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Abstract 

The study of the composition of primary melts during anatexis of high-pressure granulitic 

migmatites is relevant to understand the generation and differentiation of continental crust. 

Peritectic minerals in migmatites can trap dropless of melt that forms via incongruent melting 

reactions during crustal anatexis. These melt inclusions commonly crystallize and form 

nanogranitoids upon slow cooling of the anatectic terrane. To obtain the primary 

compositions of crustal melts recorded in these nanogranitoids, including volatile 

concentrations and information on fluid regimes, they must be remelted and rehomogenize 

before analysis. A new occurrence of nanogranitoids was recently reported in garnets of 

mylonitic metapelitic gneisses (former high pressure granulitic migmatites) at the bottom of 

the prograde metamorphic sequence of Jubrique, located on top of the Ronda peridotite slab 

(Betic Cordillera, S Spain). Nanogranitoids within separated chips of cores and rims of large 

garnets from these former migmatites were remelted at 15 kbar and 850, 825 or 800 ºC and 

dry (without added H2O), during 24 hours, using a piston cylinder apparatus. Although all 

experiments show glass (former melt) within melt inclusions, the extent of rehomogenization 

depends on the experimental temperature. Experiments at 850-825 ºC show abundant 

disequilibrium microstructures, whereas those at 800 ºC show a relatively high proportion of 

rehomogenized nanogranitoids, indicating that anatexis and entrapment of melt inclusions in 

these rocks was likely close to 800 ºC. Electron microprobe and NanoSIMS analyses show 

that experimental glasses are leucogranitoid and peraluminous, though define two distinct 

compositional groups. Type I corresponds to K-rich, Ca- and H2O-poor leucogranitic melts, 

whereas type II represents K-poor, Ca- and H2O-rich granodioritic to tonalitic melts. Type I 

and II melt inclusions are found in most cases at the cores and rims of large garnets, 

respectively. We tentatively suggest that these former migmatites underwent two melting 

events under contrasting fluid regimes, possibly during two different orogenic periods. This 
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study demonstrates the strong potential of melt inclusions studies in migmatites and 

granulites in order to unravel their anatectic history, particularly in strongly deformed rocks 

where most of the classical anatectic microstructures have been erased during deformation. 

Keywords: Melt inclusions; nanogranitoids; migmatites and granulites; mechanisms of 

crustal anatexis; Betic Cordillera 

Introduction 

Recent studies have demonstrated that melt inclusions (MI) constitute a new and powerful 

tool to investigate crustal anatexis (Cesare 2008; Cesare et al. 2009, 2011, 2015). Studies of 

MI in crustal anatectic enclaves found within peraluminous dacites of SE Spain have shown 

that these trapped droplets of melt, now solidified to glass due to rapid ascent and extrusion, 

can provide precise information on the composition of primary anatectic melts during, and on 

the mechanisms of, crustal anatexis (Cesare et al. 1997, 2003; Acosta-Vigil et al. 2007, 2010, 

2012a). In fact, MI do represent a window into the suprasolidus prograde evolution of 

anatectic rocks (Acosta-Vigil et al. 2010).  

Former MI were known to exist in deeply subducted, ultrahigh-pressure (UHP) crustal 

crystalline rocks, where they have been named as melt, polyphase, or multiphase inclusions 

(e.g. Hwang et al. 2001; Stockhert et al. 2001; Ferrando et al. 2005; Korsakov and Hermann 

2006; Gao et al. 2012; Frezzotti and Ferrando 2015). However, detailed microstructural and, 

particularly, geochemical studies on these small data repositories in slowly cooled crystalline 

rocks, have only developed after the recent discovery of MI in low-to-medium P anatectic 

terranes (Cesare et al. 2009), building up on the previous studies of glassy MI of anatectic 

enclaves (Cesare et al. 1997, 2003; Cesare 2008; Acosta-Vigil et al. 2010, 2012a). Thus, 

detailed studies of MI in anatectic terranes have shown the great potential of this new 

approach, providing precise information on the primary compositions of melt from a 
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particular terrane and lithology, including volatile concentrations and clues on the fluid 

regime during partial melting (Cesare et al. 2009, 2015; Bartoli et al. 2013a, 2014; Ferrero et 

al. 2015). Most of the MI in crystalline rocks, however, appear today crystallized to a granitic 

assemblage due to slow cooling at depth, with grain size commonly <1 µm; Cesare et al. 

(2009) named them as nanogranites. A previous and fundamental step for the detailed studies 

on these crystallized MI has been the development and further refinement of appropriate 

methodologies to rehomogenize them successfully under high P, in order to prevent MI 

decrepitation and interaction with the host mineral and matrix rock (Bartoli et al. 2013b; see 

also Malaspina et al. 2006; Perchuk et al. 2008). After application of this experimental 

methodology and subsequent analysis of several occurrences of nanogranites, Cesare et al. 

(2015) have observed that the studied MI have bulk compositions varying from granitic to 

granodioritic, trondhjemitic and tonalitic, and hence they have renamed them as 

nanogranitoids.  

Barich et al. (2014) have documented the presence of crystallized MI in Grt from 

strongly deformed, former high P granulitic migmatites overlying the Ronda peridotite slab, 

in the Betic Cordillera of S Spain (hereafter mineral abbreviations after Kretz 1983). Despite 

the mylonitic microstructure of these former migmatites (hereafter referred to as mylonitic 

gneisses, after Barich et al. 2014), the microstructural study of MI has shown that they are 

present throughout the entire (up to 15-20 mm in diameter) Grt porphyroclasts, whose 

compositional profiles and mineral inclusion systematics attest for a polymetamorphic 

history (Barich et al. 2014, and references therein). Our study focuses on the experimental 

remelting of these MI, and the subsequent analysis of the major element compositions of the 

glass (quenched melt). Along with providing further constraints on the anatectic history and 

metamorphic evolution of the crustal units overlying the Ronda peridotite, this research 

constitutes an effort towards exploring the applications of the detailed study of MI in 
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migmatites and granulites, and building up a composition database of MI in anatectic 

terranes, particularly for rocks such as these high P granulites. The latter are transitional 

between the two thermal environments registered by low-to-medium P and high P to UHP 

granulites, and are thought to form during continental collision at the base of thickened 

continental crust, or during subduction of the crust into the mantle (e.g. O´Brian and Rötzler 

2003; Brown 2007). Since both environments are important regarding the investigation of 

crustal genesis and differentiation processes (e.g. Vielzeuf et al. 1990; Schmidt et al. 2004; 

Hermann and Spandler 2008; Hacker et al. 2011; Sawyer et al. 2011; Brown 2013), high P 

granulites are particularly relevant rocks for the study of MI. 

Geological setting 

The Betic Cordillera in southern Spain and Rif in northern Morocco constitute a roughly E-

W trending arcuate orogenic belt known as the Gibraltar arc (Fig. 1). This belt formed during 

the N-S to NW-SE collision between Eurasian and African plates and the westward 

migration of the so-called Alborán continental lithospheric domain, from Early-Middle 

Eocene to Early Miocene times (Andrieux et al. 1971; Balanyá and García-Dueñas 1987; 

Sanz de Galdeano 1990; Platt et al. 2013). The Alborán domain represents the hinterland of 

this orogen, and is made of mostly supracrustal metamorphic rocks initially organized in a 

complex stack of nappes. In the Betic Cordillera, these nappes have been grouped within two 

major complexes: Maláguide on top, and Alpujárride at the bottom (Platt et al. 2013, and 

references therein) (Fig. 1A). The metamorphic grade of the Alpujárride units increases from 

east to west in the orogen, such that in the western Betics granulitic migmatites occur at the 

base of the sequence and appear spatially associated with slices of subcontinental mantle 

peridotites (i.e. the Ronda peridotites; Lundeen 1978; Obata 1980; Van der Wal and Vissers 

1996; Garrido et al. 2011; Précigout et al. 2013). Thus, in the vicinity of the Ronda 
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peridotites, crustal rocks show systematically the highest metamorphic grade and extensive 

melting (Loomis 1972; Torres-Roldán 1981, 1983; Balanyá et al. 1997; Tubía et al. 1997, 

2013; Argles et al. 1999; Acosta-Vigil et al. 2001, 2014; Platt et al. 2003; Esteban et al. 2008; 

Barich et al. 2014). This contribution focuses on MI in Grt of mylonitic, former high P 

granulitic metasedimentary migmatites from the Jubrique Alpujárride unit. Jubrique 

constitutes a complete though strongly thinned crustal section (≤5 km) ranging from 

carbonates and low-grade phyllites at the top, to schists towards the middle, and to stromatic 

metasedimentary migmatites and mylonitic gneisses (former high P granulitic 

metasedimentary migmatites) at the bottom (Fig. 1a; Loomis 1972; Torres-Roldán 1981; 

Balanyá et al. 1997; Platt et al. 2003; Barich et al. 2014). All rocks in the sequence are 

affected by a penetrative foliation parallel to the lithological contacts, that may appear folded 

at the dm to m scale. The Ronda peridotites constitute a slab of subcontinental mantle up to 

5-8 km thick (Ludeen 1978; Balanyá et al. 1997; Torné et al. 1992; Précigout et al. 2013). 

The mylonitic gneisses are in contact with the underlying Ronda peridotites along a high 

temperature ductile shear zone; this contact is parallel to the mylonitic foliation developed in 

both crustal and mantle rocks, and to the penetrative foliation and lithological contacts in the 

sequence (Balanyá et al. 1997; Platt et al. 2003; Garrido et al. 2011; Précigout et al. 2013).  

The age of deposition of carbonates and phyllites of Jubrique is Permo-Triassic and 

hence these rocks were deformed and metamorphosed during the Alpine orogeny (e.g. Zeck 

et al. 1989; Platt et al. 2013). Conversely, schist, migmatites and mylonitic gneisses are pre-

Carboniferous and represent a polymetamorphic basement affected by at least the Variscan 

and Alpine orogenies (Montel et al. 2000; Whitehouse and Platt 2003; Rossetti et al. 2010; 

Massonne 2014). Rocks from all levels in the crustal section seem to record nearly 

isothermal decompression paths, from 1.4-1.2 kbar to 0.6-0.4 GPa at 750-850 ºC in the case 

of the mylonitic gneisses located at the contact with the Ronda peridotites (Torres-Roldán 
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1981; Argles et al. 1999; Platt et al. 2003; Barich et al. 2014). The HP-HT event has been 

related to crustal thickening of the Alborán domain. The main foliation in the rocks postdates 

HP-HT assemblages (e.g. Grt-Ky-Rt) and predate LP-HT assemblages (e.g. Crd-Sil-Ilm), and 

hence has been associated with the ductile thinning of the sequence. In this interpretation, 

Jubrique would represent a thinned and stretched remain of the Alpine collisional thickened 

crust (Torres-Roldán 1981; Balanyá et al. 1997; Argles et al. 1999; Platt et al. 2003). 

Mylonitic gneisses at the bottom of the crustal sequence were above their solidus during part 

of their metamorphic evolution. Previous studies have concluded that partial melting 

occurred during decompression and in the stability field of sillimanite (Argles et al. 1999; 

Platt et al. 2003). Recent studies focused on the MI, however, have shown that melt was 

present in the system both at the peak (HP-HT stage) and post-peak (LP-HT) conditions, and 

that most Grt in the rock grew in the presence of melt (Barich et al. 2014).  

Petrography of mylonitic gneisses and microstructures of melt inclusions 

This study deals with the remelting and rehomogenization of MI in garnets of the mylonitic 

gneisses of Jubrique –equivalent to the lower gneiss series of Loomis (1972), granulites of 

Argles et al. (1999) and garnet gneiss of Platt et al. (2003). They constitute a ≈300-500 m-

thick sequence of dark, Grt-rich and rather massive rocks, except for the presence of frequent 

mm-to-cm (rarely dm) Grt-bearing leucocratic bands (former leucosomes) that defines the 

main foliation of the rock, Sp (Figs. 2a-b). Garnet is present in both leucocratic and 

mesocratic to melanocratic bands. Thin, Grt-absent and Bt-Crd-bearing leucocratic veins, 

intruded into the gneisses apparently under ductile-to-fragile conditions, are frequent and 

crosscut the main foliation at high angle (Barich et al. 2014).  

Garnets from sample JU-8 of the mylonitic gneisses (Fig. 1) were selected as the starting 

material of this experimental study, due to their abundance in MI (Figs. 2c, d). The 



 

8 
 

microstructures of these rocks have been described in detailed by Barich et al. (2014) and 

references therein; we summarize below the most relevant features. Mylonitic gneisses are 

mostly mylonitic rocks made of abundant to frequent Grt, Qtz, Pl, Kfs, Ky, Sil and Crd, 

scarce to rare Bt, and accessory Spl, Gr, Ap, Rt, Ilm, Zrn and Mnz. They show a fine-grained 

(≈20-200 µm) matrix of Qtz+Pl+Kfs+Als±Crd, that includes porphyroclasts of Grt, Ky and 

Kfs. Based on microstructural criteria, these minerals have been grouped into three main 

assemblages. Cores of large (≈5-20 mm in diameter) Grt and their unoriented inclusions of 

Ky, Rt, Pl, Bt, Qtz and melt represent the oldest, peak and pre-Sp high P mineral assemblage 

(≈850-800 ºC, 1.4-1.2 GPa). Rims of large Grt and small (≤3 mm) Grt in the matrix, together 

with their inclusions of Sil, Ilm and melt, and oriented Sil, Qtz, Pl, Kfs and Ilm in the matrix, 

constitute a pre-to-syn-Sp, medium-to-low P post-peak assemblage. Undeformed coronas of 

Sil or Spl+Pl±Crd±Kfs around relicts of oriented Ky in the matrix, and of 

Crd+Qtz+Bt+Ilm±Kfs±Spl±Pl replacing Grt rims, constitute post-Sp assemblages formed at 

≈800-750 ºC and 0.6-0.4 GPa. Leucocratic bands, parallel to Sp (Figs. 2a, b), are granitic and 

composed of Qtz, Kfs, Pl and accessory Grt, Sil and Ilm, with relict Ky and Rt. Although 

deformed under ductile conditions, they still show some microstructures indicating the 

former presence of melt, and record melt-rich domains segregated before or during 

development of Sp. Biotite-Crd bearing leucocratic veins crosscutting Sp are undeformed, 

mostly made of Qtz and Pl (i.e. tonalitic or trondhjemitic), have subhedral microstructure, 

and hence contrast in composition and microstructures with respect to former leucosomes. 

Melt inclusions appear scattered from core to rim of large and small garnets (Figs. 2c, d). 

Due to the large proportion of Grt, presence of MI throughout the entire crystal and very 

small amount of Bt, Grt has been interpreted as a peritectic mineral formed together with the 

melt during Bt-breakdown melting reactions (see Barich et al. 2014). Most of the MI 

correspond to nanogranitoids, i.e. totally crystallized polycrystalline inclusions (Cesare et al. 
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2009, 2015). They are isometric, often have negative crystal shapes, range between ≈5 to 200 

µm in diameter and have a mean size of ≈30-40 µm (Figs. 2b, c). Melt inclusions in the cores 

of large Grt occur in the vicinity of single inclusions of Ky and Rt, whereas MI at the rims of 

large Grt, or in small Grt, are often associated with inclusions of Sil, Ilm and relict Ky and 

Rt. In general, MI towards the cores of large Grt are smaller (≈5-15 µm) with respect to those 

at the rims (commonly ≥20 µm), where some of the crystallized minerals can be identified by 

optical microscope (Figs. 2c, d). Totally to partially crystallized MI are composed of 

daughter Qtz, Pl (albite to bytownite), Kfs, ternary feldspar, Bt, Ms, rare calcite, and trapped 

crystals of Ky (±Spl), Gr, Phl, Zrn, Mnz, Rt, Ilm and Ap (Fig. 2e). Crystals of Ky are present 

within most of the MI, and represent the main solid inclusion that favored the entrapment of 

MI during Grt growth; they are mostly anhedral and, in MI at the rims of large Grt appear 

partially replaced by a low-Zn, hercynitic Spl. Ilmenite occurs only within MI located at the 

rim of large Grt, whereas Rt, Zrn and Mnz have been found throughout the entire host. 

Offshoots around MI have been observed in a few cases; they are filled with daughter 

minerals and do not necessarily show a radial distribution. Conversely, MI are commonly 

affected by late fractures crosscutting the entire Grt. Some small rounded cavities can be 

interpreted as micro- to nano-porosity; Raman micromapping conducted in similar 

microstructures from other MI study (Bartoli et al. 2013a) strongly suggest that they were 

filled with fluid dissolved in the former hydrous melt that exsolved upon crystallization. 

Some fluid inclusions, of possible primary origin, are spatially associated with MI in clusters 

within Grt. 

Experimental and analytical procedure 

We have used doubly polished ≈200-300 µm- and ≈3 mm-thick sections to obtain single MI-

bearing Grt chips (≈2x2 mm) and fragments (up to ≈4x4 mm) containing complete and, 
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except for the potential presence of late fractures affecting Grt, totally sealed MI. Remelted 

nanogranitoids come from four different thick sections of sample JU-8, from which several 

Grt crystals were selected. Garnet chips were separated by cutting manually under a 

binocular microscope. To investigate potential variations of MI composition with 

microstrutural location, fragments of Grt were collected from three different microstructural 

positions, including cores of large (≈6 mm) Grt, rims of large Grt, and small (≈1-2 mm) 

single Grt (Table 1). 

Piston-cylinder experiments 

Remelting experiments of MI contained within fragments of Grt followed the methodology 

described by Bartoli et al. (2013b), and were conducted using a single-stage, piston-cylinder 

apparatus at the Laboratory of Experimental Petrology, Dipartimento di Scienze della Terra 

(Università di Milano, Italy). Chips and fragments of Grt were loaded into Au capsules with 

external diameter of 3 mm and 5 mm, respectively, together with powdered silica to isolate 

Grt pieces from each other. No water was added to the capsules, which were crimped and 

sealed by arc welding. We conducted four experiments (AB1 to AB4, Table 1), each of them 

containing either three 3 mm capsules or one 5 mm capsule embedded in a low friction, 22 

mm assembly composed of a inner MgO plug and capsule container-salts, a graphite heater 

and a outer NaCl sleeve, 5 mm wall thickness. Capsules were accommodated within the 

crushable MgO-salt and a thermocouple was positioned above the samples at about the mid-

point of the furnace assembly. Experiments were run for 24 hours at a constant pressure of 

1.5 GPa and at temperatures of 850, 825 or 800 °C. The temperature range was chosen based 

on previous thermobarometric estimates of peak and post-peak metamorphic conditions 

(Loomis 1972; Torres-Roldán 1981; Argles et al. 1999; Platt et al. 2003; Barich et al. 2014), 

whereas the temperature sequence (starting with 850 ºC and continuing down to 825 ºC and 

800 ºC) was dictated by the experimental results (see below). We chose the highest pressure 
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value obtained in most of the previous thermobarometric studies, 1.5 GPa, in order to 

maintain a pressure on the Grt fragments equal or larger than the internal pressure in the 

remelted MI, and therefore to prevent MI decrepitation and volatile loss upon heating. 

Temperature was controlled by K-type (chromel-alumel) thermocouples and is considered 

accurate to ±5 °C (Ferri et al. 2009). Using a Johannes-type piston cylinder, pressure can be 

directly measured by a load cell built into the frame (Johannes 1973) and is considered to be 

accurate to ±0.043 GPa (Molina and Poli 2000Schmidt 1992). Calibration was performed 

against the reaction albite = jadeite + quartz (Johannes et al. 1971) and no friction was 

observed compared to values obtained form load cell as a result of the large volume NaCl salt 

sleeve used. During each run, pressure was first increased to 1.5 GPa and then the assembly 

was isobarically heated at a constant heating rate (≈50 °C/min) until the target temperature 

was reached. After 24 h of run time, experiments were quenched isobarically by turning off 

power to the heater, at a rate of ≈50 °C/sec down to ≈50 °C. The confining pressure was 

released after quenching. Capsules were mounted in epoxy, and the inclusions in the Grt 

were exposed gradually by manual polishing, using first 4000- to 80-µm grits sizes, and 5- 

and 1-µm diamond suspensions for the final polishing stage.  

Analytical techniques 

Back-scattered electron (BSE) imaging and semi-quantitative energy dispersive spectroscopy 

(EDS) of the analyzed remelted MI were carried out using a CAM Scan MX2500 Scanning 

Electron Microscope (SEM) equipped with LaB6 cathode, at the Dipartamento di Geoscienze 

of the Università di Padova (Italy), and a QUANTA 400 environmental SEM equipped with 

EDAX EDS (ultrathin window) and Li(Si) detectors, at the Centro de Instrumentación 

Científica (CIC) of the Universidad de Granada (Spain). 

The major element composition of glass in remelted MI was analyzed with Jeol JXA 

8200 and Cameca SX-50 Electron Microprobes (EMP) at the Dipartimento di Scienze della 
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Terra (Università di Milano) and Dipartimento di Geoscienze (Università di Padova), 

respectively. To minimize alkali loss and changes in major elemental ratios, two analytical 

conditions were used as recommended by Morgan and London (1996, 2005). Sodium, K, Al 

and Si were analyzed first (and concurrently in the case of the Jeol JXA 8200), using a beam 

current and beam diameter of 2 nA and 1 µm, respectively, and accelerating voltages of 15 

kV (Jeol JXA 8200) or 20 kV (Cameca SX-50). The elements Fe, Mn, Mg, Ti, Ca, P, F and 

Cl were analyzed afterwards with 15-kV, 20-nA, 1-µm (Jeol JXA 8200) or 20-kV, 20-nA, 1-

µm (Cameca SX-50) beams. Counting times were 10 s on peak for all elements (except Fe, 

Mg and F with 20 s), and 10 s (Cameca SX-50) or 2 s (Jeol JXA 8200) on background. 

Matrix reduction used the PAP correction algorithm (Pouchou and Pichoir 1985). Analyses 

were corrected using anhydrous and hydrated haplogranite glasses of known composition as 

secondary standards (Morgan and London 2005). The standards were analyzed at the start 

and end of each analytical session using similar working conditions. Sodium loss was 

estimated as ≈20 % relative during these analyses. Initial estimates of water concentrations in 

glass were calculated by the difference of electron microprobe totals from 100% (Table 2). 

Morgan and London (1996) and Acosta-Vigil et al. (2003) showed that using the above 

analytical methods on granitic glasses, the accuracy of H2O by difference is better than ±10% 

relative for H2O concentrations in the range of 2-10 wt%. 

After a detailed optical and SEM investigation of the experimental run products to check 

for MI homogeneity and absence of cracks in the host Grt, we identified 26 remelted 

nanogranitoids within 8 Grt crystals appropriate to conduct a detailed determination of H2O 

concentrations in experimental glasses. Analyses of H2O were performed by Nano Secondary 

Ion Mass Spectrometry (NanoSIMS) using the Cameca NanoSIMS 50 at the Muséum 

National d’Histoire Naturelle of Paris. Polished experimental capsules with MI exposed on 

the Grt surface and standard glasses were mounted in In to reduce H background in the 
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analysis chamber (Aubaud et al. 2007). Melt inclusions were identified through images of 

28Si–,  39K16O– and 56Fe16O– secondary ions. For each of the analyses, we first performed a 

pre-sputtering step on a 3 x 3 µm2 surface area for 2 minutes with a 400 pA primary Cs+ 

beam to remove the gold coating, surface contamination and to reach a steady state sputtering 

regime. Then a primary beam of 37 pA was used for data acquisition. Data were acquired by 

rastering a 3 x 3 µm2 surface area and collecting only ions from the inner 1 x 1 µm2 (beam 

blanking mode) to reduce surface contamination. Each analysis is a stack of 200 cycles, a 

cycle being 1.024 s long. 16OH– (used as a proxy for H2O), 28Si–, 39K16O– and 56Fe16O– were 

recorded simultaneously in multicollection mode. We checked that the 16OH–/28Si– ratio was 

stable during MI analyses. Secondary ions were collected by electron multipliers with a dead 

time of 44 ns. Mass resolution was set to 8000 to resolve any mass interference on the 

selected ions. Several of the analyzed MI were large enough to conduct replicated analyses. 

Three leucogranitic glasses with well-known H2O concentrations, varying between ≈0-7 

wt%, were used for NanoSIMS calibration (Fig. 3): glass DL reported in Acosta-Vigil et al. 

(2003) with H2O=6.5 wt%; glass LGB1 from Behrens and Jantos (2001) with H2O=4.9 wt% 

(uncertainties in these analyses are ± 13% relative); and the almost anhydrous glass B from 

Morgan and London (2005) with H2O=300 ± 42 ppm. Data corrections using the 

aforementioned calibration, and error calculations, were performed using the R program 

(Graybill 1976). Although errors combine counting statistic and uncertainty of the calibration 

curve (Fig. 3), the errors reported in Table 3 are dominated by the latter, which corresponds 

to a prediction interval at 68%. During the NanoSIMS sessions, the vacuum in the analysis 

chamber remained between 2.5 and 5 x 10-10 Torr. The detection limit for water was around 

650 ppm. 

The precise hydrogen concentrations of the three reference samples used in the 

calibration curve reported above were measured by Elastic Recoil Detection Analysis 
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(ERDA). This method has been used as a reference for H determination in various materials, 

including geological samples with a large range of H2O concentrations from several wt% to 

hundreds of ppm in nominally anhydrous minerals (Raepsaet et al. 2008; Aubaud et al. 2009; 

Bureau et al. 2009; Withers et al. 2012). Analyses were conducted at the Nuclear Microprobe 

of CEA Saclay (Khodja et al. 2001), using the 3.75 MV Van de Graaff single stage 

accelerator from HVEE which delivered a 3 MeV 4He+ incident beam with a size of 12 x 3 

µm2 and a current of 950 pA, that impinged the target at a grazing angle of 15°. Ejected H 

atoms were collected in a silicon barrier detector placed at 30° from the incident beam and at 

50 mm from the surface of the sample, protected against the backscattered He ions by a 15 

µm Al filter. Homogeneous regions of analysis, excluding cracks or bubbles in the glass, 

were selected by mapping the major components using Particle Induced X-Ray emission 

(PIXE) and backscattered helium ions spectroscopy (Rutherford Backscattering, RBS). 

Results 

Microstructures of remelted nanogranitoids 

All exposed MI from the experimental runs (850 to 800 ºC) show glass (former melt). The 

extent of melting, however, is variable regardless of temperature and microstructural location 

of MI. Exposed remelted MI vary in size from ≈5 to 200 µm and, in addition of glass, they 

commonly have Als and, less frequently Gr, Zrn, Rt, Sp and Mnz crystals. The large size of 

the crystals compared to the MI, and the low solubility of these minerals in granitic melts 

(e.g. Watson and Harrison 1983; Montel 1993; Acosta-Vigil et al. 2003; Stepanov et al. 

2012; Boehnke et al. 2013), indicates that they are solid inclusions (i.e. were already present 

during the entrapment of the MI) and hence are not expected to dissolve into the melt during 

the experiments (Table 1). In fact, these minerals are commonly present in most of the 

starting material, i.e. the unmelted MI, sometimes with clear microstructures indicating their 
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accidental nature (Fig. 2e, and Barich et al. 2014). Among the potential daughter minerals 

(i.e. those that commonly constitute major or minor minerals in granitoid rocks), Bt and Qtz 

are the most commonly present in the studied remelted MI (Table 1). Hereafter, 

“rehomogenized MI” refers to MI that after experimental remelting: (i) have negative crystal 

(or at least regular) shape with no decrepitation cracks; (ii) show no reaction with the host 

Grt, such as recrystallization of the Grt or crystallization of new minerals at the MI-Grt 

interface; and (iii) is formed by glass ± accidental minerals, with no reactions between 

accidental minerals and melt, and no coexisting vapor –i.e. bubbles (Danyushevsky et al. 

2002; Audetat and Lowenstern 2013). Conversely, “remelted MI” refers to MI having glass 

but lacking some or all of the above characteristics. 

The first experiments, conducted at 850 °C, showed few rehomogenized MI and 

abundant disequilibrium microstructures (Figs. 4a-d). Melt inclusions failed to re-

homogenize as attested by the presence of: (i) frequent daughter crystals; (ii) reaction 

between accidental Als and melt to form St (Als is never rimmed by St in the starting 

materials, see Barich et al., 2014); (iii) irregular MI walls; and (iv) thin (≈1-10 µm) 

recrystallized Grt domains at the Grt-MI boundary, indicated by variation of grey tone in 

BSE images with respect to the rest of the starting Grt (Table 1). Within MI, euhedral rims of 

St grow on, and replace Als after reaction with the melt, which may have produced a change 

in the composition of the originally trapped melt. This reaction, together with the presence of 

recrystallized Grt, decrepitation cracks and irregular MI boundaries, suggest that these 

inclusions were overheated. 

Experiments conducted at 825 ºC also show a low proportion of apparently 

rehomogenized MI and abundant disequilibrium microstructures as those described above, 

i.e. persistence of daughter minerals, reaction of Als+melt to St, irregular MI walls, presence 

of offshots and recrystallization of Grt at the Grt-MI boundaries (Figs. 4e-h, Table 1). No 
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clear differences between microstructures in remelted MI at the cores and rims of large Grt 

crystals have been observed, and hence 825 ºC (at 1.5 GPa) is not the appropriate 

homogenization temperature for MI at any of the microstructural locations.  

Remelted nanogranitoids at 800 °C show a much closer approach to equilibrium (Figs. 

4i-l). With respect to the higher T experiments, the proportion of apparently rehomogenized 

MI increases (up to ≈35 %), Als appears stable and is not replaced by St, walls of MI are 

mostly regular and many of them show negative crystal shapes, and offshots are nearly 

absent (Table 1). No microstructural differences have been observed among the different 

locations, except for the case of MI within small Grt that seem somewhat further from 

equilibrium compared to MI at cores and rims or large Grt. 

Composition of glass in remelted nanogranoids 

We have conducted a total of 172 EMP glass analyses on 81 remelted/rehomogenized MI, 

from which 94 of the analyses have been initially used to investigate the composition of 

anatectic melt; the rest of analyses show clear signals of contamination by either the host Grt 

or minerals present within the MI, with e.g. SiO2 <60 wt%, Al2O3 >20 wt% and 

FeOt+MgO+TiO2 >7 wt%. These 94 analyses are shown in Fig. 5new, where the rough 

negative correlation between NaO2 and ASI, and the very low NaO2 concentrations and very 

high ASI values of some analyses seem to indicate severe alkali loss during electron 

microprobe analyses. Hence we have only selected about 70 analyses showing NaO2 ≥2 wt% 

and ASI ≤1.5 (see Acosta-Vigil et al. 2003 for ASI values of granitic melts at equilibrium 

with a variety of frequent peraluminous minerals in crustal rocks) to calculate the mean glass 

compositions of Table 2 and plot in diagrams of Figs. 5 and 6. These analyses include glasses 

from both remelted and rehomogenized MI, and have moderate to strongly peraluminous 

granitoid compositions [ASI≈1.05-1.50, mean=1.31; ASI=mol. Al2O3/(CaO+Na2O+K2O)], 

with mostly high SiO2 (≈62-74 wt%, mean=66 wt%), low FeO+MgO+TiO2 (≈1-4 wt%, 
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mean=2.4 wt%), and variable CaO, alkalis and H2O concentrations (reported values are on a 

hydrous basis; Table 2). They distribute into two distinct compositional groups. Type I MI 

show low concentrations of CaO (≈0.3-1.0 wt%, mean=0.66 wt%), variable though mostly 

low H2O (≈2-8 wt%, mean=6 wt%; H2O by difference), higher K2O (≈2.0-6.5 wt%, 

mean=4.5 wt%) and K# [mean=0.58; K#=mol. K2O/(K2O+Na2O)] and lower Mg# [≈0.30; 

Mg#=mol. MgO/(MgO+FeOt)] (Fig. 5). These glasses are granitic in composition (Fig. 6a) 

and, in Qtz-Or-Ab normative pseudoternary diagrams, they plot in the vicinity of H2O-

undersaturated haplogranitic eutectics and Qtz-Or cotectic lines (Fig. 6b) as most of the 

previously analyzed glassy MI and rehomogenized nanogranitoids reported in the literature 

(Cesare et al., 2015; Bartoli et al. in press). Type II MI have moderate to high CaO (≈1.5-3.5 

wt%, mean=2.44 wt%), high H2O (8-15 wt%, mean=12 wt%; H2O by difference), lower K2O 

(≈1.0-2.5 wt%, mean=1.72 wt%) and K# (≈0.35) and higher Mg# (≈0.40). These glasses are 

granodioritic, trondhjemitic and tonalitic in composition (Fig. 6a) and, unlike most of the 

previously analyzed natural or experimental glasses coming from the partial melting of 

metasedimentary rocks, they plot far from the haplogranitic eutectics and surprisingly close 

to the Qtz-Ab sideline of the normative Qtz-Or-Ab pseudoternary diagram (Fig. 6b). In 

addition, they define a broad trend parallel to the Qtz-Ab join. 

When glass within large single MI is analyzed in two or more locations, it shows a rather 

homogeneous composition, and hence each of the analyzed remelted and rehomogenized MI 

pertains to either type I or type II. The two compositional groups of MI are unrelated to the 

location of glass either in remelted or rehomogenized MI. Instead, and although there is still 

some degree of uncertainty, these groups appear to be mostly related to the microstructural 

location of the MI. Thus, type I is mostly formed by MI coming from the cores of large Grt, 

whereas type II is mostly constituted by MI present at the rims of large Grt and within small 

Grt (see below). 
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The H2O concentrations of glass in remelted and rehomogenized MI determined by 

NanoSIMS span a wide range of values between ≈3-14 wt% (Table 3). Figure 7 compares 

glass H2O concentrations measured by NanoSIMS and estimated by EMP-difference. For the 

majority of analyzed MI (≈60 %) the two techniques provide quite similar results, as 

differences between both methods are ≤30% relative, in good agreement with results from 

previous analyses of MI by NanoSIMS (Bartoli et al. 2014). However, a group of analyzed 

MI shows concentrations of H2O by difference much higher (≥40 % relative) than those by 

NanoSIMS (Fig. 7). This discrepancy has been mainly observed in MI located in the 

proximity of large Grt cavities produced during sample polishing. Because the 16OH– and 

28Si– signals were rather constant during analysis of MI away from these cavities, but 

variable during analysis of MI close to the cavities, we ascribe the large differences between 

H2O concentrations by both methods to NanoSIMS instrumental instability associated with 

the presence of Grt cavities. Nevertheless, the NanoSIMS analyses confirm the EMP H2O 

estimates, and in particular the high H2O content of type II MI. 

Discussion 

P-T conditions of anatexis at Jubrique  

The microstructures of the experimental run products show that the frequency of 

disequilibrium features increases from 800 ºC to 825-850 ºC (Table 1, Fig. 4). 

Disequilibrium features include: (i) the presence of rather irregular and ragged boundaries 

between MI and host Grt, as opposed to straight, negative crystal shape boundaries; (ii) the 

change in composition of the host Grt at the boundaries with MI with respect to the starting 

composition, indicated by the variation in grey tones of BSE images and implying Grt-melt 

chemical interaction during the experiment (e.g. Perchuk et al., 2008); (iii) the destabilization 

of accidental Als to form St at the contact with melt; (iv) the presence of offshots, suggesting 
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decrepitation; and (v) the presence of abundant partially resorbed daughter minerals. Except 

for the presence of daughter minerals and rare offshots, none of these features have been 

observed in the natural starting material (Barich et al. 2014). Concomitantly, there is a 

decrease in the proportion of apparently rehomogenized MI with increasing temperature, 

from 20-35% at 800 ºC to 15-25% at 825 and 850 ºC. In the only previous systematic study 

on the remelting of nanogranitoids from anatectic terranes, Bartoli et al (2013b) have found 

that the proportion of rehomogenized MI at the P-T conditions of anatexis of the rocks was 

≈30-40%. They found equilibrium features in the rehomogenized MI such as negative crystal 

shape, absence of any daughter granitic minerals or bubbles, and presence of glass with 

typical leucogranitic compositions similar to those produced in experimental studies on 

crustal anatexis. The MI studied by Bartoli et al. (2013a, 2013b) are much smaller (≈5-15 µm 

across) than those studied from Jubrique. Considering the much larger size of MI in Jubrique, 

and the increase in rehomogenization timeframes with MI size found in previous studies on 

the remelting of crystallized MI (e.g. Thomas et al. 1996; Thomas and Klemm 1997; Bodnar 

and Student 2006; Zajacz et al. 2008), we conclude that: (i) the proportion of 20-35 % 

rehomogenized MI found at 800 ºC is relatively high and likely large enough for the glass 

analyses to be representative of the trapped melt compositions; and (ii) the temperature of 

800 ºC is likely close to that of anatexis and MI entrapment in the studied rocks. 

We have not considered variations in P during this experimental study. Among all the 

previously reported peak P for these rocks, including classical thermobarometic and phase 

equilibria modeling calculations (Loomis 1972; Torres-Roldán 1981; Balanyá et al. 1997; 

Argles et al. 1999; Platt et al. 2003; Barich et al. 2014; Massonne 2014), we have chosen the 

upper value of 1.5 GPa provided by most of these studies, expecting that this imposed 

external P on the Grt chips would prevent decrepitation of included MI due to increase in 

their internal P upon heating (e.g. Bartoli et al. 2013a). Following most of the previous 
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petrologic studies, this P would correspond to that of generation of Grt cores (Loomis 1972; 

Torres-Roldán 1981; Argles et al. 1999; Platt et al. 2003; Barich et al. 2014). These 

experiments, conducted at a single P, cannot provide precise constraints on the P of anatexis 

of the host former migmatites. However, experimental results support that the P of anatexis 

should have been similar to or lower than 1.5 GPa, given that a relatively large number of 

studied MI did not decrepitate and rehomogenized at a combination of expected P-T 

anatectic conditions from previous thermobarometric studies, i.e. 800 ºC and 1.5 GPa. It is 

unclear yet if departures of remelting experimental P above that of anatexis and MI 

entrapment would produce Grt-melt chemical interactions and hence lack of re-

homogenization. Scarce experimental results on this issue suggest that departures of >0.5 

GPa produce interaction of host Grt with melt and crystallization of new minerals (Ferrero et 

al. 2015). Nevertheless, further detailed experiments considering variations in P are required 

to investigate the effect of P on MI rehomogenization.  

Significance of glass compositions in remelted nanogranitoids 

The major element concentrations of analyzed glasses define two compositional groups 

corresponding to leucogranites (type I) and granodiorites, trondhjemites and tonalites 

(hereafter granodiorites-to-tonalites; type II) (Table 2, Figs. 5, 6). Compared to the 

leucogranitic, granodioritic-to-tonalitic glasses represent the majority of the EMP analyses 

(80%), found within most (75%) of analyzed remelted/rehomogenized nanogranitoids. 

Considering the 850 ºC and, in particular, 800 ºC experiments (as the latter show the highest 

proportion of homogenized MI of all conducted experiments), virtually all of granodioritic-

to-tonalitic glasses come from remelted/rehomogenized MI located at the rims of large Grt or 

within small Grt, interpreted to record the latest stages in the evolution of the migmatites 

(Loomis 1972; Torres-Roldán 1981; Argles et al. 1999; Platt et al. 2003; Barich et al. 2014; 

Massonne 2014); whereas all of leucogranitic glasses come from remelted/rehomogenized 
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MI located at the cores of large Grt, interpreted to record the first documented stages in the 

evolution of these rocks (op. cit.) (Figs. new# and 6a). However, analyzed 

remelted/rehomogenized MI in the 825 ºC experiments shed some doubts on the previous 

statement, as most glasses analyzed in a fragment of apparently large Grt core (AB3-Core8) 

are granodioritic-to-tonalitic, whereas half of glass analyses from a fragment of apparently 

large Grt rim are leucogranitic (AB2-Rim8; see Table 2 and Fig. 6a). Garnet in the studied 

rocks are zoned with respect to the major elements, with large Grt cores having generally 

lower Ca concentrations (CaO ≈1.0-2.5 wt%) with respect to large Grt rims or small Grt 

(CaO ≈1.5-5.0 wt%; Barich et al. 2014, and Fig. new#). To investigate the presence of 

granodioritic-to-tonalitic MI and leucogranitic MI apparently at the cores and rims, 

respectively, of large Grt used in the 825 ºC experiments (Table 2), we have analyzed the 

composition of garnet at the very contact with these MI, and compared with the composition 

of garnets at the contact with MI in the 850 ºC and 800 ºC experiments (Table 3) and garnets 

analyzed from the starting rock JU-8 (Table new#, Fig. new#). The major element 

compositions of these garnets are not expected to have been modified by diffusion during the 

short 24-h remelting experiments (e.g. Caddick et al. 2010). We found that all garnets next to 

MI in the 825 ºC experiments show intermediate compositions between previously analyzed 

garnet cores and rims (CaO ≈ 2.0-2.5 wt%), whereas garnets in the 850 ºC and 800 ºC 

experiments show either high CaO concentrations when they are next to type II MI, or low 

CaO when next to type I MI. Hence we conclude that an explanation for the apparently 

contradictory information provided by glass analyses in the 825 ºC experiments is that garnet 

fragments used in these experiments were mixed core-rim domains.  

Leucogranitic compositions have been so far the most frequently reported in (i) bulk rock 

analyses of leucosomes in metasedimentary/metagranitic migmatites (e.g. Sawyer 1996, 

2008; and references therein), (ii) glass analyses from the relatively few reported studies of 



 

22 
 

glassy MI in metasedimentary/metagranitic anatectic enclaves and rehomogenized 

nanogranitoids in migmatites and granulites (Cesare et al. 1997; 2003; 2009; 2011, 2015; 

Acosta-Vigil et al. 2007; Ferrero et al. 2012, 2014, 2015; Bartoli et al. 2013a, 2013b, in 

press), and (iii) glass analyses in experimental studies on the fluid-absent anatexis of 

metasedimentary rocks (e.g. Vielzeuf and Holloway 1988; Patiño Douce and Johnston 1991; 

Montel and Vielzeuf 1997; Patiño Douce and Harris 1998; Schmidt et al. 2004; Hermann and 

Spandler 2008). The latter tell us that leucogranitic melts are typically produced by the 

dehydration melting of micas in metasedimentary/metagranitoid rocks, at moderate-to-low 

H2O activities, within a wide range of mostly crustal P-T (≈750-900 ºC, 0.1-1.3 GPa), but 

also at mantle conditions (up to 1000 ºC, 2.5-5 GPa) (op. cit.). 

Compared to leucogranitic, granodioritic-to-tonalitic compositions are less frequently 

reported in bulk rock analyses of leucosomes and/or dikes/veins from metasedimentary 

anatectic terrains (e.g. Whitney and Irving 1994; García-Casco and Torres-Roldán 1996; 

Newton et al. 1998; Sawyer 2008; Morfin et al. 2013; Barich et al. 2014). A single study of 

rehomogenized MI in Grt from metasedimentary migmatites at the base of the Greater 

Himalayan Sequence (Kali Gandaki, Nepal) has recently reported tonalitic glass 

compositions (Carosi et al. 2015). Experimental granodioritic-to-tonalitic, CaO-rich, #K-low 

melts have been obtained during the H2O-saturated partial melting of metasedimentary rocks 

at ≈675-775 ºC and 0.6-1.4 GPa (Patiño Douce and Harris 1998; García-Casco et al. 2003; 

Ferri et al. 2009). Accordingly, some of the studies of metasedimentary migmatites (e.g. 

Whitney and Irving 1994) and the recent study on the rehomogenization of MI by Carosi et 

al. (2015) have interpreted that granodioritic-to-tonalitic compositions represent primary 

melts formed during H2O-saturated anatexis. However, granodioritic-to-tonalitic melts have 

also been produced during experimental partial melting of intermediate-to-basic rocks under 

a wide range of conditions: H2O-saturated to fluid-absent, ≈775-1150 ºC and 0.5-3.2 GPa 
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(e.g. Helz 1976; Rutter and Wyllie 1988; Hacker 1990; Rushmer 1991; Rapp et al. 1991; 

Wolf and Wyllie 1994; Rapp and Watson 1995; Skjerlie and Patiño Douce 2002; Schmidt et 

al. 2004; Laurie and Stevens 2012; Quian and Hermann 2013).  

Implications for the geodynamic evolution of lower continental crust in the Betic Cordillera 

The majority (75%) of the analyzed remelted/rehomogenized MI have granodioritic-to-

tonalitic glass, and most of the reported analyses (Table 2, Figs. 5, 6) come from apparently 

rehomogenized MI showing either glass or glass plus solid inclusions such as Als or Zrn. We 

notice that, in addition to granodioritic-to-tonalitic MI, Barich et al. (2014) have described 

the presence of tonalitic veins crosscutting the main foliation of mylonitic gneisses, 

emplaced/segregated during the late history of these rocks. Based on experimental work (see 

above), one interpretation is that granodioritic-to-tonalitic melts at Jubrique may represent 

exotic liquids formed during the HP partial melting of a deeper intermediate-to-mafic source, 

and later segregated and intruded into metasedimentary rocks of upper crustal levels. 

However, the presence of granodioritic-to-tonalitic melt as inclusions within one of the major 

mineral components of these rocks, i.e. Grt, rather indicate that these veins were produced 

during anatexis of the host rock with growth of peritectic Grt. In addition, the existence of 

tonalitic veins is compatible in composition and timing with the presence of granodioritic-to-

tonalitic MI at the rims of large garnets and within small garnets, recording the late magmatic 

history of these former migmatites. Hence we conclude that granodioritic-to-tonalitic glasses 

represent primary compositions of melt formed at some point during the anatectic history of 

these rocks, and particularly during partial melting under H2O-rich fluid-present conditions 

(see above, and compare with Patiño-Douce and Harris 1998; García-Casco et al. 2003; Ferri 

et al. 2009). 

Remelted/rehomogenized MI showing glass with leucogranitic composition are much 

less abundant, and their significance and meaning is more difficult to ascertain. On one hand, 
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they may record former melts produced during partial melting of host migmatites under 

fluid-absent conditions (see above), and hence compositions of former MI may be 

compatible with two different melting scenarios of their host polymetamorphic 

metasedimentary rocks. On the other hand, leucogranitic glasses may result from some other 

processes, such as (i) the incomplete remelting of the MI, as MI were not rehomogenized in 

all cases; or (ii) the entrapment of a compositionally heterogeneous melt present in the 

partially melted rock, i.e. analyzed glasses represent natural compositions controlled by the 

kinetics of melting, and not by chemical equilibrium at constant P-T-X. We discuss below 

these two interpretations. 

Although some leucogranitic glasses come from the analysis of partially crystalline MI 

(Fig. 4l), none of these partially remelted MI show any visible Ca-rich daughter mineral 

whose dissolution could produce, upon complete rehomogenization, a compositional shift 

towards Ca-rich, K-poor concentrations. In addition, the first melt fractions formed upon 

heating of a granitoid assemblage (i.e. the nanogranitoid) are expected to have the highest 

H2O concentrations, as opposed to the lowest H2O concentrations shown by leucogranitic 

glasses. Moreover, some of the leucogranitic glasses come from rehomogenized MI (Fig. 4j). 

Hence, and although the total number of rehomogenenized leucogranitic MI is small, we 

conclude that leucogranitic melts have not been artificially produced during the experiments 

due to incomplete remelting of MI, but were present at some point during the anatectic 

history of the studied migmatites. 

The trapping of a heterogeneous melt during a single, Grt-producing melting event in the 

migmatites is an explanation for the presence of leucogranitic and granodioritic-to-tonalitic 

melt compositions. The current experimental study has been conducted using a single rock 

sample (JU-8) but several (≈10) Grt crystals coming from a decimetric fragment of that 

sample. Distances between the studied Grt in this rock, therefore, are at least in the range of a 
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few cm. Melt interconnetion in partially melted metasedimentary rocks is expected to occur 

at the temperatures registered in the migmatites (≥800 ºC; Laporte et al. 1997; Clemens 2006, 

and references therein). However, the interconnected melt is likely to be compositionally 

heterogeneous due to the sluggish diffusion of Si and Al in melt (Acosta-Vigil et al. 2006a, 

2012b). Thus, melt in the vicinity of dissolving quartz crystals will be enriched in SiO2 with 

respect to that close to feldspars, which will have higher Al2O3 concentrations (Acosta-Vigil 

et al. 2006b). Conversely, H2O concentrations and, particularly, the ratio of alkalis 

throughout an interconnected melt network will show much lower concentration gradients, 

due to fast diffusion of these components in melt (Acosta-Vigil et al. 2002, 2006a, 2006b; 

Morgan et al. 2008). These diffusion systematics of granite melts can explain the linear trend 

shown by granodioritic-to-tonalitic glass compositions in the normative Qtz-Or-Ab 

pseudoternary diagram, i.e. the presence of melts with very similar alkali ratios, but variable 

Si/Al ratios (compare with Fig. 10 of Acosta-Vigil et al. 2006b). However, they cannot 

explain the coexistence of granodioritic-to-tonalitic and leucogranitic melts, constituting two 

well-defined clusters in the Qtz-Or-Ab and Harker diagrams, and characterized by 

contrasting H2O concentrations and alkali ratios (Figs. 5, 6).  

The above evidence, together with the distribution of leucogranitic MI at the cores of 

large Grt and granodioritic-to-tonalitic MI at the rims of large Grt or within small Grt (Table 

2 and Fig. new#, though considering some degree of uncertainty in this statement), may 

suggest that former migmatites at Jubrique represented by the mylonitic gneisses underwent 

two melting events under contrasting fluid regimes. The first anatectic event occurred under 

fluid-absent and low aH2O conditions, and was recorded by MI at the cores of large Grt. A 

second partial melting event took place in the presence of H2O-rich fluids and was recorded 

by MI at the rims of large Grt and in small Grt of the matrix. Several geochronological 

studies have shown that basement rocks in the studied area of the Alpine Betic Cordillera still 
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preserve Variscan minerals and/or fabrics (Acosta 1998; Sanchez-Rodríguez 1998; Zeck and 

Whitehouse 1999, 2002; Acosta-Vigil et al. 2014; Sánchez-Navas et al. 2014). In particular, 

studies of the mylonitic gneisses of Jubrique have shown that Grt cores likely formed during 

the Variscan orogeny, whereas Grt rims and the matrix of the rock may have crystallized 

during the Alpine (Whitehouse and Platt 2003; Massonne 2014; see also Montel et al. 2000; 

Rossetti et al. 2010). We tentatively suggest that the two reported glass compositions may 

reflect the anatexis of the host migmatites during two different orogenic events. Variscan 

anatexis formed the cores of large Grt and their leucogranitic MI, likely during the fluid-

absent melting of Bt at ≈800 ºC and 1.4-1.2 GPa. Alpine anatexis would have produced the 

growth of Grt rims on previous Variscan Grt and formed new small Grt in the matrix, 

together with the trapped granodioritic-to-tonalitic MI. This occurred during H2O-rich fluid-

present melting of the rock at similar T but lower P conditions (≈800 ºC and 0.8-0.6 GPa), 

and associated with an incongruent melting reaction involving Grt growth. 

Significance for melt inclusion studies, and crustal melting and differentiation 

Cesare et al. (1997) and Acosta-Vigil et al. (2007, 2010) have documented variations in the 

composition of glass (former melt) in metasedimentary anatectic enclaves (El Hoyazo, S 

Spain) as a function of microstructural location. Thus, glassy MI in Pl have different 

composition from glassy MI in Grt, which are also different in composition from matrix 

glass. Acosta-Vigil et al. (2007, 2010, 2012a) have interpreted these variations as reflecting 

the evolution of melt composition during prograde anatexis and, on this basis, have provided 

information on the nature and mechanisms of anatexis in the enclaves during the prograde 

path, including melting reactions, fluid regimes, degree of melt homogeneity and extent of 

melt-residue equilibration. Later on, and during the novel studies of glassy and remelted MI 

in migmatites and granulites, Bartoli et al. (2015) have documented variations in the 

composition of MI in Grt, this time as a function of the structural location of the host 
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quartzo-feldspathic migmatite in the anatectic sequence of Ojén (Ronda, S Spain), and in turn 

of the T of formation. Thus, MI in Grt of lower T metatexites have lower FeO and H2O 

concentrations and #K values compared to MI in Grt of higher T diatexites which, coupled 

with a thorough microstructural and petrologic work, was interpreted to reflect the evolution 

of primary anatectic melt along the prograde anatectic path. The current study shows that MI 

composition may vary as a function of its microstructural location within a single mineral in 

the rock, i.e. Grt cores versus Grt rims. All the above indicates that MI compositions may 

vary systematically and at different scales: within a single mineral, among different minerals 

in the same rock, and among crystals of a single mineral present in a particular protolith 

throughout a migmatitic sequence showing variations in T of formation. Hence, as in the 

studies of MI in anatectic enclaves (Acosta-Vigil et al. 2010), detailed investigation of MI in 

migmatites and granulites can supply information on the evolution of melt composition 

during the anatectic history of the rocks, as well as on the nature and mechanisms of the 

process of partial melting (see also Cesare et al. 2015). 

Recently, Aranovich et al. (2014) have discussed the potential role of the mantle as a 

source of extra heat and fluids to drive anatexis at deep crustal levels, melt ascent, and in turn 

differentiation of the continental crust. Among the problems raised by these authors against a 

pure closed-system (except for the extraction of granitic liquids), fluid-absent incongruent 

melting model for anatexis and crustal differentiation, there is the presence of non-granitic –

e.g. tonalitic– leucosomes in migmatites. The presence of low H2O concentration 

leucogranitic MI at the cores of Grt in the studied former migmatites suggests that 

supracrustal rocks such as metapelites were brought to the bottom of a thickened continental 

crust where they partially melted under fluid-absent conditions. These observations are in 

accordance with a fluid-absent melting model for anatexis and, in the case of melt extraction 

and ascent, crustal differentiation. However, based on the experimental results of Patiño 
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Douce and Harris (1998), García-Casco et al. (2003) and Ferri et al. (2009), granodioritic-to-

tonalitic MI at the rims of Grt also indicates that anatexis at mid-to-lower levels of an 

average continental crust took place in the presence of an H2O-rich fluid (see also Carosi et 

al. 2015). Aranovich et al. (2013, 2014) have proposed that strongly saline (Cl-rich), H2O-

bearing fluids (brines) coming from a variety of mechanisms (e.g. metamorphic fluids 

enriched in salts by loss of H2O during hydration reactions, or the crystallization and 

degassing of basaltic magmas; see also Yardley and Graham 2002) are important agents for 

open-system metamorphism and anatexis of deep crustal levels. The analyses of glass 

reported in this contribution show very low proportions of halogens and high concentrations 

of H2O (Table 2). Glasses show H2O concentrations at or close to saturation at the inferred P 

or melting, ≈0.8-0.6 GPa. Also, they have virtually no F, and Cl concentrations (0.10-0.15 

wt%) are much lower than the saturation values obtained in experimental granite melts 

coexisting with brines reported by Aranovich et al. (2013) (0.17-0.71 wt%) or Safonov et al. 

(2014) (0.24-1.63 wt%). In addition, melt compositions produced during melting of a granite 

assemblage in the presence of brines at or near the solidus correspond to K-rich 

metaluminous granites (Aranovich et al. 2013; Fig. #b), and not to peraluminous 

granodiorites, trondhmemites or tonalites. Increasing the proportion of melt will displace this 

composition towards that of the bulk rock (blue symbol in Fig. b). Hence we conclude that 

compositions of the granodioritic-to-tonalitic glasses do not support anatexis due to the 

presence of saline, but H2O-rich fluids. 

Based on theoretical grounds and the inferred temperatures and initial H2O 

concentrations of high level granitoid magmas, Clemens and Watkins (2001) have concluded 

that the processes of crustal melting, genesis of granitoid magmas and crustal differentiation 

occurs in the absence of excess pervasive fluid. However, the only direct available method to 

actually measure in situ the proportion and nature of volatiles in primary crustal melts, and 
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hence to obtain precise information on the fluid regime during crustal anatexis, is the detailed 

study of MI (Cesare et al. 2011, 2015; Bartoli et al. 2013a, 2014). And the current 

investigation tells us that H2O-rich fluid-present partial melting did occur in metapelites of 

the middle-to-lower continental crust of the Ronda area. In fact, recent studies on anatexis are 

beginning to stress the importance of water-present melting in the continental crust (Sawyer 

2010; Weinberg and Hasalovà 2015). Another issue, beyond the scope of this contribution, is 

the origin of the fluids. Crustal rocks in general, and metapelites in particular, have only a 

very low proportion (<0.1 wt%) of free H2O at temperatures slightly below their solidus, due 

to the strong reduction of porosity during prograde regional metamorphism (Yardley 2009). 

Hence, H2O-rich fluid-present anatexis seem to indicate the influx of external fluids into the 

deep continental crust. Although previous investigations have provided some ways to 

introduce hydrous fluids of crustal origin into deep continental crust rocks (e.g. Brown 2010; 

Sawyer 2010; Weinberg and Hasalovà 2014), the mechanisms of fluid infiltration during 

high-grade metamorphisms are not sufficiently understood yet (Brown 2013).  

Concluding remarks 

Electron microprobe and NanoSIMS analyses of experimental glass in remelted and 

rehomogenized nanogranitoids within Grt suggest that former migmatites located at the 

bottom of the Jubrique crustal unit (Betic Cordillera, S Spain), and in contact with the 

underlying Ronda peridotite slab, underwent two melting events under contrasting fluid 

regimes. In both cases Grt constituted a peritectic mineral that trapped droplets of the 

primary anatectic melt. Water, however, was either provided by the fluid-absent incongruent 

melting of micas (perhaps Ms, surely Bt) during the first anatectic event (represented by 

leucogranitic MI at the cores of large Grt), or possibly introduced in the system as an external 

fluid during the second anatectic event (represented by granodioritic to tonalitic MI at the 
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rims of large Grt). Nevertheless, further detailed studies are necessary to confirm the 

systematic distribution of leucogranitic and granodioritic-to-tonalitic MI at the cores and rims 

of large Grt crystals, respectively. This contribution demonstrates the potential of detailed 

studies of MI in migmatites and granulites for the investigation of crustal anatexis and 

continental crust generation and differentiation (see Cesare et al. 2015). 
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Figure 1. Geological maps of the Betic-Rif orogen and the studied area in the western Betic 

Cordillera of S Spain (modified from Balanyá et al., 1997; including data from Martín-

Algarra, 1987; Sanz de Galdeano and Andreu, 1995; Mazzoli and Martín-Algarra, 2011; 

Tubía et al., 2013). The location of the studied sample JU-8 is shown as a yellow star. 

Figure 2. (a, b) Field appearance of the studied mylonitic gneiss (a, former migmatites; white 

arrow shows a cm-thick former leucosome; dark and light grey arrows show Kfs and Grt 

porphyroclasts, respectively; the hammer is 29 cm long) and a dm-thick leucocratic band 

parallel to the main foliation of the rock (b, former leucosome; grey and white arrows 

show Grt crystals and schlierens, respectively; the coin is 25 mm across; modified after 

Fig. 2c of Barich et al., 2014).  (c, d) Plane-polarized light photomicrographs of small 

crystallized MI (c), mostly found towards the cores of large Grt crystals and in the vicinity 

of single Ky and Rt inclusions; and large crystallized MI (d), generally found towards the 

rims of large Grt crystals, and spatially associated with single Sil and Ilm inclusions. 

Although most of the inclusions in (c) and (d) correspond to crystallized MI, red arrows 

show those most clearly distinguishable. White arrows in (d) shows inclusions of Sil 

needles. Notice that, in the case of the large MI, individual minerals are clearly visible and 

some of them can be identified under the optical microscope. This is not the case of the 

small MI, whose polycrystalline nature is clearly visible under cross-polarized light (small 

inset in Fig. 2c, representing an enlargement of two of the MI shown in Fig. 2c), though 

minerals cannot be identified under the microscope. (e) Backscattered electron (BSE) 

scanning electron microscope (SEM) image of a large crystallized MI in Grt (modified 

after Fig. 6g of Barich et al., 2014). Notice the indentation of Gr within the MI walls 

(white arrow), indicating the accidental nature of this mineral in this MI. 

Figure 3. NanoSIMS calibration curve determined for the analytical session during which the 

experimental glasses in remelted and rehomogenized MI were analyzed. This linear 
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calibration is based on the H2O concentrations measured by Elastic Recoil Detection 

Analysis (ERDA) on the reference glasses B, LGB1 and DL. OH/Si stands for 16OH–/28Si– 

determined by NanoSIMS. Replicates on each standard are reported. The spread shows 

the reproducibility during the analytical session. See text for details. 

Figure 4. BSE-SEM images of remelted and rehomogenized nanogranitoids in several 

microstructural locations, after quenching of the 850 ºC (a-d), 825 ºC (e-h) and 800 ºC (i-

l) experiments. 850 ºC and 825 ºC experiments show a low proportion of rehomogenized 

MI (d, h), and abundant disequilibrium microstructures such as frequent partially 

dissolved daughter crystals (a, c, f, g), reaction between accidental Als and melt to form St 

(b, e), irregular MI walls (a, b, c, g), presence of offshots (b, f) and recrystallized Grt at 

the boundary with the MI (a, g). 800 ºC experiments show a larger number of 

rehomogenized MI (i-k), but also remelted MI (l). 

Figure 5. Harker diagrams of analyzed glasses in remelted and rehomogenized 

nanogranitoids. The complete EMP glass dataset (≈80 analyses, see Table 2) includes 

analyses affected by some contamination from host Grt and/or trapped minerals (shown 

by somewhat higher FeOt, MgO and TiO2 concentrations, and ASI values) and extensive 

Na loss (manifested by values of ASI>1.5 after correction for Na loss). These values have 

not been considered when calculating mean concentrations (Table 2), and the 

corresponding analyses have not been included in Figs. 5 and 6. Dark and light grey areas 

represent the compositional domains corresponding to type I and type II MI, respectively. 

The bulk rock compositions of the studied mylonitic gneiss and the thick leucocratic band 

shown in Fig. 2b (former leucosome) are shown in blue and red symbols, respectively. 

Notice that the former leucosome contrasts in composition with respect to any of the 

analyzed MI. In particular, the leucosome is nominally anhydrous and show much higher 

FeO+MgO+TiO2 concentrations (≈6 wt%). 
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Figure 6. Anorthite-Or-Ab (a) and Qtz-Or-Ab (b) pseudoternary normative diagrams (in 

wt%) for the analyzed glasses in remelted and rehomogenized nanogranitoids. Dark and 

light grey areas, and blue and red symbols, as in Fig. 5. Notice that although the analyzed 

leucosome have Qtz-Or-Ab proportions similar to type I MI, leucosome and MI are 

different in composition (Fig. 5). 

Figure 7. Comparison between H2O concentrations estimated by the difference method (100-

electron microprobe totals) and measured by NanoSIMS on experimental glass from the 

same MI. 
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