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RESEARCH Open Access

The composition and stability of the vaginal
microbiota of normal pregnant women is
different from that of non-pregnant women
Roberto Romero1,2,3*, Sonia S Hassan1,4, Pawel Gajer5,6, Adi L Tarca1, Douglas W Fadrosh5, Lorraine Nikita1,
Marisa Galuppi1,4, Ronald F Lamont1,7,8, Piya Chaemsaithong1, Jezid Miranda1, Tinnakorn Chaiworapongsa1,4

and Jacques Ravel5,6*

Abstract

Background: This study was undertaken to characterize the vaginal microbiota throughout normal human
pregnancy using sequence-based techniques. We compared the vaginal microbial composition of non-pregnant
patients with a group of pregnant women who delivered at term.

Results: A retrospective case–control longitudinal study was designed and included non-pregnant women (n = 32)
and pregnant women who delivered at term (38 to 42 weeks) without complications (n = 22). Serial samples of
vaginal fluid were collected from both non-pregnant and pregnant patients. A 16S rRNA gene sequence-based
survey was conducted using pyrosequencing to characterize the structure and stability of the vaginal microbiota.
Linear mixed effects models and generalized estimating equations were used to identify the phylotypes whose
relative abundance was different between the two study groups. The vaginal microbiota of normal pregnant
women was different from that of non-pregnant women (higher abundance of Lactobacillus vaginalis, L. crispatus, L.
gasseri and L. jensenii and lower abundance of 22 other phylotypes in pregnant women). Bacterial community state
type (CST) IV-B or CST IV-A characterized by high relative abundance of species of genus Atopobium as well as the
presence of Prevotella, Sneathia, Gardnerella, Ruminococcaceae, Parvimonas, Mobiluncus and other taxa previously
shown to be associated with bacterial vaginosis were less frequent in normal pregnancy. The stability of the vaginal
microbiota of pregnant women was higher than that of non-pregnant women; however, during normal pregnancy,
bacterial communities shift almost exclusively from one CST dominated by Lactobacillus spp. to another CST
dominated by Lactobacillus spp.

Conclusion: We report the first longitudinal study of the vaginal microbiota in normal pregnancy. Differences in
the composition and stability of the microbial community between pregnant and non-pregnant women were
observed. Lactobacillus spp. were the predominant members of the microbial community in normal pregnancy.
These results can serve as the basis to study the relationship between the vaginal microbiome and adverse
pregnancy outcomes.
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Background
The human vagina and the bacterial communities that
reside therein represent a finely balanced mutualistic as-
sociation [1]. Since the report (and discovery) of Lacto-
bacillus (Döderlein Bacillus) as common inhabitants of
the human vagina in 1892 by Gustav Döderlein, it is
common wisdom that Lactobacillus is a keystone genus
in the vagina [2-4]. The presence of Lactobacillus spp. is
associated with a healthy state and is thought to protect
reproductive age women from non-indigenous patho-
gens [5-26], certainly by contributing to the maintenance
of a low vaginal pH (<4.5) through the production of lac-
tic acid [24,27-34]. The vaginal microbiota is unique as
it undergoes major compositional changes throughout a
women’s lifespan from birth, to puberty and menopause
[35-41]. Very little is known about the composition of
the vaginal microbiota throughout these transitional
stages, but it appears that sex steroid hormones play
major roles in driving the composition and stability of
the vaginal microbiota [39,42-49].
The development of culture-independent profiling

methods to detect fastidious or non-cultivable organisms
through the analysis of the sequence of marker genes,
such as the 16S rRNA gene, has precipitated a revolution
in biology and medicine, by spurring projects such as the
National Institutes of Health (NIH)-funded Human
Microbiome Project [50-56], the European MetaHit pro-
ject [57] and the creation of the International Human
Microbiome Consortium. Culture-based analyses have
been used for decades and have contributed critical
knowledge about the microbes inhabiting the human body,
including the vagina, and the understanding of infectious
diseases that affect the genital tract [17,58-71]. However,
cultivation techniques are laborious, time-consuming, and
quantitative microbiology of polymicrobial infection or
complex ecosystems is challenging when trying to ac-
curately assess the contribution of each organism to the
microbial population structure [72-74]. Moreover, many
organisms cannot be cultured because the essential re-
quirements for growth are not known [72,75,76]. Ad-
vances in cultivation techniques continue to occur and
are sometimes informed by the results of sequence-based
methods [73,77-79].
Culture-independent characterization of bacterial com-

munities can be generated using the amplification and se-
quencing of the 16S rRNA gene [80-83] or metagenomics
approaches in which the sequences of the bacterial commu-
nity genes and genomes are obtained [51,57,76-78,84-88].
However, 16S rRNA gene profiling is widespread and has
been used for the discovery of important clinically relevant
organisms which had resisted cultivation for decades
[76,77,89-91]. This method is also affordable and rapid,
and results are tractable from an analytical point of view.
The use of molecular culture-independent techniques

has increased the knowledge about the complexity of the
microbial ecosystem of multiple body sites, including the
human vagina [21,26,40,41,47,76,92-110].
Most of the data published to date on the human vagina

microbial ecosystem focused on healthy asymptomatic non-
pregnant women of reproductive age [100,109,111,112].
These studies have established that at least six types of va-
ginal microbiota exist, referred to as community state
types (CSTs) [100,109,112,113]. Four of these CSTs are
most often dominated by one of four Lactobacillus spp.
commonly found in the vagina (L. crispatus, L. iners, L.
jensenii and L. gasseri), while the remaining two lack sub-
stantial numbers of Lactobacillus spp. and are composed of
a diverse array of anaerobic bacteria including species asso-
ciated with bacterial vaginosis such as Prevotella, Mega-
sphaera, Gardnerella vaginalis, Sneathia and Atopobium
vaginae [13,96,102,105,114-122]. While these two states are
found in otherwise healthy asymptomatic women, they are
often associated with high Nugent scores [123], a Gram
stain method used in the diagnosis of bacterial vaginosis in
research settings [61,71,124-126]. High Nugent scores or
changes in the vaginal microbiota have been associated
with increased risk of sexually transmitted infections
[20,127-138], including HIV [10,14,22,99,139-150], pre-
term birth [62,108,151-203], and adverse perinatal out-
comes such as post-abortal sepsis [204], early and late
miscarriage [165,205,206], recurrent abortion [205],
histological chorioamnionitis [160,164] and postpartum
endometritis [183,207].
Interestingly, in some women the vaginal microbiota is

remarkably dynamic (it can change over a short period
of time from Lactobacillus dominated CSTs to CSTs
lacking a substantial number of Lactobacillus spp.),
while in other women it is relatively stable [100,112].
Menstruation and sexual activity have been shown to
have negative effects on the stability of the vaginal
microbiota [26,42,43,112,208-210]. The secretory phase
of the menstrual cycle, which is characterized by high
concentrations of estrogen and progesterone, appears to
be more stable in terms of microbial community com-
position [112].
Knowledge of the vaginal microbiota throughout preg-

nancy is sparse, and only a few studies have examined the
vaginal microbiota in pregnant women using culture-
independent methods [211-213], and none analyzed sam-
ples collected longitudinally throughout pregnancy from
the same women using 16S rRNA gene sequence-based
methods. Using a Gram stain scoring system, cultivation
and terminal restriction fragment length polymorphism,
Verstraelen et al. demonstrated the importance of L.
crispatus and L. gasseri in maintaining stability in a popu-
lation of Dutch women sampled once in each trimester
[211]. The consensus from previous studies is that
Lactobacillus spp. predominate the vaginal microbiota
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during pregnancy; this observation is consistent with the
results of a recent 16S rRNA gene sequence-based cross-
sectional study reported by Aagaard and colleagues [213].
None of these studies examined the degree of stability
in the vaginal microbiota during pregnancy using 16S
rRNA gene sequence analysis. Stability and resilience of
ecosystems are now recognized to be important in un-
derstanding the fitness of the community, as well as the
response to perturbations [56,214-220]. Therefore, studies
of the microbiota in several body sites are characterizing
stability and resilience, as well as how they relate to health
and disease [221-233].
The purpose of this study was to characterize the

changes in the composition of the vaginal microbiota of
pregnant women followed longitudinally (over the dur-
ation of pregnancy). The control group consisted of non-
pregnant women who were frequently sampled. Here we
report the use of 16S rRNA gene sequence-based
methods to characterize the vaginal microbiota of normal
pregnant women and the differences observed between
these and non-pregnant subjects. The two major findings
were that the microbial composition of the vaginal
microbiota in normal pregnancy is different from that of
non-pregnant women; moreover we demonstrate, for the
first time, that the vaginal microbiota during pregnancy is
more stable than in the non-pregnant state.

Methods
Study design
This was a prospective longitudinal cohort study to
characterize changes in the vaginal microbiota in normal
pregnant and non-pregnant women. A normal pregnancy
was defined as a woman with no obstetrical, medical or
surgical complications, who agreed to participate in this
study, provided written signed informed consent, and de-
livered at term (38 to 42 weeks) without complications.
Non-pregnant women were of reproductive age and free
of clinical disease [112]. These patients were enrolled in a
prospective study designed to describe the vaginal micro-
biota as a function of time. Details of this study have been
previously reported [112].

Study procedures
Pregnant women who agreed to participate in the longi-
tudinal study had a speculum examination at each visit
and a sample of vaginal fluid was collected under direct
visualization from the posterior vaginal fornix by an ob-
stetrician or a midwife using a Dacron swab (Medical
Packaging Swab-Pak™, Camarillo, CA, USA). Samples
were collected every 4 weeks until 24 weeks of gestation,
and every 2 weeks until the last prenatal visit. Samples
were stored at −70°C until assayed. Non-pregnant pa-
tients were self-collected sampled twice weekly for 16
weeks using validated methods previously described

[112,234]. All samples were Gram-stained and analyzed
using the Nugent score [61]. The use of samples from the
longitudinal study of pregnant women was approved by
the Human Investigations Committee of Wayne State
University and the Institutional Review Board of the
Eunice Kennedy Shriver National Institute of Child Health
and Human Development. The data from non-pregnant
women are derived from a previous study [112] and are
publicly available in the sequence read archive (accession
no. SRA026073). The metadata associated with the se-
quence data are available in dbGap (dbGap study no.
phs000261).

DNA extraction, amplification and pyrosequencing of
barcoded 16S rRNA genes
Genomic DNA was extracted from archived vaginal
swab specimens. Procedures for the extraction of gen-
omic DNA from frozen vaginal swabs have been devel-
oped, validated and previously published [109]. Briefly,
frozen vaginal swabs were immersed in 1 ml pre-
warmed (55°C) cell lysis buffer, composed of 0.05 M po-
tassium phosphate buffer containing 50 μl lyzosyme
(10 mg/ml), 6 μl mutanolysin (25,000 U/ml; Sigma-
Aldrich, St. Louis, MO, USA) and 3 μl lysostaphin
(4,000 U/ml in sodium acetate; Sigma-Aldrich). The
mixture was incubated for 1 hour at 37°C followed by
the addition of 10 μl proteinase K (20 mg/ml), 100 μl
10% SDS, and 20 μl RNase A (20 mg/ml), and the mix-
ture was incubated for 1 hour at 55°C. The samples
were then transferred to a FastPrep Lysing Matrix B
tube (MP Biomedicals, Santa Ana, CA, USA) and mi-
crobial cells were lysed by mechanical disruption using
a bead beater (FastPrep instrument, MP Biomedicals)
set at 6.0 m/s for 30 seconds. The lysate was processed
using the ZR Fecal DNA extraction kit (ZYMO Research,
Irvine, CA, USA) according to the manufacturer’s recom-
mendation and omitting the lysis steps (steps 1 to 3). The
kit included a column (Zymo-Sin IV-HRC spin filter) spe-
cifically designed to remove PCR inhibitors from DNA
samples. The DNA was eluted into 100 μl TE buffer,
pH 8.0. This procedure provided between 2.5 and 5 μg of
high quality whole genomic DNA from vaginal swabs.
Universal primers 27F (Forward) and 338R (Reverse)

were used for PCR amplification of the V1-V2 hypervari-
able regions of 16S rRNA genes [112]. The 338R primer
included a unique sequence tag to barcode each sample.
The primers were as follows: 27F-5′-GCCTTGCCAGC
CCGCTCAGTCAGAGTTTGATCCTGGCTCAG-3′ and
338R-5′-GCCTC CCTCGCGCCATCAGNNNNNNNN
CATGCTGCCTCCCGTAGGAGT-3′, where the italicized
sequences are the 454 Life Sciences FLX sequencing
primers B and A in 27 F and 338R, respectively, and the
bold font denotes the universal 16S rRNA gene primers
27 F and 338R. The 8-bp barcode within primer 338R is
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denoted by eight Ns. Using 96 barcoded 338R primers
[109], the V1-V2 regions of 16S rRNA genes were ampli-
fied in 96 well microtiter plates using AmpliTaq Gold
DNA polymerase (Applied Biosystems, NY, USA) and
50 ng template DNA in a total reaction volume of 50 μl.
Reactions were run in a PTC-100 thermal controller
(BioRad, Hercules, CA, USA) using the following cycling
parameters: 5 minutes denaturation at 95°C, followed by
20 cycles of 30 seconds at 95°C (denaturing), 30 seconds
at 56°C (annealing) and 90 seconds at 72°C (elongation),
with a final extension at 72°C for 7 minutes. Negative con-
trols without a template were included for each barcoded
primer pair. The presence of amplicons was confirmed
by gel electrophoresis on a 2% agarose gel and staining
with SYBRGreen (Life Technologies, Carlsbad, CA,
USA). PCR products were quantified using the Quant-
iT™ PicoGreen® dsDNA assay (Life Technologies). Equi-
molar amounts (100 ng) of the PCR amplicons were
mixed in a single tube. Amplification primers and reac-
tion buffer were removed from each sample using the
Agencourt AMPure Kit (Beckman-Coulter, Pasadena,
CA, USA). The purified amplicon mixtures were se-
quenced by 454 FLX Titanium pyrosequencing using
454 Life Sciences® primer A by the Genomics Resource
Center at the Institute for Genome Sciences, University
of Maryland School of Medicine using protocols recom-
mended by the manufacturer as amended by the Center
and previously described [109].

Sequence analysis
Sequences were binned by samples using the sample-
specific barcode sequences and trimmed by removal of
the barcode and primer sequences. Sequence read qual-
ity check was performed using a bioinformatics pipeline
that is in accordance with NIH Human Microbiome
Project (HMP) standard operating procedures [109].
Briefly, raw sequence reads were filtered to meet the fol-
lowing criteria: 1) minimum and maximum read length
of 200 bp and 400 bp; 2) no ambiguous base calls; 3) no
homopolymeric runs longer than 8 bp; 4) a read was dis-
carded if the average quality value was less than q25
within a sliding window of 50 bp; 5) a read was dis-
carded if it was identified as a putative chimeric se-
quence by UCHIME [235]. The sequences that passed
the above filtering procedure were denoised in order
to correct for potential sequencing errors at 99% level
using UCLUST [235]. Sequences were then taxonomic-
ally classified using pplacer version v1.1.alpha08 [236].
pplacer makes taxonomic assignment using a linear
time maximum-likelihood method (or alternatively a
Bayesian phylogenetic placement method) using a
community specific reference tree. Version 0.2 of the
vaginal community 16S rRNA gene reference tree was
employed. Overall, 86% of all sequence reads that

passed quality control criteria in this study were classi-
fied to the species level, and 57% of the reads were
taxonomically assigned to the genus Lactobacillus.

Statistical analysis
In microbiology, the abundance of bacteria is measured
in a logarithmic scale (base 10), given the wide range of
bacterial abundance and the exponential nature of bac-
terial growth under certain circumstances (for example,
in vitro). Therefore, it is the norm to compare microbial
abundance over time using the difference of logs, log10
(p) - log10 (q), which is the same as the log fold change
log10 (p/q), where p and q are relative abundances of a
given microorganism in two samples.
Estimating changes in abundance of a complex micro-

bial ecosystem within a patient at two time points be-
comes more challenging, as several microorganism types
(phylotypes) need to be considered. In order to address
this challenge, we assessed the dissimilarity between two
community states (in other words, how divergent two
community states are) using the Jensen-Shannon metric
[237]. The term “community state” in microbial ecology
refers to the relative abundance of all phylotypes at a
particular time point in a subject; in our case, a sample
of vaginal fluid.
The Jensen-Shannon divergence between two commu-

nity states, p and q, is the average of the Kullback–Leibler
divergences DKL(p,a) and DKL(q,a):

DJS p; qð Þ ¼ DKL p; að Þ þ DKL q; að Þ
2

where a is the mean of p and q and DKL(p,q) is the
Kullback–Leibler divergence defined as:

DKL p; qð Þ ¼
Xn
i¼1

pi log
pi
qi

� �
;

and where p = (p1, …. , pn) and q = (q1, … , qn). In essence,
the Kullback–Leibler divergence DKL(p,q) calculates the
mean log fold changes log (pi/qi). While the Kullback–
Leibler divergence measure is widely used, it has one
drawback: its value becomes infinite if one of the com-
ponents of q is zero. In contrast, the Jensen-Shannon
divergence always yields a value between 0 and 1. A
Jensen-Shannon divergence score of 0 means that two
community states are the same. In contrast, a Jensen-
Shannon divergence scores of 1 means that the two
community states are completely different. The square
root of the Jensen-Shannon divergence is called Jensen-
Shannon distance.
The term “community state type” (CST) is used in mi-

crobial ecology to describe a group of community states
with similar microbial phylotype composition and abun-
dance [109,112]. Such grouping is desirable in order to
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reduce dimensionality. Utilizing Jensen-Shannon diver-
gence as a measure of dissimilarity among community
states and hierarchical clustering with Ward linkage, five
CSTs in the combined dataset of pregnant and non-
pregnant women have been identified (Figure 1). Three
of the CSTs (CST I, II, III) are dominated by Lactobacillus
spp. and the remaining two (CST IV-A, IV-B) consist
of community states with substantially lower number
of Lactobacillus spp. than the other CSTs.

Comparison of community state type frequencies in the
non-pregnant state and normal pregnancy
In order to assess significance of differences in frequencies
of CSTs between pregnant and non-pregnant women, we
considered one CST at a time and created an indicator

variable Y, with Y = 1 for samples that belonged to the
CST of interest and 0 otherwise. We regressed the CST
indicator variable on the pregnancy status using general-
ized estimation equations (GEE) considering that the re-
sponse is correlated within patients. The model fitting was
performed using the geepack package [238] in R (version
2.15), specifying a binomial distribution for the dependent
variable (CST indicator), and assuming an exchangeable
correlation structure (the response correlation within a
subject is similar between all pairs of time points). The
odds ratio of belonging to a given CST given that the
woman is pregnant was reported together with the signifi-
cance of the effect (determined by default via a Wald test
in geepack). P-values false discovery rate adjustment for
multiple comparisons across the five CSTs was performed
and a q-value <0.05 was deemed significant.

III I IV−B IV−A II

Lactobacillus iners

Lactobacillus crispatus

Atopobium vaginae

Lactobacillus

Lactobacillus jensenii

Lactobacillus gasseri

Clostridiales

Parvimonas micra

Leptotrichia amnionii

Prevotella genogroup 2

Actinomycetales

Gardnerella vaginalis

Streptococcus anginosus

Aerococcus christensenii

Finegoldia magna

Peptoniphilus

Bifidobacteriaceae

Anaerococcus

Peptoniphilus lacrimalis

Prevotella bivia

Prevotella

Mobiluncus

Mycoplasmataceae

Megasphaera sp. type 1

Prevotella melaninogenica

Pregnancy Status
NP
TD

Pregnancy Status

Community State Types

80 100

Relative abundance

6040200

Figure 1 Heatmap of percentage abundance of microbial taxa found in the vaginal microbial communities of 22 normal pregnant women
who delivered at term and 32 non-pregnant women sampled longitudinally. Ward linkage hierarchical clustering of Jensen-Shannon metric
identified five community state types (CST I, II, III, IV-A and IV-B). The upper color bar shows the five community state types while the lower color bar
shows the pregnancy status of each sample (NP: Non Pregnant; TD: Term Delivery).
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Identification of phylotypes accounting for differences in
the structure of vaginal microbiota between the
non-pregnant state and normal pregnancy
In order to assess which phylotypes account for the differ-
ences in the structure of microbial communities, we mod-
eled relative abundance of one phylotype at a time as a
function of pregnancy status, then selected those phylo-
types for which there was a significant effect of pregnancy
status. Only phylotypes present (based on at least one read
count) in 25% or more for the samples were considered in
this analysis.
Read count data obtained from a longitudinal experi-

ment design are typically modeled using GEE or linear
mixed-effects models by assuming a Poisson or negative
binomial distribution of the response. The choice of a
Poisson distribution will be justified when the counts vari-
ance equals the counts mean, while the negative binomial
distribution will be preferred when the mean variance
equality cannot be safely assumed.
Several phylotypes were not detected in a large pro-

portion of samples; hence, the frequency of 0 count
values in the dataset is larger than expected under a
Poisson or negative binomial distribution. For such cir-
cumstances, models that can allow for zeroes inflation
are more suitable.
In general, the zero-inflated version of a distribution D

(for example, negative binomial) of a random variable Y
has a probability function of the form:

fZID yð Þ ¼ πI y ¼ 0ð Þ þ 1−πð ÞfD yð Þ

where fD(y) is the probability function of the distribution
D, fZID(y) is the probability function of the zero inflated
version of D with an additional parameter π as the pro-
portion of additional zeros and I(x) is the indicator func-
tion equal to 1 if x is true and equal to 0 otherwise. From
the above equation, the probability of y = 0 is equal to
π + (1 − π)fD(0), while the probability of y > 0 is (1 − π)fD(y).
Zero inflated models for count data have been used in
statistics for at least 20 years [239].
To ensure a proper fit of the count data of each phylo-

type, we have utilized zero-inflated negative binomial
mixed-effects (ZINBLME) models in addition to the
simpler negative binomial linear mixed effects (NBLME)
and Poisson linear mixed effects (PLME) models. These
three types of models were fitted to each phylotype and
the model with lowest Akaike Information Criterion
(AIC) value was retained. The significance P-value for
the association between the microbial relative abundance
and the group variable was computed only for the best
model (smallest AIC).
The mixed effects modeling of the reads count data

(dependent variable) on the pregnancy status (independent
variable) was performed using the NLMIXED procedure

in SAS (version 9.3; SAS, Cary, NC, USA) as discussed
elsewhere [240-242]. All three types of models (PLME,
NBLME and ZINBLME) had included an offset term (the
log of the total number of reads in a given sample) to allow
for a comparison in the relative abundance (and not abso-
lute counts) between groups. The random effect in the
ZINBLME models was allowed only on the non-zero infla-
tion component (negative binomial mean).
For each of the three types of models, the reported co-

efficient represents the difference in mean log relative
abundance between in samples from pregnant and non-
pregnant women that was further converted into a fold
change. The P-value of the model with the best fit (smal-
lest AIC) was retained and false discovery rate adjustment
was applied across the phylotypes. A q-value <0.1 and fold
change >1.5 was used to claim significance.

Results
Characteristics of the study population
The clinical and demographic characteristics of the preg-
nant population are displayed in Table 1. The clinical and
demographic characteristics of non-pregnant subjects
have been previously reported [112]. The present study in-
cluded 32 non-pregnant women and 22 pregnant women
who had a term delivery without complications (gesta-
tional age at delivery from 38 to 42 weeks). Non-pregnant
women self-sampled with a frequency of twice a week for
16 weeks. The median (interquartile range (IQR)) number

Table 1 Descriptive characteristics of the pregnant
woman enrolled in the longitudinal study (n=22)

Mean SDa Minimun Maximum

Age (years) 24.2 5.2 19 35

Raceb

African American 19 (86%)

White 2 (9%)

Hispanic 1 (5%)

Body Mass Index
(BMI; kg/m2)

29.8 4.9 20.2 39.9

Nulliparity 10 (45%)

Cesarean delivery 2/22 (9%)

Gestational age at
delivery (weeks)

39.8 1.0 38.1 42.1

Birthweight (grams) 3320 290 2645 4090

Apgar at 1 minute
(median)

9.0 7 9

Apgar at 5 minutes
(median)

9.0 5 9

Nugent score >=7c 2 (9%)
aStandard Deviation.
bNon-pregnant women: African American (50%), White (40.6%), Hispanic and
others (9.4%).
cIn at least one sample of a given subject – According to reference 61, Nugent
score above 7 correspond to a diagnosis of bacterial vaginosis.
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of samples with available sequence data was 27.5 samples
per participant (IQR: 20.7 to 29). Pregnant women had a
median of 6.5 samples per pregnancy (IQR: 6.0 to 7.0).

Characterization of the microbial taxa as a function of
depth of coverage
We characterized the vaginal microbiota using pyro-
sequencing of barcoded 16S RNA genes. The dataset con-
sisted of 2,946,507 high-quality sequences, with an average
length of 240 bp. The median number of sequences per
sample was 2,878 (IQR: 2,446 to 4,171). Taxonomic assign-
ment of the sequences identified a total of 143 taxa in the
vaginal microbiota of the women studied; all 143 taxa were
observed both in non-pregnant as well as pregnant women
who delivered at term. The taxonomic assignments of
vaginal bacterial community members are shown in
Additional file 1: Table S1.

The vaginal microbiota in the non-pregnant state and
normal pregnancy
To study the vaginal bacterial communities of pregnant
versus non-pregnant women, we hierarchically clustered
the vectors of relative abundances of bacterial phylotypes
(one per sample) using the Jensen-Shannon divergence
metric and Ward linkage [112]. In this study, we refer to
a community state as a vector of relative abundances of
bacterial phylotypes for a given sample. Community
states were clustered into five groups with similar bac-
terial composition and abundance (Figure 1), referred to
as CSTs according to the nomenclature established by
Gajer and colleagues [112].
Three of these CSTs were most often dominated by L.

crispatus (CST I), L. gasseri (CST II) and L. iners (CST
III). Communities that clustered in CST IV-A or IV-B
lacked a substantial number of Lactobacillus spp. and
differed in taxa composition. For example, CST IV-A
was characterized by a roughly equal number of Peptoni-
philus, Anaerococcus, Corynebacterium, Finegoldia, Pre-
votella and a few other taxa. In contrast, those of CST
IV-B had higher relative abundance of the genus Atopo-
bium and were characterized by the presence of L. iners
(low relative abundance), Prevotella, Sneathia, Gardnerella,
Ruminococcaceae, Parvimonas, Mobiluncus and other taxa
previously shown to be associated with bacterial vaginosis
[96]. These findings are consistent with previous observa-
tions indicating that there is no single “core” microbiota
of the human vagina [109]. The relationship between

Nugent score and CST was demonstrated. It is note-
worthy that CST IV-B was strongly associated with a
high Nugent score (defined as 7 to 10) (P = 0.013 using
a mixed effect model; odds ratio = 24.3).
Table 2 shows the counts of samples assigned to each

CST and corresponding percentages stratified by preg-
nancy status. A dramatic difference in the distribution of
frequency of CSTs between non-pregnant and pregnant
patients who delivered at term was observed (a decrease
of 95% in the odds of observing CST IV-B in pregnant
women compared to non-pregnant women).
Since Table 2 was generated using correlated samples,

standard methods (for example, Fisher tests) cannot be
applied to assess significance of differences in frequen-
cies of each CST between pregnant and non-pregnant
women. Instead, for each CST (T), a logistic regression
GEE model was fitted with the binary response variable
(T versus non-T) used as a dependent variable and the
pregnancy status used as an independent variable. The
coefficients, odds ratios, P-values, and q-values for the
five GEE models are shown in Table 3. The frequency of
CST IV-B (most often dominated by Atopobium) was
significantly lower in pregnant compared to non-pregnant
women. The relative abundance of CST I (dominated by
L. crispatus) was borderline significantly different between
pregnant and non-pregnant women (based on unadjusted
P = 0.0507 at the 5% significance level).

Constancy of the vaginal microbiota in pregnant and
non-pregnant women
Figure 2 shows the profiles of CSTs for pregnant women
who delivered at term as a function of gestation time.
The CST profiles of pregnant and non-pregnant women
are somewhat similar (given smaller number of samples
per pregnant woman) except that CST IV-B is rarely
present in pregnant women. In particular, none of the
pregnant women persist in this CST, which lacks sub-
stantial number of Lactobacillus, whereas communities
of seven non-pregnant women persist in CST IV-B for
16 weeks [112].
Vaginal bacterial communities of most pregnant and

non-pregnant women persist in one CST with some
intermittent transitions to other CSTs. Is there a difference
in constancy of vaginal bacterial communities between
pregnant and non-pregnant women? To address this
question, we used an approach in which we computed the
mean community state within a subject (mean relative

Table 2 Distribution of samples in each community state-type as a function of pregnancy status (non-pregnant vs
normal)

CST/Pregnancy status I II III IV-A IV-B Total

Non-pregnant women 129 (17%) 68 (8.9%) 268 (35.2%) 79 (10.4%) 217 (28.5%) 761

Normal pregnancy 53 (38.1%) 6 (4.3%) 72 (51.8%) 5 (3.6%) 3 (2.2%) 139
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abundance of each bacterial phylotype across all samples
of a subject), and then the Jensen-Shannon distance was
computed between each community state and the mean
community state for each subject. These distances are
shown in Figure 3A. This is a measure of instability: the
larger the distance, the higher the instability of the mi-
crobial community within a subject (in other words,
community composition changes often over time). To
test if the instability was different between pregnant and
non-pregnant women, we modeled the log of these Jensen-
Shannon distances using a GEE model. The mean within-
subject log Jensen-Shannon distance of pregnant women
was significantly lower than that for non-pregnant women
(difference in means −0.473 log units; that is, 1.6-fold
lower Jensen-Shannon distance, P < 0.001). This means
that vaginal bacterial communities are significantly more
stable in pregnant than in non-pregnant women. However,

the results indicate that, during pregnancy, the structure
of the bacterial community undergoes some change. To
characterize the nature of the changes during pregnancy,
we evaluated the ability of a community to shift to CST
IV (A or B) by computing the Jensen-Shannon distance
between each community state and the mean community
state of all samples assigned to CST IV-A and CST IV-B
(mean relative abundance of each bacterial phylotype across
all samples in CST IV-A and CST IV-B). We modeled the
log of these Jensen-Shannon distances using a GEE model
and found that the mean log Jensen-Shannon distance of
pregnant women was significantly higher (further away
from CST IV-A or CST IV-B) than that for non-pregnant
women (difference in means 0.13 log units; that is, 1.14-
fold, P < 0.001) (Figure 3B). Altogether, these results indi-
cate that bacterial communities in pregnancy do shift from
one CST dominated by Lactobacillus spp. to another CST
dominated by Lactobacillus spp., but rarely to CST IV-A
or CST IV-B.

Identification of phylotypes accounting for differences in
the structure of vaginal microbiota between the non-
pregnant state and normal pregnancy
Table 3 provides evidence that the vaginal microbiota in
women who deliver at term is different from the vaginal
microbiota of non-pregnant women. Nonetheless, this
analysis does not identify explicitly the phylotypes
responsible for differences in the structure of the vagi-
nal microbiota between pregnant and non-pregnant
women.
In order to identify phylotypes whose relative abundances

were significantly different between pregnant and non-
pregnant women, we used statistical models that: 1) were
designed for count data modeling (assuming Poisson and
negative binomial distributions); and 2) allowed correlated
observations from the same individuals (for example, linear
mixed effect models); while 3) allowing for extra zeroes in

Table 3 Coefficient estimates, odds ratios, p-values and
q-values for the association between each community
state type with the pregnancy status

Community
state typea

Estimateb Odds ratio p-value q-valuec

IV-B −3.06 0.047 0.00000 0.00001

I 1.09 2.986 0.05076 0.12689

III 0.76 2.136 0.11344 0.18907

IV-A −1.23 0.292 0.16958 0.21198

II −0.73 0.482 0.48193 0.48193
aCommunity state type: a group of community states with similar microbial
phylotype composition and abundance identified via unsupervised clustering
(Figure 1).
bEstimate: the value of the coefficient in the logistic regression model for a
binary variable indicating whether (1) or not (0) a given sample was assigned
in the community state named in column 1. The value of the coefficient
represents the log of the odds ratio that the sample belongs to the
community state indicated in column 1 given that the sample belongs to a
pregnant woman (as opposed to a non-pregnant woman).
cq-value: the False Discovery Rate adjusted p-value across all 5 community
types that were tested.

Community State Type

Gestational Age (weeks)
10 15 20 25 30 35 40

N018
N007
N013
N004
N011
N016
N008
N010
N002
N019
N001
N009
N021
N017
N012
N015
N014
N020
N003
N005
N022
N006

III IV−BI II V Delivery Subject ID

Figure 2 Profiles of community state types for pregnant women who delivered at term as a function of gestational age. Gestational age
at delivery is indicated by blue solid circles.
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the data since some phylotypes were frequently un-
detected. Three types of models were fitted for each phy-
lotype, including PLME, NBLME and ZINBLME models.
The model type with the smallest AIC value was retained
for each phylotype and the P-value for group variable
(pregnant versus non-pregnant) was computed only for
this model. Only phylotypes that were present in at least
25% of all samples were included in the analysis, restrict-
ing the number of phylotypes to 28. Table 4 shows the
AIC statistics for all three types of models for each phy-
lotype, as well as the estimate, confidence interval and

P-value for the best (smallest AIC) model. Of interest,
out of the 28 phylotypes tested, the relative abundance
of 26 was significantly different between the two groups
(q-value <0.1 and fold change >1.5). Four of the signifi-
cant phylotypes (L. vaginalis, L. crispatus, L. gasseri and L.
jensenii) were more abundant in pregnant than non-
pregnant women (Additional file 2: Figures S1 show box
plots of the relative abundances of all significant phylo-
types listed in Table 4). The NBLME model provided the
optimal fit for a majority of phylotypes, indicating that
there is over-dispersion in the sequence count data and,
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Figure 3 Estimates of community change over time in non-pregnant and pregnant women who delivered at term. (A) Jensen-Shannon
distances between each community state and the mean community state for each subject. The larger the distance, the higher the instability of
the microbial community within a subject. The mean within-subject log Jensen-Shannon distance of pregnant women was significantly lower than
that for non-pregnant women (difference in means −0.473 log units; that is, 1.6-fold lower Jensen-Shannon distance, P < 0.001). (B) Jensen-Shannon
distance between each community state and the mean community state of all samples assigned to CST IV-A and CST IV-B. The higher the distance,
the less frequently a community enters CST IV-A or CST IV-B. The mean log Jensen-Shannon distance of pregnant women was significantly higher than
that for non-pregnant women (difference in means 0.13 log units; that is, 1.14-fold, P < 0.001).
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hence, the Poisson distribution may be too restrictive for
the observed count data. This finding is in agreement with
previous observations [243]. About a quarter of the
significant phylotypes showed zero inflation; therefore,
the zero-inflation version of the negative binomial model
(ZINBLME) provided the optimum fit based on AIC
values. The SAS code and input dataset used to generate

the results presented in Table 4 are provided in Additional
files 3 and 4, respectively.
Some of the selected phylotypes are defined at the genus

and some at the species level (for example, Anaerococcus
and Anaerococcus vaginalis), respectively. A genus level
phylotype corresponds to a set of sequences that could
not be reliably identified at the species level for any known

Table 4 Differential relative abundance of microbial phylotypes between pregnant and non-pregnant women and
statistics for the phylotype level analysis

Phylotypes PLME
AICa,d

NBLME
AICb,d

ZINBLME
AICc,d

Best
AICd

Estimate Lower
95% CI

Upper
95% CI

Fold
change

p-value q-valuee

Phylotypes less abundant in pregnancy

Clostridiales Family XI
Incertae Sedis

3488.3 2996.9 2998.9 NBLME −7.095 −9.020 −5.169 −1205.6 0.0001 0.0002

Anaerococcus vaginalis 3043.8 2748.2 2759.9 NBLME −5.873 −7.260 −4.486 −355.4 0.0001 0.0002

Anaerococcus 5252.6 3804.3 3806.3 NBLME −5.557 −6.605 −4.509 −259.0 0.0001 0.0002

Prevotella genogroup 2 5510.3 4498.2 4504.2 NBLME −5.019 −5.655 −4.384 −151.3 0.0001 0.0002

Peptoniphilus 4707.8 4431.3 4433.3 NBLME −4.921 −5.670 −4.171 −137.1 0.0001 0.0002

Streptococcus anginosus 3285.4 2565.8 2583.8 NBLME −4.629 −5.748 −3.511 −102.4 0.0001 0.0002

Actinomycetales 5672.8 5110.1 5112.1 NBLME −4.546 −5.281 −3.811 −94.2 0.0001 0.0002

Leptotrichia amnionii 7299.3 3889.1 3893.3 NBLME −4.490 −5.359 −3.621 −89.1 0.0001 0.0002

Finegoldia magna 4687.1 4300.6 4302.6 NBLME −4.174 −4.958 −3.391 −65.0 0.0001 0.0002

Prevotella 4540 4094.7 4096.7 NBLME −3.870 −4.502 −3.238 −48.0 0.0001 0.0002

Clostridiales 5864.5 4852.6 NA NBLME −3.373 −4.274 −2.472 −29.2 0.0001 0.0002

Atopobium 3853.1 3275 3261.6 ZINBLME −3.268 −3.943 −2.593 −26.3 0.0001 0.0002

Bacteria 3167.5 3033 3040.1 NBLME −3.083 −3.921 −2.245 −21.8 0.0001 0.0002

Prevotella.bivia 4178.9 3043 3045 NBLME −3.038 −4.089 −1.986 −20.9 0.0001 0.0002

Eggerthella 3149.7 3083.7 3065.2 ZINBLME −1.936 −2.813 −1.060 −6.9 0.0001 0.0002

Gardnerella vaginalis 5472 5105.1 5076.7 ZINBLME −1.760 −2.253 −1.266 −5.8 0.0001 0.0002

Dialister 4048.5 3939.6 3940.9 NBLME −1.399 −2.147 −0.651 −4.1 0.0003 0.0004

Ureaplasma 2819 2700.6 2707.8 NBLME −1.153 −1.817 −0.490 −3.2 0.0007 0.0010

Lactobacillus 10572 9170.2 9172.2 NBLME −0.726 −1.169 −0.283 −2.1 0.0013 0.0017

Atopobium vaginae 12734 6971.9 7024.5 PLME −2.381 −3.946 −0.816 −10.8 0.0029 0.0037

Parvimonas micra 4512.2 3835.1 3821.7 ZINBLME −4.202 −7.609 −0.795 −66.8 0.0157 0.0183

Bifidobacteriaceae 4056.8 3989.9 3991.9 NBLME −0.660 −1.429 0.110 −1.9 0.0927 0.0998

Phylotypes more abundant in pregnancy

Lactobacillus vaginalis 2489.2 2467.9 2458.2 ZINBLME 1.704 1.190 2.218 5.5 0.0001 0.0002

Lactobacillus jensenii 6544.1 5564.1 5549.7 ZINBLME 1.549 1.453 1.645 4.7 0.0001 0.0002

Lactobacillus crispatus 11702 8094 8263.2 NBLME 0.754 0.212 1.295 2.1 0.0064 0.0078

Lactobacillus gasseri 6917.3 4412.4 NA NBLME 1.193 0.214 2.172 3.3 0.0170 0.0190

Non-significantly different phylotypes

Lactobacillus iners 18755 12576 12604 NBLME 0.165 −0.136 0.466 1.2 0.2824 0.2929

Aerococcus christensenii 4321.2 3986.9 3957.1 ZINBLME −0.425 −1.251 0.401 −1.5 0.3132 0.3132
aPLME: Poisson Linear Mixed Effects Model.
bNBLME: Negative Binomial Linear Mixed Effects.
cZINBLME: Zero-Inflated Negative Binomial Mixed-Effects Model.
dAIC: Akaike Information Criterion.
eq-value is p-value after adjustment for false-discovery rate (0.1).
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species of the given genus. Thus, in the case of Anaerococ-
cus and Anaerococcus vaginalis, the first phylotype corre-
sponds to reads that cannot be taxonomically assigned to
any known species of Anaerococcus and might represent
uncharacterized species of Anaerococcus, whereas the phy-
lotype Anaerococcus vaginalis consists of reads that are
classified as corresponding to that species.

Discussion
Principal findings of the study
Using sequence-based methods (rather than cultivation
techniques) to characterize the vaginal microbiota in a
longitudinal study of normal pregnant women and non-
pregnant women, we established that: 1) at the bacterial
community level, CST IV-B (characterized by high relative
abundance of species of Atopobium as well as the pres-
ence of Prevotella, Sneathia, Gardnerella, Ruminococca-
ceae, Parvimonas, Mobiluncus and other taxa previously
shown to be associated with bacterial vaginosis) was rarely
observed in pregnant women who delivered at term; 2)
the vaginal microbiota of normal pregnant women who
deliver at term was different from that of non-pregnant
women (higher abundance of L. vaginalis, L. crispatus, L.
gasseri and L. jensenii and lower abundance of 22 other
phylotypes in normal pregnancy); 3) the stability of the va-
ginal microbiota of pregnant women was higher than that
of non-pregnant women; and 4) during normal pregnancy,
bacterial communities do shift from one CST dominated
by Lactobacillus spp. to another CST dominated by Lacto-
bacillus spp. but rarely to CST IV-A or CST IV-B.

The vaginal microbiota of normal pregnant women
This is the first longitudinal study of the vaginal micro-
biota in normal pregnancy where samples have been fre-
quently collected and microbial composition has been
characterized using high-throughput pyrosequencing of
the 16S rRNA gene. Previous studies have used a cross-
sectional approach [213] and sparse sampling [212].
Some have used low resolution microbiological and mo-
lecular techniques [211,212] to characterize the micro-
bial communities. The methodology used in the present
study provides a less biased, in-depth characterization of
the bacterial composition and abundance of the vaginal
microbiota. The major finding of this study is that nor-
mal pregnant women maintain (throughout the entire
pregnancy) vaginal CSTs dominated by Lactobacillus
spp. This is in contrast with the observations made in
the non-pregnant state, in which there were fluctuations
between CSTs lacking a substantial number of Lactoba-
cillus spp. and those that are dominated by members of
this genus [112].
In a previous study, we focused on non-pregnant

women and characterized five different CSTs (CST I to V);
CST I, II, III and V were characterized by a predominance of

Lactobacillus spp. CST IV was characterized by a low
abundance of Lactobacillus spp. and a predominance of
other phylotypes, mainly of anaerobic bacteria. This CST
was further subdivided into IV-A and IV-B based on hier-
archical clustering [112]. The major difference between
the two is that CST IV-B has a higher abundance of Ato-
pobium, while CST IV-A has a more even microbial com-
position including the following phylotypes: Peptoniphilus,
Anaerococcus, Corynebacterium, Finegoldia and Prevo-
tella. We have also reported that CST IV-A and CST IV-B
were more common in certain ethnic groups (African-
American and Hispanic) and were associated with a
higher vaginal pH and high Nugent score [109]. In the
current study focusing on pregnant women, we identified
five of the six CSTs previously described: I, II, III, IV-A
and IV-B. We did not find CST V. The most likely ex-
planation for this is that the majority of women enrolled
in the present study were African-American, and CST V
was previously observed in only 1% of such women
[109]. Given the sample size of the current study (n = 22
pregnant women) and the ethnic composition (90%
African-American), the lack of representation of CST V
is not unexpected. Therefore, these findings do not mean
that other studies of the microbiota of pregnant women
using a different population would not identify CST V.

Stability of the vaginal microbiota during pregnancy
During normal pregnancy, bacterial communities are
more stable than in the non-pregnant state; however,
some changes do occur. For example, bacterial commu-
nities commonly transitioned from one Lactobacillus-
dominated CST to another, but rarely to CST IV-A or
CST IV-B. This is a reflection of the importance of
Lactobacillus spp. in the vaginal ecosystem during preg-
nancy. Such an interesting feature can be interpreted to
represent an adaptation of the microbial community and
the host to maximize reproductive fitness. We propose
that the enhanced stability confers greater resilience and
has a protective role against ascending infection of the
genital tract, which is risk factor for preterm delivery
[244-246] and other conditions such as a sonographic
short cervix [247-249], cervical insufficiency [250-254],
preterm labor in twin gestations [255-257], vaginal bleed-
ing in the third trimester [258], placenta previa [259,260],
or some cases of fetal death [261-265]. The mechanisms
by which bacterial community stability promotes health
in the vaginal niche remain to be determined.

Is the vaginal microbiota unique during pregnancy?
Our findings indicate that there are phylotypes with relative
abundance that differ between pregnant and non-pregnant
women. Specifically, four phylotypes (L. vaginalis, L. jense-
nii, L. crispatus and L. gasseri) had higher relative abun-
dance in pregnant than in non-pregnant women. We
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identified another 22 phylotypes that had lower relative
abundance in pregnant than non-pregnant women
(Table 4); many of these phylotypes are associated with
CST IV-A and CST IV-B. Interestingly, the relative
abundance of L. iners was not significantly different be-
tween the two groups. This finding might reflect a lack
of optimal protection by this common Lactobacillus sp.
[109] and deserves further investigation. Aagaard and
colleagues [213] have proposed that there is a microbiota
signature of pregnancy based upon a cross-sectional study
of pregnant (n = 24) and non-pregnant women (n = 60).
Using a random forest algorithm, pregnancy was well pre-
dicted by relative abundances of different phylotypes in
vaginal fluid. At this point, even though there are differ-
ences in microbial compositions between the pregnant
and non-pregnant state, there is no evidence that these
differences are specific to pregnant women. Further, it is
unclear if a microbial signature of pregnancy could have
utility for diagnostic purposes.
It is possible that the composition of the vaginal

microbiome associated with pregnancy may have func-
tional (that is, metabolic, immune) implications for the
host [266]. An alternative interpretation is that changes
in the microbiota are a consequence of the physiological
state of pregnancy. During the course of the menstrual
cycle, stability of microbial communities is higher at the
time when estrogen concentrations are high (14 and 21
days) [112]. This has been attributed to the effect of es-
trogens on the maturation of the vaginal epithelium,
resulting in the accumulation of glycogen on the upper
layer of the epithelium [267-270]. Glycogen is a carbon
source metabolized to lactic acid by Lactobacillus spp.,
causing a low vaginal pH [24,26,29]. Further research is
required to determine if the relationship between high
estrogens and increased stability is causal.

Strengths and limitations
The major strengths of this work are: 1) the longitudinal
nature of the study, which allows characterization of the
vaginal microbiota over time; 2) the frequent sampling
protocol - this allowed characterization of the dynamics
of the bacterial communities in pregnancy to an extent
not done before; 3) the quality of the sequence-based
techniques (16S rRNA) which reduced bias over other
methods, including cultivation techniques; 4) the analyt-
ical methods that took into consideration changes over
time on the same subject, therefore increasing the power
of detection of differences between clinical groups; and
5) inclusion of relevant clinical groups: non-pregnant
and normal pregnant women. These strengths allowed
meaningful differences to be found among these clinical
groups. The use of primer 27 F could be a limitation of this
study; this primer may have underestimated the true rela-
tive abundance of 16S rRNA genes of Bifidobacteriaceae in

general, and those of the genus G. vaginalis, a bacterium
commonly found in the vagina of women who experience
bacterial vaginosis. The selection of optimal PCR primers
is a subject of considerable ongoing discussion in the field
of microbiome studies. Unfortunately, there is no consen-
sus, nor a perfect set of primers. In this study, we followed
the recommendations of the NIH-funded Human
Microbiome Project (http://www.hmpdacc.org/). An-
other potential limitation of the study is the sample size,
which included 22 pregnant women who delivered at
term. Yet, despite the apparently limited sample size,
the identification of significant differences provides evi-
dence that the study of the vaginal microbiota during
pregnancy can yield important insights into the relation-
ship between the structure and dynamics of microbial
communities and pregnancy outcome. Further studies are
required to confirm these findings, extend the observa-
tions and elucidate the role of microorganisms in adverse
pregnancy outcome.

Conclusion
This is the first longitudinal study of the human vaginal
microbiota in pregnancy. We demonstrate differences in
the vaginal bacterial community structure between normal
pregnant and non-pregnant women and show that preg-
nancy is characterized by a greater degree of stability
than observed in non-pregnant women. We established
the baseline stability patterns of the vaginal microbiota
in pregnancy. This could serve as the basis to study the
relationship between the vaginal microbiota and adverse
pregnancy outcomes. The characterization of the vagi-
nal microbiota in pregnancy has the potential to yield
information of prognostic, diagnostic and therapeutic
value.
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