualities-Computation in F∆
P

2

Succint-OptimalValue-Computation in F∆
P

2

Succint-Solution-Computation in F∆
P

2

Succint-OptimalSolution-Computation in F∆
P

2

Figure 3: Summary of Complexity Results in Section 4.

hardness results9 mean that there are classes of instances that encode hard problems (of course, there are also
“easy” classes, such as the one described in Example 4.3).

Theorem 4.5. There is a class of systems of linear inequalities (encoded in some compact way) over which
Succint-Membership and Succint-NonEmptiness are co-NP-hard, while Succint-Dimension is NP-hard.

Proof. Consider the class C(CoreGG) in Example 4.4 and let Ax ≤ b ∈ C(CoreGG), with A ∈ Q(2n+1)×n, be a
system succinctly encoded as a weighted graph G. Every solution to such a system is clearly an imputation
belonging to the core of the graph game encoded by G. Then, the co-NP-hardness of Succint-NonEmptiness
and Succint-Membership immediately follow, respectively, from the co-NP-hardness of checking non-emptiness
of the core and of checking whether a point belongs to the core, over the class of graph games [14]. In the same
way, the NP-hardness of Succint-Dimension follows: (G, n + 1) is a “yes” instance of Succint-Dimension if,
and only if, the core of the game encoded by G is empty.

In the rest of the section, we detail the proofs for the membership results illustrated in Figure 3. In fact, while
complexity issues arising with specific forms of succinctly specified linear programs have been already analyzed in
the literature (e.g., to derive tractability results when a separation oracle is available), the analysis of the general
theory was missing so far. In particular, proofs of the problems Succint-OptimalValue-Computation,
Succint-Solution-Computation, and Succint-OptimalSolution-Computation use standard arguments
adjusted to fit the general framework, and hence they are reported in Appendix C, for the sake of completeness
only. Proofs of the remaining problems require novel technical elaborations, which are detailed in the following.
Eventually, we also stress that a number of complexity results are known for different settings of succinct linear
programming that cannot be recast in terms of Definition 4.2, e.g., when coefficients involved in the linear
programs are encoded as circuits (see [21]).

4.2 Membership Results for Decision Problems

Note that Figure 3 also reports the complexity of the four computational problems that we have considered, and
that are used as procedures in the proposed algorithm for the computation of the nucleolus. In their turns, such
procedures, which belong to F∆

P

2
, use NP oracles based on the following membership results for the decision

problems.

Theorem 4.6. Let Λ be any compact representation for systems of linear inequalities. On the class C(Λ),
Succint-Membership is in co-NP.

Proof. Let γ(Ax ≤ b) be the encoding of a system Ax ≤ b ∈ C(Λ), with A ∈ Qm×n, provided as input to
Succint-Membership, together with a vector x̄ ∈ Qn. We have to decide whether x̄ ∈ Ω(Ax ≤ b). Note that
the size of the input is ||γ(Ax ≤ b)|| + ||x̄||.

Consider then the complementary problem of checking whether x̄ 6∈ Ω(Ax ≤ b). This problem can be solved
by guessing a natural number i′, by computing L(i′) = (Ai,�, bi), and by checking that Ai,�x̄ > bi. We claim
that these tasks are feasible in polynomial time using a non-deterministic Turing machine (hence, the problem
belongs to NP). Indeed, by Definition 4.2, it is sufficient to guess polynomially many bits, because any useful
number i′ is at most exponentially larger than the size of the system encoding.

Moreover, by the same definition, L(i′) = (Ai,�, bi) can be computed in polynomial time w.r.t. ||γ(Ax ≤ b)||.
Eventually, after that (Ai,�, bi) is computed (whose encoding is polynomial w.r.t. ||γ(Ax ≤ b)||), we can trivially
check whether Ai,�x̄ > bi holds in time polynomial w.r.t. ||γ(Ax ≤ b)|| + ||x̄||.

9Hardness results are provided for the sake of completeness only, as they are not relevant w.r.t. our main goal of characterizing
the complexity of nucleolus computation on compact games.

21

In order to deal with the complexity of Succint-NonEmptiness, we recall a classical combinatorial result
about convex sets, which is due to Helly (see also [27], for a nice geometric interpretation of this result for
systems of linear inequalities definining cores of coalitional games).

Proposition 4.7 ([29, 52]). Let C = {c1, . . . , ch} be a collection of convex subsets of Rn. If
⋂

ci∈C ci = ∅, then
there is a non-empty collection C′ ⊆ C such that |C′| ≤ n + 1 and

⋂
ci∈C′ ci = ∅.

Theorem 4.8. Let Λ be any compact representation for systems of linear inequalities. On the class C(Λ),
Succint-NonEmptiness is in co-NP.

Proof. Let E = γ(Ax ≤ b) be the input to Succint-NonEmptiness, i.e., the encoding of a system Ax ≤ b ∈ C(Λ),
with A ∈ Qm×n, and consider the complementary problem of deciding whether Ω(Ax ≤ b) = ∅. Observe that the
set {x ∈ Rn | Ai,�x ≤ bi} is convex, for each natural number i ∈ {1, . . . , m}. By Helly’s Theorem, we have that
Ω(Ax ≤ b) = ∅ if, and only if, there is a non-empty set of (at most) n+1 indices I = {i1, . . . , in+1} ⊆ {1, . . . , m}
such that the set {x ∈ Rn | ∀i ∈ I, Ai,�x ≤ bi} is empty.

By the above observation, it follows that the complementary problem can be solved in polynomial time by a
non-deterministic Turing machine (hence, the problem belongs to NP), by guessing a set I ′ of n + 1 natural
numbers associated with such inequalities via function L, and by checking that P = {x ∈ Rn | ∀i′ ∈ I ′, Ai,�x ≤
bi, where L(i′) = (Ai,�, bi)} is empty. In particular, the size of I ′ is O((n + 1) × ||E||c) and hence O(||E||c+1),
for some constant c, because—as observed in the previous proof—it is sufficient to guess numbers whose size is
polynomial in the system encoding (as these numbers are at most exponentially larger than such an encoding).
Moreover, observe that P is a polyhedron defined by (at most) n + 1 inequalities and, hence, its non-emptiness
can be checked in polynomial time w.r.t. the size of its (explicit) representation, by standard results on linear
programming (see, e.g., [28, 49]). The proof is then completed by noticing that, in the light of Definition 4.2, the
size of each inequality defining P is polynomial w.r.t. the size ||E|| of the input to Succint-NonEmptiness.

Let us now study the problem of checking the dimension of a given polytope. To this end, we find it useful to
state a simple characterization for implied equalities.

Lemma 4.9. Let Ax ≤ b be a system of linear inequalities, with A ∈ Rm×n and Ω(Ax ≤ b) 6= ∅, and let
ī ∈ {1, . . . , m}. Then, ‘Aī,�x ≤ bī’ is an implied equality if, and only if, there is a set W of inequalities occurring
in Ax ≤ b such that |W | ≤ n, and

{x ∈ Rn | (Aī,�x < bī) ∧
∧

‘Ai,�x≤bi’∈W

Ai,�x ≤ bi} = ∅.

Proof. Recall that ‘Aī,�x ≤ bī’ is an implied equality if for each x̄ ∈ Ω(Ax ≤ b), Aī,�x̄ = bī holds, and consider
the collection C of convex sets precisely including a set ch = {x ∈ Rn | Ah,�x ≤ bh}, for each h ∈ {1, . . . , m} \ {̄i},
plus the set cī = {x ∈ Rn | Aī,�x < bī}. We first claim that Aī,�x ≤ bī is an implied equality if, and only if,⋂

ci∈C ci = ∅. Indeed, if Aī,�x ≤ bī is an implied equality, then we immediately have that
⋂

ci∈C ci = ∅. For the
other side, because Ω(Ax ≤ b) 6= ∅, the only possibility to have

⋂
ci∈C ci = ∅ is that, for each x̄ ∈ Ω(Ax ≤ b),

Aī,�x̄ = bī holds, i.e., Aī,�x ≤ bī is an implied equality. In the light of the above observation and of Proposition 4.7,
it follows that Aī,�x ≤ bī is an implied equality if, and only if, there is a collection C′ ⊆ C such that |C′| ≤ n + 1
and

⋂
ci∈C′ ci = ∅, and where cī ∈ C′ must hold.

In the rest of this section, a set W of at most n inequalities with the properties stated in Lemma 4.9 will
be called a supporting set (for the inequality Aī,�x̄ ≤ bī). Note that checking whether a set of inequalities is a
supporting set is feasible in polynomial time by standard arguments from linear programming—in particular, it
is well-known [49] that any strict inequality of the form Aī,�x < bī can equivalently be replaced by the inequality
Aī,�x ≤ bī + ε, for a suitable constant ε such that ||ε|| is polynomial in the size of the given system (here, in the
size of the set of inequalities W to be evaluated).

With the above notations and results in place, we can now conclude the picture of the membership results
for our decision problems.

Theorem 4.10. Let Λ be any compact representation for systems of linear inequalities. On the class C(Λ),
Succint-Dimension is in NP.

Proof. Recall that the input to Succint-Dimension is an encoding E = γ(Ax ≤ b) of a system Ax ≤ b ∈ C(Λ),
with A ∈ Qm×n, plus a non-negative number k ≤ n + 1.

We describe a non-deterministic Turing machine M deciding whether dim(Ax ≤ b) ≤ n−k in polynomial-time
w.r.t. the size of E. First, M non-deterministically guesses one bit to choose whether moving to a state that
deals with an empty Ω(Ax ≤ b) or to a state that deals with a non-empty polytope.

22

In the former case, M continues by guessing in polynomial-time a witness that Ω(Ax ≤ b) = ∅, and then by
checking in deterministic polynomial time that this is actually the case, as described in the proof of Theorem 4.8.
If the check is successful, M halts and accepts, because dim(Ax ≤ b) ≤ n − k holds for every 0 ≤ k ≤ n + 1.

In the latter case (Ω(Ax ≤ b) 6= ∅), dim(Ax ≤ b) ≤ n − k holds if, and only if, there is a set of inequalities I
occurring in the system, with |I| = k, such that: (1) I ⊆ ie(Ax ≤ b) and (2) rank(I) = k. Then, the machine
M guesses a set of natural numbers I ′ with |I ′| = k identifying the inequalities in I via L, together with k
sets of numbers W1, . . . , Wk, and then checks that: (1) for each i ∈ I ′, {L(j) | j ∈ Wi} is a supporting set
for the inequality L(i) (which is equivalent to checking that L(i) ∈ ie(Ax ≤ b), by Lemma 4.9); and (2) that
rank({L(i) | i ∈ I ′}) = k.

In particular, by definition of supporting set and by Definition 4.2, it follows that ||I ′||+ ||W1||+ · · ·+ ||Wk|| ≤
k × ||E||c + kn × ||E||c, where k ≤ n and c is some fixed constant. Thus, guessing all the needed sets of numbers
is actually feasible by the machine M in polynomial time w.r.t. ||E||. Moreover, once the above numbers are
known, computing the inequalities by using the function L and checking whether Wi is actually a supporting set
for L(i), for each i ∈ I ′, is feasible in (deterministic) polynomial time w.r.t. ||E||. Finally, observe that checking
whether rank({L(i) | i ∈ I ′}) = k is feasible in polynomial time task, too. Indeed, both computing the rank of a
set of vectors, and computing the characteristic vector of the inequality associated with each i ∈ I ′ via L are
polynomial time tasks.

4.3 Computational Problems

For all computational problems studied in this section, we present algorithms running as deterministic polynomial-
time Turing transducers equipped with NP oracles, which characterize function problems in F∆

P

2
. We point out

that the requirement that the input system Ax ≤ b for any considered problem has some solution (to get rid of
the trivial empty-case) is easy to check for such machines. Indeed, recall that the emptiness test is an NP task
from Theorem 4.8, hence a Turing machine with an NP oracle can easily check the above property with a simple
preliminary call to its oracle, and then it may return the empty output if the required condition is not met.

We start with the complexity of computing a basis of the implied equalities for a given system Ax ≤ b,
represented in a compact way, such that Ω(Ax ≤ b) 6= ∅ (otherwise, all inequalities would trivially be implied
equalities). Recall from Section 3 that a basis of the implied equalities of a system Ax ≤ b is any set B ⊆ ie(Ax ≤ b)
satisfying the following two conditions: (i) |B| = rank(B) and (ii) |B| = rank(ie(Ax ≤ b)).

Theorem 4.11. Let Λ be any compact representation for systems of linear inequalities. On the class C(Λ),
Succint-ImpliedEqualities-Computation is in F∆

P

2
.

Proof. Let γ(Ax ≤ b) be the encoding of a system Ax ≤ b ∈ C(Λ), with A ∈ Qm×n, and such that Ω(Ax ≤ b) 6= ∅.
We shall show that, on input γ(Ax ≤ b), Succint-ImpliedEqualities-Computation can be solved by a
polynomial time algorithm that uses an NP oracle. The algorithm works in two phases.

In the first phase, the algorithm computes the value rank(ie(Ax ≤ b)). In particular, since dim(Ax ≤ b) =
n− rank(ie(Ax ≤ b)), the algorithm actually computes first the dimension of Ω(Ax ≤ b), in order to subsequently
evaluate n − dim(Ax ≤ b). To compute the dimension, recall that by Theorem 4.10 an NP Turing machine
can decide, for any given natural number k, whether dim(Ax ≤ b) ≤ n − k. Thus, the actual dimension n − k∗

can be computed via a binary search in the range [0 . . . n], by requiring a number of calls to the oracle that is
logarithmic w.r.t. n, hence polynomial in ||γ(Ax ≤ b)||, by Definition 4.2.

In the second phase, the k∗ = rank(ie(Ax ≤ b)) basis inequalities are computed one-by-one according to a
binary-search procedure, by repeatedly calling an oracle for the following problem Base-Check: Assume that a
natural number h and a set I of inequalities occurring in the system, with |I| < k∗, are given in input, together
with the encoding γ(Ax ≤ b). We have to decide whether there exists a basis B of the implied equalities of
Ax ≤ b and a natural number ī ≥ h, with L(̄i) 6∈ I, such that B ⊇ I ∪ {L(̄i)}.

Claim 4.11.(1): Base-Check is feasible in NP.

Proof. The problem can be solved in polynomial time by a non-deterministic Turing machine that first
guesses a set WB of k∗ natural numbers, associated via L with the inequalities B = {L(i) | i ∈ WB} (intuitively,
some basis); then guesses k∗ sets of numbers encoding supporting sets for inequalities in B (as in the proof
of Theorem 4.10); and eventually checks that: (1) I ⊆ B, (2) there is a number ī ∈ WB with ī ≥ h and
L(̄i) 6∈ I, (3) B ⊆ ie(Ax ≤ b), and (4) B is a basis of the implied equalities. Note that, by construction and by
Definition 4.2, ||WB|| ≤ n × ||γ(Ax ≤ b)||c for some constant c, and hence guessing the set WB is feasible in
polynomial time. Moreover, as described in the proof of Theorem 4.10, the same holds for the guess of the k∗

sets of numbers, each one of cardinality at most n, encoding the supporting sets for the inequalities in B.

We next point out that all checks above are feasible in (deterministic) polynomial time. Conditions (1) and
(2) can be trivially checked in polynomial time. Checking condition (3) is equivalent to checking whether, for

23

Input: A coalitional game G = 〈N, v〉;
Output: The nucleolus N (G) of G;
—————————————————————————————————————–

1. if X(G) = ∅ then return ∅;
2. let t := 0, and B0 = ∅;
3. do

4. let t := t + 1;
5. let A[t](x, ε) ≤ b[t] be the following system of linear inequalities:

v(S) − x(S) ≤ ε, ∀S ⊆ N s.t. rank(Bt−1) 6= rank(Bt−1 ∪ {1S})

v(S) − x(S) ≤ εr, ∀r ∈ {1, . . . , t − 1}, ∀S ⊆ N s.t. rank(Br−1) 6= rank(Br−1 ∪ {1S})

A(G)x ≤ b(G), i.e., x ∈ X(G)

and let LPt(G) be the linear program LPt(G) = min ε | A[t](x, ε) ≤ b[t];
6. compute the value εt of an optimal solution to LPt(G);
7. let A[t](x, ε = εt) ≤ b[t] be the modified system where variable ε is fixed to εt.
8. compute a basis Bt of the implied equalities of A[t](x, ε = εt) ≤ b[t];
9. while |Bt| < |N |;

10. compute an element x̄ in Ω(A[t]x ≤ b[t]);
11. return x̄;

Figure 4: Algorithm ComputeNucleolus.

each natural number i ∈ WB, L(i) is an implied equality of Ax ≤ b, which is easily done having guessed a
supporting set for L(i). Finally, in order to check that condition (4) holds, we can easily check in polynomial
time that |B| = k∗ and that |B| = rank(B), as the characteristic vectors of these inequalities are obtained in
polynomial time by applying the function L to the guessed numbers in WB. ⋄

As previously stated, the second phase of the algorithm uses the oracle solving Base-Check. Recall that
the value k∗ = rank(ie(Ax ≤ b)) is available when invoking this oracle, because it has been computed in the first
phase of the algorithm via a computation in F∆

P

2
. The oracle is then used in a loop that starts with I = ∅

and then performs the following tasks for k∗ iterations: At each iteration, it performs a binary search over the
exponentially many natural numbers h that may identify an inequality of the system (via the function L), which
is an implied equality not included in the current set I. More precisely, by this binary search we compute bit
by bit, through a polynomial number of oracle calls, a number h̄ such that L(h̄) ∈ ie(Ax ≤ b) \ I. Then, I is
updated by adding the new inequality L(h̄), and the loop continues with the next iteration. Eventually, after
k∗ ≤ n iterations, the set I is a basis of implied equalities of the given system, so that the second phase requires
at most polynomially many calls of the Base-Check oracle. Putting this together with the complexity of the
first phase, we have that Succint-ImpliedEqualities-Computation is in F∆

P

2
.

From what we have seen so far, it is rather easy to prove that, for any compact representation, there is an
F∆

P

2
separation oracle: given the encoding γ(Ax ≤ b) of a system and some vector x̄, an inequality violated by

x̄ (if any) can be identified in NP by guessing polynomially many bits, and hence can be computed in F∆
P

2
by a

standard self-reducibility argument. Therefore, the following result about the remaining computational problems
can be obtained from known results from linear programming (see, e.g., Grötschel et al. [28]), by noting that any
function computable by a polynomial-time deterministic Turing machine using an F∆

P

2
procedure belongs in

fact to F∆
P

2
. Nevertheless, we provide for completeness a direct proof in Appendix C.

Theorem 4.12. Let Λ be any compact representation for systems of linear inequalities. On the class C(Λ),
Succint-OptimalValue-Computation, Succint-Solution-Computation, and Succint-OptimalSolu-
tion-Computation are in F∆

P

2
.

5 Putting It All Together: Nucleolus Computation is in F∆
P

2

Now that we have analyzed the complexity issues arising from reasoning about succinctly specified linear
programs, we come back to the problem of computing the nucleolus and analyze its complexity over compact
games.

We first present an algorithm that computes the nucleolus of any coalitional game (G) based on the sequence
of linear programs LP(G) of Definition 3.2.

The algorithm, named ComputeNucleolus and reported in Figure 4, returns the empty set if X(G) = ∅.
Otherwise, it constructs the linear program LPt(G), which is precisely the one illustrated in Section 3.2, but for
the fact that, rather than to directly check whether a coalition S belongs to a set of the form Fr, we use the
characterization provided by Theorem 3.10 to detect coalitions having constant excesses. The value εt of an

24

optimal solution is then computed, so that we immediately obtain the system A[t](x, ε = εt) ≤ b[t], where the
variable ε is fixed to the constant value εt, and for which Ω(A[t](x, ε = εt) ≤ b[t]) = Vt(G) holds. Then, the
algorithm computes a basis Bt of the implied equalities of this program, which will be used in the subsequent
iteration. All these steps are repeated until the rank of the basis eventually reaches |N |, so that the dimension
of the non-empty set of imputations Vt(G) becomes 0, which means it contains just one imputation, which is the
nucleolus.

In fact, the number of iterations required by the algorithm can be determined immediately from Proposition 3.6
and Theorem 3.10.

Theorem 5.1. ComputeNucleolus computes the nucleolus N (G) of G = 〈N, v〉, with no more than |N |
iterations of the main loop (steps 3–9).

Let R be a polynomial-time compact representation, and let G be a coalitional game representable through
R. A finer analysis of the algorithm is given next by assuming that ξR(G) is the encoding of the input game,
and where the worth function is the (deterministic) polynomial-time function vR. Recall that well-known
classes of P-representations are graph and hypergraph games [14], marginal contribution nets [30], games in
multi-issue domains [12], weighted voting games [19], minimum cost spanning tree games [43], flow games [33],
linear production games [48], multi-attribute games [31], read-once (and general) marginal contribution nets [18],
skill games [6], matching games [34, 58], path disruption games [5], and (vertex) connectivity games [7]. Our
analysis applies to all of them.

Based on R, we preliminarily define a compact representation ΛR for systems of inequalities, in order to
encode the systems defined in the loop of Algorithm ComputeNucleolus. The class C(ΛR) contains a number
of systems for every coalitional game G = 〈N, v〉 ∈ C(R). Any system Ax ≤ b is encoded by the game encoding
ξR(G), plus t − 1 sets of inequalities B0, . . . , Bt−1, plus t − 1 real values ε1, . . . , εt−1, and a further element εt,
which can be either a real value or a variable.

The representation is designed in such a way that, according to what εt is (either a value or a variable),
we encode the systems (A[t](x, ε = εt) ≤ b[t]) or (A[t](x, ε) ≤ b[t]) computed during a run of Algorithm Com-
puteNucleolus. The number of variables, say n, is |N | in the former case, and |N | + 1 in the latter one.
The number of inequalities, say m, is at most |t| × 2|N | + 2 + |N |. Moreover, the polynomial time function LΛ

mapping natural numbers to (coefficients) of inequalities in the system is defined as follows.
Let τ be the (bijective) function associating every natural number i in the set {1, . . . , |t| × 2|N |} with the pair

τ(i) = (r, S) such that r = ⌈i/2|N |⌉ (hence, r ≤ t); and p ∈ S if, and only if, the p-th least significant bit of the
remainder of the integer division i/2|N | is 1. Then, the output identified by LΛ(i), with i ∈ {1, . . . , |t| × 2|N |}
and τ(i) = (r, S), is v(S) − x(S) ≤ εr, if rank(Br−1) 6= rank(Br−1 ∪ {1S}); or the empty output, otherwise (no
inequality is associated with i).

In particular, note that when τ(i) = (t, S) (i.e., r = t) and εt encodes a variable, LΛ(i) computes the
inequalities of the system A[t](x, ε) ≤ b[t] associated with those coalitions S over which the excess ε has to
be minimized (cf. instruction 5 in Figure 4). Moreover, the remaining 2 + |N | inequalities encode individual
rationality and efficiency. Formally, for any i = p+ |t|×2|N |, 1 ≤ p ≤ |N |, LΛ(i) is the inequality −xp ≤ −v({p});
while LΛ(|t| × 2|N | + |N | + 1) is −

∑
p∈N xp ≤ −v(N) and LΛ(|t| × 2|N | + |N | + 2) is

∑
p∈N xp ≤ v(N). Note

that LΛ is actually a polynomial time function, as all the operations involved in its computation are feasible in
polynomial time. In particular, recall that computing the rank of a given set of vectors is feasible in polynomial
time, and computing the worth v(S) of a given coalition S ⊆ N is in polynomial time, too, because R is a
P-representation.

Assuming the compact encoding being now understood, to keep the notation simple we often omit hereafter
the indication of the representation Λ, and refer directly to the systems described in the algorithm.

Theorem 5.2. Let R be a P-representation. On the class C(R), computing the nucleolus is feasible in F∆
P

2
.

Proof. Let R be a P-representation for coalitional games. Consider the algorithm shown in Figure 4 with
the encoding ξR(G) of a coalitional game G as its input. Recall that, for each coalition S ⊆ N , the worth
vR(ξR(G), S) can be computed in polynomial time w.r.t. ||ξR(G)||, because R is a P-representation.

After Theorem 5.1, it suffices to show that each step of the algorithm is feasible in F∆
P

2
(w.r.t. the size

||ξR(G)||). This is clearly true for the polynomial-time steps 1 and 2. Let us focus on the main loop (steps 3–9),
recalling that the systems of linear inequalities involved in the loop operations are encoded according to the
compact representation ΛR, as observed above. Therefore, all the results presented in Section 4 may be applied
to the class of systems represented this way. In particular, given any input system encoded according to ΛR,
every needed operation is feasible in F∆

P

2
(w.r.t. the size of this input system).

Now, observe that, at each t ≥ 1, the size of the encodings for the systems A[t](x, ε) ≤ b[t] and A[t](x, ε =
εt) ≤ b[t] are O(||ξR(G)||c), for some constant c. This follows from the definition of the compact representation
ΛR and from the following facts:

25

• From Theorem 5.1, we know that t ≤ |N |.

• The size of the nucleolus is polynomially bounded in the size of the game [50], as well as the size of εt, for
each εt in the sequence of linear programs LP(G) of Definition 3.2 and hence in the linear programs in
Algorithm ComputeNucleolus (see, e.g., the proof of Theorem 2.2 in Paulusma [50]).

In order to conclude, we next show that each of these (at most |N |) encodings can be computed in F∆
P

2

w.r.t. ||ξR(G)||.

First step: In the base case where t = 1, the encoding for A[t](x, ε) ≤ b[t] is just given by ξR(G), hence it can
be built in linear time. Therefore, by noting that the solutions of such a system form a non-empty polytope
and by applying Theorem 4.12 on the representation ΛR, we derive that we can compute in F∆

P

2
the value

ε1 (see step 6). As noted above, the size of ε1 and of the encoding for A[1](x, ε = ε1) ≤ b[1] are polynomially
bounded in the size of the game ξR(G). Thus, we are in the position of applying Theorem 4.11 in order to
conclude that a basis B1 of the implied equalities of A[1](x, ε = ε1) ≤ b[1] can be computed in F∆

P

2
(see step

8).

Generic step: At the generic step t′, both Bt′−1 and the encoding of A[t′ − 1](x, ε = εt′−1) ≤ b[t′ − 1] have
been computed (in F∆

P

2
), with the size of this system being polynomial w.r.t. ||ξR(G)||. As the encoding of

A[t′](x, ε) ≤ b[t′] just contains these two encodings, plus the encoding of the variable εt′ , it is computable in
polynomial time from them. Therefore, we are precisely in the same scenario as in the first step above, and
we can apply the same line of reasoning to conclude that the computation of the optimal value εt′ is feasible
in F∆

P

2
. Moreover, the size of the encoding of A[t′](x, ε = εt′) ≤ b[t′] is polynomial w.r.t. ||ξR(G)||, and the

basis Bt′ can be computed in F∆
P

2
(w.r.t. ||ξR(G)||).

To conclude the proof just note that, by Theorem 4.12, step 10 is feasible in F∆
P

2
with respect to the size of

the last computed system A[t](x, ε = εt) ≤ b[t], and hence with respect to ||ξR(G)||.

Note that the complexity derived above matches the hardness result given for graph games in Section 2.
Therefore, as an immediate consequence of the above result and Corollary 2.5, we get the following.

Corollary 5.3. Let R be any P-representation such that GGR -e R. On the class C(R), deciding whether a
vector is the nucleolus is ∆

P

2
-complete.

6 Tractable Classes of Compact Games

Several efforts have been spent in searching for classes of compact games over which computing the nucleolus
is tractable. For instance, efficient algorithms have been singled out for computing the nucleolus of tree
games [24, 43], convex games [38], assignment games [61], airport games [39], certain classes of routing games [16],
cardinality matching games [34], cyclic permutation games [63], veto-rich games [3], games with permission
structure [66], flow games games with unitary arc capacities [15], connected games [62], and peer group games [9].

Our approach to identify tractability islands, which we are illustrating below, complements this literature,
and follows instead the recent studies by Shrot et al. [59], Ueda et al. [64], and Aadithya et al. [1]. Indeed,
guided by the observation that obstructions to tractability in coalitional games emerge in scenarios where most
players are “different”, rather than focusing on some specific class of games we consider arbitrary classes where
the number of distinct player types is small (bounded by some fixed constant).

Definition 6.1 (Shrot et al. [59]). Let G = 〈N, v〉 be a coalitional game. We say that two players i, j ∈ N are
strategically equivalent in G (or, simply, have the same type) if v(S ∪ {i}) = v(S ∪ {j}) holds, for each coalition
S ⊆ N such that S ∩ {i, j} = ∅.

The game G is k-typed if its players can be partitioned into at most k pairwise disjoint classes of strategically
equivalent players. �

For any compact representation R and fixed natural number k > 0, we define Ck(R) as the subclass of C(R)
of all the k-typed games defined by R.

In the rest of this section, the complexity of computing the nucleolus is studied over classes of k-typed
compact games.

26

6.1 Results for Games in Type-Based Form

Let k be some natural number, let R be a compact representation for coalitional games, and let Ck(R) be the
class of k-typed games defined by R. We say that a game G ∈ Ck(R) is in type-based form if its encoding ξR(G)
comprises a type classification of players in G, i.e., a list N1, . . . , Nk of disjoint sets of players, with all players
in Ni having the same type, and such that

⋃k

i=1 Ni is the set of all players of G.10 Any game G ∈ Ck(R) in
type-based form can conveniently be denoted as a tuple 〈(N1, . . . , Nk), v〉.

It is well known that the worth function v of k-typed games is such that the value v(S) assigned to each
coalition S depends only on how many players of each type belong to S (see, e.g., [1, 64]), as stated below.

Proposition 6.2 ([59]). Let 〈N, v〉 be a coalitional game, and let (N1, . . . , Nk) be a partition of N into k sets of
strategically equivalent players. Given any two coalitions S, T ⊆ N , if |S ∩ Ni| = |T ∩ Ni|, for each i ∈ {1, . . . , k},
then v(S) = v(T).

Our goal is now to characterize the complexity of computing the nucleolus of k-typed games given in
type-based form. To this end, it is relevant to characterize the “structure” of this solution concept over k-typed
coalitional games. The following result shows that, as intuitively expected, the nucleolus treats equals in the
same way, so that it is “symmetric” w.r.t. player types.

Theorem 6.3. Let G = 〈N, v〉 be a coalitional game with X(G) 6= ∅, and let x̄ be the unique imputation in
N (G). Then, x̄i = x̄j holds, for each pair of players i and j in N having the same type.

Proof. Let G = 〈N, v〉 be a coalitional game with X(G) 6= ∅ (hence |N (G)| = 1), and assume by contradiction
that there are two players i and j in N having the same type and such that x̄i 6= x̄j (w.l.o.g., we can assume
that x̄i > x̄j). We claim that {x̄} 6= N (G).

Indeed, let x̄′ be the worth assignment where the values assigned to i and j are swapped, that is, such
that x̄′

i = x̄j , x̄′
j = x̄i, and x̄′

p = x̄p, for each p ∈ N \ {i, j}. Note that, for any coalition S such that
S ∩ {i, j} = ∅ or {i, j} ⊆ S, the total worth does not change, and hence e(S, x̄) = s(S, x̄′). It remains
to consider all pairs of “symmetric” coalitions T, T ′ such that i ∈ T and j /∈ T , i /∈ T ′ and j ∈ T ′, and
coinciding as for the rest, i.e., for T ′′ = T \ {i, j} = T ′ \ {i, j}. Note that for each p ∈ T ′′, x̄p = x̄′

p, and that
v(T) = v(T ′′ ∪ {i}) = v(T ′′ ∪ {j}) = v(T ′), as i and j have the same type. It follows that, for every such pair of
coalitions, e(T ′, x̄′) = e(T, x̄) and e(T, x̄′) = e(T ′, x̄); that is, their excesses are just swapped. Therefore, the
vector of excesses does not change when considering x̄′ in place of x̄, and we get θ(x̄) = θ(x̄′), which is impossible
as the nucleolus is a singleton.

Just for completeness, note that the converse of Theorem 6.3 does not hold. For instance, on the game
G = 〈{a, b, c}, v〉 such that v({a}) = v({b}) = v({c}) = 1, v({a, b, c}) = 3, v({a, b}) = 1, v({a, c}) = 2, and
v({b, c}) = 3, the vector x with xa = xb = xc = 1 is the only imputation and hence belongs to N (G), but the
three players have different types.

With the above result in place, let us analyze the complexity of computing the nucleolus. The good news is
that the problem is no longer intractable, if the k-types of players are known and the worth function can be
computed in polynomial time.

Theorem 6.4. Let R be a P-representation and let k be a fixed natural number. Given any game G ∈ Ck(R) in
type-based form, computing the nucleolus of G is feasible in polynomial time.

Proof. Let G = 〈(N1, . . . , Nk), v〉 ∈ Ck(R) be a coalitional game in type-based form. Assume that an arbitrary
ordering of players in N is fixed, and define the characteristic-coalitions set DG ⊆ 2N as the set of coalitions
{P1 ∪ P2 ∪ · · · ∪ Pk | S ⊆ N, and Pi contains the first |S ∩ Ni| players from set Ni, 1 ≤ i ≤ k}. Note that the
size of DG is polynomial w.r.t. the size of G, as it contains at most |N1| × |N2| × · · · × |Nk| coalitions. Moreover,
consider the convex set X̂(G) = {x ∈ X(G) | xi = xj , for each pair i, j of players having the same type}.

By Theorem 6.3, N (G) ⊆ X̂(G), and thus N (G) can be computed by the sequence of linear programs shown
in Section 3.2, by constraining the imputations to belong to X̂(G) (see Lemma 6.5 in [42]). In fact, having
restricted the feasible regions of these programs to X̂(G), it follows that every inequality associated with some
coalition S entails every other inequality obtained by replacing any variable xi (associated with a player) of
a certain type by any other variable xj (associated with a player) of the same type. As a consequence, it is
sufficient to consider only inequalities associated with the coalitions in the characteristic set DG , in place of all
subsets of N .

10Without loss of generality, we assume that the compact game encoding ξR according to representation R may include a partition
of players (otherwise, one may easily define a modified representation R′, which is the same as R but is able to encode the type
information, too).

27

Now, observe that any linear program therefore contains just polynomially many distinct inequalities and
that the coalitions to be considered (in DG) are polynomially many ones, given that k is a fixed natural number.
In particular, because G is in type-based form, all these inequalities can be computed in polynomial time by
iterating over all possible combinations of numbers of players per type. Thus, by standard result in linear
programming, solving the succession of the linear programs and, hence, computing the nucleolus of G are feasible
in polynomial time.

Note that as a corollary of the above general result, we can get the tractability of well-known classes of
compact games whose worth functions are computable in FP, and for which determining player types is feasible
in polynomial time. In particular, recall that, for any fixed k, a k-typed graph game can be represented in
type-based form (i.e., the clustering of its players can be found) in polynomial time [59]. Hence, the following is
immediately established.

Corollary 6.5. For any fixed natural number k, on the class Ck(GGR) of k-typed graph games, computing the
nucleolus is feasible in polynomial time.

Another class of games over which determining player types is feasible in polynomial time is the class of
k-typed games with synergies among coalitions [13, 59]. According to this representation scheme, a game G = 〈N,
v〉 is encoded as a set {(B1, v(B1)), . . . , (Bh, v(Bh))} of pairs, where each coalition Bi, with i ∈ {1, . . . , h}, is
explicitly associated with its worth. These pairs form the basis for determining the worth associated with the
remaining coalitions. Indeed, for any coalition S, v(S) is defined as the maximum aggregate value it can be
obtained by partitioning itself into sub-coalitions taken from the given set, i.e., as the value:

max{
∑

j∈P

v(Bj) | P ⊆ {1, . . . , h}, ∪j∈P Bj = S, and Bj ∩ Bj′ = ∅, ∀j, j′ ∈ P with j 6= j′}.

For games with synergies among coalitions, given a fixed natural number k, it is tractable to decide whether
they are k-typed and to eventually represented them in type-based form [59]. Moreover, while it is easy to see
that the worth function is in general NP-hard to compute [13], over k-typed games, it can be computed in
polynomial time. In fact, the problem is fixed parameter tractable, with k being the parameter [59]. Therefore,
the following is again immediately established.

Corollary 6.6. For any fixed natural number k, on the class of k-typed games with synergies among coalitions,
computing the nucleolus is feasible in polynomial time.

6.2 On The Hardness of Finding Player Types

The general tractability result derived in Theorem 6.4 is useful whenever games are given in type-based form. As
already discussed, in some cases this is not a real obstruction to tractability, as types can be efficiently recognized
over some classes of games. In this section, we explore more in general the intrinsic complexity of this latter task.

Note that it has been observed by Shrot et al. [59] that deciding whether two players have the same type
in games with synergies among coalitions [13] is an NP-hard problem over games that are not k-typed—as
discussed above, the problem is instead tractable if the number of agent types is known to be bounded by a
constant k. In fact, this NP-hardness result is hardly surprising as the associated worth function is NP-hard
to compute [13]. Hence, the intrinsic difficulty of the worth function actually obscures here the complexity of
the problem defined on top of it. Our first result is to strengthen this analysis, by showing that the problem
remains intractable even on games defined by P-representations, in general. In particular, we next show that the
problem is complete for the class co-NP.

Before stating the result, we give some definitions that will be used in the following. For any Boolean formula
φ over a set X of variables, consider the game Gφ = 〈X, vφ〉, whose players coincide with the variables in φ, and
where, for each coalition S ⊆ X,

vφ(S) =

{
1, if σ(S) |= φ, i.e., σ(S) is a satisfying assignment for φ, and

0, otherwise;

with σ(S) denoting the truth assignment where a variable xi evaluates to true if, and only if, the corresponding
player xi belongs to S.

Let Φ be a compact representation for coalitional games, such that for each Boolean formula φ, the game
Gφ is in C(Φ). In particular, the encoding ξΦ(Gφ) is the formula φ itself, and the worth function is the above
polynomial-time computable function vφ. Note that Φ is in fact a P-representation.

Moreover, consider the following problem Critical Swap (CS): Given a tuple 〈φ, xi, xj〉, where φ is a Boolean
formula over a set X of variables and {xi, xj} ⊆ X, decide whether {xi, xj} is a critical pair (w.r.t. φ), i.e.,

28

decide whether there is a satisfying truth assignment σ̄ such that: (1) σ̄[xi] 6= σ̄[xj] and (2) the assignment
σ′, where σ′[xk] = σ̄[xk], for each xk ∈ X \ {xi, xj}, σ′[xi] = σ̄[xj], and σ′[xj] = σ̄[xi], is not satisfying. It is
easy to see that CS is NP-hard, by a reduction from the satisfiability of Boolean formulae: For any Boolean
formula γ, let φ = γ ∧ xa ∧ ¬xb be a new Boolean formula where xa and xb are fresh variables (i.e., not in γ). It
is immediate to check that γ is satisfiable if, and only if, 〈φ, xa, xb〉 is a “yes” instance of CS.

Theorem 6.7. Let R be a P-representation and let G be any game in C(R). Deciding whether two players
of G have the same type is in co-NP. Moreover, there is a P-representation R̄ such that the problem is
co-NP-complete on the class C(R̄).

Proof. Let R be a P-representation and G any game in C(R). Consider the complementary problem of
deciding whether two players p and q of G do not have the same type. Note that membership in NP is easily seen,
as we can guess a coalition S with S ∩{p, q} = ∅, and then check in polynomial time that v(S ∪{p}) 6= v(S ∪{q}).

Hardness is next proven via a reduction from Critical Swap to the problem of checking whether a pair of
players have the same-type over games encoded according to the P-representation Φ defined above. Let φ be a
Boolean formula over a set X of variables with {xi, xj} ⊆ X, and consider the game Gφ = 〈X, vφ〉, belonging to
C(Φ), which can be indeed constructed in polynomial time. We show that 〈φ, xi, xj〉 is a “yes” instance of CS ⇔
xi and xj do not have the same type in Gφ.

(⇒) Let σ̄ be an assignment witnessing that 〈φ, xi, xj〉 is a “yes” instance. Assume, w.l.o.g., that σ̄[xi] = true

and σ̄[xj] = false. Let S ⊆ X be the coalition such that σ(S) = σ̄, and note that xi ∈ S and xj /∈ S.
Consider the coalition T = S \ {xi}, hence such that σ(T ∪ {xi}) |= φ. By definition of a solution to CS,
σ(T ∪ {xj}) 6|= φ. Hence, vφ(T ∪ {xi}) = 1 while vφ(T ∪ {xj}) = 0. Thus, xi and xj do not have the same
type.

(⇐) Assume that 〈φ, xi, xj〉 is a “no” instance. We consider two cases. (1) φ is unsatisfiable. In this case,
vφ(S) = 0 holds, for each coalition S ⊆ X, and xi and xj have trivially the same type. (2) φ is satisfiable.
In this case, for each set T ⊆ X \ {xi, xj}, we have that either σ(T ∪ {xi}) 6|= φ and σ(T ∪ {xj}) 6|= φ, or
σ(T ∪ {xi}) |= φ and σ(T ∪ {xj}) |= φ. Hence, vφ(T ∪ {xi}) = vφ(T ∪ {xj}) holds, and xi and xj have the
same type.

The above is very bad news, but it does not immediately imply that determining whether the number of
player types is bounded by some given constant is a difficult problem. Our second result is to characterize the
complexity of this problem.

Theorem 6.8. Let R be a P-representation and let k be a natural number. Deciding whether a coalitional game
G ∈ C(R) belongs to Ck(R) (i.e., it is k-typed) is in co-NP. Moreover, there is a P-representation R̄ such that
the problem is co-NP-complete even on the class C1(R̄).

Proof. Let R be a P-representation and k a natural number. First note that, for any game G ∈ C(R),
deciding whether there are at least k′ = k + 1 player types is in NP. Indeed, it suffices to guess a set P of k′

players together with k′(k′ − 1)/2 coalitions, and then check in polynomial time that such coalitions witness that
players in P are pairwise not strategically equivalent.

For the hardness part, we use again the class of games C(Φ) defined by the compact representation Φ.
Consider the problem Exists Critical Swap (ECS), in which given a Boolean formula φ over a set X of variables,
we have to decide whether there exists a critical pair {xi, xj} w.r.t. φ. It is easily seen that ECS is NP-hard.
Indeed, for any Boolean formula γ, let φ = γ ∧ xa ∧ ¬xb be a new Boolean formula where xa and xb are fresh
variables. Then, γ is satisfiable if and only if 〈φ〉 is a “yes” instance of ECS.

Our result then follows by showing that: φ is a “yes” instance of ECS ⇔ Gφ has at least two players with
different type (hence k > 1).

(⇒) Assume that xi and xj are two variables in X such that 〈φ, xi, xj〉 is a “yes” instance of CS. By the same
line of reasoning as in the proof of Theorem 6.7, we have that xi and xj are not strategically equivalent, and
hence in Gφ there are at least 2 different types of players.

(⇐) Assume now that, for each pair of variables xi and xj of φ, the tuple 〈φ, xi, xj〉 is a “no” instance of CS.
In the case where φ is unsatisfiable, vφ(S) = 0 holds, for each coalitions S. Hence, every player in Gφ have
the same type. Consider then the case where φ is satisfiable, but there is no critical pair {xi, xj} w.r.t. φ. In
this latter case, for any chosen pair xi and xj , we can apply the same line of reasoning as in the proof of
Theorem 6.7 (case (2) of the (⇐)-part), and conclude that xi and xj are strategically equivalent. As this
holds for each pair of players, we have that all players have the same type.

29

6.3 Shedding Light on the “Gray Area”

So far, we have shown tractability results for the classes of k-typed games given in type-based form, and we
have pointed out that deciding whether a game is actually k-typed is an intractable problem. There is still a
missing piece: What happens if a game is known to be k-typed, but it is not given in type-based form (i.e., the
classification of players is actually unknown)? This question is analyzed next.

Our first result is to show that identifying player types is likely to be intractable even on k-typed games having
such a bounded number of types. The proofs of intractability results are based here on a complexity-theory
setting developed to study problems that are believed to be difficult but could not be classified using the most
common reductions (i.e., Karp or Turing reductions).

Consider the problem SAT1, where we have to decide the satisfiability of a Boolean formula φ, under the
promise that φ admits at most one satisfying assignment. This is the prototypical NP-hard problem under
randomized reductions [65]. It is widely believed that such problems are not solvable in polynomial time. For our
aims here, it is not necessary to expand on the concept of randomized reductions, and we refer the interested
reader, for instance, to the work by Mahmoody and Xiao [41]. Indeed, the promise of dealing with a fixed
number of player types is next related to SAT1 via “standard” reductions from this problem, in order to prove
the analogue of Theorem 6.7 and Theorem 6.8 for classes of games having bounded types.

Theorem 6.9. Let R be a P-representation and let k be a natural number. Consider the k-typed subclass Ck(R)
of the games representable through the representation R. Given a game G ∈ Ck(R), deciding whether two players
of G have the same type, as well as deciding whether G is actually k′-typed for some k′ < k, are co-NP problems.
Moreover, there is a P-representation R̄ for which these problems are co-NP-hard under randomized reductions,
even on the class C2(R̄).

Proof. Membership results in co-NP follow by Theorem 6.7 and Theorem 6.8. Concerning the hardness part,
we use the class of 2-typed games C2(Φ) encoded according to the compact representation Φ, and exhibit a
polynomial-time reduction from SAT1 to the considered problem in this class.

Let φ′ be a Boolean formula over the set X ′ of variables having one satisfying assignment at most, and
define φ = φ′ ∧ xα ∧ ¬xβ as a Boolean formula over the set X = X ′ ∪ {xα, xβ}. Note that φ has one satisfying
assignment at most where, in particular, xα (resp., xβ) evaluates to true (resp., false). Consider the associated
game Gφ, and observe that if φ is unsatisfiable, then vφ(S) = 0 holds, for each coalition S ⊆ X. Thus, in this
case, there is only one type of players, and Gφ is 1-typed.

Assume now that φ is satisfiable, and let σ̃ be its (unique) satisfying truth assignment. Let S̃ be the coalition
such that σ(S̃) = σ̃, and let xi and xj be two arbitrary players. Then, two cases have to be considered:

(1) Assume that xi and xj are two players such that xi ∈ S̃ and xj /∈ S̃. Consider the coalition T̃ = S̃ \ {xi},
and note that vφ(T̃ ∪ {xi}) = 1 and vφ(T̃ ∪ {xj}) = 0. Hence, xi and xj have two different types.

(2) Assume that either {xi, xj} ⊆ S̃ or {xi, xj} ∩ S̃ = ∅. Let T be any coalition such that {xi, xj} ∩ T = ∅.
We claim that vφ(T ∪ {xi}) = 0 and vφ(T ∪ {xj}) = 0 hold. Indeed, first observe that T̃ ∪ {xi} 6= S̃ and
T̃ ∪ {xj} 6= S̃. Then, the claim follows by simply noticing that S̃ is the one coalition for which vφ(S̃) = 1.
Hence, in this case, xi and xj have the same type.

By combining the above two cases, we have that players of Gφ can be partitioned into exactly two different
strategic types: Players in S̃, and players outside S̃. Therefore, Gφ is 2-typed, but it is not 1-typed. It follows
that Gφ is 1-typed if and only if φ (and, hence, the original formula φ′) is unsatisfiable. From the NP-hardness
of SAT1 under randomized reductions, it follows that, on the class C2(Φ), deciding whether a game is actually
1-typed is co-NP-complete under randomized reductions.

Finally, in order to show that deciding whether two players have the same type is co-NP-complete under
randomized reductions (again, on C2(Φ)), it suffices to observe that xα and xβ have the same type if and only if
φ (and, hence, φ′) is unsatisfiable.

Similarly, we shall next show that computing the nucleolus is hard even on 2-typed games, if the classification
of players is not provided in input. Nevertheless, note that the problem is trivial for 1-typed games, because of
the equal-treatment of equals by the nucleolus stated in Theorem 6.3.

Theorem 6.10. There is a P-representation R̄ such that, even on the class C2(R̄), computing the nucleolus is
co-NP-hard under randomized reductions.

Proof. Consider again the class of 2-typed games C2(Φ). Moreover, recall the reduction in the proof of Theorem 6.9,
based on the Boolean formulae φ′ over variables in X ′ and φ over X = X ′ ∪ {xα, xβ}. Define a new game
Ḡφ = 〈X, v̄φ〉 where v̄φ(X) = 1 and v̄φ(S) = vφ(S), for each S ⊂ X. Let z be the imputation assigning the

30

worth 1/|X| to each player. We claim that z ∈ N (Ḡφ) holds if and only if φ is not satisfiable. Indeed, if φ is
not satisfiable, then v̄φ(S) = 0, for each S ⊂ X, and it can be easily checked that symmetrically distributing
the worth of v̄φ(X) over all players leads to the nucleolus. Instead, if φ is satisfiable, then there is a coalition
S (with xα ∈ S and xβ 6∈ S) such that v̄φ(S) = 1. Consider the imputation z′ where each player in S (resp.,
outside S) gets worth 1/|S| (resp., 0). Then, θ(z′) ≺ θ(z), and hence z 6∈ N (Ḡφ).

7 Conclusions

We studied the problem of computing the nucleolus of coalitional games represented in any polynomial-time
compact form. It turns out that this problem is mildly harder than NP and co-NP, as the nucleolus can be
computed in polynomial time by a deterministic Turing transducer exploiting an NP-oracle. It is worthwhile
noting that we focus on P-representations just for the sake of presentation. Indeed, this upper bound extends
rather easily to any FNP-representation R (where the worth function vR is computable in FNP, the functional
version of NP), e.g., to games with synergies among coalitions. To illustrate, just note that in our algorithms,
whenever an oracle “guesses” some coalition S, it can also guess its worth w = vR(S), together with a polynomial-
time checkable concise certificate that w is actually the correct value (we refer the interested reader to [27], for
more information about FNP-representations and the techniques to deal with them).

We then completed the picture about the complexity of the nucleolus in compact games by showing that the
above result is tight, because hardness for ∆

P

2
holds even for the simple graph-game representation, and hence

for any compact representation at least as expressive as graph-games (e.g., for marginal contribution networks).
Besides rather classical combinatorial arguments used for the hardness proofs, the technical ingredients used

in the paper comprise a novel theory of succinct systems of linear inequalities (and succinct linear programs),
suitably introduced and studied in the paper. We believe that the results obtained for this framework, being
defined for such a basic mathematical tool as the systems of linear inequalities, may be quite useful also in
contexts and applications very different from game theory.

Finally, we have identified relevant tractable classes of coalitional games (w.r.t. the nucleolus computation),
based on the notion of type of a player. Indeed, in most applications where many players are involved, it is often
the case that such players do belong in fact to a limited number of classes, which are known in advance and
may be exploited for computing solution concepts in a fast way (e.g., think of applications to networking, where
players correspond to hardware devices with a limited numbers of possible features, so that we typically have
many devices but a few types).

In a future work, we plan to identify further tractable classes of coalitional games where we additionally
consider special forms of interactions among players or specific limitations in the ability of forming coalitions
and collaborating with each other.

References

[1] K. Aadithya, T. Michalak, and N. Jennings. Representation of coalitional games with algebraic decision
diagrams. Technical Report UCB/EECS-2011-8, Department of Electrical Engineering and Computer
Sciences, The University of California at Berkeley, 2011.

[2] T. Ågotnes, W. van der Hoek, and M. Wooldridge. Reasoning about coalitional games. Artificial Intelligence,
173(1):45–79, 2009.

[3] J. Arin and V. Feltkamp. The nucleolus and kernel of veto-rich transferable utility games. International
Journal of Game Theory, 26(1):61–73, 1997.

[4] R. J. Aumann and M. Maschler. Game-theoretic analysis of a bankruptcy problem from the Talmud.
Journal of Economic Theory, 36(2):195–213, 1985.

[5] Y. Bachrach and E. Porat. Path disruption games. In M. Luck, S. Sen, W. van der Hoek, and G. A.
Kaminka, editors, Proceedings of the 9th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2010), pages 1123–1130, Toronto, Canada, 2010.

[6] Y. Bachrach and J. S. Rosenschein. Coalitional skill games. In L. Padgham, D. C. Parkes, J. Müller, and
S. Parsons, editors, Proceedings of the 7th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2008), pages 1023–1030, Estoril, Portugal, 2008.

[7] Y. Bachrach, J. S. Rosenschein, and E. Porat. Power and stability in connectivity games. In L. Padgham,
D. C. Parkes, J. Müller, and S. Parsons, editors, Proceedings of the 7th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2008), pages 999–1006, Estoril, Portugal, 2008.

31

[8] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 1998. ISBN 0-387-98281-7.

[9] R. Brânzei, T. Solymosi, and S. Tijs. Strongly essential coalitions and the nucleolus of peer group games.
International Journal of Game Theory, 33(3):447–460, 2005.

[10] R. Brânzei, E. Iñarra, S. Tijs, and J. M. Zarzuelo. A simple algorithm for the nucleolus of airport profit
games. International Journal of Game Theory, 34(2):259–272, 2006.

[11] N. Chen, P. Lu, and H. Zhang. Computing the nucleolus of matching, cover and clique games. In B. S.
Jörg Hoffmann, editor, Proceedings of the 26th National Conference on Artificial Intelligence (AAAI-12),
pages 1319–1325, Toronto, Ontario, Canada, 2012.

[12] V. Conitzer and T. Sandholm. Computing shapley values, manipulating value division schemes, and checking
core membership in multi-issue domains. In D. L. McGuinness and G. Ferguson, editors, Proceedings of the
19th National Conference on Artificial Intelligence (AAAI-04), pages 219–225, San Jose, CA, USA, 2004.

[13] V. Conitzer and T. Sandholm. Complexity of constructing solutions in the core based on synergies among
coalitions. Artificial Intelligence, 170(6–7):607–619, 2006.

[14] X. Deng and C. H. Papadimitriou. On the complexity of cooperative solution concepts. Mathematics of
Operations Research, 19(2):257–266, 1994.

[15] X. Deng, Q. Fang, and X. Sun. Finding nucleolus of flow game. Journal of Combinatorial Optimization, 18
(1):64–86, 2009.

[16] J. Derks and J. Kuipers. On the core and the nucleolus of routing games. Technical Report 92-07, University
of Limburg, Maastricht, Netherlands, 1992.

[17] I. Dragan. A procedure for finding the nucleolus of a cooperativen person game. Mathematical Methods of
Operations Research, 25(5):119–131, 1981.

[18] E. Elkind, L. A. Goldberg, P. W. Goldberg, and M. Wooldridge. A tractable and expressive class of marginal
contribution nets and its applications. Mathematical Logic Quarterly, 55(4):362–376, 2009.

[19] E. Elkind, L. A. Goldberg, P. W. Goldberg, and M. Wooldridge. On the computational complexity of
weighted voting games. Annals of Mathematics and Artificial Intelligence, 56(2):109–131, 2009.

[20] U. Faigle, W. Kern, and J. Kuipers. Computing the nucleolus of min-cost spanning tree games is np-hard.
International Journal of Game Theory, 27(3):443–450, 1998.

[21] L. Fortnow, R. Impagliazzo, V. Kabanets, and C. Umans. On the complexity of succinct zero-sum games.
Computational Complexity, 17(3):353–376, 2008. ISSN 1016-3328.

[22] D. B. Gillies. Solutions to general non-zero-sum games. In A. W. Tucker and R. D. Luce, editors,
Contributions to the Theory of Games, Volume IV, volume 40 of Annals of Mathematics Studies, pages
47–85. Princeton University Press, Princeton, NJ, USA, 1959.

[23] D. Granot and F. Granot. On some network flow games. Mathematics of Operations Research, 17(4):
792–841, 1992.

[24] D. Granot, M. Maschler, G. Owen, and W. R. Zhu. The kernel/nucleolus of a standard tree game.
International Journal of Game Theory, 25(2):219–244, 1996.

[25] D. Granot, F. Granot, and W. R. Zhu. Characterization sets for the nucleolus. International Journal of
Game Theory, 27(3):359–374, 1998.

[26] G. Greco, E. Malizia, L. Palopoli, and F. Scarcello. Non-transferable utility coalitional games via mixed-
integer linear constraints. Journal of Artificial Intelligence Research, 38:633–685, 2010.

[27] G. Greco, E. Malizia, L. Palopoli, and F. Scarcello. On the complexity of core, kernel, and bargaining set.
Artificial Intelligence, 175(12–13):1877–1910, 2011.

[28] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization, volume 2
of Algorithms and Combinatorics. Springer-Verlag, Berlin Heidelberg, Germany, 2nd edition, 1993.

32

[29] E. Helly. Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jahresbericht der Deutschen
Mathematiker-Vereinigung, 32:175–176, 1923.

[30] S. Ieong and Y. Shoham. Marginal contribution nets: a compact representation scheme for coalitional
games. In J. Riedl, M. J. Kearns, and M. K. Reiter, editors, Proceedings of the 6th ACM Conference on
Electronic Commerce (EC’05), pages 193–202, Vancouver, BC, Canada, 2005.

[31] S. Ieong and Y. Shoham. Multi-attribute coalitional games. In J. Feigenbaum, J. Chuang, and D. M.
Pennock, editors, Proceedings of the 7th ACM Conference on Electronic Commerce (EC’06), pages 170–179,
Ann Arbor, MI, USA, 2006.

[32] D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen, editor, Handbook of Theoretical Computer
Science, Volume A: Algorithms and Complexity, pages 67–161. The MIT Press, Cambridge, MA, USA, 1990.

[33] E. Kalai and E. Zemel. On totally balanced games and games of flow. Discussion Paper 413, Northwestern
University, Center for Mathematical Studies in Economics and Management Science, Evanston, IL, USA,
1980.

[34] W. Kern and D. Paulusma. Matching games: The least core and the nucleolus. Mathematics of Operations
Research, 28(2):294–308, 2003.

[35] E. Kohlberg. The nucleolus as a solution of a minimization problem. SIAM Journal on Applied Mathematics,
23(1):34–39, 1972.

[36] A. Kopelowitz. Computations of the kernels of simple games and the nucleolus of n-person games. Technical
Report RM-31, The Hebrew University of Jerusalem, Jerusalem, Israel, 1967.

[37] M. W. Krentel. The complexity of optimization problems. In Proceedings of the 18th Annual ACM
Symposium on Theory of Computing (STOC’86), pages 69–76, Berkeley, CA, USA, 1986.

[38] J. Kuipers. A polynomial time algorithm for computing the nucleolus of convex games. Report M 96-12,
Maastricht University, Maastricht, The Netherlands., 1996.

[39] S. C. Littlechild. A simple expression for the nucleolus in a special case. International Journal of Game
Theory, 3(1):21–29, 1974.

[40] S. C. Littlechild and F. Thompson. Aircraft landing fees: A game theory approach. The Bell Journal of
Economics, 8(1):186–204, 1977.

[41] M. Mahmoody and D. Xiao. On the power of randomized reductions and the checkability of SAT. In
D. van Melkebeek, editor, Proceedings of the 25th Annual IEEE Conference on Computational Complexity
(CCC ‘10), pages 64–75, Cambridge, MA, USA, 2010.

[42] M. Maschler, B. Peleg, and L. S. Shapley. Geometric properties of the kernel, nucleolus, and related solution
concepts. Mathematics of Operations Research, 4(4):303–338, 1979.

[43] N. Megiddo. Computational complexity of the game theory approach to cost allocation for a tree. Mathematics
of Operations Research, 3(3):189–196, 1978.

[44] L. Militano, A. Iera, and F. Scarcello. A fair cooperative content-sharing service. Computer Networks, 2013.

[45] M. Núñez and C. Rafels. The Böhm-Bawerk horse market: a cooperative analysis. International Journal of
Game Theory, 33(3):421–430, 2005.

[46] M. J. Osborne and A. Rubinstein. A Course in Game Theory. The MIT Press, Cambridge, MA, USA, 1994.

[47] G. Owen. A note on the nucleolus. International Journal of Game Theory, 3(2):101–103, 1974.

[48] G. Owen. On the core of linear production games. Mathematical Programming, 9(1):358–370, 1975.

[49] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity. Dover
Publications, 2nd edition, 1998.

[50] D. Paulusma. Complexity Aspects of Cooperative Games. PhD thesis, University of Twente, Enschede, The
Netherlands, 2001.

[51] J. A. M. Potters, J. H. Reijnierse, and M. Ansing. Computing the nucleolus by solving a prolonged simplex
algorithm. Mathematics of Operations Research, 21(3):757–768, 1996.

33

[52] M. Rabin. A note on Helly’s theorem. Pacific Journal of Mathematics, 5(3):363–366, 1955.

[53] H. Reijnierse. Games, Graphs and Algorithms. PhD thesis, University of Nijmegen, the Netherlands, 1995.

[54] H. Reijnierse and J. Potters. The b-nucleolus of tu-games. Games and Economic Behavior, 24(1):77–96,
1998.

[55] J. K. Sankaran. On finding the nucleolus of an n-person cooperative game. International Journal of Game
Theory, 19(4):329–338, 1991.

[56] D. Schmeidler. The nucleolus of a characteristic function game. SIAM Journal of Applied Mathematics, 17
(6):1163–1170, 1969.

[57] A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, New York, NY, USA, 1998.

[58] L. S. Shapley and M. Shubik. The assignment game I: The core. International Journal of Game Theory, 1
(1):111–130, 1971.

[59] T. Shrot, Y. Aumann, and S. Kraus. On agent types in coalition formation problems. In M. Luck,
S. Sen, W. van der Hoek, and G. A. Kaminka, editors, Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2010), pages 757–764, Toronto, Canada, 2010.

[60] T. Solymosi. On computing the nucleolus of cooperative games. PhD thesis, University of Illinois, Chicago,
USA, 1993.

[61] T. Solymosi and T. E. S. Raghavan. An algorithm for finding the nucleolus of assignment games. International
Journal of Game Theory, 23(2):119–143, 1994.

[62] T. Solymosi, H. Aarts, and T. Driessen. On computing the nucleolus of a balanced connected game.
Mathematics of Operations Research, 23(4):983–1009, 1998.

[63] T. Solymosi, T. E. S. Raghavan, and S. Tijs. Computing the nucleolus of cyclic permutation games. European
Journal of Operational Research, 162(1):270–280, 2005.

[64] S. Ueda, M. Kitaki, A. Iwasaki, and M. Yokoo. Concise characteristic function representations in coalitional
games based on agent types. In T. Walsh, editor, Proceedings of the 22nd International Joint Conference
on Artificial Intelligence (IJCAI-11), pages 393–399, Barcelona, Spain, 2011.

[65] L. G. Valiant and V. V. Vazirani. NP is as easy as detecting unique solutions. Theoretical Computer Science,
47:85–93, 1986.

[66] R. van den Brink, I. Katsev, and G. van der Laan. Computation of the nucleolus for a class of disjunctive
games with a permission structure. Technical Report TI 2008-060/3, Tinbergen Institute, Amsterdam,
Netherlands, 1998.

[67] J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Princeton University
Press, Princeton, NJ, USA, 3rd edition, 1953.

[68] H. P. Young, N. Okada, and T. Hashimoto. Cost allocation in water resources development. Water Resources
Research, 18(3):463–475, 1982.

A Proofs of Properties in Theorem 2.4

Property 2.4.(1). Let S be a coalition such that S ⊆ Nk ∪ Nk and v(S) > 0. Then, S ∩ (Nk \ {α1}) 6= ∅ if,
and only if, S ∩ Nk = ∅.

Proof. In the light of Lemma 2.3.(B), S cannot include any penalty edges, for otherwise we would have v(S) < 0.
Therefore we conclude that there is no pair of players {p, q} ⊆ S, with p 6= α1, such that p ∈ Nk and q ∈ Nk.
Then, we get that either S ⊆ Nk or S ⊆ Nk ∪ {α1}. The result follows since S necessarily includes a positive
edge and, hence, at least one player different from α1.

Property 2.4.(2). maxS⊆Nk
v(S) = m2n+3 + maxσ|=φ

∑
αi|σ(αi)=true

2i. Moreover, let S∗ ⊆ Nk be a

coalition such that v(S∗) = maxS⊆Nk
v(S), and let σ∗ be the lexicographically maximum satisfying assignment.

Then, chall ∈ S∗ and σS∗
= σ∗.

34

Proof. Let S∗ be the coalition having maximum worth over all the coalitions with players in Nk. Because
of Lemma 2.3.(B), S∗ cannot cover any penalty edge. Thus, S∗ includes only positive edges and, since φ is
satisfiable, we have v(S∗) = |C| × 2n+3 +

∑
{chall,αi}⊆S∗

2i, where C is the set of the clause players cj ∈ S∗ for
which exactly one literal player ℓi,j is in S∗; in particular, recall that 2i is the weight associated with the edge
{chall, αi}, while 2n+3 is the weight associated with each edge of the form {cj , ℓi,j}.

Eventually, since φ is satisfiable and since 2n+3 >
∑n

i=1 2i, S∗ will certainly contain all the m clause players,
and hence |C| = m. In particular, observe that, for each pair of distinct clauses cj and cj′ , and for each variable
αi occurring positively in cj and negated in cj′ , |{αi,j , ¬αi,j′} ∩ S∗| ≤ 1 holds, in order that no penalty edge
is covered. That is, the selection of the literal players induces a satisfying truth assignment (which is possibly
partial). Therefore, v(S∗) = m2n+3 +

∑
{chall,αi}⊆S∗

2i. Moreover, the assignment σS∗
associated with S∗ is

satisfying. Indeed, consider any clause player cj ∈ S∗, and let ℓi,j be the literal player in S∗. If ℓi,j = ¬αi,j , then
αi does not belong to S∗, for otherwise a penalty edge would be covered. Instead, if ℓi,j = αi,j , then αi belongs
to S∗, for otherwise we would have v(S∗ ∪ {αi}) = v(S∗) + 2i > v(S∗). So, the assignment σS∗

conforms with
the truth assignment induced by the selection of the literal players that satisfy all the clauses of φ. Hence, σS∗

is
satisfying.

Eventually, by the assumption that the assignment mapping all variables to false is not a satisfying one for φ,
we always have chall ∈ S∗. Moreover, it holds that:

v(S∗) = m2n+3 +
∑

αi|σS∗
(αi)=true

2i ≤ m2n+3 + max
σ|=φ

∑

αi|σ(αi)=true

2i.

To conclude, we claim that σS∗
is the lexicographically maximum satisfying assignment so that the above

relationship holds by equality. Indeed, assume, for the sake of contradiction, that a satisfying assignment
σ′ exists for φ such that v(S∗) < m2n+3 +

∑
αi|σ′(αi)=true

2i. Based on σ′, we can build a coalition S′ such
that {chall, c1, . . . , cm} ⊆ S′; αi ∈ S′, for each αi such that σ′(αi) = true; exactly one literal ℓi,j is in S′,
for each clause cj that is satisfied by ℓi,j according to the truth values defined in σ′; and no further player
is in S′. By construction and given that σ′ is satisfying, no penalty edge is covered by S′. In particular,
v(S′) = m2n+3 +

∑
αi∈S′ 2i and, hence, v(S′) = m2n+3 +

∑
αi|σ′(αi)=true

2i, which is impossible as we would
have a coalition S′ ⊆ Nk such that v(S′) > v(S∗) = maxS⊆Nk

v(S).

Property 2.4.(3). Let S∗ ⊆ Nk be a coalition with v(S∗) = maxS⊆Nk
v(S). Then, for each coalition

S ⊆ Nk ∪ Nk with S 6= S∗ and S 6= S∗, v(S∗) = v(S∗) ≥ v(S) + 2 holds. Moreover, for each imputation y,
e(S∗, y) ≥ e(S, y) + 1 and e(S∗, y) ≥ e(S, y) + 1 hold.

Proof. We first show that the property holds for any coalition S with S∩(Nk \{α1}) 6= ∅ and S∩Nk 6= ∅. Indeed,
by Lemma 2.3.(B), it must be the case that v(S) < 0, while by Property 2.4.(2) we know that v(S∗) = v(S∗) > 0,
and actually that v(S∗) = v(S∗) > 2, therefore v(S∗) = v(S∗) ≥ v(S) + 2. Moreover, e(S, y) = v(S) − y(S) < 0
holds, for each imputation y. Indeed, y must assign to each player a non-negative payoff because of the individual
rationality constraints (recall that v({p}) = 0, for each player p ∈ N

N
). Therefore, we have that y(S) ≥ 0.

Instead, note that y(S∗) ≤ y(N
N

) = 1, because of the efficiency of y and given that v(N
N

) = 1 holds, by
Lemma 2.3.(C). Then, since v(S∗) > 2, we derive that e(S∗, y) > 1, and similarly that e(S∗, y) > 1. By this,
since e(S, y) < 0, e(S∗, y) ≥ e(S, y) + 1, and e(S∗, y) ≥ e(S, y) + 1.

Consider, now, a primal coalition S ⊆ Nk with S 6= S∗—the same arguments apply to the case of dual
coalitions. Let σ∗ denote the lexicographically maximum satisfying assignment for φ, and let us distinguish
two cases. If a satisfying assignment for φ exists which is different from σ∗, by exploiting the same line of
reasoning as in the proof of Property 2.4.(2), we can derive that the worth of S is bounded by the value
m2n+3 + maxσ|=φ,σ 6=σ∗

∑
αi|σ(αi)=true

2i. Then, v(S) ≤ m2n+3 + maxσ|=φ,σ 6=σ∗

∑
αi|σ(αi)=true

2i ≤ m2n+3 +

maxσ|=φ

∑
αi|σ(αi)=true

2i − 2 = v(S∗) − 2 = v(S∗) − 2. In particular, note that maxσ|=φ

∑
αi|σ(αi)=true

2i

coincides with
∑

αi|σ∗(αi)=true
2i, because σ∗ is the lexicographically maximum satisfying assignment, and observe

that
∑

αi|σ∗(αi)=true
2i ≥

∑
αi|σ(αi)=true

2i + 2 holds, for each assignment σ 6= σ∗ (which is lexicographically
smaller). Moreover, by recalling that, for each imputation y and coalition S, 0 ≤ y(S) ≤ 1 holds, we get
e(S∗, y) = v(S∗) − y(S∗) ≥ v(S∗) − 1 ≥ v(S) + 1 ≥ e(S, y) + 1. Similarly, we get e(S∗, y) ≥ e(S, y) + 1.

In order to conclude the proof, consider the second case where σ∗ is the only satisfying assignment for
φ. In this case, by looking again at the arguments in the proof of Property 2.4.(2), it emerges that v(S) ≤
(m − 1)2n+3 +

∑n

i=1 2i. Again, we derive that v(S) ≤ v(S∗) − 2 = v(S∗) − 2, which suffices to prove that
e(S∗, y) ≥ e(S, y) + 1 and e(S∗, y) ≥ e(S, y) + 1 hold, for each imputation y, as we have illustrated above.

Property 2.4.(4). For any coalition S, v(S) = v(S ∩ Nr) + v(S ∩ (Nk ∪ Nk)).

35

Proof. The property trivially follows from the fact that S ⊆ Nk ∪ Nk ∪ Nr and since there are no edges between
any node in Nr = {a, b, a, b} and any node in Nk ∪ Nk.

Property 2.4.(5). Let S∗ ⊆ Nk be a coalition with v(S∗) = maxS⊆Nk
v(S). Then, the eight coalitions

S1 = S∗ ∪{a, b}, S2 = S∗ ∪{a, b}, S3 = S∗ ∪{a, b}, S4 = S∗ ∪{a b}, S5 = S1 ∪{a}, S6 = S2 ∪{a}, S7 = S3 ∪{a},
and S8 = S4 ∪ {a} are such that v(S1) = · · · = v(S8) = max

S⊆Nk∪Nk∪Nr
v(S) = v(S∗) + ∆ + 2.

Proof. Observe that v({a, b}) = v({a, b}) = v({a, b, a}) = v({a, b, a}) = ∆+2 and, in fact, maxS⊆Nr
v(S) = ∆+2.

Therefore, by Property 2.4.(4), v(S1) = · · · = v(S8) = v(S∗)+∆+2 = v(S∗)+∆+2 and max
S⊆Nk∪Nk∪Nr

v(S) =

max
S⊆Nk∪Nk

v(S) + ∆ + 2. The result then follows because v(S∗) = v(S∗) = max
S⊆Nk∪Nk

v(S) by Property
2.4.(3).

Property 2.4.(6). For each imputation y and each coalition S 6∈ {S1, . . . , S8}, it holds that e(Si, y) >
e(S, y), for each i ∈ {1, . . . , 8}.

Proof. Consider a generic coalition S and note that, due to Property 2.4.(4), e(S, y) = e(S ∩ Nr, y) + e(S ∩
(Nk ∪ Nk), y), for each imputation y. For notational convenience, we denote by W1 the set S ∩ Nr, and
by W2 the set S ∩ (Nk ∪ Nk). Thus, e(S, y) = e(W1, y) + e(W2, y). Moreover, we denote by S′ any of the
coalitions in the set S ′ = {{a, b}, {a, b, a}, {a, b}, {a, b, a}}, and by S′′ any of the coalitions in S ′′ = {S∗, S∗}.
Observe that, for each pair A, B ∈ S ′ of coalitions, v(A) = v(B) = maxS⊆Nr

v(S) holds. Moreover, recall that
v(S∗) = v(S∗) = max

S⊆Nk∪Nk
v(S) and that, for each coalition W , 0 ≤ y(W) ≤ 1 holds. Eventually, observe

that for each coalition T ⊆ Nr with T 6∈ S ′, v(T) ≤ v(S′) − 2 holds.
At first, we claim that, given a coalition S and any imputation y, e(W1, y) ≤ e(S′, y) + 1, and e(W2, y) ≤

e(S′′, y)+1. Indeed, e(W1, y) = v(W1)−y(W1) ≤ v(W1) ≤ v(S′) = v(S′)−1+1 ≤ v(S′)−y(S′)+1 = e(S′, y)+1.
On the other hand, e(W2, y) = v(W2)−y(W2) ≤ v(W2) ≤ v(S′′) = v(S′′)−1+1 ≤ v(S′′)−y(S′′)+1 = e(S′′, y)+1.

Assume that S does not belong to {S1, . . . , S8}. Then, we have to analyze three cases:

(i) Assume that W1 /∈ S ′ and W2 /∈ S ′′. In this case, e(W1, y) = v(W1) − y(W1) ≤ v(W1) ≤ v(S′) − 2 ≤
v(S′) − y(S′) − 1 = e(S′, y) − 1. Moreover, by Property 2.4.(3), e(W2, y) ≤ e(S′′, y) − 1. Therefore,
e(S, y) = e(W1, y)+e(W2, y) ≤ e(S′, y)−1+e(S′′, y)−1 < e(S′, y)+e(S′′, y) = e(Si, y), for each i ∈ {1, . . . , 8}.

(ii) Assume that W1 /∈ S ′ and W2 ∈ S ′′. From the above, we already know that, when W1 /∈ S ′, e(W1, y) ≤
e(S′, y) − 1. Recall also that e(W2, y) ≤ e(S′′, y) + 1 holds. Then, in the case where e(W2, y) ≤ e(S′′, y), we
immediately get e(S, y) = e(W1, y) + e(W2, y) ≤ e(S′, y) − 1 + e(S′′, y) < e(S′, y) + e(S′′, y) = e(Si, y), for
each i ∈ {1, . . . , 8}.

Consider then the case where e(W2, y) > e(S′′, y), i.e., v(W2) − y(W2) > v(S′′) − y(S′′). Because of W2 ∈ S ′′,
v(W2) = v(S′′) and so y(W2) < y(S′′). This implies that y(S′′) > 0, and hence that y(Nr) < 1 because
S′′ ⊆ (Nk ∪ Nk) and Nr ∩ (Nk ∪ Nk) = ∅. Since S′ ⊆ Nr, we derive that y(S′) < 1. Therefore, we
get e(W1, y) = v(W1) − y(W1) ≤ v(W1) ≤ v(S′) − 2 < v(S′) − y(S′) − 1 = e(S′, y) − 1. So, e(S, y) =
e(W1, y) + e(W2, y) < e(S′, y) − 1 + e(S′′, y) + 1 = e(S′, y) + e(S′′, y) = e(Si, y), for each i ∈ {1, . . . , 8}.

(iii) Assume that W1 ∈ S ′ and W2 /∈ S ′′. From the above, we know that e(W1, y) ≤ e(S′, y) + 1 holds.
Moreover, by Property 2.4.(3), we know that, when W2 /∈ S ′′, e(W2, y) ≤ e(S′′, y) − 1. Then, in the case
where e(W1, y) ≤ e(S′, y), we immediately get e(S, y) = e(W1, y) + e(W2, y) ≤ e(S′, y) + e(S′′, y) − 1 <
e(S′, y) + e(S′′, y) = e(Si, y), for each i ∈ {1, . . . , 8}.

Consider then the case where e(W1, y) > e(S′, y), i.e., v(W1) − y(W1) > v(S′) − y(S′). Because of W1 ∈ S ′,
v(W1) = v(S′) and so y(W1) < y(S′). This implies that y(S′) > 0, and hence that y(Nk ∪ Nk) < 1
because S′ ⊆ Nr and Nr ∩ (Nk ∪ Nk) = ∅. As S′′ ⊆ (Nk ∪ Nk), we derive y(S′′) < 1. Therefore,
we get e(W2, y) = v(W2) − y(W2) ≤ v(W2) ≤ v(S′′) − 2 < v(S′′) − y(S′′) − 1 = e(S′′, y) − 1 where, in
particular, the inequality v(W2) ≤ v(S′′) − 2 holds by Property 2.4.(3) and the fact that W2 /∈ S ′′. So,
e(S, y) = e(W1, y)+e(W2, y) < e(S′, y)+1+e(S′′, y)−1 = e(S′, y)+e(S′′, y) = e(Si, y), for each i ∈ {1, . . . , 8}.

The proof is completed by observing that the only missing case where W1 ∈ S ′ and W2 ∈ S ′′ is not possible,
whenever S does not belong to {S1, . . . , S8}.

36

B On Kopelowitz’s approach to Nucleolus Computation

The idea of putting aside all coalitions with constant excesses in the sequence LP(G) in Definition 3.2 has been
described by Maschler et al. [42], who argued (without formal statements) to be a great enhancement over the
“original” procedure by Kopelowitz [36], where only coalitions minimizing the maximum excess are considered.
In this Appendix we show that, indeed, the latter technique requires in the worst case exponentially more steps
than the technique based on LP(G).

For the sake of completeness, we recall here that the original procedure by Kopelowitz [36] can be formalized
via the following succession of linear programs LP

′
t(G), for t ≥ 1:

LP
′
t(G) = min ε′ | v(S) − x(S) ≤ ε′ ∀S ⊆ N, S /∈ Λt−1

v(S) − x(S) ≤ ε′
t−1 ∀S ⊆ N, S /∈ Λt−2

...

v(S) − x(S) ≤ ε′
2 ∀S ⊆ N, S /∈ Λ1

v(S) − x(S) ≤ ε′
1 ∀S ⊆ N, S /∈ Λ0 = {∅, N}

A(G)x ≤ b(G), i.e., x ∈ X(G),

where, for each r ∈ {1, . . . , t − 1}, ε′
r is the value of an optimal solution to LP

′
r(G) and Λr = Λr−1 ∪ {S ⊆ N |

x(S) = v(S) − ε′
r, for each x such that (x, ε′

r) is an optimal solution to LP
′
r(G)}.11

While the arguments illustrating the convergence of the above sequence of linear programs to the nucleolus of
G have been provided by Kopelowitz [36], the convergence rate has been formally studied neither by Kopelowitz
[36] nor by subsequent works in the literature. In fact, a few authors (see, e.g., [51]) have argued (without proofs)
that the approach by Kopelowitz [36] can require, in the worst case, solving up to exponentially many linear
programs w.r.t. the number of involved players. However, the fact that a formal analysis of the convergence
rate was missing (and the—superficial—similarities with the variant suggested by Maschler et al. [42]) caused
confusion in the literature, with the original method and the variant being sometimes used interchangeably.

Note that computing all coalitions whose excesses is constant is an extra effort required in the variant
suggested by Maschler et al. [42], which can be quite challenging in the context of compact coalitional games.
Therefore, it is relevant to shed lights on the difference between the two approaches.

Specifically, our result below shows that the extra work in the approach by Maschler et al. [42] is unavoidable
if we want to have a polynomial (actually, linear) bound on the number of iterations. In fact, we exhibit a class
of games over which the basic approach of putting aside only those coalitions minimizing the maximum excess
requires exponentially many linear programs to be solved. We argue that this result is of interest on its own to
the theory of coalitional games. To formalize our result, define V ′

0(G) = X(G) and, for each r ∈ {1, . . . , t − 1},
let V ′

r (G) = {x | (x, ε′
r) is an optimal solution to LP

′
r(G)}. Note that the following holds:

ε′
r = min{ε′ | x ∈ V ′

r−1(G) ∧ ∀S ⊆ N, S /∈ Λr−1, v(S) − x(S) ≤ ε′}. (2)

Theorem B.1. There is a class {Gn = 〈N, v〉 | n = |N | ≥ 3} of coalitional games such that V ′
t (Gn) 6= N (Gn),

for each game Gn and each natural number t ≤ 2n−2 − n.

Proof. Let n ≥ 3 and Gn = 〈N, v〉 be the nth-game of the class where N = {1, . . . , m, m + 1, m + 2}, with
n = m+2, and where the worth function v is defined as follows. Let W1, W2, . . . , Wh be an arbitrary fixed ordering
over all the subsets of {1, . . . , m} such that 2 ≤ |Wi| < m, for each i ∈ {1, . . . , h}. Note that h = 2m − m − 2
holds. Moreover, let C be the set of all coalitions S such that ∅ ⊂ S ⊂ N , {m + 1, m + 2} ∩ S 6= ∅, and
{1, . . . , m} ∩ S 6= ∅, and let

• v(N) = m + 2,

• v({j}) = 1, for each j ∈ {1, . . . , m},

• v({m + 1}) = v({m + 2}) = 0,

• v({1, . . . , m}) = m,

• v({m + 1, m + 2}) = 2,

11In some works (see, e.g., [25]), the formalization includes the equality v(S) − x(S) = ε′
r
, for each r ∈ {1, . . . , t − 1} and coalition

S ∈ Λr \ Λr−1. Adding these equalities to the proposed formulation is immaterial, as they are implied by the optimality of ε′
r

and
the definition of Λr.

37

• v(Wi) = |Wi| − 1 + 2−i, ∀i ∈ {1, . . . , h}, and

• v(S) = −2 in all other cases, i.e., ∀S ∈ C.

Consider the linear program associated with the first iteration:

LP
′
1(Gn) = min ε′ | 1 − xj ≤ ε′ ∀j ∈ {1, . . . , m}

0 − xm+1 ≤ ε′

0 − xm+2 ≤ ε′

m − (x1 + · · · + xm) ≤ ε′

2 − xm+1 − xm+2 ≤ ε′

(|Wi| − 1 + 2−i) − x(Wi) ≤ ε′ ∀i ∈ {1, . . . , h}

− 2 − x(S) ≤ ε′ ∀S ∈ C

A(Gn)x ≤ b(Gn), i.e., x ∈ X(Gn).

Observe that if x is an imputation, i.e., x ∈ X(Gn), then xj ≥ 1, for each j ∈ {1, . . . , m}, xm+1 ≥ 0, xm+2 ≥ 0,
and x1 + · · · + xm + xm+1 + xm+2 = m + 2 hold. Therefore, the two inequalities x1 + · · · + xm ≥ m − ε′

and xm+1 + xm+2 ≥ 2 − ε′ in the definition of LP
′
1(Gn) and the fact that x ∈ X(Gn) immediately imply

that the value of any optimal solution to LP
′
1 is ε′

1 = 0. By substituting this value in the above inequalities,
it follows that V ′

1(Gn) = {x ∈ X(Gn) | x1 = · · · = xm = 1, xm+1 ≥ 0, xm+2 ≥ 0, xm+1 + xm+2 = 2}.
Moreover, the coalitions achieving the maximum excess in every optimal solution are those in Λ1 \ Λ0 =
{{1}, . . . , {m}, {1, . . . , m}, {m + 1, m + 2}}. To see that this is the case, just check that for each coalition
S ∈ Λ1 \ Λ0, it holds that v(S) − x(S) = ε′

1 = 0, for each x ∈ V ′
1(Gn). Instead, for each coalition S 6∈ Λ1 \ Λ0,

there is some point x ∈ V ′
1(Gn) such that v(S)−x(S) < ε′

1 = 0; in particular, observe that for each i ∈ {1, . . . , h},
x(Wi) = |Wi| and, hence, (|Wi| − 1 + 2−i) − x(Wi) = −1 + 2−i < 0, for each x ∈ V ′

1(Gn).

We now claim that at each subsequent step t = i + 1, for each i ∈ {1, . . . , h}, it holds that ε′
i+1 = −1 + 2−i,

that Λi+1 \ Λi = {Wi}, and that V ′
i+1(Gn) = V ′

1(Gn). To prove the claim, we proceed by induction on the steps
of the succession, and to derive the result we make use of Equation 2.
Base Case: Consider, first, the base case where i = 1, where Equation 2 leads to the following relationship:

ε′
2 = { min ε′ | x ∈ V ′

1(Gn) ∧

0 − xm+1 ≤ ε′ ∧

0 − xm+2 ≤ ε′ ∧

(|Wi| − 1 + 2−i) − x(Wi) ≤ ε′, ∀i ∈ {1, . . . , h} ∧

− 2 − x(S) ≤ ε′, ∀S ∈ C }.

Since xm+1 + xm+2 = 2, xm+1 ≥ 0, and xm+2 ≥ 0 hold, for each point x ∈ V ′
1(Gn), the first two inequalities

above entail that the optimal value ε′
2 is such that ε′

2 ≥ −1. Moreover, note that, for each x ∈ V ′
1(Gn),

ε′ ≥ e(Wi, x) = −1+2−i, ∀i ∈ {1, . . . , h}, and e(S, x) = −2−x(S) ≤ −2, ∀S ∈ C. It follows that ε′
2 = −1+2−1

and that W1 is the coalition achieving this maximum excess. In particular, e(W1, x) is constant for each point
x ∈ V ′

1(Gn), so that all these points are still optimal solutions, and in this step the region of the candidate
imputations is not altered, i.e., V ′

2(Gn) = V ′
1(Gn).

Induction Step: Assume that the claim holds at some step i′, with i′ ∈ {1, . . . , h − 1}, and consider the case
where i = i′ + 1:

ε′
i′+2 = { min ε′ | x ∈ V ′

i′+1(G) = V ′
1(G) ∧

0 − xm+1 ≤ ε′ ∧

0 − xm+2 ≤ ε′ ∧

(|Wi| + 1 − 2−i) − x(Wi) ≤ ε′, ∀i ∈ {i′, . . . , h} ∧

− 2 − x(S) ≤ ε′, ∀S ∈ C }.

Note that we can apply precisely the same line of reasoning as in the base case above in order to conclude
that ε′

i′+2 ≥ −1 holds and that ε′
i′+2 = −1 + 2−(i′+1) (which in fact is such that ε′

i′+2 < ε′
i′+1 = −1 + 2−i′

).
Eventually, Wi′+1 is the coalition achieving the maximum excess, and again we can note that this excess is
constant over V ′

i′+1(Gn), so that V ′
i′+2(Gn) = Vi′+1(Gn) = V ′

1(Gn).

In the light of the above claim, we conclude that, at each step after the initial one, the approach processes some
Wi, with i ∈ {1, . . . , h}, without shrinking the set of the candidate imputations. Therefore, V ′

t (Gn) 6= N (Gn),
for each game Gn and each natural number t ≤ 2m − m − 2 = 2n−2 − n.

38

C Computational Problems on Compact Representations

Recall the statement of Theorem 4.12: Let Λ be any compact representation for systems of linear inequali-
ties. On the class C(Λ), Succint-OptimalValue-Computation, Succint-Solution-Computation, and
Succint-OptimalSolution-Computation are in F∆

P

2
.

Proof of Theorem 4.12. Let γΛ(Ax ≤ b) be the encoding of a system Ax ≤ b ∈ C(Λ), with A ∈ Qm×n,
and such that Ω(Ax ≤ b) is a non-empty polytope.

Succint-OptimalValue-Computation: Recall that the problem asks for computing the value min{cT x̂ | x̂ ∈
Ω(Ax ≤ b)}, i.e., an optimal solution w.r.t. c, where c ∈ Qn is a vector provided as input together with
γΛ(Ax ≤ b). Note that, since Ω(Ax ≤ b) is a non-empty polytope, we are guaranteed about the existence of
an optimal solution x̄ that is a basic feasible solution. By Lemma C.1 (reported below), ||x̄|| is polynomial
in the size of the encoding γΛ(Ax ≤ b), and hence, the value min{cT x̂ | x̂ ∈ Ω(Ax ≤ b)} is polynomial too.
Therefore, min{cT x̂ | x̂ ∈ Ω(Ax ≤ b)} can be computed by means of a binary search over the range of all the
possible exponentially-many values, where at each iteration we use an oracle for the problem of checking
whether min{cT x̂ | x̂ ∈ Ω(Ax ≤ b)} ≤ k, with k being the current value. We now claim that this problem can
be solved in co-NP. Then, since the binary search converges after a polynomial number of steps, the fact
that Succint-OptimalValue-Computation is feasible in F∆

P

2
immediately follows.

To see that the claim holds, first observe a very simple property of compact representations: If Λ is a
compact representation for systems of linear inequalities, then the following representation Λ′ is compact
as well: the systems in the class C(Λ′) are encoded as pairs of systems—or sets of linear inequalities—
(γΛ(Ax ≤ b), (A′x ≤ b′)), with the former compactly encoded according to Λ and the latter listed in some
standard extensive way, and where A ∈ Qm×n and A′ ∈ Qm′×n with m′ ∈ O(nO(1)). Therefore, the number
of inequalities listed explicitly are polynomially many, and thus the polynomial time function LΛ′

can be
easily defined to behave precisely as LΛ over the domain of this function, and to use m′ additional numbers
to manage a one-to-one correspondence with the inequalities of A′x ≤ b′.

Then, in order to decide whether min{cT x̂ | x̂ ∈ Ω(Ax ≤ b)} ≤ k, given γΛ(Ax ≤ b), c, and k, we can
build in linear time a new system Āx ≤ b̄ encoded as a pair (γΛ(Ax ≤ b), {(cT x ≤ k)}), according to the
modified compact representation Λ′, as described above. The claim now easily follows from Theorem 4.8,
which states that checking whether Ω(Āx ≤ b̄) is not empty is feasible in co-NP, and from the fact that
min{cT x̂ | x̂ ∈ Ω(Ax ≤ b)} ≤ k holds if, and only if, Ω(Āx ≤ b̄) 6= ∅.

Succint-Solution-Computation: Consider the vector x̄ ∈ Qn whose components are defined as follows:
x̄1 = min{x1 | x ∈ Ω(Ax ≤ b)} and x̄j = min{xj | xj ∈ Ω(Ax ≤ b) ∧ x1 = x̄1 ∧ · · · ∧ xj−1 = x̄j−1}
for each 2 ≤ j ≤ n. Note that x̄ is in fact a feasible solution, and that the various components can
be incrementally (i.e., from x̄1 to x̄n) computed in F∆

P

2
according to the procedure discussed above for

Succint-OptimalValue-Computation. Thus, the whole computation is again feasible in F∆
P

2
.

Succint-OptimalSolution-Computation: In order to solve the problem, we can first compute in F∆
P

2
the

value v∗ = min{cT x̂ | x̂ ∈ Ω(Ax ≤ b)} according to the above procedure for Succint-OptimalValue-Compu-
tation. Then, consider the system A′x ≤ b′ encoded by the pair (γΛ(Ax ≤ b), {(cT x ≤ v∗), (−cT x ≤ −v∗)}),
according to the modified compact representation Λ′. Clearly enough, any feasible vector in Ω(A′x ≤ b′) is
an optimal solution for the input linear program, i.e., a solution to Ax ≤ b minimizing cT x. It follows that
computing such a solution is feasible in F∆

P

2
, by the above result on Succint-Solution-Computation.

For the above result, we need to provide a bound on the size of basic feasible solutions. This is a simple
result, reported for the sake of completeness only.

Lemma C.1. Let Λ be any compact representation for systems of linear inequalities. Then, there is a constant
k > 0 such that, for each system Ax ≤ b ∈ C(Λ) and each basic feasible solution x̄ ∈ Ω(Ax ≤ b), ||x̄|| ≤ ||γ(Ax ≤
b)||k.

Proof. Since x̄ is a basic feasible solution, there is a set I ⊆ {1, . . . , m} with |I| = n and such that: {x̄} = {x ∈
Rn | Ai,�x = bi, ∀i ∈ I}. Therefore, the encoding length of x̄ is bounded by a polynomial in the size of the
inequalities defining the polyhedron {x ∈ Rn | Ai,�x ≤ bi, ∀i ∈ I} (cf., [49]). In turn, the size of each inequality
is polynomially bounded in the size of the encoding, by Definition 4.2.

39

	Introduction
	Compact Coalitional Games and Solution Concepts
	Research Questions and Contributions
	Organization

	Compact Representations and Nucleolus Computation: Graph Games
	Graph Games and (Pre-)Nucleolus Computation
	Hardness on Graph Games: The Cost of Individual Rationally

	Linear Programming Tools for Computing the Nucleolus
	Elements of Polyhedral Geometry
	Cutting Polyhedra by Linear Programs
	Dealing with Compact Games

	Reasoning on Succinctly Specified Linear Programs
	Problems, Computational Setting, and Overview of the Results
	Membership Results for Decision Problems
	Computational Problems

	Putting It All Together: Nucleolus Computation is in F\Delta^P_2
	Tractable Classes of Compact Games
	Results for Games in Type-Based Form
	On The Hardness of Finding Player Types
	Shedding Light on the ``Gray Area''

	Conclusions
	Proofs of Properties in Theorem 2.4
	On Kopelowitz's approach to Nucleolus Computation
	Computational Problems on Compact Representations

