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1. Introduction

Models that belong to the realm of complexity studies turn very insightful when addressing societal
and technological transitions. The very idea of transition finds direct counterparts in a number of
phenomena in natural sciences, the most notable one being phase transitions.

A complexity approach recognizes in socio economic systems many dynamic patterns that are
similar to patterns already observed in natural systems. Pushing the approach further, the economy
and the whole society may be seen as a system to study with a natural science approach, by defining
a physics of society.

Without entering the debate on how or whether social and economic systems will ever become
another - the biggest ever - physical system to study, it is surely true that tools and perspectives
from natural sciences such as complexity theories my offer useful insights. The most notable
example is probably the series of studies entitled “The economy as an evolving complex system”.

Complexity approaches to socio-economic systems have mostly involved financial markets (see
for instance Hens and Schenk-Hoppe’, 2009). Here we claim that technological change is another
promising field for complexity theories, and that technological transitions in particular have a large
potential of new insights that complexity thinking can offer.

In this paper we review a number of concepts and modelling approaches that we believe are
particularly interesting in attacking technological transitions. It is not our aim to be exhaustive in this
review, but only to propose the approaches that we believe were most significant and that we think
are most promising for future research. In a number of cases, we explicitly indicate direction for
further research.

The article is organized as follows. Section 2 addresses multiple equilibria, network externalities
and positive feedback. Section 3 shows how game theory and evolutionary game theory are
insightful for transitions in a strategic context. Section 4 presents diffusion on networks, with an
accent on phase transitions. Section 5 reviews models of cascades and herding behavior. Section 6 is
totally dedicated to a model of network formation based on the concept of catalytic processes.
Section 7 is about the complexity of modular technologies, and Section 8 considers the case of niche
technologies. Finally, Section 9 concludes.

The sections of this paper are self-contained, and can also be read separately. Some complexity
concepts are transversal to the sections, and may guide in a selective reading of the article: multiple
equilibria are addressed in Sections 2, 3 and 5. Positive feedback and path-dependence are in
Sections 2 and 5. The coordination problem is studied in Sections 3, 6 and 7. Diffusion is both in
Sections 4 and 5, and the concept of modularity is in Section 7 and Section 8.



2. Non-linear social dynamics

A central belief in economics has been for a long time that returns to an agent’s action are
decreasing, meaning that when some quantity accumulates, the effect of adding a given unit of the
same quantity decreases with accumulation. A meaningful example is the law of demand: as Marhall
puts it, the marginal price of a given good diminishes with an increase in the demanded quantity.
Another example is the marginal impact of money, which diminishes as one becomes wealthier.
Nevertheless, there are important situations in economic and social systems where returns are
increasing. The importance of increasing returns was recognized only in the 80’s, mainly thanks to
the work of Paul David, Katz and Shapiro and Brian Arthur on network technologies and technology
competition. As it happens, increasing returns are a key factor of many processes of scaling.

There are a number of different and alternative expressions for increasing returns: positive
feedback, self-reinforcement, cumulative causation, rich-get-richer, etc. This type of process is well
described by urn models. Consider an urn which contains an equal number of black and white balls.
The probability of extracting white or black is equal. Now, let’s implement the following scheme of
action: whenever one extracts a white ball, this is put back in the urn together with another ball of
the same colour. The same holds true for the black ball. This procedure introduces a positive
feedback in the process, because the probability of extracting one colour increases with the event
itself. This conceptual example was turned into a model by Arthur et al. (1987). The stochastic
process of this model is a type of Markov process called Polya processes. There are two major
insights from Polya processes: first, in the scheme just described we always converge to a given
fraction x of white balls, which is not known a priori. This means, the proportion does not fluctuate
but it is stable in the long run. Second, whenever the probability of extracting a colour is a given
function f(x), the fraction of balls converge to a proportion which is exactly given by the fixed points
x=f(x) of that function. This means that one knows a priori which will be the final long run values of
the fraction of colour. An example of this generalization is the following: let’s add more than one ball
after extracting a given colour. This gives an acceleration of increasing returns. The new scenario is
represented by an S-shaped probability function f(x) (Figure 1, left panel). If we run this modified urn
scheme the outcome will be a convergence to either x=0 or x=1 which means that either black or
white balls will tend to a share of 100%. Put differently, one out of two possible stable equilibria are
selected by chance. The right panel of Figure 1 shows seven simulation runs: four times white balls

became dominant (x=1), while three times black balls were dominant (x=0).
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Figure 1: Polya processes. Example of probability function (left). Simulations of the model (right).



The self-reinforcing mechanism just described is characterized by an evolution law that changes
endogenously. This leads to non-autonomous equations, where the independent variable, time,
appears explicitly. The mutual interplay between the state variable and the environment is what
makes these systems “complex”. For such processes local minima do not exist a priori but are
created by the evolution of the system itself. This is what makes lock-in a much stronger scenario
than a simple stable equilibrium.

There are several economic systems that can be described by this model. One example is the
location of industries. It has been shown that spin-offs process are important and often the
dominant mechanism of firms’ birth. Assuming for the spin-off firm the same location as the parent
firm, and thinking of the different regions as the different colours, the location of new firms is
described by the model above, since the probability of locating in one region for an industry is
increasing in the concentration of that industry in the region.

Increasing returns is at the core of path dependence where the trajectory of a process depends
on the realizations of the process itself. Early realizations are most important, because they affect
successive realization irreversibly. One consequence is that starting with the same initial conditions,
two different runs of the model can lead to opposed outcomes due to the values randomly occurred
in the first few time periods. The extreme case of path dependence is lock-in, where a process is
stuck in a state and the state reinforces itself in successive realization of the process, due to
increasing returns.

2.1 Network externalities

Arthur (1989) is a famous model that explains how increasing returns to technology adoption lead to
path dependence and lock-in of technology competition. In the model there are two technologies A
and B competing for adoption in a market. Such technologies are “equally good”, in the sense that
no one presents any intrinsic superiority. The market is formed by heterogeneous agents, being of
type R or S. Type R have a natural preference for technology A, while type S prefer technology B.
Returns from adoption of technologies A and B are ag and by respectively, for type R, while ag and
bs are the returns for type S. Preferences are such that ap > by, and as < bs. Beside preferences, a
feedback mechanism makes the return to depend also on previous adoptions. If n, and ng are the
market shares of the two technologies, the overall returns are the following:

Technology A Technology B
R-agent ap + 11y bg + rng
S-agent as + sny bs + sng

When coefficients r and s are positive, the more one technology is adopted, the higher its return to
any agent. This is a mechanism of positive feedback. Examples are network technologies which value
strongly depends on the installed base, as for instance telephones, fax machines, and generally all
types of telecommunication services. If coefficients r and s were negative, there would be a negative
feedback. In this model R agents switch technology when ag + rny < by + rng, while S agents
switch whenever bs + sng < ag + sny. If we define the relative frequency d,, = ny —ng, the
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conditions for switching are represented by two “absorbing” barriers RTaR =AY and STQS =47
Agents switch technology abandoning their preferred one whenever these barriers are reached.



Positive feedback does not only characterize network technologies, and stems from other sources of
positive externalities. Arthur lists four different sources of positive externalities in technology
competition:

e large set up or fixed costs,

e learning effects,

e coordination effects and imitation,
e self-reinforcing expectations.

The model above is relevant to all cases of the competition of alternative options such as products,
norms, behaviours. It is also relevant to technological transitions, when there is an incumbent
technology (or product, customary behavior, widely accepted norm, etc.) that faces the threat of an
innovative technology.

2.2 Critical mass

There are simpler systems where the environment is not coupled with the state variable, but still the
state variable presents multiple equilibria. These are deterministic system with a self-reinforcing
mechanism, where the initial condition determines which equilibrium will be selected. Examples are
poverty traps due to learning-by-doing, search externalities, human capital externalities, etc.
(Azariadis and Stachurski, 2005). The state of these systems may be represented by a flow map F
through the difference equation x; = F(x;_1). The map F does not depend on time. Assume that a
high value of x means a “better” condition of the system, as per capita income or wages, while a low
x refers to a worse state. If function F has only one stable equilibrium (Figure 2, left panel), there is
no positive feedback. When a self-reinforcing mechanism is at work, there may be two alternative
equilibria (Figure 2, right panel), and one is a “poverty trap”. If the initial condition x; is below the
unstable equilibrium x. (say an underdeveloped country) the system converges to the poverty trap.
Stable and unstable equilibria can be seen as minima and maxima of a potential function, as in
Figure 3.
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An instructive representation of critical mass is the hyperselection model of technological transition
of Brickner et al. (1996). Here competing technologies are species competing for survival. The time
evolution of shares is described by a differential equation that includes a positive term (birth), and a
negative term (death). The positive term is quadratic, which accounts for increasing returns, while
the negative term is linear. The solution has two stable equilibria and an unstable equilibrium. The
unstable equilibrium works as a barrier. Being below or above this barrier deterministically sets the
surviving species, that is to say the winning technology. There are a number of differences with
Arthur’s model: first, this model is deterministic, while Arthur’s model is stochastic. Second, here the
barrier is unique, while Arthur’s model allows for a mid range of values where it is not possible to
know which option will prevail. Finally, in this case the dominance of one option is absolute, and one
technology completely disappears (extinction).

Because of multiple equilibria, even incremental technological progress may cause abrupt and
sudden changes in technology patterns. This is explained by Krugman in The self-organizing economy
(1996). Suppose that consumers can choose between an established technology, say traditional cars
with internal combustion engine, and an innovative technology, for instance electrical cars. Assume
that a critical mass characterizes the innovative technology, both for consumers, who decide
whether to buy an electrical car, and for producers, who decide to install recharging slots: the two
affect each other, and give two instances of critical mass. This is represented by the two curves in
Figure 4 (left panel).

% of R % of

households households

% of stores
% of stores

Figure 4: critical mass in the demand and supply sides.

Curve H represents the share of consumer adopting the electrical car, given the share of recharge
slots available (% of stores on the horizontal axis), while curve R is the share of recharge slots
installed, given the number of electrical cars around (% of households on the vertical axis). There are
two stable equilibria in this system: the equilibrium C represents a scenario where diffusion of
electrical cars is scarce, and the incumbent technology is dominant. Equilibrium L is the alternative
one, where electrical cars are dominant. Because of the self-reinforcing mechanism of a critical
mass, there is little hope that we can have a transition in the market from the old to the new
technology. This is an example of chicken-egg dilemma, and more generally of coordination
problem. Consider now the following phenomenon: thanks to technological progress electrical cars
become more attractive, say due to improving performances and decreasing prices. This has the
effect of shifting upward curve H. Initially the effect of the shift on the equilibrium shares is little and
gradual. But at some point the equilibrium C” where traditional cars are dominant disappears, and
only an equilibrium L’ with electrical cars remains (Figure 4, right panel). The market flips towards
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electrical cars with a sudden jump. Summarizing, a system with a critical mass presents multiple
equilibria, and gradual changes such as incremental technological progress may eliminate an
equilibrium and un-lock the market with the transition from an incumbent to an innovative
technology.

Un-locking events did occur in history, mostly due to technological progress (examples are the
airplane propeller replaced by the jet engine, videotape cassettes and laser discs, electromechanical
valves and semiconductors). Mostly in the post-industrial revolution era the human society went
through several different equilibria, following a pattern of punctuated growth. Mainstream
economics has missed so far to explain such a complex pattern, simply accounting for gradual
changes in the technology production frontier. For a recent modeling attempt to explain
technological transitions with endogenous mechanisms see Frenken et al (2012). The explanation of
the complex interplay between market forces, human incentives and technological change is still a
research challenge.

3. A game theory approach to transitions

In some cases technological and societal transitions present a strategic character, and occur as the
solution to a coordination problem. An example is renewable energy in transportation systems. The
incumbent technology is the internal combustion engine, while innovations are the electrical engine
and fuel cells. The model by Krugman considered in Section 2 can be re-stated in a strategic setting:
no consumer will adopt a fuel cell car if expecting that only few refueling stations are available. On
the other hand, no energy company will build refueling stations, facing such a slim demand. This is a
chicken-and-egg problem, which Game Theory addresses to as a coordination problem.

Technological change is primarily important for any analysis of environmental problems, not
excluded all situations that are characterized by strategic behavior. Touza and Perrings (2011) show
how different games stem from different technological settings, and address the challenges for
environmental agreements in enforcing efficient equilibria.

3.1 The Coordination Game

The most relevant game for understanding transitions in socio-economic systems is the coordination
game. This game describes how multiple equilibria result in a strategic setting, and it is relevant to all
situations where there are multiple competing technologies. A coordination game is the strategic
counterpart of technology competition models presented in Section 2. An example of coordination
game in normal form is given by the following payoff matrix:

Cooperate Defect
Cooperate (3, 3) (0, 2)
Defect (2,0) (2,2)

Table 1: coordination game with asymmetric strategies.



There are two Nash equilibria (NE henceforth): (Cooperate, Cooperate) and (Defect, Defect). The
cooperative equilibrium is socially optimal. Nevertheless, also in the defection equilibrium players do
not have incentives to change strategy. This is a coordination problem.

Beside NE and social efficiency, there is a third way to evaluate strategies, risk dominance,
proposed by Harsanyi and Selten (1988). Notice how the defective action is less risky here. With no
clue about the opponent’s action one places probability 50% on both Cooperate and Defect. This
gives an expected payoff from cooperation equal to 1.5, lower than the expected payoff from
defection.

The two equilibria above are not the only ones for that game. There is also a mixed strategy NE.
This is one where each player plays Cooperate with probability g, and Defect with probability 1-q. In
the example above the mixed strategy equilibrium is (2/3, 1/3). A possible interpretation is that two
out of three times players play Cooperate, and one time they play Defect. Another interpretation of
mixed strategies is from the population approach of Evolutionary Game Theory.

The emergence of cooperation is a key factor whenever an innovation has to face an incumbent
technology. Think of traditional cars and fuel cells cars. Beside the resistance by established
industrial sectors and by whatever economic activities that are connected with the existing
technological infrastructure, the demand side has to coordinate in order to escape the lock-in
equilibrium and make the innovation viable. This is due to the chicken-and egg problem of
coordination. A critical mass of adopting consumers is necessary to install capacity that would drive
down costs and prices, making the innovation more and more attractive. Every consumer knows
that, and every consumer is also aware of the superior quality of the innovation (higher
environmental performance in the case of cars), but no one wants to be the only guy going around in
search of a hydrogen refueling station.

3.2 Setting Standards

A business case where coordination is important is coalitions’ formation in standards-setting
alliances. The issue of technological standards is central to Brian Arthur’s models of competing
technologies (Section 2). Axelrod et al. (1995) addressed the strategic aspects of the problem by
using a model that he initially conceived for wartime alignements, and was successful in explaining
the empirical evidence of competing UNIX operating systems standards for technical workstations in
1988.

Axelrod’s model is based on two assumptions regarding the incentives of companies in forming
alliances in a situation of technological standards setting. The first incentive is that firms prefer to
join large standard-setting alliances, because a larger alliance has higher probability of being the
winning horse. A second incentive is that firms prefer to avoid allying with rivals, especially with
those rivals that are close in the technology space and seemingly compete in the same market. This
second incentive is partially conflicting with the first one. The incentive for large alliances comes
from the positive feedback mechanism of a coordination game. The competition incentive is absent
in a coordination game, and the trade-off between the two makes the standard-setting problem a
more complicate game.

The technology standard competition considered by Axelrod is perfectly symmetric, because no
standard is superior. There are not an efficient or a risk-dominant equilibrium. The coordination part
of the standards game could be expressed by the following payoff matrix:



Cooperate Defect

Cooperate (3,3) (1,1)
Defect (1,1) (3,3)

Table 2: coordination game with symmetric strategies.

But beside coordination there is a competition issue. In Axelrod’s model the two incentives for
forming alliances are formalized in a function that measures the firms’ utility: positive terms refer to
coordination incentives, and negative terms refer to competition.

The NE alliances are found through an energy metric function. A firm joins an alliance if doing so
it minimizes the energy of the system, and doing so the firm improves its utility. NE are local minima
of the energy function.

The prisoner’s dilemma is an extreme case of coordination problem, where only the socially
undesirable NE exists. Coordination games and prisoner’s dilemma are particularly useful in
describing a class of social coordination problems that goes under the name of tragedy of the
commons. Keeping clean a common space, or a green park, or implementing measures for the
abatement of pollution, are all situations where common rewards are surely high, but expenses are
also high, if not everybody agree and coordinate on the cooperative action. Without additional
incentives, such as reciprocity, or reputation, cooperation cannot be enforced.

The study of the emergence of cooperation requires a setting where the game is played repeatedly.
Robert Axelrod organized a prisoner’s dilemma championship, asking to prominent game theorists
to design strategies to play the repeated prisoner’s dilemma. The winning strategy, submitted by
Anatol Rapoport, was tit-for-tat. This strategy starts with playing Cooperate, and in any following
period it plays whatever strategy was played by the opponent in the previous period. Playing against
tit-for-tat is like playing against one’s own image shifted one period. Results from the tournament
are reported in Axelrod (1984). In following years evolutionary game theory has addressed
extensively the emergence of cooperation in different settings, including networks (see Nowak,
2006).

3.3 Evolutionary Game Theory

In many cases of strategic choice players are many, and interactions are better described with a
population approach. Mathematical biologists have applied concepts of game theory to the study of
life forms population dynamics. This field of studies started with Maynard Smith and Price (1973). In
Evolutionary Game Theory there is a population of many players, with a round-robin setup of
interaction: players are matched randomly, and play a bilateral stage game of traditional Game
Theory. Payoffs for each player are the sum of all payoffs accruing during repeated interactions.

Players do not need to be rational in models of Evolutionary Game Theory. Here each player is
identified by a strategy and such strategy is genetically inherited. The idea is that better strategies
reproduce faster, the key factor being the fitness of strategies. The fitness depends on the relative
abundance of other strategies. Beside reproduction and selection, another evolutionary factor at
work is mutation. Sometimes a new type/strategy appears, which may be characterized by lower or
higher fitness. In the latter case, such invasion leads to the extinction of all other strategies.

In Evolutionary Game Theory the basic founding concept that parallels the NE of Game Theory is
Evolutionary Stable Strategy: an ESS is robust to invasion. If an entire population adopts a ESS, no
other strategy can invade.



The concept of mixed strategy equilibrium turns useful in Evolutionary Game Theory. Let consider
the coordination game with asymmetric strategies of

Table 1. The pure strategy NE are (Cooperate, Cooperate) and (Defect, Defect), while the mixed
strategy equilibrium is (2/3, 1/3). The cooperation equilibrium is the efficient one, while the
defection equilibrium is the risk dominant: the first gives the higher total payoff, but the second
gives the higher expected individual payoff. The mixed strategy equilibrium indicates which pure
strategy equilibrium is risk dominant: it is the one that is played by the majority of the population in
an evolutionary game context, in this case, 2/3 of the population. This counterintuitive result can be
understood in terms of critical mass. Figure 5 reports a phase diagram of the game with an axis
representing the fraction of players playing Cooperate.

Figure 5: phase diagram of a coordination game.

As we can see, the fraction x=2/3 defining the mixed strategy equilibrium is the threshold that
divides the basin of attraction of the two pure strategy Nash equilibria, x=0 and x=1. The two thirds
of the population represent the critical mass of cooperating agents that need to be reached in order
to flip the population from defection to cooperation. In this case the basin of attraction of
cooperation is smaller, and the threshold for switching from cooperation to defection (1/3) is lower
than the threshold for the opposite switch. As it happens, the equilibrium with the larger basin of
attraction is the risk dominant equilibrium.

3.4 Social Learning and Equilibrium Selection

Evolutionary Game Theory offers one way out of the coordination problem, which is based on
mutation and learning. This idea is proposed by Kandori et al. (1993) with the model of stochastic
stability and equilibrium selection. This model studies how an equilibrium is attained and how it is
robust to stochastic perturbations. Implicitly, it addresses the question of equilibrium switching. This
guestion is maximally relevant to transitions.

Assume that players can adjust their behavior according to some learning mechanism, and also
assume that such learning is in turn subject to (rare) perturbations. Two possible learning
mechanisms proposed in the literature are learning by imitation and best-response adjustment. In
the first case one player looks at the set of strategies that give a higher payoff than the strategy he is
using. In the second case, one player looks at the strategies that are best response to the strategies
that other players are playing. A further revision mechanism is proposed by Binmore et al. (1995)
with their Aspiration and imitation model. Here agents compare their payoffs with an aspiration
level, and strategies that fall short of such aspiration level are rejected in favour of better strategies.
This aspiration-imitation mechanism pushes agents towards best replies.

Kandori et al. (1993) give a useful illustration of the mutation and learning mechanism, that here
we adapt to the example of coordination game considered above. Consider a small community of
graduate students, for instance ten students forming one cohort of a PhD university program in
mathematical economics. They have to do assignments, for a number of computer packages must be
used, say for quantitative analysis of empirical data. Students can do assignments in pairs, but they
are randomly matched in order to maximize exchange of knowledge. The problem is that working in
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pairs is fruitful only if the two students have the same type of computer operating system, say Apple
or Microsoft. In this case, assume that coordinating on Apple gives the efficient equilibrium, while
coordinating on Microsoft gives the risk dominant equilibrium. We have seen that a mixed strategy
equilibrium exists, which places probability 2/3 on students playing Apple. Only if at least two third
of the population (7 students) use an Apple, the best response in the random matching game is to
have an Apple. If 6 or less have an Apple, it is better to have a Microsoft. Assume that students have
occasionally the possibility to change computer, which corresponds to the learning process of our
evolutionary game. Assume that in buying a new computer they consider a random matching of
future assignments. Students face a process of “Darwinian” adjustments of the type of the
equilibrium selection models presented above. The final outcome depends on the initial conditions:
if initially there are at least 7 students with an Apple, all students will have an Apple in the end.
Otherwise, all students will end up with Microsoft. Positive feedback in a stochastic process is a
cause of path-dependence. Models of stochastic stability and equilibrium selection show that
sometimes is possible to solve this coordination problem and switch equilibrium. Assume that
students randomly leave the program with probability p, and are replaced with new students using
Apple with probability m, and Microsoft with probability 1-m. This is the mutation probability of the
evolutionary game. Kandori et al. (1993) show that if p and m are positive, students switch computer
and coordinate soon or later. The system perpetually fluctuates between all using Microsoft and all
using Apple. Overall more time is spent with in the Microsoft than in the Apple equilibrium. In order
for the Microsoft-to-Apple switch to occur seven students must mutate in a row, while only 4
mutations to Microsoft are needed for the opposite transition. This is due to the risk dominance of
the Microsoft over the Apple equilibrium, which translates in different sizes for the basins of
attraction.

The founding idea of stochastic stability and equilibrium selection is that behavioural adjustments
such as learning-by-imitation, learning-by-best-response, or aspiration-and-imitation, can take
players from one to the other set of strategies, and then the entire population systems from one
equilibrium to the alternative one. First of all we allow that players mutate, which means that each
single player can play a new strategy with some positive probability. There may be a number of
different and not necessarily exclusive interpretations for mutation. One is that players sometimes
perform experimentations, and when they do that they are kind of innovators. An alternative
interpretation is that players can make mistakes, which do not necessarily end up with being a bad
thing.1 Furthermore, mutation can be the entry of new players which substitute old ones, a kind of
renewal.

Thanks to mutations, some players may be ending up with making higher payoffs from the game.
Moreover, due to other players’ mutations, the payoffs of non-mutating agents may change, and
possibly change for worse. Now, thanks to learning, players may revise strategy and follow mutating
agents by imitating their strategy. In the setting of learning-by-best-response, for instance, players
may coordinate in a unique best response strategy. Due to mutations and due to the consequent
strategies revision mechanisms, the equilibria of the population game change. There will again be
two alternative equilibria, but the barrier that separates them will change. Possibly such barrier may
become less difficult to overcome.

The model just presented is relevant for all socio-economic systems where a population of agents
with forward looking behaviour finds itself in an undesirable equilibrium (less efficient), and where
an alternative equilibrium exists, it is possibly risk-dominated, and usually is not occupied yet. Most
sustainability challenges ore of this kind. An example is fossil fuels and renewable energy. There are
plenty of such situations in the history of technology: for instance technology standards as the
QWERTY keyboard (David, 1985) or computer operating systems.

" In latin the word “errare” means “to change path”.
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4. Diffusion

A fundamental process of technological change is the diffusion of innovations, which is maximally
important in a case of technological transition. Diffusion is relevant to societal transitions in many
respects, from the diffusion of new products and innovative technologies to the diffusion of
information, social behaviours, fads and fashion. The theme of diffusion is quite interdisciplinary,
involving fields as physics, epidemiology, sociology and economics. Recently the research on
diffusion has focused on networks (Vega-Redondo, 2007, Jackson 2008).

4.1 Phase transitions

Diffusion in networks is characterized by a phase transition. In physics a phase transition
characterizes a system undergoing a transformation from a state to an alternative one. An example
is water when it freezes, passing from the liquid to the solid state. Phase transitions are very peculiar
types of change where there is a threshold value in some parameter of the system that can be
exactly identified and measured. This gives place to a sharp change from one state to the other.
Critical or second order phase transitions are characterized by a discontinuity in the first derivative
of the state variable with respect to the changing parameter, but the state variable is continuous.
The large scale diffusion in a network is subject to the existence of a giant network component,
which is a portion of the network whose nodes are connected between them by at least one pattern.
The component is “giant” whenever it is macroscopic, that is whenever its number of nodes is of the
same order of magnitude as the total number of nodes (say half of them, for instance). Increasing
the average connectivity of the network z (that is the average number of links per node), the size of
the largest connected component x(z) presents a sharp transition at a certain threshold value, as
Figure 6 shows.
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Figure 6: relative size of the giant connected component in a random network.

The value of the threshold depends on the type of network, and it is z=1 for a Poisson random
network. Below the threshold connected components are relatively small (orders of magnitude
below the total number of agents), while above the threshold a giant component shows up.
Diffusion on random network reflects this phase transition, and presents a sharp separation of two
regimes: one where diffusion is scarce and one where it is large.
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Phase transitions are more “fundamental” changes than critical mass phenomena. In a critical
phase transition the system undergoes a structural change, where an organized state builds up,
while in systems with multiple equilibria the change is just a “selection” of two alternative but
equivalent states.

Beside average connectivity and connectivity variance, an important factor of diffusion in a
random network is connectivity spreading. A network “spreads” if the number of second order
neighbours (the friends of your friends) is larger than the number of direct neighbours, and so on for
all successive order. This property in a network boosts diffusion, and the intuition is straightforward:
if diffusion occurs by direct contact, starting from an “infected” node it gets multiplied at every
contact step, in a spreading network. This topological spreading in a random network is present
whenever the connectivity variance is sufficiently large. In particular, the variance must be larger
than twice the average connectivity (Vega-Redondo, 2007, pag.46).

Another way to think of connectivity spreading is the connectivity distribution of neighbours. This
is a subtle concept, but the connectivity distribution of neighbours (your friends) is not the same
thing as the connectivity distribution of a given node. In particular, the average connectivity of the
neighbor of one node is larger than the average connectivity of this node. This point can be
understood thinking that if one draw a node at random, this node may be unconnected with some
probability. If instead one draws one node at random and in case it has one or more neighbours,
considers one of them, this latter node will have at least connectivity one, by assumption. This
theoretical fact is the first of a number of reason that suggest the following marketing trick for
launching a new product: sample a population at random, ask the sampled people who are their
friends, and then give the product to their friends. A refinement of this trick is to find the friends
that are cited more often and then give the product to them: with high probability they have many
friends also outside the sample.

The last paragraph introduces an important issue of diffusion in a network, which are the seeds of
diffusion, that is the initial nodes starting the diffusion process. In a marketing perspective, these are
the people who are given the new product at the beginning. It is intuitive that seeding is primarily
important: if a seller is able to spot the “right” people to start its launching campaign, the diffusion
may go through much more easily. Following the consideration above, diffusion is larger is the seeds
are hubs, that is they have many links. This is surely so, but connectivity is not the only important
factor. Another key factor is the centrality of seeds. The centrality of a node in a network is
measured in a number of different ways: there are the closeness centrality, the betweenness
centrality, the eigenvector centrality (PageRank, Google’s algorithm to rank webpages, is based on
the latter). Basically all these measures indicate the following: how likely it is that a node is
positioned on the shortest path between any other two nodes.

A further relevant network characteristic is clustering. The role of clustering in diffusion is
controversial, and likely depends on the nature of the diffusing entity, whether it is information,
behaviours, new products, and so on. The whole point is to understand if the redundant links of a
network with high clustering favour diffusion. If one consider the diffusion of information, clustering
is useless, because news is transmitted by only one links. Regarding products diffusion the point is
whether adoption decisions only depend on personal preferences or also on social pressure. Based
on the latter, a consumer adopts with a probability that increases with the number of neighbours
adopting. There is mixed empirical evidence on this (Banerjee et al 2012). Recent studies suggest
that clustering is useful for the diffusion of behaviours (Centola, 2010), while technology diffusion
works better in networks with low clustering, as individualist societies, than in networks with high
clustering, as in collectivist societies Fogli and Veldkamp, 2012). A suggestive hypothesis is that
clustering may be helpful in helping a niche or laggard technology to be adopted, when a leading
technology has already established a larger basis, if consumers are influenced by their
acquaintances. (Lee et al, 2006)
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4.2 Percolation

A meaningful description of diffusion on networks is the percolation model. Percolation is the
diffusion of a liquid through a porous material layer. The density of the material regulates porosity,
and this regulates diffusion. If one increases the density, porosity decreases, and eventually
percolation stops. This process shows a phase transition, whit a sudden passage from diffusion to a
no-diffusion regime. A typical percolation process occurs in making coffee. But several other natural
phenomena can be described as percolation, like the spread of fire in a wood.

Percolation is a very “economic” model, and can be used for studying the diffusion of innovations
in a market, as soon as the density is turned into say a product price. Solomon et al (2000) is a
seminal paper where the social percolation model is proposed.

Assume that agents form a network of social relationships. An agent adopts the product when
she is informed about its existence. Information is local, and a consumer is informed when a
neighbor adopts. Once the agent is informed, she adopts if the product price p is below her
reservation price, p, > p. Reservation prices are randomly distributed.

In a standard percolation model consumers are the nodes of a regular lattice. Drawing
reservation prices amounts to “remove” nodes randomly, in that consumers with a too low
reservation price are unwilling to buy, do not convey information (Figure 7).

O willing to buy

. unwilling to buy

Figure 7: only willing to buy consumers convey information.

If a giant connected component remains after nodes removal, percolation occurs. Figure 8 shows the
critical transition of percolation. A threshold price separates the diffusion from the no-diffusion
phases. For a regular 2-dimensional lattice the threshold is p; = 0.407.
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Figure 8: percolation shows a critical transition.
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5. Cascades

Informational cascades are at the basis of phenomena of herding behavior, when people act simply
following what others do. It is evident how herding in general and informational cascades in
particular present a positive feedback mechanism. Although herding sounds like myopic or even
irrational behaviour, it is surprising to see how it may well result out of the aggregation of perfectly
rational individual actions. The point is that it may be perfectly rational for an individual to make a
decision (adoption of a technology or choice of an investment option) following the actions of other
agents, disregarding one’s own information. This intuition is developed into two different but
equivalently insightful models, which not surprisingly appeared in the same year: Banerjee (1992)
and Bikhchandani et al (1992).

The basic idea of herding models is that agents are fully rational but imperfectly informed. It is
exactly because of imperfect information that herding occurs. Choice are perfectly rational and
made by maximizing an expected payoff based on the available information, which is limited. The
main difference between the two models is in their scope: Banerjee aims at explaining the
occurrence of cascades and their acceleration dynamics, as in financial bubbles, for instance.
Bikhchandani et al (1992) are interested in the up and down dynamics of fads and fashion, instead.
They consequently aim at explaining also the fragility of cascades, that is to explain not only how and
why an informational cascade occurs but also how it suddenly vanishes.

Both models are based on a dynamic sequential decisions mechanism. Agents are called one at a
time to make a choice out of a set of available options. This choice can be a financial asset for
investment, as in Banerjee or the adoption of a behavior, as in Bikhchandani et al. Information
enters the picture in that agents know something about the value of the payoff resulting from their
action. Herding arises when an agent makes a choice based on the actions of predecessors and
disregards her own information. When this happens, an informational cascade occurs and all other
agents in the queue will take the same action.

The striking aspect of the story is that in cases where there is a “right” option and a “wrong”
option, it may happen that an agent with the right information decides to jump on a newly formed
wrong bandwagon and act wrongly. This is the case in Banerjee (1992). Here there is a continuous
set of assets, among which only one gives a positive final payoff. Agents make a choice and pick an
asset out of the set. They are ordered and choices are sequential. Agents may have private
information about the right asset and observe choices made by predecessors. Their choice does not
influence the payoff of subsequent agents but it does influence their information set. An informed
agent knows her own private signal about the right asset as well as what she can infer from the
actions of her predecessors. Trivially, whenever some agent has a signal matching the action made
by someone before, she always makes the same choice. What is more interesting, when an agent
sees the same choice made by more than one agent before her, she will follow suit irrespective of
her own information.

In Bikhchandani et al. (1992) all agents are informed, since they have a clue about whether the
final payoff from adopting one behaviour is high or low. They may be wrong with some positive
probability as in the previous model. Agents also face a cost from adoption, and must evaluate the
expected final payoff net of this cost. Here agents face a binary choice: adopt or not to adopt. As a
consequence, herding takes the form of an up cascade or a down cascade. In a refined version of the
model the final payoff assume many different values, but the main idea is the same: whenever an
agent sees more than one predecessor making the same choice, she will imitate disregarding her
signal. From this point onwards a cascade occurs and everybody jump on the bandwagon.
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Both models address the issue of finding the probability that a wrong cascade occurs. This is not
just a technical question, in that an answer to it has strong welfare implications: it would be socially
more efficient if agents could not observe actions by others. This result is rather unintuitive, and its
message quite striking: less information may be preferable to more information, since a cascade
prevent the aggregation of information detained by all agents.

The sequential decision problem considered here may be described by an urn model. If we
restrict to the case of a binary choice as in Bikhchandani et al. (1992) the translation into the
probabilistic setting of the urn model is rather simple, Consider the the number of times that an
option i is selected (say the time series of product sales) as given by bl ,; = b} + Bi(x,), with i=A,B,
where x,, is the share of i at time n. The incremental term is f! = 1 with probability p(x) and
Bi = —1 with probability 1-p(x). If we use a S-shaped function for p(x) we can generate cascades.
The idea is to have a self-reinforcing probability p(x). With positive probability up or down cascades
occur at some stage n. This means a lock-in into option A or option B, depending on chance. Figure 9
reports two simulations of the model with an up cascade (left) and a down cascade (right).
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Figure 9: time series of the share of binary decisions. Right: up cascade. Left: down cascade.

In its basic form the model by Bikhchandani et al. (1992) is as follows. Adoption of a certain
behaviour leads to a future gain V. This may be either 0 or 1 with posterior probability y. Adoption
bears a cost C, with 0<C<1. The expected net gain is E[V]-C = y-C and can be either negative or
positive. Agents chose sequentially and are privately informed about the future value of the payoff
from adoption. Agents do not have an exact information but only a signal telling with some positive
probability whether this value will be 1 (signal H) or 0 (signal L). After receiving signal H the
probability that the final value will be V=1 is p>1/2. On top of their private information agents also
observe choices of previous agents and use the information they extract when making their decision
on adoption.

A typical story can be the one of this example. Say the first agent of the sequence gets a H signal.
Then she adopts, since p>1/2. The second agent gets again a H signal. Without hesitating she will
adopt either, since the probability that the signal is right is even larger than p. The third agent gets a
L signal, instead. Based on her information she would refuse adoption. But the action (adoption) by
the first and the second agent speaks very loud: they must have got two H signals or maybe the first
got a H signal and the second a L signal. But in this last case the second agent was adopting with only
1/2 probability. This means that the third agent correctly assigns more likelihood to the occurrence
of a signal sequence (H,H,L) than to the signal sequence (H,LL) and she rationally adopts. This
adoption by the third agent arises based on a herd externality, since she disregards her private
information. In this way an up cascade takes place, and all subsequent agents will adopt irrespective
of their signals. A down cascade occurs in the same way with just H and L signals exchanged.
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Moreover, it is not necessary that only the third agent initiate the cascade: if an even number of
agents initially receive alternatively H and L signals, a neutral situation perpetuates and the agent
coming after this homogeneous sequence find herself exactly in the same situation as the third
agent of the example above.

Bikhchandani et al. also show how informational cascades may be fragile and eventually vanish.
The idea is that in a herding mechanism positive feedback vanishes as further adoptions are less and
less informative. The authors here show how the release of a small amount of public information is
enough to end an informational cascade and leave place for a new one to start. This model also
explains the occurrence of regime shifts in collective behaviour.

The issue of cascade fragility and regime shifts means a departure from pure positive feedback,
and it is addressed with some more detail for instance by Alan Kirman in his famous article Ants,
rationality and recruitment. (Kirman 1993). In this model the occurrence of a wave of collective
behavior is explained as a phenomenon of contagion. The models is based on a probabilistic
description of agents’ behaviour that is close to the family of non-linear Polya processes of the urn
model does studied in the chapter on increasing returns. In Kirman's model herding is not explained
by rational decision making (although with limited information) as in Banerjee (1992) and in
Bikhchandani et al. (1992), but with a behavioural rule which resembles an act of recruitment. This
approach is close to the principal-agent model proposed by Sharfstein and Stein (1990), where
agents get a reward for convincing a principal that they are right. Nevertheless Kirman’s approach is
based on a mechanistic rule, which in economics is referred to as agents following simple heuristics
or rules of thumb, and then it departs from neo-classical mainstream economics.

The model by Kirman (1993) is based on a metaphore: while addressing herding in economic and
social systems, Kirman recognizes a striking resemblance with the behaviour of ants during a
foraging process. Kirman then builds a model that explains the behaviour of ants and eventually
resolves the metaphor claiming that collective human action in cases of herding follows the same
pattern.

Experimental studies in life sciences have shown that ants distribute unevenly in a perfectly
symmetric foraging environment, with four out of five insects eating at one source and only one at
the other. This system perfectly adapts to social systems with binary adoption decisions, for instance
two different technologies A and B, or a building with multiple exits in an emergency: it is empirically
documented that congestion forms at one exit and other exits are almost not used.

The asymmetric exploitation of symmetric sources is explained in Kirman’s model by a stochastic
mechanism of recruitment, where contagion takes place because ants “recruit” other ants to their
source. Kirman also addresses another equally important empirical fact, which is the regime shift of
ants’ concentrations that flip from one source to the other. As it happens, after some time ants
collectively abandon one food source and start exploiting the other, which was largely neglected
before. Regime shifts are present in numerous human social systems, where behaviours do not last
forever, but extinguish and are possibly replaced by new ones. Examples are fashion, opinion
dynamic, and political voting.

The model of ants’ behavior is as follows. There are N identical ants and two identical sources of
food, A and B. Only one state variable describe the system, say the number of ants using source A,
k=0,1,2,..N. Ants meet randomly. A probability of recruitment is defined, 1 — §: this is the
probability that, following an encounter, one ant recruits the other to its source of food. Such
probability is the parameter describing the intensity of recruitment. There is a probability of self-
conversion € which accounts for the event of an ant changing source of food autonomously. The
probability € prevents the system to get stuck in one of the two extreme states k=0 and k=N (lock-
in).
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The system dynamics is governed by the transitions probabilities P(k,k+1) and P(k,k-1), describing
the transition from the state where k ants eat at source A to the k+1 state and to the k-1 state,
respectively. Assuming an uniform distribution of states, P(k,k+1) = P(k+1,k), Kirman obtains a
threshold value (1 —3§)/(N — 1) for the probability of self-conversion €: if this is below such
threshold, the equilibrium distribution is larger towards the extremes k=0 and k=N. Such bi-modal
distribution says that lock-in into one of the two food sources is very likely to occur. In other words,
this distribution expresses probabilistically the asymmetric scenario where ants largely select one of
two identical sources of food. The key factor is the relative magnitude of probabilities € and &: given
the total population size N, the asymmetric condition is met for € small enough (self-conversion is
relatively rare) or 6 small enough (recruitment is relatively likely).

The same conditions for the asymmetric scenario of a bi-modal distribution also give the regime
switching of the system, which is the second main focus of the model. Simulations of the model
show that when ¢ is large compared to 1 — §, the state variable k moves around N/2 uniformly and
with relatively little oscillations. When € is below the threshold value, the system stays away from
N/2 for most of the time, and rapidly switches to and from k=0 and k=N. Notice that none of the
states here is an equilibrium. There are not multiple equilibria here, but an equilibrium distribution
of the state of the system.

We conclude comparing Kirman’ model to the urn scheme of Polya processes studied in the
chapter on increasing returns. Both models are characterized by a stochastic approach, and are
based on Markov chains. In both cases memory turns into path-dependence. Nevertheless, the two
models are different in three main points: the first is the probability of self-conversion in Kirman’s
model, which gives regime shifts. Second, urn models are based on Markov chains that are not time-
homogeneous, in that transition probabilities depend explicitly on time, and not just on the value of
the state variable. Finally, Kirman's model considers a finite number of agents N, which is not the
case with generalized urn models where the number of agent is never an issue.

6. Emergence

One of the most meaningful characters defining a complex system is that it cannot be reduced to the
sum of its parts. Quoting Philip Anderson, “more is different” (Anderson 1972). The study of complex
systems has represented an important conceptual revolution of twentieth century, which has earned
Anderson the Nobel prize in Physics in 1977.

Before addressing socio-economic systems, examples from physics can be instructive. An atom is
undoubtedly a complex system, but it is so in loose terms, because it is made of several parts of
different nature, the electrons and the nucleus, and the nucleus itself is made of protons and
neutrons. True examples of physical systems that are complex in strict sense are a bunch of atoms
showing superfluidity or electrons in a superconductive state. In superfluid and superconductive
states atoms and electrons do not undergo any structural change. The point is that when they are
many, under a certain temperature, atoms have virtually no viscosity, and electrons form a current
with no resistance. This magic is a kind of physical cooperation.

Social networks have raised huge interest in complexity studies. Examples are firms’ R&D
collaborations, financial credit relationships and the trade network. Physical networks of social
relevance are transportation networks, the electrical power grid and the internet. (Albert and
Barabasi, 2002). More recently, the class of complex social networks has been enriched with online
social networks such as Facebook, LinkedIn and Twitter.
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Jain and Krishna (2001, 2002) proposed a theoretical framework to describe the emergence and the
evolution of a network, with the purpose to show how a network can build as a self-organizing
system, and also how it can collapse without exogenous events. Their model is an evolutionary
framework based on catalytic interactions between species, which can be chemical substances in a
pre-biotic pond, living organisms in a food web, industrial sectors, technologies or even financial
institutions. Species are grouped together and form a weighted directed graph, where a link from
node j to node i represents the catalytic effect of species j on the production of species i. In other
words, without species j there would not be species i, and the larger the weight of the link (j,i) the
stronger the catalytic effect. Self-organization of this system leads to an autocatalytic set.

The main idea of the model is to have two dynamics on two different time scales: a fast
dynamics, where each single species evolves because of catalytic interactions, and a slow dynamics,
where both mutation and selection occur. The slow dynamic process consists of the addition of new
species that replace the less performing species (or a set of less performing species). The fast
dynamics is assumed to quickly end in an equilibrium state, where the relative abundance of species
remains stationary. The fast dynamics is governed by a differential equation that expresses the rate
of production of population of a species i as the linear combination of catalytic effects from all
species j=1, ...S that have a link with I, where S is the total number of species.

The slow dynamics is made of rare selection events occurring at times much longer than the fast
dynamics. Such events modify the stationary state by reshuffling the system. A set of less fit species
are eliminated with some probability p, and their links are destroyed. This is a structural
transformation that modifies the performance of all remaining species that are directly or indirectly
connected to the species eliminated. New species are added with new links randomly distributed.

The purpose of the authors with this model is to show how the emergence of cooperation (Jain
and Krishna, 2001) and extinctions (Jain and Krishna, 2002) can be described as an emergent
phenomenon, where the cooperation network builds and extinguishes endogenously, based on a
self-organization. Autocatalytic sets are the key element of the model. These are defined as sets of
nodes that have at least one positive (catalytic) incoming link. Such a set grows through time and the
complexity of the network increases, as peripheral nodes are removed. The emergence of
cooperation and interdependence is sudden and leads to a state where the whole network is an
autocatalytic set (Error! Reference source not found.). This is a critical state, because the least
fit node is a member of the set, a keystone species that plays an important role in the organizational
structure of the network. Its removal causes a dramatic reorganization of the whole network,
possibly leading to the complete destruction of the autocatalytic set.
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Figure 10: emergence and extinction of an autocatalytic set (example with 100 species).
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The dynamics of emergence and fall of cooperation described by autocatalytic networks is
represented by plotting the time series of the number of species s; that belong to the autocatalytic
set (Figure 11). The left panel shows the realization of a large autocatalytic set.
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Figure 11: Time series of the number of species in the autocatalytic set (simulation with 100 species).

On the right panel of Figure 11, the same simulation of the model is reported for a longer time
horizon. After some time cooperation fails and the autocatalytic set is destroyed. Following this fall,
a new phase begins with a stochastically fluctuating set with negligible size. Periods of emergence
and extinction alternate then, which represent the self-organizing dynamics of emergence and fall of
cooperation.

This model captures the principles of self-organization that underlie the emergence of a complex
system, and at the same time shows how the same principles determine its fragility. There are
models in the literature that have described further characters of complex systems, as for instance
the phenomenon of hysteresis. This is another concept imported from physics where a system is
characterized by two different critical transitions when an external force is applied and then
replaced by an equal but opposite force. Hysteresis dynamics can also characterize social systems,
and is explained by models of complex networks formation. (Marsili et al, 2004, Ehrhardt et al, 2006)

7. Modular technologies

The challenge for designers in designing new technologies is to put together components in a system
such that the components “fit” together, meaning that the components work in complementary,
instead of conflicting ways. The set of optimal choices for individual components regarding
component-specific criteria may prove sub-optimal when these components are combined in a
system, because of technological interdependencies. For example, a type of suspension which is
found optimal according to suspension tests, and a type of engine which is found optimal in engine
tests, may prove to be sub-optimal when put together in a car system. The engine may generate
negative effects on the working of suspension, for example, caused by high vibration. Or, vice versa,
the suspension may generate negative effects on the working of the engine, for example, caused by
high resistance. The existence of interdependencies renders technologies complex systems (Frenken,
2006).
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To find out what is the best combination of components put together in a system, one should
generally try out all possible combinations of components. Hence, the difficulty in finding a good
design is of a higher magnitude than finding a good component design. Simon (1969, p. 194) explains
this instance of “combinatorial complexity” using the example of a working and a defective lock:
“Suppose the task is to open a safe whose lock has 10 dials, each with 100 possible settings,
numbered from 0 to 99. How long will it take to open the safe by a blind trial-and-error search for
the correct setting? Since there are 10010 possible settings, we may expect to examine about half of
these, on the average, before finding the correct one — that is, 50 billion billion settings”

The strategy of evaluating all possible combinations between components is called exhaustive
search. Contrary to complex systems, as Simon (1969, p. 194) goes on explaining, modular systems
are characterised by independence between its components, and can hence be optimised by local
search: “Suppose, however, that the safe is defective, so that a click can be heard when any one dial
is turned to the correct setting. Now each dial can be adjusted independently and does not need to
be touched again while the others are being set. The total number of settings that have to be tried is
only 10 x 50, or 500. The task of opening the safe has been altered, by the cues the clicks provide,
from a practically impossible one to a trivial one”

The metaphorical description of technological complexity by Simon can be modelled analytically
by Kauffman’s NK-model (Kauffman 1993; Frenken 2006). NK refers to systems with N
components (n=1,...,,N). For each component n, there exist a number of possible component designs
called “alleles” that refer to the possible states of this component. The different alleles of a
component are labelled by integers “0”, “1”, “2”, “3”, etc. Each string s is described by alleles
sl1s2...sN and is part of possibility set S, for which holds that the size of the design space S is given
The number of possible design that make up the design space, is the product of the number of
design possible for each component. In the example of Simon’s working lock, with have 100 possible
designs for all 10 components and, hence, a design space of 10010 possible strings. Another
example, which we elaborate below, is a system with 3 elements with each 2 possible designs, which
has 23=8 possible designs for the system.

In the NK-model, K is the parameter that denotes the complexity of a system, that is, the extent
to which the functioning of each component is dependent on other components. The possible K-
value of a system ranges from K=0 to K=N-1. When interdependencies are absent, one deals with
systems of minimum complexity (K=0), and when all components are interdependent one deals with
systems with maximum complexity (K=N-1). (In between the two limit cases of minimum and
maximum complexity, there is the class of systems with “intermediate” complexity, which we will
not go into here). Consider the example of a system consisting of three dimensions, N=3, each of
which has two alleles, so we have a binary design space.

Following Kauffman (1993), the functional properties of this system for each design s is simulated
by drawing randomly from a uniform distribution [0,1] a “fitness” value wn for each allele of a
component sn. The fitness of the system as a whole W(s) is calculated as the mean value of the
fitness values of the alleles of components, so:

W(s) = %,,Zi“ w, (s,) (1)

The design space of this system contains 2° possible strings, which can be represented as
coordinates in the three dimensions of a cube as in Figure 12. Each string represents a different
design with a fitness value W(s), which is derived from the mean of the fitness values w, (s,) of
individual components.
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In the case of maximum complexity (K=N-1), the functioning of an allele of a component depends
upon the choice of the alleles of all other components (see Figure 12). This implies that the fitness
value of a particular allele of a component wn (sn) is different for different configurations of alleles
of other components. To simulate the fitness landscape of this system, the fitness value of an allele
of a component is randomly drawn for each possible configuration of alleles of other components.
An example of fitness landscape for a system with N=K-1 is given in Figure 12.

|j-]u\ 10

w,oow, w, W 079 / 0.60
000: 05 01 07 043 e ju
00l: 02 02 08 040 ‘ Ry
010: 07 08 06 070
011: 06 05 03 047
100: 09 05 08 073 ¥
101: 02 03 04 030 iz
110: 05 09 04 0.60
111: 04 08 01 043

001 101
{0.40) {030}

Figure 12: Simulation of a fitness landscape of a N=3 system with K=2.

A fitness landscape of systems containing interdependencies can contain several fitness peaks. In a
landscape containing several peaks, one also speaks of several local optima and one global optimum.
Local optima have sub-optimal fitness values compared to the optimal fitness of the global optimum.
In the example of Figure 12, string 100 is a global optimum since its fitness is the highest of all
strings, while string 010 is a local optimum since its fitness is higher than the fitness of its
neighbouring strings, but lower than the fitness of the global optimum. For both global and local
optima it holds that they cannot be improved by mutating a single component.

This means that local trial-and-error search on rugged landscapes can end up in several optima.
Local trial-and-error here means that a designer mutates one component (from 0 to 1 or vice versa)
and accepts this mutation if total fitness W increases. Then, a designer will not always find the
optimal solution as one runs the risk of ending up in a local optimum instead of the global optimum.
Once a search leads to a local optimum, a designer is “locked-in”. Leaving a local optimum is not
possible since any mutation in one component leads to lower fitness and is thus rejected.

Since several local optima exist in complex systems, a designer can end up in different local
optima depending on the starting point in the landscape and the particular sequence of mutations
that follow. Search is “path-dependent” on the initial starting point of search and the sequence of
searches that follow. An example of path-dependence in the simulation example is when search
starts from string 001 and the first mutation leads to string 000, and the second mutation to string
100. The resulting solution 100 would be optimal. However, when search starts again in 001, but the
first mutation leads to 011, the next successful mutation will inevitably lead to the sub-optimal
solution 010.

So far, we considered a single firm hill-climbing the fitness landscape. This reasoning only holds if
a single firm controls all parts of the technology. In today’s economy, different firms typically control
different components in a complex technological system. Then, a problem of coordination emerges.
Since a mutation in one part may make parties responsible for other parts worse off, compensation
for losses may be required. For example, in Figure 1, the global optimum 100 is now unstable,
because once it is reached, the firm controlling the second component will mutate the component
from 0 to 1 thus moving the system from 100 to 110, since by doing so it can increase its own fitness
w2 from 0.5 to 0.9. This means that for good system solutions to work, some firms have to be willing
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to give up fitness, which is likely to occur only if such losing firms are compensated by the winning
firms.

Adner (2012) calls this a ‘ecosystem perspective’ to innovation strategy, where the innovating
firm does not only look at the performance of its own part in the whole technological ecosystem, but
also anticipates the effects on other parts of the technology that fall outside their control.
Anticipation generally means that the innovating firm builds a strategic alliance with all other parties
in the ecosystem who need to change their respective parts as to make the new system fully
working. Adner (2012) provides many case studies of companies that failed to view their own
innovation as being part of an ecosystem. One telling example of the need for coordination in an
ecosystem of non-modular technology is Michelin’s radical innovation in tires, which was completely
re-designed to make it possible to continue to drive for over 125 miles on a flat tire. Though this
innovation greatly improved the safety of driving and the convenience for drivers of not having to
pull over in case of a flat tire, the company did not invest in training repair men. Repair service
stations themselves, being small, also had little incentive to train their personnel since the new
product only gradually diffused. The first costumers, therefore, were forced to buy new ones instead
of having it repaired at a low price. A second example is Nokia’s that was first to market with a 3G
handset, but failed to profit from their first-mover advantage since content providers did not come
up with the necessary complementary innovations such as video streaming, location based services,
and automated payment systems.

7.1 Modularity

In the absence of complexity (K=0) the functionality of a component is solely dependent upon its
own allele (here, “0” or “1”) and independent of alleles of other components. The important feature
of fitness landscapes of K=0 systems holds that the fitness value of an allele of a component wn (sn)
is the same for all configurations of alleles of other components. The optimal design is therefore the
design in which all components have the allele sn with the highest fitness value wn (sn).
Optimisation is therefore easy since a mutation in one component does not affect the functioning of
other components. Put another way, systems without complexity do not have trade-offs between
the functioning of components. Therefore, the individual components can be optimised
independently through local trial-and-error, that is, by randomly mutating from one allele to the
other allele, and accepting this mutation if fitness W is increased. In the example of Figure 13, any
series of mutations in one component at the time will always lead the designer to find the optimum
system design 110. Note here that the case of K=0 corresponds to the earlier example of Simon’s
defective lock.

0ro 110
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Figure 13: Simulation of a fitness landscape of a N=3 system with K=0.
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What is important to note is that although systems without interdependencies (K=0) are modular,
not all modular systems are without interdependencies. One can construct systems with
interdependencies that are nevertheless modular (Frenken 2006). The modularity only depends on
the specific architecture of the system. In a modular system search can proceed in a decentralized
and parallel manner. Since the two modules can be search in parallel (in contrast to non-modular
systems), search time can be reduced to 22 parallel trials. As exhaustive search requires 24
sequential tests, hence 16 time units, the modular system can be searched 75% more efficient. This
means that different modules can be improved by different departments in an organization or even
different organizations, without the need for coordination. In the latter case, a firm producing a
technology can outsource not just the production process of modules to suppliers, but also the
innovation process within modules.

7.2 Mass-individualization

Modularity has important search advantages because fewer mutations are required to find the
global optimum and even less time is required as search can proceed in parallel. However,
modularity is a concept with even broader implications. If users of a technology are heterogeneous,
a modular system allows offering different components for different types of users. And, for some
users some components can be left out all together (typically against lower price). This model is
followed now by many companies as to provide a large variety of products while using the same
production technology.

An even more powerful business model is to have the users themselves assemble the product by
mixing and matching the modules they like. For firms this solves the problem of knowing about the
needs of each single customer. And for the users, this allows for perfect individual customisation of a
product. A typical example is the self-service regime that has become dominant in many service
companies allowing customers to organise the service in their own way (e.g., combining your own
meal). If one elaborates this mass-individualisation model even further to include innovation
activities, modularity also allows users to come with their own solutions. Hence, modularity can be a
model of “user innovation”.

All these advantages of modular systems, however, come at one important cost. The type of
innovations that can introduced in modules are constrained by the requirements that the modular
system. Modules can only work together if interfaces between the modules are well-specified and
standardised. Hence, a new module that does not adhere to the interface standards will, in fact,
create unwanted interdependencies between modules. Then, a system is no longer modular. For
example, if a new engine type for aircraft is being developed that cannot be attached to the wings in
the same way as current jet engines are attached to the wings, that the introduction of such a new
engine type would render the system no longer to be modular. Only if a new aircraft engine type can
be attached to the wings in the same way as current jet engines, the advantages of modularity
remain.

8. Niches, exaptation and the evolutionary dynamics of technical change

A niche can be defined as “The particular area within a habitat occupied by an organism” (Free
dictionary). This definition also applied to whole species. The size of a niche, then, is conditioned by
availability of resources on which a species depends for its survival and reproduction (such as food,
light, etc.) and the level of competition of other species for the same resources. If these resources
are in abundance, a species will grow in size and the more such resources are scarce, the more a
species will shrink (and even may become extinct).
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In technology, the concept of niche also applies (Schot and Geels 2007). Here, a niche is an area
in consumer space with high willing to pay because of specific (combination of) characteristics of the
technology that provide particular benefits for consumers. If a technology satisfies a consumer need
that cannot be well met by other technologies, competition is low, and it has found a viable market
niche. And the more resources available to these consumers, the more the technology will grow.

To understand competition between technologies, one needs a representation of the
functionalities they provide. In most cases, the functionality of a technology is multi-dimensional.
For example, a plane’s basic functionality is transport through air, but the quality of a plane can be
further detailed by specific “service characteristics” such as speed, fuel efficiency, size, range, etc.
For higher levels of these characteristics, higher prices need to be paid. Competition, then, can be
mapped by looking at the multi-dimensional distance of an aircraft design to other aircraft design.
The larger this distance, the less competition is will experience from other designs (Saviotti 1996). In
Figure 14 technology 0 occupies a niche vis-a-vis all the instances of technology x. For example,
technology 0 can be a small and fast aircraft using for fighter operations that is distinct from the
typical larger and slower aircraft used for bombing, cargo and passenger transportation.

Characteristic 2 o

v

Characteristic 1
Figure 14: a technology with two dimensions.

From detailed empirical studies of several technologies (Frenken 2006; Schot and Geels 2007), a
typical pattern has emerged, where most successful technologies initially started out as niches. For
example, the laptop that has come to replace the PC in many households started out as a device for
business men travelling to their clients. And, the jet engine that is now powering almost all types of
aircraft having replaced propeller type aircraft, was first used only in fighter aircraft were speed is
the key service characteristic. Or, think of solar panels first used in aerospace.

Once a new technology is successful in a niche more resources become available for further
improvements. More importantly, new functionalities are added to the technologies expanding its
range of applications often to completely different markets. These functionalities are initially
unforeseen, but once the technology is introduced in a niche market, producers and users start to
learn how to use it and experiment with new uses.

In evolutionary theory, this phenomenon has become known as exaptation. For Lane (2011, p.
69), “exaptation is the taking on of new functionality by existing structure”. The classic example of
exaptation in nature is that of bird feathers, which were initially evolved for temperature regulation,
but later for flying. In the context of technological artifacts, Lane (2011, p. 69) argued that: “artifacts
gain their meaning through use, and not all the possible meanings that can arise when agents begin
to incorporate new artifacts in patterns of use could have been anticipated by the designers and
producers of those artifacts”. One of the main reasons, why all relevant functionalities are not
known ex ante but to be discovered over time, holds that the functionalities of a new technology are
generally defined by the user context of the older technologies that they initially substitute. New
functionalities are being discovered only gradually, and then further improved, leading to a
progressive differentiation between the old and the new technology.

A well-known example of exaptation is the phonograph (Dew et al. 2004). When Edison invented
the phonograph in 1877, his marketing plan was to sell it as a dictating machine, which failed. The
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successful function of the phonograph came from other entrepreneurs who exapted the
phonograph into jukeboxes. This successful function was unpredicted by Edison and, later on, he
refused to enter into this application area of his phonograph. Jukebox technology then started its
own trajectory, based on optimization of functions relevant to playing recorded music: transition
from cylinders to discs, improvement of the reproducibility of recorded music, longevity of discs and
the like. These improvements have eventually provided the foundations of the music industry.

A more recent example is SMS. From its beginning in the early 1990s, the GSM norm included the
technological basis of the SMS, but only as a means for the mobile service providers to send text
messages to the end users. The exaptation event was thus to adapt the existing technologies in
order to allow users to communicate directly via text messages. The user-to-user SMS function was
unpredicted by most of the industrial actors, who considered that texting with a telephone keypad
was cumbersome, but once SMS became popular, it subsequently guided new technological
improvements (e.g., predictive text-entry), new services (e.g., billing), and new user practices (e.g.,
the rise of SMS jargon).

Thus, often, a niche technology becomes a mass product only after exaptation events have
broadened the scope of applications and users. Querbes and Frenken (2012) use an NK-model (see
also chapter 1) to show that the first firm initially discovering the niche is likely to fail in transforming
the niche technology into a mass product. Exaptation provides a window of opportunity for new
entrants, when incumbents find it difficult to incorporate the new functionality within their existent
product design. This difficulty stems from the fact that their technology was previously optimized
without reference to the newly discovered functionality. By contrast, newcomers can start ‘from
scratch’ in optimizing their new design with reference to both the existing and the new
functionalities. Hence, exaptation may be one of the mechanisms underlying a change in industry
leadership; that is, exaptation can be an important source of late comer advantage.

As Querbes and Frenken (2012) argue, exaptation will not always create difficulties for
incumbents firms. The extent to which the competitive advantage of incumbent firms is threatened
by the discovery of new functionalities will depend on at least two factors. First, the lower the
willingness-to-pay for the new functionality, the less the competitive advantage of incumbent firms
is weakened in case they stick to their old designs. This follows directly from the additional surplus
that entrants can extract compared to incumbents. And, second, the more modular a technology is,
the easier incumbents can incorporate the new functionality by adapting their existing designs. That
is, for products with few interdependencies, particular components can be readily substituted as to
optimize the new functionality without too much negative repercussions for the functionalities that
were already optimized in the past.

9. Conclusion

We have presented a number of models and theoretical frameworks that we believe are meaningful
approaches to the complexity of technological and societal transitions. The main idea underlying this
presentation is to think of transitions as events showing a “big change” with respect to the “regular”
dynamics before and after the transition. Such big change may have different connotations, as phase
transitions or critical mass, for instance. Different mechanisms underlie different cases of transitions,
and call for different modeling frameworks. In some cases the transition is the result of a
coordination dynamics, as in critical mass phenomena. In other cases it stems from a structural
change in the system, as in phase transitions. But in all cases, the intimate nature of the process is
“complex”, because the transition dynamics shows characteristics that are unknown to the system
without transition. The diffusion regime of a percolation process is more than just a larger diffusion
size, in the same way as superconductivity is more than a higher electrical current.
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