
The Complexity of Width Minimization
for Existential Positive Queries

Simone Bova
Institut für Informationssysteme

Technische Universität Wien
Favoritenstraße 9-11
A-1040 Wien, Austria

simone.bova@tuwien.ac.at

Hubie Chen
Departamento LSI, Facultad de Informática

Universidad del País Vasco
E-20018 San Sebastián, Spain

hubie.chen@ehu.es
and

IKERBASQUE, Basque Foundation for Science
E-48011 Bilbao, Spain

ABSTRACT

Existential positive queries are logical sentences built from
conjunction, disjunction, and existential quantification, and
are also known as select-project-join-union queries in data-
base theory, where they are recognized as a basic and funda-
mental class of queries. It is known that the number of vari-
ables needed to express an existential positive query is the
crucial parameter determining the complexity of evaluating
it on a database, and is hence a natural measure from the
perspective of query optimization and rewriting. In this arti-
cle, we study the complexity of the natural decision problem
associated to this measure, which we call the expressibility
problem: Given an existential positive query and a number
k, can the query be expressed using k (or fewer) variables?
We precisely determine the complexity of the expressibil-
ity problem, showing that it is complete for the level Πp

2
of

the polynomial hierarchy. Moreover, we prove that the ex-
pressibility problem is undecidable in positive logic (that is,
existential positive logic plus universal quantification), thus
establishing existential positive logic as a maximal syntactic
fragment where expressibility is decidable.

Categories and Subject Descriptors

F.1.3 [Complexity Measures and Classes]: [Reducibil-
ity and completeness, Relations among complexity classes];
F.4.1 [Mathematical Logic]: [Logic and constraint pro-
gramming]; H.2.3 [Languages]: [Query languages]

Keywords

Existential positive queries, positive queries, finite-variable
logics, computational complexity, query optimization

1. INTRODUCTION

(c) 2014, Copyright is with the authors. Published in Proc. 17th Interna-
tional Conference on Database Theory (ICDT), March 24-28, 2014, Athens,
Greece: ISBN 978-3-89318066-1, on OpenProceedings.org. Distribution
of this paper is permitted under the terms of the Creative Commons license
CC-by-nc-nd 4.0.

The width of a first-order sentence φ is the maximum num-
ber of free variables in a subformula of φ, and is considered
as a fundamental measure of logical sentences in database
theory, descriptive complexity, and finite model theory [15,
12].
There has long been interest in reducing a given sentence

to a logically equivalent sentence of minimum width. A
primary motivation for this interest is that the natural algo-
rithm for model checking a relational first-order sentence on
a finite relational structure has an exponential dependence
on the width of the sentence, as observed by Vardi [18].
This model checking is a fundamental computational prob-
lem that translates, in the database theory parlance, to the
evaluation of a (Boolean) query over a relational database.
Indeed, equivalence preserving rewriting rules are rou-

tinely used in query optimization to transform a query into
an equivalent query easier to evaluate [17]. For instance,
the width-four query ∃x∃y∃z∃w(Exy ∧ Eyz ∧ Ezw) can be
transformed to the width-two equivalent query ∃x∃y(Exy ∧
∃z(Eyz ∧ ∃wEzw)); in this example, the transformation
is justified by syntactic replacements, namely, the logical
equivalence of ∃x(φ ∧ ψ) and φ ∧ ∃xψ under the condition
that x does not occur free in φ.
By renaming bound variables, a sentence of width at most

k can be rewritten as a logically equivalent sentence using at
most k distinct variable symbols. Consequently, the follow-
ing natural decision problem, which we call the expressibility
problem, captures the question of to what extent the width
of a sentence can be minimized:

Given a sentence φ in relational first-order logic
and a number k, is φ logically equivalent to a
sentence using k (or fewer) variable symbols?

Expressibility is undecidable in general, and computation-
ally intractable even under severe restrictions on the quanti-
fiers and connectives permitted in the sentences; the reader
is referred to the discussion part of this introduction for
more details. At the same time, as has been articulated in
the literature [13], the typical situation in the database set-
ting is the posing of a relatively short query to relatively
large database, or in logical parlance, the evaluation of a
short formula on a large relational structure. It has conse-
quently been argued that, in measuring the time complexity
of this task, one could reasonably allow a slow (that is, pos-
sibly non-polynomial-time) computable preprocessing of the

235 10.5441/002/icdt.2014.25

formula, so long as the desired evaluation can be performed
in polynomial time following this preprocessing. Relaxing
polynomial-time computation so that an arbitrary depen-
dence in a parameter is tolerated yields, in essence, the no-
tion of fixed-parameter tractability. This notion of tractabil-
ity is the base of parameterized complexity theory, which pro-
vides a taxonomy for reasoning about and classifying prob-
lems where each instance has an associated parameter [11].

A recent study on the complexity of model checking in ex-
istential positive logic [6] revealed that the number of vari-
ables needed to express a sentence is the crucial parameter
determining complexity. Specifically, it was shown that, on
a set of sentences having bounded arity (that is, there is
a constant upper bounding the arity of all relation sym-
bols appearing in the sentences), model checking is fixed-
parameter tractable if and only if there exists a constant k

such that each sentence in the set is logically equivalent to
a sentence using at most k variable symbols (the negative
part holds, as usual, under standard assumptions in param-
eterized complexity theory). From the perspective of this
result, the computational problem of determining exactly
how many variables are needed to express a sentence is very
well-motivated.

Results. Although undecidable in general, the expressibil-
ity problem is decidable in syntactic fragments of relational
first-order logic that are semantically equivalent to funda-
mental classes of database queries, notably unions of con-
junctive queries (or select-project-join-union queries), corre-
sponding to existential positive logic (the syntactic fragment
obtained by restricting the logical signature to existential
quantification, ∃, conjunction, ∧, and disjunction, ∨). The
existential positive fragment has received much attention in
database theory in general [1], and in query optimization in
particular since the classical work of Sagiv and Yannakakis
[16], where the authors showed that the problem of deciding
whether two existential positive formulas are logically equi-
valent (whether two queries have the same evaluation in all
databases) is complete for the the level Πp

2
of the polynomial

hierarchy.
A pertinent case to introduce our work is that of con-

junctive queries, corresponding to existential positive logic
without disjunction; this fragment is also known as primi-
tive positive logic. The equivalence problem for conjunctive
queries has been proved NP-complete in the seminal arti-
cle by Chandra and Merlin [4], whereas the complexity of
the expressibility problem for conjunctive queries has been
proved NP-complete more recently [8], for all k ≥ 2 and all
signatures containing at least one binary relation symbol.
In this paper, we study the computational complexity of

the expressibility problem for existential positive queries,
proving the following two results:

• The expressibility problem for existential positive
queries is Πp

2
-complete, for all k ≥ 6 and all signatures

containing at least one binary relation symbol (Theo-
rem 6).

• The expressibility problem for positive queries (that
is, existential positive queries plus universal quantifi-
cation) is undecidable, for all k ≥ 3 and all signatures
containing countably many unary relation symbols and
three binary relation symbols (Theorem 19).

The first result characterizes exactly the computational com-

plexity of the expressibility problem for existential positive
queries, and complements the previous results by Sagiv and
Yannakakis by providing an existential positive analogue of
the result on expressibility for conjunctive queries. The sec-
ond result shows that existential positive logic is a maxi-
mal syntactic fragment of relational first-order logic where
the expressibility problem is decidable (note that existen-
tial positive logic plus negation is all first-order logic), in
this sense showing the optimality of the previous complex-
ity result. (This second result also tightens the folklore fact
that the expressibility problem is undecidable in relational
first-order logic).

Discussion. A standard method to define syntactic frag-
ments of relational equality-free first-order logic is by re-
stricting the logical symbols in {∀, ∃,∧,∨,¬} allowed, sub-
ject to having at least one quantifier and at least one binary
connective; for the sake of conciseness, we freely identify a
fragment with the defining subset of logical symbols.
It is readily verified that if the sentences in one such frag-

ment are logically equivalent to the negations of the sen-
tences in another such fragment (for instance, the sentences
in the fragment {∀,∨} are logically equivalent to the nega-
tions of the sentences in {∃,∧}), then the expressibility prob-
lem has the same complexity on both fragments.
Thus the classification of the expressibility problem, over

the different syntactic fragments of relational equality-free
first-order logic, indeed reduces to the classification of the
following fragments: {∀, ∃,∧,∨,¬}, {∀, ∃,∧,∨}, {∃,∧,∨},
{∀, ∃,∧}, {∃,∧}, {∃,∨}.
Note that a sentence in the fragment {∃,∨} is expressible

using at most k variables if and only if no atom contains
more than k free variables. In view of this observation and
the results in this work and in the literature, the following is
known about the classification of the expressibility problem
over syntactic fragments:

• {∀, ∃,∧,∨} and {∀, ∃,∧,∨,¬} are undecidable by The-
orem 19;

• {∃,∧,∨} is Πp

2
-complete by Theorem 6;

• {∃,∧} is NP-complete by [8, Theorem 6];

• {∃,∨} is polynomial-time tractable.

Thus understanding the computability (and complexity) sta-
tus of the expressibility problem in the fragment defined
by {∀, ∃,∧}, also known as (quantified) conjunctive positive
logic, would complete the classification, which we suggest as
a problem for future research. We insist that this problem
is, in principle, highly nonobvious, by noting that the en-
tailment and equivalence problems for conjunctive positive
logic have been proved decidable only relatively recently;
their exact complexity is still quite open [7].

Organization. The paper is organized as follows. In Sec-
tion 2, we introduce the basic definitions and the fundamen-
tal theory of primitive positive logic needed in the rest of
the paper. In Section 3, we develop the theory of existential
positive logic needed to settle the complexity upper bound
for the expressibility problem. In Section 4, we prove the
complexity lower bound for the expressibility problem in ex-
istential positive logic. In Section 5, we prove undecidability
of the expressibility problem in positive logic.

236

2. PRELIMINARIES

For an integer k ≥ 0, we use k to denote the set {1, . . . , k},
with the convention that 0 = ∅.

In this paper, we focus on relational first-order logic. A
signature σ is a set of relation symbols, each of which has an
associated natural number called its arity.

2.1 Structures

A structure A (over signature σ) is given by a nonempty
set A called the universe of the structure and denoted by
the corresponding non-bold letter, and a relation RA ⊆ Ar

for each arity r relation symbol R ∈ σ. A structure is finite
if its universe is finite.

A collection of structures is said to be similar if they share
the same signature. Let A,B be similar structures on the
signature σ. The union of A and B is the structure A ∪B

with universe A ∪ B and with RA∪B = RA ∪ RB for each
arity r relation symbol R ∈ σ. A homomorphism from A to
B is a mapping h : A→ B such that for each symbol R ∈ σ,
it holds that h(RA) ⊆ RB, by which is meant that for each
tuple (a1, . . . , ak) ∈ RA, one has (h(a1), . . . , h(ak)) ∈ RB.
We will sometimes simply write A → B to indicate that
there exists a homomorphism from A to B. We say that
A and B are homomorphically equivalent if A → B and
B → A both hold.
The structureB is a substructure of the structureA if B ⊆

A and RB ⊆ RA for all relation symbols R; if RB = RA∩Br

for each arity r relation symbol R ∈ σ, the structure B is
called the substructure of A generated by B, also denoted
by A|B . When B is a substructure of A, there exists a
homomorphism h from A to B, and h fixes each element
b ∈ B, the mapping h is said to be a retraction from A to
B; when there exists a retraction from A to B, it is said that
A retracts to B. A core of the structure A is a structure
C such that A retracts to C, but A does not retract to any
proper substructure of C. We will make use of the following
well-known facts on cores [14]: (1) each finite structure has a
core; (2) all cores of a finite structure are isomorphic. From
these facts, it is reasonable to speak of the core of a finite
structure, which we do, and we use core(A) to denote a
representative from the set of all cores of a finite structure
A.
We define the Gaifman graph of a structure B to be the

undirected graph G(B) with vertex set B and having an
edge {b, b′} if and only if b and b′ co-occur in a tuple of B.
A tree decomposition of an undirected graph G with vertex

set B is a pair (T, β) consisting of a tree T and a map β :
V T → ℘(B) defined on the vertex set V T of T such that, for
each vertex t ∈ V T , it holds that β(t) is a non-empty subset
of B, called the bag of t, and the following conditions hold:

• For each b ∈ B, the vertices {t | b ∈ β(t)} form a
connected subtree of T .

• For each edge {b, b′} of G, there exists a vertex t ∈ V T

such that {b, b′} ⊆ β(t).

The width of a tree decomposition (T, β) is defined as

(max
t∈V T

|β(t)|)− 1.

The treewidth of an undirected graph G, denoted by tw(G),
is the minimum width over all tree decompositions of G; the
treewidth of a structure B, denoted by tw(B), is defined as
tw(G(B)).

2.2 Formulas

An atom (over signature σ) is an equality of variables (x =
y) or is a predicate application R(x1, . . . , xr), which we also
write Rx1 . . . xr, where x1, . . . , xr are variables, and R ∈ σ

is an arity r relation symbol. A formula (over signature σ) is
built from atoms (over σ), conjunction (∧), disjunction (∨),
universal quantification (∀), and existential quantification
(∃). A sentence is a formula having no free variables. In
the sequel, we let FO denote the set of relational first-order
formulas. For each set L of first-order formulas and each
integer k ≥ 1, we let Lk denote the subset of L containing
formulas that use at most k variables, and Lσ denote the
subset of L containing formulas over signature σ.
An positive formula (over signature σ) is a formula built

from atoms (over σ) using conjunction, disjunction, uni-
versal quantification, and existential quantification; we let
PFO denote the set of positive formulas. An existential

positive formula (over signature σ) is a formula built from
atoms (over σ) using conjunction, disjunction, and existen-
tial quantification; we let EP denote the set of existential
positive formulas. A primitive positive formula (over signa-
ture σ) is a formula built from atoms (over σ) using conjunc-
tion and existential quantification; we let PP denote the set
of primitive positive formulas.
We use the following standard terminology and notation

from logic. For a structure A and a sentence φ over the
same signature, we write A |= φ if the sentence φ is true

in the structure A. When A is a structure, f is a mapping
from variables to the universe of A, and ψ is a formula over
the signature of A, we write A, f |= ψ to indicate that ψ
is satisfied by A and f . Let φ and ψ be sentences over the
same signature σ. Then, φ entails ψ (denoted φ |= ψ) if, for
all structures A over σ, it holds that A |= φ implies A |= ψ;
also, φ and ψ are logically equivalent (denoted φ ≡ ψ) if
φ |= ψ and ψ |= φ.
We use the following terminology and notation. Let σ be

a signature, let φ be a primitive positive formula over σ, and
let A be a finite structure over σ. By the existential closure

of a formula, we mean the sentence obtained by existentially
quantifying the free variables of the formula.

• C[φ] denotes the canonical structure induced by the
existential closure of φ, as follows. Let φc be the exis-
tential closure of the prenex form of φ. Let elim=(φ

c)
be obtained by eliminating equalities from φc using the
following syntactic transformations: for each equality
x = y on distinct variables, replace all instances of
y with x in the quantifier free part, and remove the
quantifier ∃y from the prefix; remove equalities of the
form x = x.

Define C[φ] to be the structure having a universe el-
ement for each existentially quantified variable in the
formula elim=(φ

c), and where, for each R ∈ σ, the re-

lation RC[φ] contains (x1, . . . , xk) if and only if it holds
that R(x1, . . . , xk) appears in the quantifier free part
of elim=(φ

c).

• Q[A] denotes the canonical query of A, defined as fol-
lows. If A = {a1, . . . , an}, then Q[A] is equal to

∃a1 . . . ∃an
∧

R∈σ

∧

(ai1
,...,air

)∈RA

R(ai1 , . . . , air),

where r is the arity of R ∈ σ.

237

We will use the following known fact.

Proposition 1. (Chandra-Merlin [4]) Let φ be a sen-
tence and let A be a finite structure, such that φ = Q[A] or
A = C[φ]. Then, for any structure B, it holds that A → B

if and only if B |= φ.

It is straightforward to verify that the existential closure of
any primitive positive formula φ is logically equivalent to
Q[C[φ]], and that every finite structure A is homomorphi-
cally equivalent to C[Q[A]].

3. EXISTENTIAL POSITIVE LOGIC

In this section, we define the problem under study, and
then establish some basic facts on existential positive logic.

Definition 2. Let L ∈ {PFO,EP}. The computational
problem L-Expr is defined as follows:

Given a sentence φ ∈ L and an integer k ≥ 1,
decide whether φ is logically equivalent to a sen-
tence in Lk.

Moreover, for every signature σ and every integer m ≥ 1,
Lm
σ -Expr is the restriction of L-Expr to instances where
φ ∈ Lσ and k = m.

Note that throughout this paper, the only notion of reduc-
tion that we use is many-one polynomial-time reduction.

Definition 3. A sentence φ in EP is in disjunctive form
if φ =

∨
i∈n

φi, where, for all i ∈ n, φi is a sentence in PP;
such a disjunctive form is irredundant if there do not exist
distinct i, j ∈ n such that φi |= φj .

We will make use of the following syntactic transforma-
tions, which preserve logical equivalence:

∃x(θ ∨ θ′) ≡ ∃xθ ∨ ∃xθ′; (E1)

θ ∧ (θ′ ∨ θ′′) ≡ (θ ∧ θ′) ∨ (θ ∧ θ′′); (E2)

∃xθ ≡ θ, if x not free in θ; (E3)

θ ∨ θ′ ≡ θ
′, if θ |= θ

′. (E4)

Given an arbitrary existential positive sentence, an equiva-
lent existential positive sentence in disjunctive form is com-
putable by iterated syntactic replacements exploiting the
facts (E1) and (E2) above; also, given an existential positive
sentence in disjunctive form, an equivalent existential posi-
tive sentence in irredundant disjunctive form is computable
by iterated syntactic replacements exploiting the fact (E4)
above.

The proof that our computational problem is contained in
the complexity class Πp

2 relies on the following lemma.

Lemma 4. Let φ and ψ be sentences in EP. Let
∨

i∈m
φi

and
∨

j∈n
ψj be disjunctive forms in EP logically equivalent

to φ and ψ, respectively. The following hold.

1. φ |= ψ if and only if, for all i ∈ m, there exists j ∈ n

such that φi |= ψj .

2. If the above disjunctive forms are irredundant and φ ≡
ψ, then m = n and there exists a bijection π : m → m

such that for all i ∈ m it holds that φi ≡ ψπ(i).

3. Let k ≥ 1 be an integer. Then, φ is logically equivalent
to a sentence in EPk if and only if, for all i ∈ m, there
exists i′ ∈ m such that φi |= φi′ and φi′ is logically
equivalent to a sentence in PPk.

Proof. For (1), the backwards direction is clear. For the
forwards direction, let i ∈ m. We have C[φi] |= φ, from
which it follows that C[φi] |= ψ. We must then have that
there exists j ∈ n such that C[φi] |= ψj , from which the
result follows from Proposition 1.
For (2), let i ∈ m. By (1), there exists j ∈ n such that

φi |= ψj . We claim that φi ≡ ψj . This is because there exists
i′ ∈ m such that ψj |= φi′ ; if i 6= i′, then this implies that the
disjunctive form for φ is not irredundant, a contradiction.
Since the disjunctive form for ψ is irredundant, there is a
unique j ∈ n satisfying the condition φi ≡ ψj , and we thus
obtain an injection π : m → n, as well as that m ≤ n. By
symmetric reasoning, we obtain that n ≤ m and so m = n

and the injection π is a bijection.
For (3), first let φ ∈ EP. If φ is logically equivalent to a

sentence in EPk, say φ′, then the disjunctive form of φ′ ob-
tained using the above transformations (E1), (E2) and (E3)
is such that each disjunct is a primitive positive sentence in
PPk. This implies that there is an irredundant disjunctive
form

∨
j∈n

ψj logically equivalent to φ where each disjunct

is in PPk. By (1), for any i ∈ m, there exists j ∈ n such
that φi |= ψj . Since there is a sub-disjunction of

∨
i∈m

φi

that is irredundant, by (2) there exists i′ ∈ m such that φi′

and ψj are logically equivalent. We then have φi |= φi′ , as
desired.
Now suppose that ρ : m → m is a mapping such that

for each i ∈ m, it holds that φi |= φρ(i) and each φρ(i)

is logically equivalent to a sentence in PPk. Clearly, φ is
logically equivalent to

∨
i∈m

φρ(i).

The condition in Lemma 4(3) allows to establish contain-
ment in Πp

2 for the problem under consideration.

Proposition 5. The problem EP-Expr is in the com-
plexity class Πp

2.

4. COMPLEXITY RESULT

We state our main complexity result.

Theorem 6. Let σ be a signature that contains a relation
symbol of at least binary arity. For each k ≥ 6, the problem
EPk

σ-Expr is Πp
2-complete.

Proof. Proposition 5 proves containment in Πp
2. For Π

p
2-

hardness, the case where σ contains a binary relation symbol
is proved in Theorem 16; the higher-arity case is easily ver-
ified.

Note that if σ is a signature that contains only unary re-
lation symbols, then each sentence in EPσ is logically equiv-
alent to a sentence in EP1

σ, so the problem EPk
σ-Expr is

trivial for all k ≥ 1. Hence the statement of Theorem 6 also
establishes a complete complexity classification of the ex-
pressibility problem with respect to all relational signatures,
in the spirit of the purely syntactic classification theory in
the book by Börger, Grädel, and Gurevich [2].
We devote the rest of this section to the proof of the com-

plexity lower bound.

238

4.1 Source Problem
When B is a structure, define Πk-QCSP(B) to be the

problem of deciding, given a Πk prenex sentence Φ whose
quantifier-free part is a conjunction of atoms without equal-
ity, whether or not B |= Φ; define Σk-QCSP(B) similarly,
with respect to Σk sentences. For q ≥ 2, we define the
structure Kq, the clique on q vertices, to be the structure
with universe q and that interprets the binary relation sym-

bol E by EKq = {(i, j) ∈ q2 | i 6= j}. Our Πp
2 hardness

results will be proved by showing reductions from the prob-
lems Π2-QCSP(Kq), where q ≥ 3.

Proposition 7. (follows from [3]) Let q ≥ 3. For each
even k ≥ 2, the problem Πk-QCSP(Kq) is Πp

k-complete;
and, for each odd k ≥ 3, the problem Σk-QCSP(Kq) is Σp

k-
complete.

Proof. Let B be the structure with universe {0, 1} and
with a single relation, RB = {0, 1}3\{(0, 0, 0), (1, 1, 1)}. Un-
der the bounds on k given in the proposition statement, one
has that Πk-QCSP(B) and Σk-QCSP(B) are Πp

k-complete
and Σp

k-complete, respectively; this follows from [5, Theorem
7.2]. We use the construction of [3, Proposition 5.1] to give
a reduction from those problems to the present problems.
The only modification needed is the following. Each univer-
sally quantified variable in an instance of Πk-QCSP(B) or
Σk-QCSP(B) is translated to a universally quantified vari-
able followed by two existentially quantified variables. Such
existentially quantified variables can be shifted right without
changing the truth-value of the sentence. By the assumed
bounds on k, each block of universally quantified variables
has a block of existentially quantified variables to its right,
so we indeed obtain a reduction that preserves the quantifier
prefix (in the sense of being Πk or Σk).

Remark 8. An inspection of the proof of Proposition 7
yields that the hardness results hold on instances Φ where
the quantifier-free part ΦG has the property that EC[ΦG] is
symmetric and irreflexive. In the sequel, we will assume that
ΦG has this property. Indeed, one can always replace EC[ΦG]

with its symmetric closure, without affecting the truth-value
of Φ on a structure Kq; and note that any instance where
this relation is not irreflexive is false on a structure Kq.

4.2 Auxiliary Structures
We call a structure a labelled digraph if it is over a signa-

ture that consists of a binary relation symbol E and zero or
more unary relation symbols; we call a structure a digraph
if it is over a signature consisting of just a binary relation
symbol E. A digraph or labelled digraph is symmetric if it
interprets E as a symmetric relation. In previous work [6],
a way to encode a given labelled digraph B as a digraph
B

∗ was given, and is as follows. Let L1, . . . , Ln denote the
unary symbols of the signature of B. For each b ∈ B, define
a gadget digraph Gb which has universe

Gb = {bs, bc, bd, bs1, bt1, bs2, bt2, . . . , bsn, btn, bt}

∪ {bui | b ∈ L
B

i } ∪ {bvi | b ∈ L
B

i }

and edge relation

E
Gb = {(bc, bs), (bc, bd), (bs, bd), (bd, bs1)}

∪ {(bsi, bti) | i ∈ {1, . . . , n}}

∪ {(bti, bs(i+1)) | i ∈ {1, . . . , n− 1}}

∪ {(btn, bt)}

∪ {(bui, bsi), (bvi, bti), (bvi, bui) | b ∈ L
B

i }.

For a subset C ⊆ B, we define C∗ =
⋃

b∈C
Gb; the digraph

B
∗ has universe B∗ and edge relation

E
B

∗

= (
⋃

b∈B

E
Gb) ∪ {(bt, b′s) | (b, b′) ∈ E

B}.

The key feature of this construction is that it preserves ho-
momorphisms.

Lemma 9. (follows from [6, Lemma 17]) Let A,B be la-
belled digraphs over the same signature. There exists a ho-
momorphism A → B if and only if there exists a homomor-
phism h : A∗ → B

∗; moreover, when the latter condition
holds, the image of h is of the form C∗ where C ⊆ B.

Tools for understanding the treewidth of structures of the
form B

∗ are provided in the following lemmas, which relate
the treewidth of such a structure to the treewidth of the
structure B

+, defined as follows. When B is a labelled di-
graph, the structure B

+ has universe B+ = {bs, bt | b ∈ B}
and edge relation

E
B

+

= {(bs, bt) | b ∈ B} ∪ {(bt, b′s) | (b, b′) ∈ E
B}.

Lemma 10. ([6, Lemma 19]) Let B be a labelled digraph.
It holds that tw(B∗) ≤ max(tw(B+), 5).

Lemma 11. Let B be a labelled digraph. It holds that
tw(B+) ≤ tw(B∗).

Proof. Given a tree decomposition (T, β) of G(B∗), a
tree decomposition (T, β′) of G(B+) having lower or equal
width can be obtained by defining β′(t) = f(β(t)), where,
for each b ∈ B, the mapping f sends Gb \ {bt} to bs, and
sends bt to bt. Clearly, it holds for each vertex t of T that
|β′(t)| ≤ |β(t)|. It is straightforward to verify that (T, β′) is
a tree decomposition of G(B+); note that the connectivity
condition is satisfied becauseGb\{b

t} is connected inG(B∗),
for each b ∈ B.

Lemma 12. Let B be a symmetric labelled digraph. It
holds that tw(B) < tw(B+).

Consider an undirected graph on vertex set V . We say
that two subsets C,C′ of V touch if they have a vertex
in common or there is an edge between them. A set of
mutually touching connected vertex sets is a bramble. We
say that a subset S of V covers a bramble M if it non-
trivially intersects each set in M. The order of a bramble
M is the least number of vertices that covers it. We will use
the treewidth duality theorem [9], which says that, for k ≥ 0,
a graph has tree-width ≥ k if and only if it has a bramble
of order > k.

Proof. We prove that for each bramble M of G(B),
there exists a brambleM+ of G(B+) of strictly higher order,
which suffices by the tree-width duality theorem.

239

When C is a subset of B, we use Cs to denote the set
{cs | c ∈ C}, and Ct to denote the set {ct | c ∈ C}. Let M =
{C1, . . . , Cn} be a bramble ofG(B). DefineM+ to be the set
system {Cs

1 , C
t
1}∪

⋃
i≥2,i∈n

{Cs
i ∪ (Ci \C1)

t, (Ci \C1)
s∪Ct

i}.

We claim that M+ is a bramble of G(B+). We demonstrate
this by verifying that each pair of distinct sets in M+ touch.
The following cases are exhaustive, up to symmetry; here, i
denotes an element of n with i ≥ 2.

• Cs
1 , C

t
1. These touch since for any c1 ∈ C1, we have

(cs1, c
t
1) ∈ EB

+

, and so {cs1, c
t
1} is an edge in G(B+).

• Cs
i ∪ (Ci \C1)

t, (Ci \C1)
s ∪Ct

i . These touch since for

any ci ∈ Ci, we have (csi , c
t
i) ∈ EB

+

, and so {csi , c
t
i} is

an edge in G(B+).

• Cs
1 , C

s
i ∪ (Ci \C1)

t. If C1 ∩Ci is non-empty, then so is
Cs

1 ∩Cs
i . Otherwise, there is an edge in G(B) between

a vertex c1 ∈ C1 and a vertex ci ∈ Ci \ C1, and so

(ct1, c
s
i) ∈ EB

+

, implying that the two given sets touch
in G(B+).

• Cs
1 , (Ci \ C1)

s ∪ Ct
i . If C1 ∩ Ci is non-empty, then let

c ∈ C1∩Ci; we have c
s ∈ Cs

1 , c
t ∈ Ct

i , and as (cs, ct) ∈

EB
+

, the edge {cs, ct} is present in G(B+). Otherwise,
there exist vertices c1 ∈ C1 and ci ∈ Ci \ C1 that are

adjacent in G(B), and so (cti, c
s
1) ∈ EB

+

, implying that
{cs1, c

t
i} is an edge in G(B+).

It remains to show that the order of M+ is strictly higher
than that of M. To show this, we prove that for any cover
S+ of M+, there exists a cover S of M with |S| < |S+|. Let
S+ be a cover of M+, and define S to be the subset of B
obtained from removing the s, t superscripts from S+ \ Ct

1.
Since Ct

1 ∈ M+, the cover S+ must contain an element of
Ct

1, from which it follows that |S| < |S+|. We now verify
that S covers M. We have that S covers C1, since S

+ covers
Cs

1 . When i ≥ 2, we have that S covers Ci, since S+ covers
Cs

i ∪ (Ci \C1)
t, which implies that S covers Ci∪ (Ci \C1) =

Ci.

4.3 Reduction

Let

∀y1 . . . ∀ym∃x1 . . . ∃xnφG

be an instance of Π2-QCSP(Kq). Relative to this instance,
we define the following objects.

• Let τ be the signature

{E} ∪ {Uy1 , . . . , Uym} ∪ {U1, . . . , Uq}

where the Uyi and the Uj are unary relation symbols.

• We define the following formulas of signature τ .

φK = (
∧

i∈q

Ui(i)) ∧ (
∧

i,j∈q,i 6=j

E(i, j))

For each i ∈ m, j ∈ q,

λyi→j = Uyi(j)

φyi→j = λyi→j ∧
∧

k∈q,k 6=j

(E(yi, k) ∧ E(k, yi))

For each f : {y1, . . . , ym} → q,

λf =
∧

i∈m

λyi→f(yi)

φf =
∧

i∈m

φyi→f(yi)

Observe that, for each mapping f : {y1, . . . , ym} → q,

φf = λf ∧
∧

i∈m,k∈q,f(yi) 6=k

(E(yi, k) ∧ E(k, yi)), (†)

up to a permutation of the conjuncts. In the sequel, we
formally view φG as a formula of signature τ , so that, for
instance, φG ∧ φK ∧ φf is a formula of signature τ , and
C[φG ∧ φK ∧ φf] is a structure of signature τ .

Lemma 13. Let ∀y1 . . . ∀ym∃x1 . . . ∃xnφG be an instance

of Π2-QCSP(Kq). If a mapping f : {y1, . . . , ym} → q has

an extension f ′ : {y1, . . . , ym, x1, . . . , xn} → q such that

Kq, f
′ |= φG, then the following hold.

1. C[φG ∧ φK ∧ φf]
∗ maps homomorphically to C[φK ∧

λf]
∗.

2. If q ≥ 5, then tw(C[φK ∧ λf]
∗) ≤ q.

Proof. For the first part, it is sufficient to prove that
C[φG ∧φK ∧φf] maps homomorphically to C[φK ∧ λf]; the
statement then follows by Lemma 9. Note that the universes
of the structures are C[φK ∧λf] = q and C[φG ∧φK ∧φf] =
{y1, . . . , ym, x1, . . . , xn} ∪ q.

Let f ′ : {y1, . . . , ym, x1, . . . , xn} → q be an extension of

f : {y1, . . . , ym} → q such that Kq, f
′ |= φG. Let

h : {y1, . . . , ym, x1, . . . , xn} ∪ q → q

be the extension of f ′ defined by h(j) = j for all j ∈ q. We
claim that h is a homomorphism from C[φG ∧ φK ∧ φf] to
C[φK ∧λf]. By hypothesis, h maps homomorphically C[φG]
into C[φK]. Clearly, h maps homomorphically C[φK ∧ λf]
into C[φK ∧ λf]. By (†), it suffices to show that h is a ho-
momorphism from C[

∧
i∈m,k∈q,f(yi) 6=k

(E(yi, k) ∧ E(k, yi))]

to C[φK]. Suppose that the tuples (yi, k), (k, yi) occur in
the first structure. Then, by definition, f(yi) 6= k. There-

fore (h(yi), h(k)) = (f(yi), k) ∈ EC[φK], and (h(k), h(yi)) =

(k, f(yi)) ∈ EC[φK].
For the second part, assume q ≥ 5. Then, by Lemma 10, it

is sufficient to prove that tw(C[φK∧λf]
+) ≤ q. We establish

tw(C[φK ∧ λf]
+) ≤ q by providing a tree decomposition

of width q of C[φK ∧ λf]
+. It is straightforward to check

that a path of q vertices v1, . . . , vq, where the bag on vj is
{ks | k ∈ q} ∪ {jt} for all j ∈ q, gives the required tree
decomposition.

Lemma 14. There exists an algorithm running in polyno-

mial time that, given an instance

φ = ∀y1 . . . ∀ym∃x1 . . . ∃xnφG

of Π2-QCSP(Kq), computes two sentences φ′, φ′′ ∈ EP{E},

where E is a binary relation symbol, such that φ′ is logically

equivalent to the disjunctive form
∨

f :{y1,...,ym}→q

Q[C[φK ∧ λf]
∗], (F1)

240

φ′′ is logically equivalent to the disjunctive form
∨

f :{y1,...,ym}→q

Q[C[φG ∧ φK ∧ φf]
∗], (F2)

and the following hold:

1. The disjunctive forms (F1) and (F2) are irredundant.

2. For all f : {y1, . . . , ym} → q, C[φK ∧ λf]
∗ maps ho-

momorphically to C[φG∧φK ∧φf]
∗; and consequently,

φ′′ |= φ′.

3. If Kq |= φ, then φ′ and φ′′ are logically equivalent.

Proof. Let φ = ∀y1 . . . ∀ym∃x1 . . . ∃xnφG be an instance
of Π2-QCSP(Kq). The algorithm, given φ, constructs in
polynomial-time the existential positive sentences

φ
′ = Q[C[φK]∗] ∧

∧

i∈m

∨

j∈q

Q[C[λyi→j]
∗];

φ
′′ = Q[C[φG]

∗] ∧Q[C[φK]∗]

∧
∧

i∈m

∨

j∈q

Q[C[φyi→j]
∗].

We claim that:

φ
′ ≡

∨

f :{y1,...,ym}→q

Q[C[φK ∧ λf]
∗]]; (G1)

φ
′′ ≡

∨

f :{y1,...,ym}→q

Q[C[φG ∧ φK ∧ φf]
∗]. (G2)

It is sufficient to observe the following logical equivalences.
For (G1),

φ
′ = Q[C[φK]∗] ∧

∧

i∈m

∨

j∈q

Q[C[λyi→j]
∗]

≡ Q[C[φK]∗] ∧
∨

f :{y1,...,ym}→q

Q[C[λf]
∗]

≡
∨

f :{y1,...,ym}→q

(Q[C[φK]∗] ∧Q[C[λf]
∗])

≡
∨

f :{y1,...,ym}→q

Q[(C[φK] ∪C[λf])
∗]

≡
∨

f :{y1,...,ym}→q

Q[C[φK ∧ λf]
∗].

For (G2), we similarly have

φ
′′ = Q[C[φG]

∗] ∧Q[C[φK]∗]

∧
∧

i∈m

∨

j∈q

Q[C[φyi→j]
∗]

≡ Q[C[φG]
∗] ∧Q[C[φK]∗]

∧
∨

f :{y1,...,ym}→q

Q[C[φf]
∗]

≡
∨

f :{y1,...,ym}→q

(Q[C[φG]
∗] ∧Q[C[φK]∗]

∧Q[C[φf]
∗])

≡
∨

f :{y1,...,ym}→q

Q[(C[φG] ∪C[φK] ∪C[φf])
∗]

≡
∨

f :{y1,...,ym}→q

Q[C[φG ∧ φK ∧ φf]
∗].

To prove the stated properties, we observe preliminarily
that φf contains all conjuncts of λf by (†), thus C[φK ∧λf]
is a substructure of C[φG ∧ φK ∧ φf].
We prove the first property. By Proposition 1, it is suf-

ficient to check that if f and g are distinct mappings from
{y1, . . . , ym} to q, then C[φK ∧ λf] does not map homo-
morphically to C[φK ∧ λg]. By Lemma 9, this implies that
C[φK ∧λf]

∗ does not map homomorphically to C[φK ∧λg]
∗,

which settles irredundancy of (F1); in turn it follows, by the
substructure observation, that C[φG ∧ φK ∧ φf]

∗ does not
map homomorphically to C[φG ∧ φK ∧ φg]

∗, which settles
irredundancy of (F2). Assume for a contradiction that h

maps C[φK ∧ λf] homomorphically to C[φK ∧ λg]. By def-

inition of φK , it holds that U
C[φK]
i = {i} for all i ∈ q,

therefore h acts identically on q. Let j ∈ m be such that

f(yj) = k 6= k′ = g(yj). By definition of λf and λg, it holds

that U
C[φf]
yj = {k} and U

C[φg]
yj = {k′}. Therefore, h(k) = k′,

a contradiction.
We prove the second property. It suffices to prove the

first part; that φ′′ |= φ′ is then a consequence by appeal to
Proposition 1. Let f be any mapping from {y1, . . . , ym} to
q. By the observation that C[φK ∧ λf] is a substructure of
C[φG ∧ φK ∧ φf], we have that C[φK ∧ λf] maps homomor-
phically to C[φG ∧ φK ∧ φf]; the statement then follows by
Lemma 9.
We prove the third property. Assume Kq |= φ. Let f

be any mapping of {y1, . . . , ym} to q. Then, there exists an
extension

f
′ : {y1, . . . , ym, x1, . . . , xn} → q

of f such that Kq, f
′ |= φG. Then, by Lemma 13(1), C[φG∧

φK ∧φf]
∗ maps homomorphically to C[φK ∧λf]

∗, which im-
plies that Q[C[φK∧λf]

∗] |= Q[C[φG∧φK∧φf]
∗]. Therefore,

by Lemma 4(1), φ′ |= φ′′. Then, by the second property
proved above, φ′ ≡ φ′′.

Lemma 15. Let ∀y1 . . . ∀ym∃x1 . . . ∃xnφG be an instance
of Π2-QCSP(Kq). Let f : {y1, . . . , ym} → q be a mapping,
and suppose that tw(core(C[φG ∧ φK ∧ φf]

∗)) ≤ q. Then, f
has an extension f ′ : {y1, . . . , ym, x1, . . . , xn} → q such that

Kq, f
′ |= φG.

In the proof, we will use the following notation: when B

is a structure on signature σ, and σ′ ⊆ σ, use redσ′(B) to
denote the reduct of B on σ′, that is, the structure on σ′

naturally obtained from B by forgetting the interpretations
of the symbols not in σ′.

Proof. Set A = C[φG ∧ φK ∧ φf]. Since each core
of A

∗ is the image of an endomorphism of A
∗, then by

Lemma 9, each core of A∗ has universe of the form S∗ where
S ⊆ A. Let S ⊆ A be a subset with this property, and let
S be the substructure of A induced on S. By assumption,
tw(S∗) ≤ q. By Lemma 11, tw(S+) ≤ q. By Lemma 12,
tw(S) < q. It follows that redE(S) has a homomorphism
to Kq because, by Remark 8 and construction, redE(S) is
irreflexive. Since A has a homomorphism to S, we have that
redE(A) has a homomorphism to redE(S), and by transitiv-
ity of the homomorphism relation, we have that redE(A) has
a homomorphism h to Kq. Observe that redE(A) = C[φG∧
(
∧

i,j∈q,i 6=j
E(i, j)) ∧

∧
i∈m,k∈q,f(yi) 6=k

(E(yi, k) ∧ E(k, yi))].

By relabelling the elements of Kq if necessary, it can be
assumed that h is the identity map on q. Therefore, since

241

Kq, h |=
∧

i∈m,k∈q,f(yi) 6=k(E(yi, k) ∧ E(k, yi)), we have that

h is an extension of f . Indeed, for all i ∈ m and k ∈ q such

that f(yi) 6= k, we have (h(yi), h(k)) = (h(yi), k) ∈ EKq ,
which implies h(yi) 6= k.

Since Kq, h |= φG, we obtain the result.

4.4 Hardness Result

Theorem 16. Let σ be a signature that contains a rela-

tion symbol E of binary arity. For each k ≥ 6, the problem

EPk
σ-Expr is Πp

2-hard.

Proof. Assume q ≥ 5. We show that there is a reduction
from Π2-QCSP(Kq) to EPq+1

σ -Expr, where σ = {E} and E
is a binary relation symbol; this suffices by Proposition 7.

Let φ = ∀y1 . . . ∀ym∃x1 . . . ∃xnφG be an instance of the
problem Π2-QCSP(Kq). The reduction uses the algorithm
in Lemma 14 to compute in polynomial-time the sentence
φ′′ ∈ EPσ defined there. We prove that Kq |= φ if and only
if φ′′ is logically equivalent to a sentence in EPq+1

σ .
Assume that Kq |= φ. By Lemma 14(3), we have that φ′′

is logically equivalent to φ′. Now look at the formula shown
to be logically equivalent to φ′ in that lemma (Lemma 14).
For each f : {y1, . . . , ym} → q, by Lemma 13(2) and the
assumption that q ≥ 5, we have tw(C[φK ∧ λf]

∗) ≤ q,
and therefore by [8, Theorem 5], Q[C[φK ∧ λf]

∗] is logi-
cally equivalent to a primitive positive sentence in PPq+1.
Therefore, φ′′ is logically equivalent to a sentence in EPq+1

σ .
Assume that Kq 6|= φ. Suppose that

f : {y1, . . . , ym} → q

is a mapping such that for all mappings

f
′ : {y1, . . . , ym, x1, . . . , xn} → q

extending f it holds that Kq, f
′ 6|= φG. Then, by Lemma 15,

tw(core(C[φG ∧ φK ∧ φf]
∗)) > q. Therefore, by [8, Theo-

rem 5], Q[C[φG ∧ φK ∧ φf]
∗] is not logically equivalent to

a primitive positive sentence in PPq+1. Since we have, by
Lemma 14(1), the disjunctive form in (F2) is irredundant, so
by Lemma 4(3), φ′′ is a “No” instance of EPq+1

σ -Expr.

5. POSITIVE LOGIC

In this section, we prove that expressibility is undecidable
in positive logic. Recall the satisfiability problem for first-
order logic: Given a first-order sentence φ in prefix normal
form, is there a structure A such that A |= φ?

In the rest of this section, τ is fixed and denotes a signa-
ture that contains countably many unary relation symbols,
and a relation symbol of binary arity, say R. The Kahr class

is the class of equality-free first-order τ -sentences in prefix
normal form with quantifier prefix equal to ∀x∃y∀z. We
need the following classical result [2, Theorem 3.1.1].

Theorem 17. The Kahr class has an undecidable satis-

fiability problem.

The following lemma is an adaptation of the reduction in
[7, Theorem 7] proving that positive logic has an undecidable
entailment problem.

Lemma 18. Let ρ = τ ∪{Rc} where Rc is a relation sym-

bol of binary arity not in τ . The following problem is unde-

cidable: Given a pair (ψ,ψ′) of sentences in PFO3
ρ, does ψ

entail ψ′?

Proof. We reduce from the satisfiability problem for the
Kahr class, undecidable by Theorem 17. Let φ be a sentence
in the Kahr class. Note that, by definition, φ ∈ FO3

τ .
We reduce φ to a pair (φ′ ∧ χ, χ′) of sentences in PFO3

ρ

such that φ is satisfiable if and only if φ′ ∧ χ 6|= χ′, which
implies the stated undecidability result. The sentences φ′,
χ, and χ′ are defined as follows.
Let U1, . . . , Ur be the unary symbols occurring in φ, and

let U1
c , . . . , U

r
c be unary symbols in τ not occurring in φ. We

define the following sentences:

• φ′ denotes the sentence obtained by taking the nega-
tion normal form of φ (where the negation connective
is applied only to relation symbols), and replacing lit-
erals of the form ¬U ix by U i

cx for all i ∈ r, and literals
of the form ¬Rxy by Rcxy;

• χ = ∀xy(Rxy ∨Rcxy) ∧
∧

i∈r ∀x(U
ix ∨ U i

cx);

• χ′ = ∃xy(Rxy ∧Rcxy) ∨
∨

i∈r ∃x(U
ix ∧ U i

cx).

We claim that φ is satisfiable if and only if (φ′ ∧ χ) ∧ ¬χ′

is satisfiable, which is in turn equivalent to φ′ ∧ χ 6|= χ′.
Noticing that φ′, χ, and χ′ are in PFO3

ρ by construction,
the statement is settled. To prove the claim, it is sufficient
to observe that χ ∧ ¬χ′ is logically equivalent to

∀xy(Rcxy ↔ ¬Rxy) ∧
∧

i∈r

∀x(U i
cx↔ ¬U i

x),

from which, by the construction of φ′, it follows that φ is
satisfiable if and only if (χ ∧ ¬χ′) ∧ φ′ is satisfiable.

To prove the main result of this section, we prepare the
following terminology and notation. Let φ be a FO-sentence,
and let U be a unary relation symbol. The U-relativization

φU of φ is defined inductively as follows: if φ is an atom,
then φU = φ; if φ = ¬ψ, then φU = ¬(ψU); if φ = ψ1 ∧ ψ2,
then φU = ψU

1 ∧ ψU
2 ; if φ = ψ1 ∨ ψ2, then φ

U = ψU
1 ∨ ψU

2 ;
if φ = ∀xψ, then φU = ∀x(Ux → ψ); if φ = ∃xψ, then
φU = ∃x(Ux ∧ ψ). By the relativization lemma, for all
structures A on a signature including U such that UA is
nonempty, it holds that A|UA |= φ if and only if A |= φU

[10, Lemma 2.4].
Let U and Uc be two distinct unary symbols. Let φ be

a FO-sentence. Let φU,Uc denote the FO-sentence defined
inductively as follows: if φ is an atom, then φU,Uc = φ; if
φ = ¬ψ, then φU,Uc = ¬(ψU,Uc); if φ = ψ1∧ψ2, then φ

U,Uc =

ψ
U,Uc

1 ∧ ψU,Uc

2 ; if φ = ψ1 ∨ ψ2, then φ
U,Uc = ψ

U,Uc

1 ∨ ψU,Uc

2 ;
if φ = ∀xψ, then φU,Uc = ∀x(Ucx ∨ ψ); if φ = ∃xψ, then
φU,Uc = ∃x(Ux ∧ ψ).

We preliminarily observe the following easy fact. If A is
a structure on a signature including U and Uc and A |=
∀x(¬Ux ↔ Ucx), then A |= φU if and only if A |= φU,Uc .
Intuitively, we simulate in the positive fragment the rela-
tivization of φ to U , which is not positive in general.

Theorem 19. Let σ be a signature that contains count-

ably many unary relation symbols and three relation symbols

of binary arity. For each k ≥ 3, the problem PFOk
σ-Expr is

undecidable.

Proof. We reduce from the undecidable problem that
is given in Lemma 18, asking whether for a pair (φ, ψ) of
PFO3

ρ-sentences, φ |= ψ; here, ρ is a signature that contains

242

countably many unary relation symbols, and two relation
symbols of binary arity.

Let E be a binary relation symbol not in ρ (thus neither
in φ nor in ψ), and let σ = ρ ∪ {E}. The reduction maps
(φ, ψ) to the instance χ of PFO3

σ-Expr, defined as follows.
Let U and Uc be unary relation symbols in σ not occurring

in φ or ψ. We define the following PFOσ-sentences:

• θ = ∃x1x2x3x4(
∧

i,j∈4,i 6=j
Exixj).

• α = ∃xUx ∧ ∀x(Ucx ∨ Ux) ∧ φU,Uc .

• β = ∃x(Ucx ∧ Ux) ∨ ψU,Uc .

• χ = α ∧ (β ∨ θUc).

We claim that φ |= ψ if and only if χ is logically equivalent
to a PFO3-sentence.

(⇒) Assume φ |= ψ. We claim that α |= β. By the claim,
χ ≡ α. Since φ ∈ PFO3, by construction φU,Uc ∈ PFO3. By
possibly renaming x if it does not occur in φ, we conclude
that α is logically equivalent to a PFO3-sentence.
We prove the claim. Let A be any σ-structure. We dis-

tinguish two cases.
Assume that UA = ∅, or UA ∪UA

c 6= A, or UA ∩UA

c 6= ∅.
If UA = ∅ or UA ∪ UA

c 6= A, then A 6|= α. If UA ∩ UA

c 6= ∅,
then A |= β.
Otherwise, UA 6= ∅, UA ∪UA

c = A, and UA ∩UA

c = ∅. In
this case, by the preliminarily observed fact, we have that
A |= φU if and only if A |= φU,Uc , and A |= ψU if and only
if A |= ψU,Uc . Assume that A |= α. Then, A |= φU,Uc ,
and by the above, A |= φU . By the relativization lemma,
A|UA |= φ. Then, by hypothesis, A|UA |= ψ, which implies
that A |= ψU by the relativization lemma, so by the above,
A |= ψU,Uc . Therefore, A |= β.

(⇐) Assume φ 6|= ψ. Let A be a ρ-structure such that
A |= φ and A 6|= ψ. Assume without loss of generality that
A ∩ 4 = ∅. Define two σ-structures A0 and A1 as follows.

• A0 = A ∪ 3, UA0 = A, UA0
c = 3, EA0 = {(i, j) | i, j ∈

3, i 6= j}, and RA0 = RA for all R ∈ σ.

• A1 = A ∪ 4, UA1 = A, UA1
c = 4, EA1 = {(i, j) | i, j ∈

4, i 6= j}, and RA1 = RA for all R ∈ σ.

We observe that, for all r, the Duplicator wins the r-round
k-pebble Ehrenfeucht game on A0 and A1 by playing the
identity on A and maintaining a partial isomorphism be-
tween 3 and 4, which is possible because the players have
only 3 pebbles. Thus, A0 and A1 model the same FO3-
sentences [15, Theorem 6.10]. We claim that A0 6|= χ but
A1 |= χ. Therefore, by the claim and the observation, χ is
not logically equivalent to a FO3-sentence.

To prove the claim, we first prove A0 6|= β ∨ θUc , so that
A0 6|= χ. This follows from the following three facts:

• A0 6|= ∃x(Ucx ∧ Ux), by construction.

• A0 6|= ψU,Uc . Indeed, by construction of A0, it holds
that ψU,Uc behaves inA0 as ψ

U . Moreover, by the rela-
tivization lemma, A0 |= ψU if and only if A0|UA0

|= ψ

that is, if and only if A |= ψ, which is false by hypoth-
esis.

• A0 6|= θUc . We have that A0 |= θ if and only if
A0|

U
A0
c

|= θ, which is false by construction.

We next prove A1 |= α ∧ θUc , so that A1 |= χ. This follows
from the following three facts:

• A1 |= ∃xUx ∧ ∀x(Ucx ∨ Ux), by construction.

• A1 |= φU,Uc . Similarly, A1 |= φU,Uc if and only if
A1 |= φU if and only if A1|UA1

|= φ, that is, if and
only if A |= φ, which is true by hypothesis.

• A1 |= θUc . In a similar fashion, A1 |= θUc if and only
if A1|

U
A1
c

|= θ, which is true by construction.

The statement is proved.

6. ACKNOWLEDGEMENTS

The first author was supported by ERC Starting Grant
(Complex Reason, 239962) and FWF Austrian Science Fund
(Parameterized Compilation, P26200).
The second author was supported by the Spanish Project

FORMALISM (TIN2007-66523), by the Basque Government
Project S-PE12UN050(SAI12/219), and by the University of
the Basque Country under grant UFI11/45.

7. REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] E. Börger, E. Grädel, and Y. Gurevich. The Classical

Decision Problem. Springer, 1997.

[3] F. Börner, A. A. Bulatov, H. Chen, P. Jeavons, and
A. A. Krokhin. The Complexity of Constraint
Satisfaction Games and QCSP. Inform. Comput.,
207(9):923–944, 2009.

[4] A. K. Chandra and P. M. Merlin. Optimal
Implementation of Conjunctive Queries in Relational
Data Bases. In Proceedings of STOC’77, pages 77–90,
1977.

[5] H. Chen. A Rendezvous of Logic, Complexity, and
Algebra. ACM Computing Surveys, 42(1), 2009.

[6] H. Chen. On the Complexity of Existential Positive
Queries. CoRR, abs/1206.3902, 2012.

[7] H. Chen, F. Madelaine, and B. Martin. Quantified
Constraints and Containment Problems. In Proceedings

of LICS’08, 2008.

[8] V. Dalmau, P. G. Kolaitis, and M. Y. Vardi. Constraint
Satisfaction, Bounded Treewidth, and Finite-Variable
Logics. In Proceedings of CP’02, 2002.

[9] R. Diestel. Graph Theory, 4th Edition. Springer, 2012.

[10] H.-D. Ebbinghaus, J. Flum, and W. Thomas.
Mathematical Logic. Springer, 1984.

[11] J. Flum and M. Grohe. Parameterized Complexity

Theory. Springer, 2006.

[12] E. Grädel. Finite model theory and descriptive
complexity. In Finite Model Theory and Its

Applications, pages 125–230. Springer, 2007.

[13] M. Grohe, T. Schwentick, and L. Segoufin. When is
the Evaluation of Conjunctive Queries Tractable? In
Proceedings of STOC’2001, 2001.

[14] P. Hell and J. Nešetřil. The Core of a Graph. Discrete

Math., 109:117–126, 1992.

[15] N. Immerman. Descriptive complexity. Springer, 1999.

[16] Y. Sagiv and M. Yannakakis. Equivalences Among
Relational Expressions with the Union and Difference
Operators. J. ACM, 27(4):633–655, 1980.

243

[17] J. D. Ullman. Database and Knowledge-Base Systems,
Volumes I and II. Computer Science Press, 1989.

[18] M. Y. Vardi. On the Complexity of Bounded-Variable
Queries. In Proceedings of PODS’95, pages 266–276,
1995.

244

