THE COMPOSITION SERIES OF IDEALS OF THE PARTIAL-ISOMETRIC CROSSED PRODUCT BY SEMIGROUP OF ENDOMORPHISMS

Sriwulan Adji and Saeid Zahmatkesh

Abstract

Let Γ^{+}be the positive cone in a totally ordered abelian group Γ, and α an action of Γ^{+}by extendible endomorphisms of a C^{*}-algebra A. Suppose I is an extendible α-invariant ideal of A. We prove that the partial-isometric crossed product $\mathcal{I}:=I \times{ }_{\alpha}^{\text {piso }} \Gamma^{+}$embeds naturally as an ideal of $A \times{ }_{\alpha}^{\text {piso }} \Gamma^{+}$, such that the quotient is the partial-isometric crossed product of the quotient algebra. We claim that this ideal \mathcal{I} together with the kernel of a natural homomorphism $\phi: A \times{ }_{\alpha}^{\text {piso }} \Gamma^{+} \rightarrow A \times{ }_{\alpha}^{\text {iso }} \Gamma^{+}$gives a composition series of ideals of $A \times{ }_{\alpha}^{\text {piso }} \Gamma^{+}$studied by Lindiarni and Raeburn.

1. Introduction

Let $\left(A, \Gamma^{+}, \alpha\right)$ be a dynamical system consisting of the positive cone Γ^{+}in a totally ordered abelian group Γ, and an action $\alpha: \Gamma^{+} \rightarrow \operatorname{End} A$ of Γ^{+}by extendible endomorphisms of a C^{*}-algebra A. A covariant representation of the system $\left(A, \Gamma^{+}, \alpha\right)$ is defined for which the semigroup of endomorphisms $\left\{\alpha_{s}: s \in \Gamma^{+}\right\}$are implemented by partial isometries, and then the associated partial-isometric crossed product C^{*}-algebra $A \times{ }_{\alpha}^{\text {piso }} \Gamma^{+}$, generated by a universal covariant representation, is characterized by the property that its nondegenerate representations are in a bijective correspondence with covariant representations of the system. This generalizes the covariant isometric representation theory: the theory that uses isometries to represent the semigroup of endomorphisms in a covariant representation of the system. We denoted by $A \times{ }_{\alpha}^{\text {iso }} \Gamma^{+}$for the corresponding isometric crossed product.

Suppose I is an extendible α-invariant ideal of A, then $a+I \mapsto \alpha_{x}(a)+I$ defines an action of Γ^{+}by extendible endomorphisms of the quotient algebra A / I. It is well-known that the isometric crossed product $I \times{ }_{\alpha}^{\text {iso }} \Gamma^{+}$sits naturally

[^0]as an ideal in $A \times{ }_{\alpha}^{\text {iso }} \Gamma^{+}$such that $\left(A \times{ }_{\alpha}^{\text {iso }} \Gamma^{+}\right) /\left(I \times{ }_{\alpha}^{\text {iso }} \Gamma^{+}\right) \simeq A / I \times{ }_{\alpha}^{\text {iso }} \Gamma^{+}$. We show that this result is valid for the partial-isometric crossed product.

Moreover if $\phi: A \times{ }_{\alpha}^{\text {piso }} \Gamma^{+} \rightarrow A \times{ }_{\alpha}^{\text {iso }} \Gamma^{+}$is the natural homomorphism given by the canonical universal covariant isometric representation of $\left(A, \Gamma^{+}, \alpha\right)$ in $A \times{ }_{\alpha}^{\text {iso }} \Gamma^{+}$, then $\operatorname{ker} \phi$ together with the ideal $I \times_{\alpha}^{\text {piso }} \Gamma^{+}$give a composition series of ideals of $A \times{ }_{\alpha}^{\text {piso }} \Gamma^{+}$, from which we recover the structure theorems of [7]. Let us now consider the framework of [7]. A system that consists of the C^{*}-subalgebra $A:=B_{\Gamma^{+}}$of $\ell^{\infty}\left(\Gamma^{+}\right)$spanned by the functions 1_{s} satisfying

$$
1_{s}(t)= \begin{cases}1 & \text { if } t \geq s \\ 0 & \text { otherwise }\end{cases}
$$

and the action $\tau: \Gamma^{+} \rightarrow$ End $B_{\Gamma^{+}}$given by the translation on $\ell^{\infty}\left(\Gamma^{+}\right)$. We choose an extendible τ-invariant ideal I to be the subalgebra $B_{\Gamma^{+}, \infty}$ spanned by $\left\{1_{x}-1_{y}: x<y \in \Gamma^{+}\right\}$. Then the composition series of ideals of $B_{\Gamma^{+}} \times{ }_{\tau}^{\text {piso }}$ Γ^{+}, that is given by the two ideals $\operatorname{ker} \phi$ and $B_{\Gamma^{+}, \infty} \times{ }_{\tau}^{\text {piso }} \Gamma^{+}$, produces the large commutative diagram in [7, Theorem 5.6]. This result shows that the commutative diagram in [7, Theorem 5.6] exists for any totally ordered abelian subgroup (not only for subgroups of \mathbb{R}), and that we understand clearly where the diagram comes from.

Next, if we consider a specific semigroup Γ^{+}such as the additive semigroup \mathbb{N} in the group of integers \mathbb{Z}, then the large commutative diagram gives a clearer information about the ideals structure of $\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$. We can identify that the left-hand and top exact sequences in diagram [7, Theorem 5.6] are indeed equivalent to the extension of the algebra $\mathcal{K}\left(\ell^{2}\left(\mathbb{N}, \mathbf{c}_{0}\right)\right)$ of compact operators on the Hilbert module $\ell^{2}\left(\mathbb{N}, \mathbf{c}_{0}\right)$ by $\mathcal{K}\left(\ell^{2}(\mathbb{N})\right)$ provided by the algebra $\mathcal{K}\left(\ell^{2}(\mathbb{N}, \mathbf{c})\right)$ of compact operators on $\ell^{2}(\mathbb{N}, \mathbf{c})$. Moreover it is known that $\operatorname{Prim} \mathcal{K}\left(\ell^{2}(\mathbb{N}, \mathbf{c})\right) \simeq$ $\operatorname{Prim}\left(\mathcal{K}\left(\ell^{2}(\mathbb{N})\right) \otimes \mathbf{c}\right) \simeq \operatorname{Prim} \mathbf{c}$ is homeomorphic to $\mathbb{N} \cup \infty$. Together with a knowledge about the primitive ideal space of the Toeplitz C^{*}-algebra generated by the unilateral shift, our theorem on the composition series of ideals of $\mathbf{c} \times{ }_{\tau}^{\text {piso }}$ \mathbb{N} provides a complete description of the topology on the primitive ideal space of $\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$.

We begin with a section containing background material about the partialisometric crossed product by semigroups of extendible endomorphisms. In Section 3, we prove the existence of a short exact sequence of partial-isometric crossed products, which generalizes [2, Theorem 2.2] of the semigroup \mathbb{N}. Then we consider this and the other natural exact sequence described earlier in [4], to get the composition series of ideals in $A \times{ }_{\alpha}^{\text {piso }} \Gamma^{+}$.

We proceed to Section 4 by applying our results in Section 3 to the distinguished system $\left(B_{\Gamma^{+}}, \Gamma^{+}, \tau\right)$ and the extendible τ-invariant ideal $B_{\Gamma^{+}, \infty}$ of $B_{\Gamma^{+}}$. It can be seen from our Proposition 4.1 that the large commutative diagram of [7, Theorem 5.6] remains valid for any subgroup Γ of a totally ordered abelian group. Finally in the last section we describe the topology of primitive ideal space of $\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$ by using this large diagram.

2. Preliminaries

A bounded operator V on a Hilbert space H is called an isometry if $\|V(h)\|=$ $\|h\|$ for all $h \in H$, which is equivalent to $V^{*} V=1$. A bounded operator V on a Hilbert space H is called a partial isometry if it is isometry on $(\operatorname{ker} V)^{\perp}$. This is equivalent to $V V^{*} V=V$. If V is a partial isometry, then so is the adjoint V^{*}, where as for an isometry V, the adjoint V^{*} may not be an isometry unless V is unitary. Associated to a partial isometry V, there are two orthogonal projections $V^{*} V$ and $V V^{*}$ on the initial space $(\operatorname{ker} V)^{\perp}$ and on the range $V H$ respectively. In a C^{*}-algebra A, an element $v \in A$ is called an isometry if $v^{*} v=1$ and a partial isometry if $v v^{*} v=v$.

An isometric representation of Γ^{+}on a Hilbert space H is a map $S: \Gamma^{+} \rightarrow$ $B(H)$ which satisfies $S_{x}:=S(x)$ is an isometry, and $S_{x+y}=S_{x} S_{y}$ for all $x, y \in \Gamma^{+}$. So an isometric representation of \mathbb{N} is determined by a single isometry S_{1}. Similarly a partial-isometric representation of Γ^{+}on a Hilbert space H is a map $V: \Gamma^{+} \rightarrow B(H)$ which satisfies $V_{x}:=V(x)$ is a partial isometry, and $V_{x+y}=V_{x} V_{y}$ for all $x, y \in \Gamma^{+}$. Note that the product $V W$ of two partial isometries V and W is a partial isometry precisely when $V^{*} V$ commutes with $W W^{*}[7$, Proposition 2.1]. Thus a partial isometry V is called a power partial isometry if V^{n} is a partial isometry for every $n \in \mathbb{N}$, so a partial-isometric representation of \mathbb{N} is determined by a single power partial isometry V_{1}. If V is a partial-isometric representation of Γ^{+}, then every $V_{x} V_{x}^{*}$ commutes with $V_{t} V_{t}^{*}$, and so does $V_{x}^{*} V_{x}$ with $V_{t}^{*} V_{t}$.

Now we consider a dynamical system $\left(A, \Gamma^{+}, \alpha\right)$ consisting of a C^{*}-algebra A, an action α of Γ^{+}by endomorphisms of A such that $\alpha_{0}=$ id. Because we deal with non unital C^{*}-algebras and non unital endomorphisms, we require every endomorphism α_{x} to be extendible to a strictly continuous endomorphism $\bar{\alpha}_{x}$ on the multiplier algebra $M(A)$ of A. This happens precisely when there exists an approximate identity $\left(a_{\lambda}\right)$ in A and a projection $p_{\alpha_{x}} \in M(A)$ such that $\alpha_{x}\left(a_{\lambda}\right)$ converges strictly to $p_{\alpha_{x}}$ in $M(A)$.

Definition 2.1. A covariant isometric representation of $\left(A, \Gamma^{+}, \alpha\right)$ on a Hilbert space H is a pair (π, S) of a nondegenerate representation $\pi: A \rightarrow B(H)$ and an isometric representation of $S: \Gamma^{+} \rightarrow B(H)$ such that $\pi\left(\alpha_{x}(a)\right)=S_{x} \pi(a) S_{x}^{*}$ for all $a \in A$ and $x \in \Gamma^{+}$.

An isometric crossed product of $\left(A, \Gamma^{+}, \alpha\right)$ is a triple $\left(B, j_{A}, j_{\Gamma^{+}}\right)$consisting of a C^{*}-algebra B, a canonical covariant isometric representation $\left(j_{A}, j_{\Gamma^{+}}\right)$in $M(B)$ which satisfies the following:
(i) for every covariant isometric representation (π, S) of $\left(A, \Gamma^{+}, \alpha\right)$ on a Hilbert space H, there exists a nondegenerate representation $\pi \times S$: $B \rightarrow B(H)$ such that $(\pi \times S) \circ j_{A}=\pi$ and $(\overline{\pi \times S}) \circ j_{\Gamma^{+}}=S$; and
(ii) B is generated by $j_{A}(A) \cup j_{\Gamma^{+}}\left(\Gamma^{+}\right)$, we actually have

$$
B=\overline{\operatorname{span}}\left\{j_{\Gamma^{+}}(x)^{*} j_{A}(a) j_{\Gamma^{+}}(y): x, y \in \Gamma^{+}, a \in A\right\}
$$

Note that a given system $\left(A, \Gamma^{+}, \alpha\right)$ could have a covariant isometric representation (π, S) only with $\pi=0$. In this case the isometric crossed product yields no information about the system. If a system admits a non trivial covariant representation, then the isometric crossed product does exist, and it is unique up to isomorphism: if there is such a covariant isometric representation $\left(t_{A}, t_{\Gamma^{+}}\right)$of $\left(A, \Gamma^{+}, \alpha\right)$ in a C^{*}-algebra C, then there is an isomorphism of C onto B which takes $\left(t_{A}, t_{\Gamma^{+}}\right)$into $\left(j_{A}, j_{\Gamma^{+}}\right)$. Thus we write the isometric crossed product B as $A \times{ }_{\alpha}^{\text {iso }} \Gamma^{+}$.

The partial-isometric crossed product of $\left(A, \Gamma^{+}, \alpha\right)$ is defined in a similar fashion involving partial-isometries instead of isometries.

Definition 2.2. A covariant partial-isometric representation of $\left(A, \Gamma^{+}, \alpha\right)$ on a Hilbert space H is a pair (π, S) of a nondegenerate representation $\pi: A \rightarrow$ $B(H)$ and a partial-isometric representation $S: \Gamma^{+} \rightarrow B(H)$ of Γ^{+}such that $\pi\left(\alpha_{x}(a)\right)=S_{x} \pi(a) S_{x}^{*}$ for all $a \in A$ and $x \in \Gamma^{+}$. See in Remark 2.3 that this equation implies $S_{x}^{*} S_{x} \pi(a)=\pi(a) S_{x}^{*} S_{x}$ for $a \in A$ and $x \in \Gamma^{+}$. Moreover, [7, Lemma 4.2] shows that every (π, S) extends to a partial-isometric covariant representation $(\bar{\pi}, S)$ of $\left(M(A), \Gamma^{+}, \bar{\alpha}\right)$, and the partial-isometric covariance is equivalent to $\pi\left(\alpha_{x}(a)\right) S_{x}=S_{x} \pi(a)$ and $S_{x} S_{x}^{*}=\bar{\pi}\left(\bar{\alpha}_{x}(1)\right)$ for $a \in A$ and $x \in \Gamma^{+}$.

A partial-isometric crossed product of $\left(A, \Gamma^{+}, \alpha\right)$ is a triple $\left(B, j_{A}, j_{\Gamma^{+}}\right)$consisting of a C^{*}-algebra B, a canonical covariant partial-isometric representation $\left(j_{A}, j_{\Gamma^{+}}\right)$in $M(B)$ which satisfies the following:
(i) for every covariant partial-isometric representation (π, S) of $\left(A, \Gamma^{+}, \alpha\right)$ on a Hilbert space H, there exists a nondegenerate representation $\pi \times S: B \rightarrow B(H)$ such that $(\pi \times S) \circ j_{A}=\pi$ and $(\overline{\pi \times S}) \circ j_{\Gamma^{+}}=S$; and
(ii) B is generated by $j_{A}(A) \cup j_{\Gamma^{+}}\left(\Gamma^{+}\right)$, we actually have

$$
B=\overline{\operatorname{span}}\left\{j_{\Gamma^{+}}(x)^{*} j_{A}(a) j_{\Gamma^{+}}(y): x, y \in \Gamma^{+}, a \in A\right\}
$$

Unlike the theory of isometric crossed product: every system $\left(A, \Gamma^{+}, \alpha\right)$ admits a non trivial covariant partial-isometric representation (π, S) with π faithful [7, Example 4.6]. In fact [7, Proposition 4.7] shows that a canonical covariant partial-isometric representation $\left(j_{A}, j_{\Gamma^{+}}\right)$of $\left(A, \Gamma^{+}, \alpha\right)$ exists in the Toeplitz algebra \mathcal{T}_{X} associated to a discrete product system X of Hilbert bimodules over Γ^{+}, which (i) and (ii) are fulfilled, and it is universal: if there is such a covariant partial-isometric representation $\left(t_{A}, t_{\Gamma^{+}}\right)$of $\left(A, \Gamma^{+}, \alpha\right)$ in a C^{*}-algebra C that satisfies (i) and (ii), then there is an isomorphism of C onto B which takes $\left(t_{A}, t_{\Gamma^{+}}\right)$into $\left(j_{A}, j_{\Gamma^{+}}\right)$. Thus we write the partial-isometric crossed product B as $A \times{ }_{\alpha}^{\text {piso }} \Gamma^{+}$.

Remark 2.3. Our special thanks go to B. Kwaśniewski for showing us the proof arguments in this remark. Assuming (π, S) is covariant, then by C^{*}-norm equation we have $\left\|\pi(a) S_{x}^{*}-S_{x}^{*} \pi\left(\alpha_{x}(a)\right)\right\|=0$, therefore $\pi(a) S_{x}^{*}=S_{x}^{*} \pi\left(\alpha_{x}(a)\right)$ for all $a \in A$ and $x \in \Gamma^{+}$, which means that $S_{x} \pi(a)=\pi\left(\alpha_{x}(a)\right) S_{x}$ for all
$a \in A$ and $x \in \Gamma^{+}$. So $S_{x}^{*} S_{x} \pi(a)=S_{x}^{*} \pi\left(\alpha_{x}(a)\right) S_{x}=\left(\pi\left(\alpha_{x}\left(a^{*}\right)\right) S_{x}\right)^{*} S_{x}=$ $\left(S_{x} \pi\left(a^{*}\right)\right)^{*} S_{x}=\pi(a) S_{x}^{*} S_{x}$.

More details on the proof are available in [6, Lemma 1.2].

3. The short exact sequence of partial-isometric crossed products

Theorem 3.1. Suppose that $\left(A \times{ }_{\alpha}^{\text {piso }} \Gamma^{+}, i_{A}, V\right)$ is the partial-isometric crossed product of a dynamical system $\left(A, \Gamma^{+}, \alpha\right)$, and I is an extendible α-invariant ideal of A. Then there is a short exact sequence

$$
\begin{equation*}
0 \longrightarrow I \times_{\alpha}^{\text {piso }} \Gamma^{+} \xrightarrow{\mu} A \times \times_{\alpha}^{\text {piso }} \Gamma^{+} \xrightarrow{\gamma} A / I \times_{\tilde{\alpha}}^{\text {piso }} \Gamma^{+} \longrightarrow 0, \tag{3.1}
\end{equation*}
$$

where μ is an isomorphism of $I \times_{\alpha}^{\text {piso }} \Gamma^{+}$onto the ideal

$$
\mathcal{D}:=\overline{\operatorname{span}}\left\{V_{x}^{*} i_{A}(i) V_{y}: i \in I, x, y \in \Gamma^{+}\right\} \text {of } A \times_{\alpha}^{\text {piso }} \Gamma^{+} .
$$

If $q: A \rightarrow A / I$ is the quotient map, i_{I}, W denote the maps $I \rightarrow I \times{ }_{\alpha}^{\text {piso }} \Gamma^{+}, W:$ $\Gamma^{+} \rightarrow M\left(I \times{ }_{\alpha}^{\text {piso }} \Gamma^{+}\right)$, and similarly for $i_{A / I}, U$ the maps $A / I \rightarrow A / I \times{ }_{\tilde{\alpha}}^{\text {piso }} \Gamma^{+}$, $\Gamma^{+} \rightarrow M\left(A / I \times_{\tilde{\alpha}}^{\mathrm{piso}} \Gamma^{+}\right)$, then

$$
\mu \circ i_{I}=\left.i_{A}\right|_{I}, \quad \bar{\mu} \circ W=V \quad \text { and } \quad \gamma \circ i_{A}=i_{A / I} \circ q, \quad \bar{\gamma} \circ V=U .
$$

Proof. We make some minor adjustment to the proof of [1, Theorem 3.1] for partial isometries. First, we check that \mathcal{D} is indeed an ideal of $A \times{ }_{\alpha}^{\text {piso }} \Gamma^{+}$. Let $\xi=V_{x}^{*} i_{A}(i) V_{y} \in \mathcal{D}$. Then $V_{s}^{*} \xi$ is trivially contained in \mathcal{D}, and computations below show that $i_{A}(a) \xi$ and $V_{s} \xi$ are all in \mathcal{D} for $a \in A$ and $s \in \Gamma^{+}$:

$$
\begin{aligned}
i_{A}(a) \xi & =i_{A}(a) V_{x}^{*} i_{A}(i) V_{y}=\left(V_{x} i_{A}\left(a^{*}\right)\right)^{*} i_{A}(i) V_{y} \\
& =\left(i_{A}\left(\alpha_{x}\left(a^{*}\right)\right) V_{x}\right)^{*} i_{A}(i) V_{y}=V_{x}^{*} i_{A}\left(\alpha_{x}(a) i\right) V_{y} \\
V_{s} \xi & =V_{s} V_{x}^{*} i_{A}(i) V_{y}=V_{s}\left(V_{s}^{*} V_{s} V_{x}^{*} V_{x}\right) V_{x}^{*} i_{A}(i) V_{y} \\
& =V_{s} V_{u}^{*} V_{u} V_{x}^{*} i_{A}(i) V_{y}, \quad u:=\max \{s, x\} \\
& =\left(V_{s} V_{s}^{*} V_{u-s}^{*}\right)\left(V_{u-x} V_{x} V_{x}^{*}\right) i_{A}(i) V_{y}=V_{u-s}^{*}\left(V_{u} V_{u}^{*} V_{u} V_{u}^{*}\right)\left(V_{u-x} i_{A}(i)\right) V_{y} \\
& =V_{u-s}^{*} V_{u} V_{u}^{*} i_{A}\left(\alpha_{u-x}(i)\right) V_{u-x} V_{y}=V_{u-s}^{*} \bar{i}_{A}\left(\bar{\alpha}_{u}(1)\right) i_{A}\left(\alpha_{u-x}(i)\right) V_{u-x+y} .
\end{aligned}
$$

This ideal \mathcal{D} gives us a nondegenerate homomorphism $\psi: A \times_{\alpha}^{\text {piso }} \Gamma^{+} \rightarrow$ $M(D)$ which satisfies $\psi(\xi) d=\xi d$ for $\xi \in A \times{ }_{\alpha}^{\text {piso }} \Gamma^{+}$and $d \in \mathcal{D}$. Let j_{I} : $I \xrightarrow{i_{A}} A \times{ }_{\alpha}^{\text {piso }} \Gamma^{+} \xrightarrow{\psi} M(\mathcal{D})$, and $S: \Gamma^{+} \xrightarrow{V} M\left(A \times{ }_{\alpha}^{\text {piso }} \Gamma^{+}\right) \xrightarrow{\bar{\psi}} M(\mathcal{D})$. We use extendibility of ideal I to show j_{I} is nondegenerate. Take an approximate identity $\left(e_{\lambda}\right)$ for I, and let $\varphi: A \rightarrow M(I)$ be the homomorphism satisfying $\varphi(a) i=a i$ for $a \in A$ and $i \in I$. Then $i_{A}\left(\alpha_{s}\left(e_{\lambda}\right) i\right)$ converges in norm to $i_{A}\left(\bar{\varphi}\left(\bar{\alpha}_{s}\left(1_{M(A)}\right)\right) i\right)$. However

$$
i_{A}\left(\bar{\varphi}\left(\bar{\alpha}_{s}\left(1_{M(A)}\right)\right) i\right)=\bar{i}_{A}\left(\bar{\alpha}_{s}\left(1_{M(A)}\right)\right) i_{A}(i)=V_{s} V_{s}^{*} i_{A}(i) .
$$

So $i_{A}\left(\alpha_{s}\left(e_{\lambda}\right) i\right)$ converges in norm to $V_{s} V_{s}^{*} i_{A}(i)$. Since $j_{I}\left(e_{\lambda}\right) V_{s}^{*} i_{A}(i) V_{t}=$ $V_{s}^{*} i_{A}\left(\alpha_{s}\left(e_{\lambda}\right) i\right) V_{t}$ by covariance, it follows that $j_{I}\left(e_{\lambda}\right) V_{s}^{*} i_{A}(i) V_{t}$ converges in norm to $V_{s}^{*} i_{A}(i) V_{t}$. We can similarly show that $V_{s}^{*} i_{A}(i) V_{t} j_{I}\left(e_{\lambda}\right)$ converges in
norm to $V_{s}^{*} i_{A}(i) V_{t}$. Thus $j_{I}\left(e_{\lambda}\right) \rightarrow 1_{M(\mathcal{D})}$ strictly, and hence j_{I} is nondegenerate.

We claim that the triple $\left(\mathcal{D}, j_{I}, S\right)$ is a partial-isometric crossed product of $\left(I, \Gamma^{+}, \alpha\right)$. A routine computations show the covariance of $\left(j_{I}, S\right)$ for $\left(I, \Gamma^{+}, \alpha\right)$. Suppose now (π, T) is a covariant representation of $\left(I, \Gamma^{+}, \alpha\right)$ on a Hilbert space H. Let $\rho: A \xrightarrow{\varphi} M(I) \xrightarrow{\bar{\pi}} B(H)$. Then by extendibility of ideal I, that is $\overline{\left.\alpha\right|_{I}} \circ \varphi=\varphi \circ \alpha$, the pair (ρ, T) is a covariant representation of $\left(A, \Gamma^{+}, \alpha\right)$. The restriction $\left.(\rho \times T)\right|_{\mathcal{D}}$ to \mathcal{D} of $\rho \times T$ is a nondegenerate representation of \mathcal{D} which satisfies the requirement $\left.(\rho \times T)\right|_{\mathcal{D}} \circ j_{I}=\pi$ and $\overline{\left.(\rho \times T)\right|_{\mathcal{D}}} \circ S=T$. Thus the triple $\left(\mathcal{D}, j_{I}, S\right)$ is a partial-isometric crossed product for $\left(I, \Gamma^{+}, \alpha\right)$, and we have the homomorphism $\mu=\left.i_{A}\right|_{I} \times V$.

Next we show the exactness. Let Φ be a nondegenerate representation of $A \times{ }_{\alpha}^{\text {piso }} \Gamma^{+}$with kernel \mathcal{D}. Since $I \subset \operatorname{ker} \Phi \circ i_{A}$, we can have a representation $\tilde{\Phi}$ of A / I, which together with $\bar{\Phi} \circ V$ is a covariant partial-isometric representation of $\left(A / I, \Gamma^{+}, \tilde{\alpha}\right)$. Then $\tilde{\Phi} \times(\bar{\Phi} \circ V)$ lifts to Φ, and therefore $\operatorname{ker} \gamma \subset \operatorname{ker} \Phi=\mathcal{D}$.

Corollary 3.2. Let $\left(A, \Gamma^{+}, \alpha\right)$ be a dynamical system, and I an extendible α-invariant ideal of A. Then there is a commutative diagram:

Proof. The three row exact sequences follow from [4], the middle column from Theorem 3.1 and the right column exact sequence from [1]. By inspection on the spanning elements, one can see that $\mu\left(\operatorname{ker} \phi_{I}\right)$ is an ideal of $\operatorname{ker} \phi_{A}$ and $\mu^{\text {iso }} \circ \phi_{I}=\phi_{A} \circ \mu$, thus first and second rows commute. Then Snake Lemma gives the commutativity of all rows and columns.

4. The example

We consider a dynamical system $\left(B_{\Gamma^{+}}, \Gamma^{+}, \tau\right)$ consisting of a unital $C^{*}-$ subalgebra $B_{\Gamma^{+}}$of $\ell^{\infty}\left(\Gamma^{+}\right)$spanned by the set $\left\{1_{s}: s \in \Gamma^{+}\right\}$of characteristic functions 1_{s} of $\left\{x \in \Gamma^{+}: x \geq s\right\}$, the action τ of Γ^{+}on $B_{\Gamma^{+}}$is given by $\tau_{x}\left(1_{s}\right)=1_{s+x}$. The ideal $B_{\Gamma^{+}, \infty}=\overline{\operatorname{span}}\left\{1_{i}-1_{j}: i<j \in \Gamma^{+}\right\}$is an extendible τ-invariant ideal of $B_{\Gamma^{+}}$. Then we want to show in Proposition 4.1 that an
application of Corollary 3.2 to the system $\left(B_{\Gamma^{+}}, \Gamma^{+}, \tau\right)$ and the ideal $B_{\Gamma^{+}, \infty}$ gives [7, Theorem 5.6].

The crossed product $B_{\Gamma^{+}} \times_{\tau}^{\text {iso }} \Gamma^{+}$is a universal C^{*}-algebra generated by the canonical isometric representation t of Γ^{+}: every isometric representation w of Γ^{+}gives a covariant isometric representation $\left(\pi_{w}, w\right)$ of $\left(B_{\Gamma^{+}}, \Gamma^{+}, \tau\right)$. Suppose $\left\{\varepsilon_{x}: x \in \Gamma^{+}\right\}$is the usual orthonormal basis in $\ell^{2}\left(\Gamma^{+}\right)$, and let $T_{s}\left(\varepsilon_{x}\right)=\varepsilon_{x+s}$ for every $s \in \Gamma^{+}$. Then $s \mapsto T_{s}$ is an isometric representation of Γ^{+}, and the Toeplitz algebra $\mathcal{T}(\Gamma)$ is the C^{*}-subalgebra of $B\left(\ell^{2}\left(\Gamma^{+}\right)\right)$generated by $\left\{T_{s}\right.$: $\left.s \in \Gamma^{+}\right\}$. So there exists a representation $\mathfrak{T}:=\pi_{T} \times T$ of $B_{\Gamma+} \times_{\tau}^{\text {iso }} \Gamma^{+}$on $\ell^{2}\left(\Gamma^{+}\right)$ such that $\mathfrak{T}\left(t_{x}\right)=T_{x}$ and $\mathfrak{T}\left(1_{x}\right)=T_{x} T_{x}^{*}$ for all $x \in \Gamma^{+}$. This representation is faithful by [3, Theorem 2.4]. Thus $B_{\Gamma^{+}} \times_{\tau}^{\text {iso }} \Gamma^{+}$and the Toeplitz algebra $\mathcal{T}(\Gamma)=\pi_{T} \times T\left(B_{\Gamma^{+}} \times{ }_{\tau}^{\text {iso }} \Gamma^{+}\right)$are isomorphic, and the isomorphism takes the ideal $B_{\Gamma^{+}, \infty} \times{ }_{\tau}^{\text {iso }} \Gamma^{+}$of $B_{\Gamma^{+}} \times{ }_{\tau}^{\text {iso }} \Gamma^{+}$onto the commutator ideal $\mathcal{C}_{\Gamma}=\overline{\operatorname{span}}\left\{T_{x}(1-\right.$ $\left.\left.T T^{*}\right) T_{y}^{*}: x, y \in \Gamma^{+}\right\}$of $\mathcal{T}(\Gamma)$.

Similarly, the crossed product $B_{\Gamma^{+}} \times{ }_{\tau}^{\text {piso }} \Gamma^{+}$has a partial-isometric version of universal property by [7, Proposition 5.1]: every partial-isometric representation v of Γ^{+}gives a covariant partial-isometric representation $\left(\pi_{v}, v\right)$ of $\left(B_{\Gamma^{+}}, \Gamma^{+}, \tau\right)$ with $\pi_{v}\left(1_{x}\right)=v_{x} v_{x}^{*}$, and then $B_{\Gamma^{+}} \times{ }_{\tau}^{\text {piso }} \Gamma^{+}$is the universal $C^{*}-$ algebra generated by the canonical partial-isometric representation v of Γ^{+}. Now since $x \mapsto T_{x}$ and $x \mapsto T_{x}^{*}$ are partial-isometric representations of Γ^{+}in the Toeplitz algebra $\mathcal{T}(\Gamma)$, there exist (by the universality) a homomorphism φ_{T} and $\varphi_{T^{*}}$ of $B_{\Gamma^{+}} \times_{\tau}^{\text {piso }} \Gamma^{+}$onto $\mathcal{T}(\Gamma)$.

Next consider the algebra $C(\hat{\Gamma})$ generated by $\left\{\lambda_{x}: x \in \Gamma\right\}$ of the evaluation maps $\lambda_{x}(\xi)=\xi(x)$ on $\hat{\Gamma}$. Let ψ_{T} and $\psi_{T^{*}}$ be the homomorphisms of $\mathcal{T}(\Gamma)$ onto $C(\hat{\Gamma})$ defined by $\psi_{T}\left(T_{x}\right)=\lambda_{x}$ and $\psi_{T^{*}}\left(T_{x}\right)=\lambda_{-x}$.

Proposition 4.1 ([7, Theorem 5.6]). Let Γ^{+}be the positive cone in a totally ordered abelian group Γ. Then the following commutative diagram exists:

where Ψ maps each generator $v_{x} \in B_{\Gamma^{+}} \times_{\tau}^{\text {piso }} \Gamma^{+}$to $\delta_{x}^{*} \in C^{*}(\Gamma) \simeq C(\hat{\Gamma})$.

Proof. Apply Corollary 3.2 to the system $\left(B_{\Gamma^{+}}, \Gamma^{+}, \tau\right)$ and the extendible ideal $B_{\Gamma^{+}, \infty}$. Let $Q^{\text {piso }}:=B_{\Gamma^{+}} / B_{\Gamma^{+}, \infty} \times{ }_{\tilde{\tau}}^{\text {piso }} \Gamma^{+}$and $Q^{\text {iso }}:=B_{\Gamma^{+}} / B_{\Gamma^{+}, \infty} \times \times_{\tilde{\tau}}^{\text {iso }} \Gamma^{+}$. Then we have:

We claim that exact sequences in this diagram and (4.1) are equivalent. The middle exact sequences of (4.1) and (4.2) are trivially equivalent via the isomorphism $\mathfrak{T}: B_{\Gamma^{+}} \times{ }_{\tau}^{\text {iso }} \Gamma^{+} \rightarrow \mathcal{T}(\Gamma)$. By viewing $B_{\Gamma^{+}}$as the algebra of functions that have limit, the map $f \in B_{\Gamma^{+}} \mapsto \lim _{x \in \Gamma^{+}} f(x)$ induces an isomorphism $B_{\Gamma^{+}} / B_{\Gamma^{+}, \infty} \rightarrow \mathbb{C}$, which intertwines the action $\tilde{\tau}$ and the trivial action id on \mathbb{C}. So $\left(B_{\Gamma^{+}} / B_{\Gamma^{+}, \infty}, \Gamma^{+}, \tilde{\tau}\right) \simeq\left(\mathbb{C}, \Gamma^{+}, \mathrm{id}\right)$. Moreover, \mathfrak{T} combines with the isomorphism $h: B_{\Gamma^{+}} / B_{\Gamma^{+}, \infty} \times{ }_{\tilde{\tau}}^{\text {iso }} \Gamma^{+} \rightarrow \mathbb{C} \times$ iso $\Gamma^{+} \rightarrow C^{*}(\Gamma) \simeq C(\hat{\Gamma})$ to identify the right-hand exact sequence equivalently to $0 \rightarrow \mathcal{C}_{\Gamma} \rightarrow \mathcal{T}(\Gamma) \xrightarrow{\psi_{\Psi^{*}}} C(\hat{\Gamma}) \rightarrow 0$.

For the bottom sequence, we consider the pair of

$$
\iota_{\mathbb{C}}: z \in \mathbb{C} \mapsto z 1_{\mathcal{T}(\Gamma)} \text { and } \iota_{\Gamma^{+}}: x \in \Gamma^{+} \mapsto T_{x}^{*} \in \mathcal{T}(\Gamma)
$$

It is a partial-isometric covariant representation, such that $\left(\mathcal{T}(\Gamma), \iota_{\mathbb{C}}, \iota_{\Gamma^{+}}\right)$is a partial-isometric crossed product of $\left(\mathbb{C}, \Gamma^{+}, \mathrm{id}\right)$. So we have an isomorphism

$$
\Upsilon: Q^{\text {piso }} \rightarrow \mathbb{C} \times \times_{\text {id }}^{\text {piso }} \Gamma^{+} \xrightarrow{\iota} \mathcal{T}(\Gamma) \text { in which } \Upsilon\left(i_{\Gamma^{+}}(x)\right)=T_{x}^{*} \text { for all } x
$$

and moreover if $\left(j_{Q}, u\right)$ denotes the canonical covariant partial-isometric representation of the system $\left(Q:=B_{\Gamma^{+}} / B_{\Gamma^{+}, \infty}, \Gamma^{+}, \tilde{\tau}\right)$ in $Q^{\text {piso }}$, then Υ satisfies the equations $\Upsilon\left(u_{x}\right)=T_{x}^{*}$ and $\Upsilon\left(j_{Q}\left(1_{x}+B_{\Gamma^{+}, \infty}\right)\right)=\iota_{\mathbb{C}}\left(\lim _{y} 1_{x}(y)\right)=1$ for all $x \in \Gamma^{+}$. To see $\Upsilon\left(\operatorname{ker} \phi_{Q}\right)=\mathcal{C}_{\Gamma}$, recall from [4, Proposition 2.3] that

$$
\operatorname{ker} \phi_{Q}:=\overline{\operatorname{span}}\left\{u_{x}^{*} j_{Q}(a)\left(1-u_{z}^{*} u_{z}\right) u_{y}: a \in Q, x, y, z \in \Gamma^{+}\right\}
$$

Since $\Upsilon\left(u_{x}^{*} j_{Q}(a)\left(1-u_{z}^{*} u_{z}\right) u_{y}\right)$ is a scalar multiplication of $T_{x}\left(1-T_{z} T_{z}^{*}\right) T_{y}^{*}$, therefore $\Upsilon\left(\operatorname{ker} \phi_{Q}\right)=\mathcal{C}_{\Gamma}$. Consequently the two exact sequences are equivalent:

$$
\begin{aligned}
0 \longrightarrow & \operatorname{ker} \phi_{Q} \\
\Upsilon \downarrow & Q^{\text {piso }} \xrightarrow{\phi_{Q}} Q^{\text {iso }} \longrightarrow 0 \\
0 \longrightarrow & h \downarrow \\
0 \longrightarrow & \mathcal{C}_{\Gamma} \longrightarrow \mathcal{T}(\Gamma) \xrightarrow{\psi_{T}} C(\hat{\Gamma}) \longrightarrow 0
\end{aligned}
$$

For the second column exact sequence, we note that the isomorphism \jmath : $Q^{\text {piso }} \simeq \mathbb{C} \times{ }_{\text {id }}^{\text {piso }} \Gamma^{+} \rightarrow \mathcal{T}(\Gamma)$ satisfies $\jmath \circ \gamma=\varphi_{T^{*}}$. This implies

$$
B_{\Gamma^{+}, \infty} \times{ }_{\tau}^{\text {piso }} \Gamma^{+} \simeq \operatorname{ker}(\jmath \circ \gamma)=\operatorname{ker} \varphi_{T^{*}},
$$

and therefore the second column sequence of diagram (4.1) is equivalent to $0 \rightarrow \operatorname{ker} \varphi_{T^{*}} \rightarrow B_{\Gamma^{+}} \times_{\tau}^{\text {piso }} \Gamma^{+} \rightarrow \mathcal{T}(\Gamma) \rightarrow 0$.

Next we are working for the first row. The homomorphism $\phi_{B_{\Gamma^{+}}}$in the following diagram

restricts to the homomorphism $\phi_{B_{\Gamma^{+}, \infty}}$ of the ideal $B_{\Gamma^{+}, \infty} \times_{\tau}^{\text {piso }} \Gamma^{+} \simeq \operatorname{ker} \varphi_{T^{*}}$ onto $B_{\Gamma^{+}, \infty} \times_{\tau}^{\text {iso }} \Gamma^{+} \simeq \mathcal{C}_{\Gamma}$. So the homomorphism $\varphi_{T} \mid: \operatorname{ker} \varphi_{T^{*}} \rightarrow \mathcal{C}_{\Gamma}$ has kernel $I:=\operatorname{ker} \varphi_{T^{*}} \cap \operatorname{ker} \varphi_{T}$, and therefore first row exact sequence of the two diagrams are indeed equivalent.

Finally we show that such Ψ exists. Consider $C(\hat{\Gamma}) \simeq C^{*}(\Gamma) \simeq \mathbb{C} \times_{i d} \Gamma$ is the C^{*}-algebra generated by the unitary representation $x \in \Gamma \mapsto \delta_{x} \in \mathbb{C} \times_{\text {id }} \Gamma$. Then we have a homomorphism $\pi_{\delta^{*}} \times \delta^{*}: B_{\Gamma^{+}} \times_{\tau}^{\text {piso }} \Gamma^{+} \rightarrow \mathbb{C} \times$ id Γ which satisfies $\pi_{\delta^{*}} \times \delta^{*}\left(v_{x}\right)=\delta_{x}^{*}$ for all $x \in \Gamma^{+}$, and hence it is surjective. By looking at the spanning elements of $\operatorname{ker} \varphi_{T}$ and $\operatorname{ker} \varphi_{T^{*}}$ we can see that these two ideals are contained in $\operatorname{ker}\left(\pi_{\delta^{*}} \times \delta^{*}\right)$, therefore $\mathcal{J}:=\operatorname{ker} \varphi_{T}+\operatorname{ker} \varphi_{T^{*}}$ must be also in $\operatorname{ker}\left(\pi_{\delta^{*}} \times \delta^{*}\right)$. For the other inclusion, let ρ be a unital representation of $B_{\Gamma^{+}} \times{ }_{\tau}^{\text {piso }} \Gamma^{+}$on a Hilbert space H_{ρ} with $\operatorname{ker} \rho=\mathcal{J}$. Then for $s \in \Gamma^{+}$we have $\rho\left(\left(1-v_{s} v_{s}^{*}\right)-\left(1-v_{s}^{*} v_{s}\right)\right)=0$ because $1-v_{s} v_{s}^{*} \in \operatorname{ker} \varphi_{T^{*}}$ and $1-v_{s}^{*} v_{s} \in \operatorname{ker} \varphi_{T}$ belong to \mathcal{J}. So $0=\rho\left(v_{s}^{*} v_{s}-v_{s} v_{s}^{*}\right)$, which implies that $\rho\left(v_{s}^{*} v_{s}\right)=\rho\left(v_{s} v_{s}^{*}\right)$. On the other hand the equation $\rho\left(\left(1-v_{s} v_{s}^{*}\right)+\left(1-v_{s}^{*} v_{s}\right)\right)=0$ gives $\rho\left(v_{s} v_{s}^{*}\right)=I$. Therefore $\rho\left(v_{s} v_{s}^{*}\right)=\rho\left(v_{s}^{*} v_{s}\right)=I$, and this means $\rho\left(v_{s}\right)$ is unitary for every $s \in \Gamma^{+}$. Consequently a representation $\tilde{\rho}: \mathbb{C} \times_{\mathrm{id}} \Gamma \rightarrow B\left(H_{\rho}\right)$ exists, and it satisfies $\tilde{\rho} \circ\left(\pi_{\delta^{*}} \times \delta^{*}\right)=\rho$. Thus $\operatorname{ker} \pi_{\delta^{*}} \times \delta^{*} \subset \operatorname{ker} \rho=\mathcal{J}$, and the composition $\pi_{\delta^{*}} \times \delta^{*}$ with the Fourier transform $C^{*}(\Gamma) \simeq C(\hat{\Gamma})$ is the wanted homomorphism Ψ.

5. The primitive ideals of $\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$

Suppose Γ^{+}is now the additive semigroup \mathbb{N}. The algebra $B_{\mathbb{N}}$ is conveniently viewed as the C^{*}-algebra \mathbf{c} of convergent sequences, the ideal $B_{\mathbb{N}, \infty}$ with \mathbf{c}_{0}, and the action τ of \mathbb{N} on \mathbf{c} is generated by the unilateral shift: $\tau_{1}\left(x_{0}, x_{1}, x_{2}, \ldots\right)=$ $\left(0, x_{0}, x_{1}, x_{2}, \ldots\right)$. The universal C^{*}-algebra $\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$ is generated by a power partial isometry $v:=i_{\mathbb{N}}(1)$. The Toeplitz algebra $\mathcal{T}(\mathbb{Z})$ is the C^{*}-subalgebra of $B\left(\ell^{2}(\mathbb{N})\right)$ generated by isometries $\left\{T_{n}: n \in \mathbb{N}\right\}$, where $T_{n}\left(e_{i}\right)=e_{n+i}$ on the set of usual orthonormal basis $\left\{e_{i}: i \in \mathbb{N} \cup\{0\}\right\}$ of $\ell^{2}(\mathbb{N})$, and the commutator
ideal of $\mathcal{T}(\mathbb{Z})$ is $\mathcal{K}\left(\ell^{2}(\mathbb{N})\right)$. Kernels of φ_{T} and $\varphi_{T^{*}}$ are identified in [7, Lemma $6.2]$ by

$$
\operatorname{ker} \varphi_{T}=\overline{\operatorname{span}}\left\{g_{i, j}^{m}: i, j, m \in \mathbb{N}\right\} ; \quad \operatorname{ker} \varphi_{T^{*}}=\overline{\operatorname{span}}\left\{f_{i, j}^{m}: i, j, m \in \mathbb{N}\right\}
$$

where

$$
g_{i, j}^{m}=v_{i}^{*} v_{m} v_{m}^{*}\left(1-v^{*} v\right) v_{j} \quad \text { and } \quad f_{i, j}^{m}=v_{i} v_{m}^{*} v_{m}\left(1-v v^{*}\right) v_{j}^{*} .
$$

Moreover $\mathcal{I}:=\operatorname{ker} \varphi_{T} \cap \operatorname{ker} \varphi_{T^{*}}$ is an essential ideal in $\mathbf{c} \times_{\tau}^{\text {piso }} \mathbb{N}$ [7, Lemma 6.8], given by

$$
\overline{\operatorname{span}}\left\{f_{i, j}^{m}-f_{i, j}^{m+1}=g_{m-i, m-j}^{m}-g_{m-i, m-j}^{m+1}: m \in \mathbb{N}, 0 \leq i, j \leq m\right\}
$$

The main point of $[7, \S 6]$ is to show that there exist isomorphisms of $\operatorname{ker} \varphi_{T}$ and $\operatorname{ker} \varphi_{T^{*}}$ onto the algebra
$\mathcal{A}:=\left\{f: \mathbb{N} \rightarrow K\left(\ell^{2}(\mathbb{N})\right): f(n) \in P_{n} K\left(\ell^{2}(\mathbb{N})\right) P_{n}\right.$ and $\varepsilon_{\infty}(f)=\lim _{n} f(n)$ exists $\}$, where $P_{n}:=1-T_{n+1} T_{n+1}^{*}$ is the projection of $\ell^{2}(\mathbb{N})$ onto the subspace spanned by $\left\{e_{i}: i=0,1,2, \ldots, n\right\}$, and such that they restrict to isomorphisms of \mathcal{I} onto the ideal

$$
\mathcal{A}_{0}:=\left\{f \in \mathcal{A}: \lim _{n} f(n)=0\right\} \text { of } \mathcal{A} .
$$

We shall show in Proposition 5.1 that \mathcal{A} and \mathcal{A}_{0} are related to the algebras of compact operators on the Hilbert c-module $\ell^{2}(\mathbb{N}, \mathbf{c})$ and on the closed sub-c-module $\ell^{2}\left(\mathbb{N}, \mathbf{c}_{0}\right)$. We supply our readers with some basic theory of the C^{*}-algebra of operators on this Hilbert module, and let us begin with recalling the module structure of $\ell^{2}(\mathbb{N}, \mathbf{c})$ (and its closed sub-module). The vector space $\ell^{2}(\mathbb{N}, \mathbf{c})$, containing all \mathbf{c}-valued functions a : $\mathbb{N} \rightarrow \mathbf{c}$ such that the series $\sum_{n \in \mathbb{N}} \mathrm{a}(n)^{*} \mathrm{a}(n)$ converges in the norm of \mathbf{c}, forms a Hilbert \mathbf{c}-module with the module structure defined by $(\mathrm{a} \cdot x)(n)=\mathrm{a}(n) x$ for $x \in \mathbf{c}$, and its \mathbf{c}-valued inner product given by $\langle\mathrm{a}, \mathrm{b}\rangle=\sum_{n \in \mathbb{N}} \mathrm{a}(n)^{*} \mathrm{~b}(n)$. In fact the module $\ell^{2}(\mathbb{N}, \mathbf{c})$ is naturally isomorphic to the Hilbert module $\ell^{2}(\mathbb{N}) \otimes \mathbf{c}$ that arises from the completion of algebraic (vector space) tensor product $\ell^{2}(\mathbb{N}) \odot \mathbf{c}$ associated to the \mathbf{c}-valued inner product defined on simple tensor product by $\langle\xi \otimes x, \eta \otimes y\rangle=\langle\xi, \eta\rangle x^{*} y$ for $\xi, \eta \in \ell^{2}(\mathbb{N})$ and $x, y \in \mathbf{c}$. The isomorphism is implemented by the map ϕ that takes $\left(e_{i} \otimes x\right) \in \ell^{2}(\mathbb{N}) \otimes \mathbf{c}$ to the element $\phi\left(e_{i} \otimes x\right) \in \ell^{2}(\mathbb{N}, \mathbf{c})$ which is the function $\left[\phi\left(e_{i} \otimes x\right)\right](n)=\left\{\begin{array}{ll}x & \text { if } i=n \\ 0 & \text { otherwise. }\end{array} \quad\right.$ By exactly the same arguments, we see that the two Hilbert \mathbf{c}_{0}-modules $\ell^{2}\left(\mathbb{N}, \mathbf{c}_{0}\right)$ and $\ell^{2}(\mathbb{N}) \otimes \mathbf{c}_{0}$ are isomorphic. However since \mathbf{c}_{0} is an ideal of \mathbf{c}, it follows that the \mathbf{c}_{0}-module $\ell^{2}\left(\mathbb{N}, \mathbf{c}_{0}\right)$ is a closed sub-c-module of $\ell^{2}(\mathbb{N}, \mathbf{c})$, and respectively $\ell^{2}(\mathbb{N}) \otimes \mathbf{c}_{0}$ is a closed sub-c-module of $\ell^{2}(\mathbb{N}) \otimes \mathbf{c}$. Moreover the \mathbf{c}-module isomorphism ϕ restricts to \mathbf{c}_{0}-module isomorphism $\ell^{2}\left(\mathbb{N}, \mathbf{c}_{0}\right) \simeq \ell^{2}(\mathbb{N}) \otimes \mathbf{c}_{0}$.

Next, we consider the C^{*}-algebra $\mathcal{L}\left(\ell^{2}(\mathbb{N}, \mathbf{c})\right)$ of adjointable operators on $\ell^{2}(\mathbb{N}, \mathbf{c})$, and the ideal $\mathcal{K}\left(\ell^{2}(\mathbb{N}, \mathbf{c})\right)$ of $\mathcal{L}\left(\ell^{2}(\mathbb{N}, \mathbf{c})\right)$ spanned by the set $\left\{\theta_{\mathrm{a}, \mathrm{b}}\right.$: $\left.\mathrm{a}, \mathrm{b} \in \ell^{2}(\mathbb{N}, \mathbf{c})\right\}$ of compact operators on the module $\ell^{2}(\mathbb{N}, \mathbf{c})$. The algebra $\mathcal{K}\left(\ell^{2}\left(\mathbb{N}, \mathbf{c}_{0}\right)\right)$ is defined by the same arguments, and note that $\mathcal{K}\left(\ell^{2}\left(\mathbb{N}, \mathbf{c}_{0}\right)\right)$ is
an ideal of $\mathcal{K}\left(\ell^{2}(\mathbb{N}, \mathbf{c})\right)$. The isomorphism of two modules $\ell^{2}(\mathbb{N}, \mathbf{c})$ and $\ell^{2}(\mathbb{N}) \otimes \mathbf{c}$, implies that $\mathcal{K}\left(\ell^{2}(\mathbb{N}, \mathbf{c})\right) \simeq \mathcal{K}\left(\ell^{2}(\mathbb{N}) \otimes \mathbf{c}\right)$, which by the Hilbert module theorem, this is the C^{*}-algebraic tensor product $\mathcal{K}\left(\ell^{2}(\mathbb{N})\right) \otimes \mathbf{c}$ of $\mathcal{K}\left(\ell^{2}(\mathbb{N})\right)$ and \mathbf{c}. We shall often use the characteristic functions $\left\{1_{n}: n \in \mathbb{N}\right\}$ as generator elements of \mathbf{c} and the spanning set $\left\{\theta_{e_{i} \otimes 1_{n}, e_{j} \otimes 1_{n}}: i, j, n \in \mathbb{N}\right\}$ of $\mathcal{K}\left(\ell^{2}(\mathbb{N}, \mathbf{c})\right)$ in our computations.

There is another ingredient that we need to consider to state the Proposition. Suppose $S \in \mathcal{L}\left(\ell^{2}(\mathbb{N}, \mathbf{c})\right)$ is an operator defined by $S(\mathrm{a})(i)=\mathrm{a}(i-1)$ for $i \geq 1$ and zero otherwise. One can see that $S^{*} S=1$, i.e., S is an isometry. Let $p \in$ $\mathcal{L}\left(\ell^{2}(\mathbb{N}, \mathbf{c})\right)$ be the projection $(p(\mathbf{a}))(n)=1_{n} \mathbf{a}(n)$ for $\mathrm{a} \in \ell^{2}(\mathbb{N}, \mathbf{c})$, and similarly $q \in \mathcal{L}\left(\ell^{2}\left(\mathbb{N}, \mathbf{c}_{0}\right)\right)$ be the projection $(q(a))(n)=1_{n} a(n)$ for $a \in \ell^{2}\left(\mathbb{N}, \mathbf{c}_{0}\right)$. Then the following two partial isometric representations of \mathbb{N} in $p \mathcal{L}\left(\ell^{2}(\mathbb{N}, \mathbf{c})\right) p$ defined by

$$
w: n \in \mathbb{N} \mapsto p S_{n}^{*} p \quad \text { and } \quad t: n \in \mathbb{N} \mapsto p S_{n} p,
$$

induce the representations $\pi_{w} \times w$ and $\pi_{t} \times t$ of $\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$ in $p \mathcal{L}\left(\ell^{2}(\mathbb{N}, \mathbf{c})\right) p$ which satisfy $\pi_{w} \times w\left(v_{i}\right)=p S_{i}^{*} p$ and $\pi_{t} \times t\left(v_{i}\right)=p S_{i} p$ for all $i \in \mathbb{N}$. These $\pi_{w} \times w$ and $\pi_{t} \times t$ are faithful representations [4, Example 4.3].

Proposition 5.1. The representations $\pi_{w} \times w$ and $\pi_{t} \times t$ map $\operatorname{ker} \varphi_{T}$ and $\operatorname{ker} \varphi_{T^{*}}$ isomorphically onto the full corner $p \mathcal{K}\left(\ell^{2}(\mathbb{N}, \mathbf{c})\right) p$. Moreover, they restrict to isomorphisms of the ideal $\operatorname{ker} \varphi_{T} \cap \operatorname{ker} \varphi_{T^{*}}$ onto the full corner $q \mathcal{K}\left(\ell^{2}\left(\mathbb{N}, \mathbf{c}_{0}\right)\right) q$.

Remark 5.2. It follows from this proposition that Prim $\operatorname{ker} \varphi_{T}$ and Prim $\operatorname{ker} \varphi_{T^{*}}$ are both homeomorphic to Primc. In fact, since $\operatorname{ker} \varphi_{T^{*}} \simeq \mathbf{c}_{0} \times_{\tau}^{\text {piso }} \mathbb{N}$ by [2, Corollary 3.1], we can therefore deduce that $\mathbf{c}_{0} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$ is Morita equivalent to $\mathcal{K}\left(\ell^{2}(\mathbb{N}, \mathbf{c})\right)$. This is a useful fact for our subsequential work on the partialisometric crossed product of lattice semigroup $\mathbb{N} \times \mathbb{N}$.

Proof of Proposition 5.1. We only have to show that

$$
\begin{aligned}
\pi_{t} \times t\left(\operatorname{ker} \varphi_{T^{*}}\right) & =p \mathcal{K}\left(\ell^{2}(\mathbb{N}, \mathbf{c})\right) p \text { and } \\
\pi_{t} \times t\left(\operatorname{ker} \varphi_{T} \cap \operatorname{ker} \varphi_{T^{*}}\right) & =q \mathcal{K}\left(\ell^{2}\left(\mathbb{N}, \mathbf{c}_{0}\right)\right) q
\end{aligned}
$$

The rest of arguments is done in [4, Example 4.3].
Note that the algebra $p \mathcal{K}\left(\ell^{2}(\mathbb{N}, \mathbf{c})\right) p$ is spanned by $\left\{p \theta_{e_{i} \otimes 1_{n}, e_{j} \otimes 1_{n}}^{\mathbf{c}} p: i, j, n \in\right.$ $\mathbb{N}\}$. Since $\pi_{t} \times t\left(f_{i, j}^{n}\right)=p \theta_{e_{i} \otimes 1_{n}, e_{j} \otimes 1_{n}}^{\mathbf{c}} p$ for every $i, j, n \in \mathbb{N}$, therefore $\pi_{t} \times$ $t\left(\operatorname{ker} \varphi_{T^{*}}\right)=p \mathcal{K}\left(\ell^{2}(\mathbb{N}, \mathbf{c})\right) p$.

Similarly we consider that $\left\{q \theta_{e_{i} \otimes 1_{\{n\}}, e_{j} \otimes 1_{\{n\}}}^{\mathbf{c}_{0}} q: i, j \leq n \in \mathbb{N}\right\}$ spans $q \mathcal{K}\left(\ell^{2}(\mathbb{N}\right.$, $\left.\left.\mathbf{c}_{0}\right)\right) q$. We use the equation $\theta_{e_{i} \otimes 1_{n}, e_{j} \otimes 1_{0}}^{\mathbf{c}}=\theta_{e_{i} \otimes 1_{n}, e_{j} \otimes 1_{n}}^{\mathbf{c}}$ for every $n \in \mathbb{N}$, in the computations below, to see that

$$
\begin{aligned}
\pi_{t} \times t\left(f_{i, j}^{n}-f_{i, j}^{n+1}\right) & =p\left(\theta_{e_{i} \otimes 1_{n}, e_{j} \otimes 1_{0}}^{\mathbf{c}}-\theta_{e_{i} \otimes 1_{n+1}, e_{j} \otimes 1_{0}}^{\mathbf{c}}\right) p \\
& =p\left(\theta_{\left(e_{i} \otimes 1_{n}\right)-\left(e_{i} \otimes 1_{n+1}\right),\left(e_{j} \otimes 1_{0}\right)}^{\mathbf{c}}\right) p \\
& =p\left(\theta_{\left.e_{i} \otimes 1_{\{n\}}, e_{j} \otimes 1_{0}\right)}^{\mathrm{c}}\right) p
\end{aligned}
$$

$$
=p\left(\theta_{e_{i} \otimes 1_{\{n\}}, e_{j} \otimes 1_{\{n\}}}^{\mathrm{c}}\right) p
$$

To convince that every $p\left(\theta_{e_{i} \otimes 1_{\{n\}}, e_{j} \otimes 1_{\{n\}}}^{\mathbf{c}}\right) p$ belongs to $q \mathcal{K}\left(\ell^{2}\left(\mathbb{N}, \mathbf{c}_{0}\right)\right) q$, we need the embedding $\iota^{\mathcal{K}}$ of $q \mathcal{K}\left(\ell^{2}\left(\mathbb{N}, \mathbf{c}_{0}\right)\right) q$ in $p \mathcal{K}\left(\ell^{2}(\mathbb{N}, \mathbf{c})\right) p$ stated in Lemma 5.3. In fact, every element $p\left(\theta_{e_{i} \otimes 1_{\{n\}}, e_{j} \otimes 1_{\{n\}}}^{\mathrm{c}}\right) p$ spans $\iota^{\mathcal{K}}\left(q \mathcal{K}\left(\ell^{2}\left(\mathbb{N}, \mathbf{c}_{0}\right)\right) q\right)$, therefore $\pi_{t} \times t\left(\operatorname{ker} \varphi_{T^{*}} \cap \operatorname{ker} \varphi_{T}\right)=\iota^{\mathcal{K}}\left(q \mathcal{K}\left(\ell^{2}\left(\mathbb{N}, \mathbf{c}_{0}\right)\right) q\right)$.

Lemma 5.3. Let $p \in \mathcal{L}\left(\ell^{2}(\mathbb{N}, \mathbf{c})\right)$ and $q \in \mathcal{L}\left(\ell^{2}\left(\mathbb{N}, \mathbf{c}_{0}\right)\right)$ are the projections defined by $(p(a))(n)=1_{n} a(n)$ for $a \in \ell^{2}(\mathbb{N}, \mathbf{c})$, and $(q(a))(n)=1_{n} a(n)$ for $a \in$ $\ell^{2}\left(\mathbb{N}, \mathbf{c}_{0}\right)$. Then the full corner $q \mathcal{K}\left(\ell^{2}\left(\mathbb{N}, \mathbf{c}_{0}\right)\right) q$ embeds naturally via $\iota^{\mathcal{K}}\left(q \theta_{a, b}^{\mathbf{c}_{0}} q\right)=$ $p \theta_{a, b}^{\mathbf{c}} p$ as an ideal in $p \mathcal{K}\left(\ell^{2}(\mathbb{N}, \mathbf{c})\right) p$, and there exists a short exact sequence

$$
0 \longrightarrow q \mathcal{K}\left(\ell^{2}\left(\mathbb{N}, \mathbf{c}_{0}\right)\right) q \xrightarrow{\iota^{\mathcal{K}}} p \mathcal{K}\left(\ell^{2}(\mathbb{N}, \mathbf{c})\right) p \xrightarrow{q^{\mathcal{K}}} \mathcal{K}\left(\ell^{2}(\mathbb{N})\right) \longrightarrow 0,
$$

where $q^{\mathcal{K}}\left(p \theta_{\mathrm{a}, b}^{\mathrm{c}} p\right)=\theta_{x, y}$ with $x, y \in \ell^{2}(\mathbb{N})$ are given by $x_{i}=\lim _{n \rightarrow \infty}\left(1_{i} a(i)\right)(n)$ and $y_{i}=\lim _{n \rightarrow \infty}\left(1_{i} b(i)\right)(n)$. In particular we have

$$
\begin{aligned}
q^{\mathcal{K}}\left(p \theta_{e_{i} \otimes 1_{n}, e_{j} \otimes 1_{m}}^{\mathbf{c}} p\right) & =q^{\mathcal{K}}\left(\theta_{p\left(e_{i} \otimes 1_{n}\right), p\left(e_{j} \otimes 1_{m}\right)}^{\mathbf{c}}\right) \\
& =q^{\mathcal{K}}\left(\theta_{e_{i} \otimes 1_{n \vee i}, e_{j} \otimes 1_{m \vee j}}^{\mathbf{c}}\right) \\
& =T_{i}\left(1-T T^{*}\right) T_{j}^{*} \in \mathcal{K}\left(\ell^{2}(\mathbb{N})\right) .
\end{aligned}
$$

Proof. Apply [5, Lemma 2.6] for the module $X:=\ell^{2}(\mathbb{N}, \mathbf{c})$ and $I=\mathbf{c}_{0}$. In this case we have the submodule $X I=\ell^{2}\left(\mathbb{N}, \mathbf{c}_{0}\right)$. Note that if a $\in \ell^{2}(\mathbb{N}, \mathbf{c})$, then every sequence $\mathrm{a}(i) \in \mathbf{c}$ is convergent in \mathbb{C}, and the map $\mathrm{q}: \mathrm{a} \mapsto(\mathrm{q}(\mathrm{a}))(i)=$ $\lim _{n \rightarrow \infty}(\mathrm{a}(i))(n)$ gives $0 \rightarrow \ell^{2}\left(\mathbb{N}, \mathbf{c}_{0}\right) \rightarrow \ell^{2}(\mathbb{N}, \mathbf{c}) \xrightarrow{\mathrm{q}} \ell^{2}(\mathbb{N}) \rightarrow 0$. Moreover [5, Lemma 2.6] proves that $\iota^{\mathcal{K}}\left(\theta_{\mathrm{a}, \mathrm{b}}^{X I}\right)=\theta_{\mathrm{a}, \mathrm{b}}^{X}$ and $q^{\mathcal{K}}\left(\theta_{\mathrm{a}, \mathrm{b}}^{X}\right)=\theta_{\mathrm{q}(\mathrm{a}), \mathrm{q}(\mathrm{b})}^{X / X I}$ give the exactness of the sequence

$$
0 \longrightarrow \mathcal{K}\left(\ell^{2}\left(\mathbb{N}, \mathbf{c}_{0}\right)\right) \xrightarrow{\iota^{\mathcal{K}}} \mathcal{K}\left(\ell^{2}(\mathbb{N}, \mathbf{c})\right) \xrightarrow{q^{\mathcal{K}}} \mathcal{K}\left(\ell^{2}(\mathbb{N})\right) \longrightarrow 0
$$

Since $\iota^{\mathcal{K}}\left(q \theta_{\mathrm{a}, \mathrm{b}}^{X I} q\right)=\theta_{q(\mathrm{a}), q(\mathrm{~b})}^{X}=p \theta_{\mathrm{a}, \mathrm{b}}^{X} p$ for every a and b in $\ell^{2}\left(\mathbb{N}, \mathbf{c}_{0}\right)$, the corner $q \mathcal{K}\left(\ell^{2}\left(\mathbb{N}, \mathbf{c}_{0}\right)\right) q$ is embedded into $p \mathcal{K}\left(\ell^{2}(\mathbb{N}, \mathbf{c})\right) p$ such that $q^{\mathcal{K}}$ is defined by $q^{\mathcal{K}}\left(p \theta_{\mathrm{a}, \mathrm{b}}^{X} p\right)=q^{\mathcal{K}}\left(\theta_{p(\mathrm{a}), p(\mathrm{~b})}^{X}\right)=\theta_{x, y}$ where $x_{i}=\lim _{n \rightarrow \infty}\left(1_{i} \mathrm{a}(i)\right)(n)$ and $y_{i}=$ $\lim _{n \rightarrow \infty}\left(1_{i} \mathrm{~b}(i)\right)(n)$. Thus we obtain the required exact sequence.

Proposition 5.4. There are isomorphisms $\Theta: p \mathcal{K}\left(\ell^{2}(\mathbb{N}, \mathbf{c})\right) p \rightarrow \operatorname{ker} \varphi_{T}$ and $\Theta_{*}: p \mathcal{K}\left(\ell^{2}(\mathbb{N}, \mathbf{c})\right) p \rightarrow \operatorname{ker} \varphi_{T^{*}}$ defined by $\Theta\left(p \theta_{e_{i} \otimes 1_{n}, e_{j} \otimes 1_{n}}^{\mathbf{c}} p\right)=g_{i, j}^{n}$ and
$\Theta_{*}\left(p \theta_{e_{i} \otimes 1_{n}, e_{j} \otimes 1_{n}}^{\mathbf{c}} p\right)=f_{i, j}^{n}$ for all $i, j, n \in \mathbb{N}$ such that the following commutative diagram has all rows and columns exact:

Proof. We apply Proposition 4.1 to the system $(\mathbf{c}, \mathbb{N}, \tau)$. Let $\left\{v_{i}: i \in \mathbb{N}\right\}$ denote the generators of $\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$, and $\left\{\delta_{i}: i \in \mathbb{Z}\right\}$ the generator of $C^{*}(\mathbb{Z})$. Then the homomorphism $\Psi: \mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N} \rightarrow C(\mathbb{T})$ given by Proposition 4.1 satisfies $\Psi\left(v_{i}\right)=\delta_{i}^{*}=\left(z \mapsto \bar{z}^{i}\right) \in C(\mathbb{T})$ for every $i \in \mathbb{N}$. Moreover $\Theta=\left(\pi_{w} \times w\right)^{-1}$ and $\Theta_{*}=\left(\pi_{t} \times t\right)^{-1}$, by Proposition 5.1, satisfy $\Theta\left(p \theta_{e_{i} \otimes 1_{n}, e_{j} \otimes 1_{n}}^{\mathbf{c}} p\right)=g_{i, j}^{n}$ and $\Theta_{*}\left(p \theta_{e_{i} \otimes 1_{n}, e_{j} \otimes 1_{n}}^{\mathbf{c}} p\right)=f_{i, j}^{n}$ for all $i, j, n \in \mathbb{N}$. So the first row sequence is exact, and which is equivalent to the one of (4.1) for $\Gamma^{+}=\mathbb{N}$ because

For the first column we use the automorphism α of $q \mathcal{K}\left(\ell^{2}\left(\mathbb{N}, \mathbf{c}_{0}\right)\right) q$ defined on its spanning element by $\alpha\left(q \theta_{e_{i} \otimes 1_{\{n\}}, e_{j} \otimes 1_{\{n\}}}^{\mathbf{c}_{0}} q\right)=q \theta_{e_{n-i} \otimes 1_{\{n\}}, e_{n-j} \otimes 1_{\{n\}}}^{\mathbf{c}_{0}} q$. Then by inspections on the spanning elements of the algebras involved, we can see that the diagram (5.1) commutes.

Thus we know from the diagram that the set $\operatorname{Prim} \mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$ is given by the sets $\operatorname{Prim} \mathcal{K}\left(\ell^{2}(\mathbb{N}, \mathbf{c})\right)$ and $\operatorname{Prim} \mathcal{T}(\mathbb{Z})$. Since

$$
\operatorname{Prim} \mathcal{T}(\mathbb{Z})=\operatorname{Prim} \mathcal{K}\left(\ell^{2}(\mathbb{N})\right) \cup \operatorname{Prim} C(\mathbb{T})=\{0\} \cup \mathbb{T}
$$

and $\operatorname{Prim} \mathcal{K}\left(\ell^{2}(\mathbb{N}, \mathbf{c})\right)$ is homeomorphic to

$$
\operatorname{Prim} \mathbf{c}=\operatorname{Prim} \mathbf{c}_{0} \cup \operatorname{Prim} \mathbb{C} \simeq \mathbb{N} \cup\{\infty\}
$$

therefore Prim $\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$ consists of a copy of $\left\{I_{n}\right\}$ of \mathbb{N} embedded as an open subset, a copy of $\left\{J_{z}\right\}$ of \mathbb{T} embedded as a closed subset. We identify these ideals in Proposition 5.7 and Lemma 5.12.

Note for now that $\operatorname{ker} \varphi_{T}$ and $\operatorname{ker} \varphi_{T^{*}}$ are primitive ideals of $\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$: the Toeplitz representation T of $\mathcal{T}(\mathbb{Z})$ on $\ell^{2}(\mathbb{N})$ is irreducible by [8, Theorem 3.13], and φ_{T} and $\varphi_{T^{*}}$ are surjective homomorphisms of $\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$ onto $\mathcal{T}(\mathbb{Z})$, so $T \circ \varphi_{T}$ and $T \circ \varphi_{T^{*}}$ are irreducible representations of $\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$ on $\ell^{2}(\mathbb{N})$. Moreover, irreducibility of the representation id $\circ q^{\mathcal{K}}: p \mathcal{K}\left(\ell^{2}(\mathbb{N}, \mathbf{c})\right) p \xrightarrow{q^{\mathcal{K}}} \mathcal{K}\left(\ell^{2}(\mathbb{N})\right) \xrightarrow{\text { id }} B\left(\ell^{2}(\mathbb{N})\right)$ implies the $\operatorname{kernel} \mathcal{I}=\operatorname{ker} \varphi_{T} \cap \operatorname{ker} \varphi_{T^{*}} \simeq q \mathcal{K}\left(\ell^{2}\left(\mathbb{N}, \mathbf{c}_{0}\right)\right) q$ of id $\circ q^{\mathcal{K}}$ is a primitive ideal of $p \mathcal{K}\left(\ell^{2}(\mathbb{N}, \mathbf{c})\right) p \simeq \operatorname{ker} \varphi_{T}$. Similarly, \mathcal{I} is a primitive ideal of $\operatorname{ker} \varphi_{T^{*}} \simeq p \mathcal{K}\left(\ell^{2}(\mathbb{N}, \mathbf{c})\right) p$. Although $\mathcal{I} \notin \operatorname{Prim} \mathbf{c} \times_{\tau}^{\text {piso }} \mathbb{N}$, the ideal \mathcal{I} is essential in $\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$ by [7, Lemma 6.8], so the space $\operatorname{Prim} \mathcal{I} \simeq \operatorname{Prim} \mathbf{c}_{0}$ is dense in $\operatorname{Prim} \mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$.

Next consider that $\mathcal{K}\left(\ell^{2}(\mathbb{N})\right)=\overline{\operatorname{span}}\left\{e_{i j}:=T_{i}\left(1-T T^{*}\right) T_{j}^{*}: i, j \in \mathbb{N}\right\}$, and recall that there is a natural isomorphism Λ of $\mathcal{K}\left(\ell^{2}(\mathbb{N}, \mathbf{c})\right) \simeq \mathcal{K}\left(\ell^{2}(\mathbb{N})\right) \otimes \mathbf{c}$ onto the algebra

$$
C\left(\mathbb{N} \cup\{\infty\}, \mathcal{K}\left(\ell^{2}(\mathbb{N})\right)\right):=\left\{f: \mathbb{N} \rightarrow \mathcal{K}\left(\ell^{2}(\mathbb{N})\right): \lim _{n} f(n) \text { exists in } \mathcal{K}\left(\ell^{2}(\mathbb{N})\right)\right\}
$$

given by $\Lambda\left(e_{i j} \otimes 1_{k}\right)(n)=1_{k}(n) e_{i j}$ for $i, j, k, n \in \mathbb{N}$. Then $\Lambda\left(p \mathcal{K}\left(\ell^{2}(\mathbb{N}, \mathbf{c})\right) p\right) \subset \mathcal{A}$ because

$$
\begin{aligned}
{\left[\Lambda\left(p\left(e_{i j} \otimes 1_{m}\right) p\right)\right](n) } & =\left[\Lambda\left(e_{i j} \otimes 1_{m \vee i \vee j}\right)\right](n) \\
& = \begin{cases}e_{i j} & \text { if } n \geq m \vee i \vee j \\
0 & \text { otherwise }\end{cases} \\
& =\pi_{n}\left(f_{i, j}^{m}\right)=\pi_{n}^{*}\left(g_{i, j}^{m}\right) .
\end{aligned}
$$

Since $\Lambda=\pi \circ \Theta_{*}=\pi^{*} \circ \Theta, \Lambda$ maps the corners $p \mathcal{K}\left(\ell^{2}(\mathbb{N}, \mathbf{c})\right) p$ and $q \mathcal{K}\left(\ell^{2}\left(\mathbb{N}, \mathbf{c}_{0}\right)\right) q$ isomorphically onto the algebra \mathcal{A} and \mathcal{A}_{0} respectively. Construction of this isomorphism in $[7, \S 6]$ involves the representations π_{n} and π_{n}^{*}, for each $n \in \mathbb{N}$, of $\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$ on $\ell^{2}(\mathbb{N})$ that are associated to the partial-isometric representations $k \mapsto P_{n} T_{k} P_{n}$ and $k \mapsto P_{n} T_{k}^{*} P_{n}$ respectively, where $P_{n}:=1-T_{n+1} T_{n+1}^{*}$ is the projection onto $H_{n}:=\operatorname{span}\left\{e_{i}: i=0,1,2, \ldots, n\right\}$. For every $a \in \operatorname{ker} \varphi_{T^{*}}$, the sequence $\left\{\pi_{n}(a)\right\}_{n \in \mathbb{N}}$ is convergent in $\mathcal{K}\left(\ell^{2}(\mathbb{N})\right)$, and then the map $a \in$ $\operatorname{ker} \varphi_{T^{*}} \mapsto \pi(a):=\left\{\pi_{n}(a)\right\}_{n \in \mathbb{N}} \in \mathcal{A}$ defines the isomorphism.

These observations suggest that an extension of π should give a representation of $\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$ in the algebra $C_{\mathrm{b}}\left(\mathbb{N}, B\left(\ell^{2}(\mathbb{N})\right)\right)$, and then primitive ideals are the kernels of evaluation maps. But we can consider a smaller algebra which gives more information on the image of π. Note that the algebra $C\left(\mathbb{N} \cup\{\infty\}, B\left(\ell^{2}(\mathbb{N})\right)\right)$ is too small to consider, because the sequence $\left(P_{n} T_{k} P_{n}\right)_{n \in \mathbb{N}}$ as we see, does not converge to T_{k} in the operator norm on $B\left(\ell^{2}(\mathbb{N})\right)$, but it converges strongly to T_{k}. Therefore we consider the set $C_{\mathrm{b}}\left(\mathbb{N} \cup\{\infty\}, B\left(\ell^{2}(\mathbb{N})\right)_{*-\mathrm{s}}\right)$ of functions $\xi: \mathbb{N} \rightarrow B\left(\ell^{2}(\mathbb{N})\right)$ such that $\lim _{n} \xi_{n}$ exists in the ${ }^{*}$-strong topology on $B\left(\ell^{2}(\mathbb{N})\right)$, and which satisfies $\|\xi\|_{\infty}:=$ $\sup _{n}\left\|\xi_{n}\right\|<\infty$. By [9, Lemma 2.56], it is a C^{*}-algebra with the pointwise operation from $B\left(\ell^{2}(\mathbb{N})\right)$ and the norm $\|\cdot\|_{\infty}$. Then let

$$
\mathcal{B}:=\left\{f: \mathbb{N} \rightarrow B\left(\ell^{2}(\mathbb{N})\right): \sup _{n \in \mathbb{N}}\|f(n)\|_{B\left(\ell^{2}(\mathbb{N})\right)}<\infty, f(n) \in P_{n} B\left(\ell^{2}(\mathbb{N})\right) P_{n}\right. \text { and }
$$

$$
\left.\lim _{n \rightarrow \infty} f(n) \text { exists in the } * \text {-strong topology on } B\left(\ell^{2}(\mathbb{N})\right)\right\}
$$

Note that \mathcal{B} is a subalgebra of $C_{\mathrm{b}}\left(\mathbb{N} \cup\{\infty\}, B\left(\ell^{2}(\mathbb{N})\right)_{*-\mathrm{s}}\right)$ because $P_{n} B\left(\ell^{2}(\mathbb{N})\right) P_{n}$ $\simeq B\left(H_{n}\right)$ is closed in $B\left(\ell^{2}(\mathbb{N})\right)$ for every $n \in \mathbb{N}$, and \mathcal{B} has an identity $1_{\mathcal{B}}$ $=\left(P_{0}, P_{1}, P_{2}, \ldots\right)$.
Proposition 5.5. There are faithful representations π and π^{*} of $\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$ in the algebra \mathcal{B}, which defined on each generator $v_{k} \in \mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$ by $\pi\left(v_{k}\right)(n):=\pi_{n}\left(v_{k}\right)=P_{n} T_{k} P_{n}$ and $\pi^{*}\left(v_{k}\right)(n):=\pi_{n}^{*}\left(v_{k}\right)=P_{n} T_{k}^{*} P_{n}$ for $n \in \mathbb{N}$.
These representations π and π^{*} are the extension of isomorphisms $\pi: \operatorname{ker} \varphi_{T^{*}}$ $\rightarrow \mathcal{A}$ and $\pi^{*}: \operatorname{ker} \varphi_{T} \rightarrow \mathcal{A}$ of [7, Theorem 6.1].

Proof. The map π is induced by the partial-isometric representation $k \mapsto W_{k}$ where $W_{k}(n)=P_{n} T_{k} P_{n}$, and similarly for π^{*} by $k \mapsto S_{k}$ where $S_{k}(n)=$ $P_{n} T_{k}^{*} P_{n}$ for $n \in \mathbb{N}$. These are unital representations: $\pi(1)=\pi\left(v_{0}\right)=\left(P_{0}, P_{1}\right.$, $\left.P_{2}, \ldots\right)=\pi^{*}(1)$.

By [7, Proposition 5.4], the representation π is faithful if and only if for any $r>0$ and $i<j$ in \mathbb{N}, we have $\xi_{i, j}^{r} \in \mathcal{B}$ for which

$$
\xi_{i, j}^{r}:=\left(\pi(1)-\pi\left(v_{r}\right)^{*} \pi\left(v_{r}\right)\right)\left(\pi\left(v_{i}\right) \pi\left(v_{i}\right)^{*}-\pi\left(v_{j}\right) \pi\left(v_{j}\right)^{*}\right)
$$

is a nonzero element of \mathcal{B}. Let $r>0$ and $i<j \in \mathbb{N}$, then we consider the three cases $0<r \leq i<j, i<r<j$ and $i<j \leq r$ separately. If $0<r \leq i<j$, then

$$
\begin{aligned}
\xi_{i, j}^{r}(i) & =\left(P_{i}-\pi_{i}\left(v_{r}\right)^{*} \pi_{i}\left(v_{r}\right)\right)\left(\pi_{i}\left(v_{i}\right) \pi_{i}\left(v_{i}\right)^{*}-\pi_{i}\left(v_{j}\right) \pi_{i}\left(v_{j}\right)^{*}\right) \\
& =\left(P_{i}-P_{i} T_{r}^{*} P_{i} T_{r} P_{i}\right)\left(P_{i} T_{i} P_{i} T_{i}^{*} P_{i}-P_{i} T_{j} P_{i} T_{j}^{*} P_{i}\right) \\
& =\left(P_{i}-P_{i} T_{r}^{*} T_{r} P_{i-r} P_{i}\right)\left(P_{i} T_{i} T_{i}^{*} P_{i}-0\right) \\
& =\left(P_{i}-P_{i-r}\right)\left(P_{i} T_{i} T_{i}^{*} P_{i}\right)
\end{aligned}
$$

and that $\left[\xi_{i, j}^{r}(i)\right]\left(e_{i}\right)=\left(P_{i}-P_{i-r}\right)\left(e_{i}\right)=e_{i}$. If $i<j \leq r$, then similar computations show that $\left[\xi_{i, j}^{r}(i)\right]\left(e_{i}\right)=\left[P_{i}\left(P_{i} T_{i} T_{i}^{*} P_{i}\right)\right]\left(e_{i}\right)=e_{i}$, and for $i<r<j$ we have $\left[\xi_{i, j}^{r}(r)\right]\left(e_{r}\right)=\left(P_{r}-P_{0}\right)\left(e_{r}\right)=e_{r}$. Thus $\xi_{i, j}^{r} \neq 0$ in \mathcal{B}. The same outline of arguments is valid to show the representation π^{*} is also faithful.

So we have for every $n \in \mathbb{N}$ the representations $\pi_{n}=\varepsilon_{n} \circ \pi$ and $\pi_{n}^{*}=\varepsilon_{n} \circ \pi^{*}$ of $\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$ on H_{n}, where ε_{n} are the evaluation map of $C_{\mathrm{b}}\left(\mathbb{N} \cup\{\infty\}, B\left(\ell^{2}(\mathbb{N})\right)_{*-\mathrm{s}}\right)$. Hence they are irreducible, indeed every nonzero vector of the subspace H_{n} of $\ell^{2}(\mathbb{N})$ is cyclic for π_{n}^{*} : if $\left(h_{0}, h_{1}, \ldots, h_{n}\right) \in H_{n}$ with $h_{j} \neq 0$ for some j, then for every $i \in\{0,1,2, \ldots, n\}$, we have

$$
\begin{aligned}
\left(\pi_{n}^{*}\left(g_{i, j}^{n}\right)\right)\left(h_{0}, h_{1}, \ldots, h_{n}\right) & =\left[T_{i}\left(1-T T^{*}\right) T_{j}^{*}\right]\left(h_{0}, h_{1}, \ldots, h_{n}\right) \\
& =\left(0, \ldots, h_{j}, \ldots, 0\right), \text { where } h_{j} \text { is in the } i \text {-th slot }
\end{aligned}
$$

so $\pi_{n}^{*}\left(\frac{1}{h_{j}} g_{i, j}^{n}\right)(h)=e_{i}$, and therefore $H_{n}=\operatorname{span}\left\{\pi_{n}^{*}(\xi) h: \xi \in \mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}\right\}$. Same arguments work for π_{n}.

Note for every $n \in \mathbb{N}$ that $\pi_{n}\left(f_{i, j}^{m}\right)=e_{i j}=\pi_{n}\left(g_{n-i, n-j}^{k}\right)$ for all $0 \leq$ $i, j, m, k \leq n$, and similarly $\pi_{n}^{*}\left(g_{i, j}^{m}\right)=e_{i j}=\pi_{n}^{*}\left(f_{n-i, n-j}^{k}\right)$ for all $0 \leq i, j, m, k \leq$
n. Thus every $f_{i, j}^{m}-g_{n-i, n-j}^{k}$ is contained in $\operatorname{ker} \pi_{n}$, and similarly $\left(g_{i, j}^{m}-\right.$ $\left.f_{n-i, n-j}^{k}\right) \in \operatorname{ker} \pi_{n}^{*}$. We shall see many more elements of $\operatorname{ker} \pi_{n}$ as well as ker π_{n}^{*} in Proposition 5.7.

But now we recall that for $n \in \mathbb{N}$ the partial-isometric representation J^{n} : $\mathbb{N} \rightarrow B\left(H_{n}\right)$ in $[7, \S 3]$ defined by $J_{t}^{n}\left(e_{r}\right)= \begin{cases}e_{t+r} & \text { if } r+t \in\{0,1, \ldots, n\} \\ 0 & \text { otherwise },\end{cases}$ induces the representation $\pi_{J^{n}}^{\mathbb{N}} \times J^{n}$ of $\left(\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}, v\right)$ on H_{n}. In fact $\pi_{J^{n}}^{\mathbb{N}} \times J^{n}=$ π_{n}, because for every $k \in \mathbb{N}$ we have $\left(\pi_{J^{n}}^{\mathbb{N}} \times J^{n}\left(v_{k}\right)\right)\left(e_{r}\right)=J_{k}^{n}\left(e_{r}\right)=P_{n} T_{k} P_{n}\left(e_{r}\right)$ where $r \in\{0,1,2, \ldots, n\}$.

The ideal $\operatorname{ker} \oplus_{r=0}^{n} \pi_{J^{r}}^{\mathbb{N}} \times J^{r}$ appears in the structure of $\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$ [7, Lemma 5.7]. To be more precise about it, we need some results in [7, §5] related to the system $\left(\mathbb{C}^{n+1}, \tau, \mathbb{N}\right)$. The crossed product $\mathbb{C}^{n+1} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$ is the universal C^{*}-algebra generated by a canonical partial-isometric representation w of \mathbb{N} such that $w_{r}=0$ for $r \geq n+1$. Let $q_{n}:\left(\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}, v\right) \rightarrow\left(\mathbb{C}^{n+1} \times_{\tau}^{\text {piso }} \mathbb{N}, w\right)$ be the homomorphism induced by $w: \mathbb{N} \rightarrow \mathbb{C}^{n+1} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$, and note that it is surjective. Then Lemma 5.7 of [7] shows that $\operatorname{ker} q_{n}=\operatorname{ker}\left(\oplus_{r=0}^{n} \pi_{J^{r}}^{\mathbb{N}} \times J^{r}\right)=$ $\bigcap_{r=0}^{n} \operatorname{ker}\left(\pi_{J^{r}}^{\mathbb{N}} \times J^{r}\right)$. So by these arguments we obtain the following equation

$$
\begin{equation*}
\operatorname{ker} q_{n}=\bigcap_{r=0}^{n} \operatorname{ker} \pi_{r} \text { for every } n \in \mathbb{N} . \tag{5.2}
\end{equation*}
$$

Lemma 5.6. For $n \in \mathbb{N}$, let L_{n} be the ideal of $\left(\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}, v\right)$ generated by $\left\{v_{r}: r \geq n+1\right\}$. Then $L_{n}=\operatorname{ker} q_{n}$, and it is isomorphic to
(5.3) $\left\{\xi \in \pi\left(\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}\right) \subset C_{b}\left(\mathbb{N} \cup\{\infty\}, B\left(\ell^{2}(\mathbb{N})\right)_{*-s}\right): \xi \equiv 0\right.$ on $\left.\{0,1,2, \ldots, n\}\right\}$.

Proof. We have $L_{n} \subset \operatorname{ker} q_{n}$ because $q_{n}\left(v_{k}\right)=0$ for all $k \geq n+1$. To see $\operatorname{ker} q_{n} \subset L_{n}$, let ρ be a representation of $\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$ on H_{ρ} where $\operatorname{ker} \rho=L_{n}$. Since $\rho\left(v_{t}\right)=0$ for every $t \geq n+1$, by the universal property of $\mathbb{C}^{n+1} \times_{\tau}^{\text {piso }} \mathbb{N}$, there exists a representation $\tilde{\rho}$ of $\mathbb{C}^{n+1} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$ on H_{ρ} which satisfies $\tilde{\rho} \circ q_{n}=\rho$. Thus ker $q_{n} \subset \operatorname{ker} \rho=L_{n}$.

Next we show that $\pi\left(L_{n}\right)$ and (5.3) are equal. Let $r \geq n+1$, and consider $\pi\left(v_{r}\right)$ is the sequence $\left(P_{i} T_{r} P_{i}\right)_{i \in \mathbb{N}}$. If $0 \leq i \leq n$, then $0 \leq i+1 \leq n+1 \leq r$ and

$$
P_{i} T_{r} P_{i}=\left(1-T_{i+1} T_{i+1}^{*}\right) T_{r} P_{i}=\left(1-T_{i+1} T_{i+1}^{*}\right) T_{i+1} T_{r-(i+1)} P_{i}=0 .
$$

So $\pi\left(L_{n}\right)$ is a subset of (5.3). For the other inclusion, suppose $f \in \pi\left(\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}\right)$ in which $f(i)=0$ for all $0 \leq i \leq n$. Since $f=\pi(\xi)$ for some $\xi \in \mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$, and $\pi(\xi)(i)=\pi_{i}(\xi)=f(i)$ for all $i \in \mathbb{N}$, we therefore have $\pi_{i}(\xi)=f(i)=0$ for all $0 \leq i \leq n$. Thus $\xi \in \cap_{i=0}^{n} \operatorname{ker} \pi_{i}=\operatorname{ker} q_{n}$, and hence $f=\pi(\xi) \in \pi\left(L_{n}\right)$.

Let $\pi_{\infty}:=\lim _{n} \pi_{n}$ and $\pi_{\infty}^{*}:=\lim _{n} \pi_{n}^{*}$ where the limits are taken with respect to the strong topology of $B\left(\ell^{2}(\mathbb{N})\right)$. Then π_{∞} and π_{∞}^{*} are the irreducible representations $\varphi_{T}: v_{k} \mapsto T_{k}$ and $\varphi_{T^{*}}: v_{k} \mapsto T_{k}^{*}$ of $\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$ on $H_{\infty}:=\ell^{2}(\mathbb{N})$. Thus by [7, Lemma 6.2] we have

$$
\operatorname{ker} \pi_{\infty}=\operatorname{ker} \varphi_{T}=\overline{\operatorname{span}}\left\{g_{i, j}^{m}:=v_{i}^{*} v_{m} v_{m}^{*}\left(1-v^{*} v\right) v_{j}: i, j, m \in \mathbb{N}\right\},
$$

$$
\operatorname{ker} \pi_{\infty}^{*}=\operatorname{ker} \varphi_{T^{*}}=\overline{\operatorname{span}}\left\{f_{i, j}^{m}:=v_{i} v_{m}^{*} v_{m}\left(1-v v^{*}\right) v_{j}^{*}: i, j, m \in \mathbb{N}\right\}
$$

For $n \in \mathbb{N}$, let π_{n} and π_{n}^{*} be the irreducible representations of $\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$ on the subspace H_{n} of $\ell^{2}(\mathbb{N})$, that are induced by the partial-isometric representations $k \mapsto P_{n} T_{k} P_{n}$ and $k \mapsto P_{n} T_{k}^{*} P_{n}$. Let L_{n} be the ideal of $\left(\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}, v\right)$ generated by $\left\{v_{r}: r \geq n+1\right\}$. Then π_{n} is the representation

$$
\varepsilon_{n} \circ \pi: \mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N} \xrightarrow{\pi} \mathcal{B} \subset C_{\mathrm{b}}\left(\mathbb{N} \cup\{\infty\}, B\left(\ell^{2}(\mathbb{N})\right)_{*-\mathrm{s}}\right) \xrightarrow{\varepsilon_{n}} B\left(H_{n}\right),
$$

and similarly $\pi_{n}^{*}=\varepsilon_{n} \circ \pi^{*}$. So $\operatorname{ker} \pi_{n} \simeq \operatorname{ker} \varepsilon_{n} \simeq \operatorname{ker} \pi_{n}^{*}$.
Proposition 5.7. Let $n \in \mathbb{N}$. Then
(a) $\operatorname{ker} \pi_{n}=\operatorname{ker} \pi_{n}^{*} \simeq \operatorname{ker} \varepsilon_{n}=\{\xi \in \mathcal{B}: \xi(n)=0\}$;
(b) $\operatorname{ker} \pi_{\infty} \simeq \operatorname{ker} \pi_{\infty}^{*}=\left\{\xi \in \mathcal{B}: *\right.$-strong $\left.\lim _{n} \xi(n)=0\right\}$;

Furthermore,
(c) $\operatorname{ker} \pi_{n}^{*}=\overline{\operatorname{span}}\left\{g_{i, j}^{m}-f_{n-i, n-j}^{k}+\eta: 0 \leq i, j, m, k \leq n, \eta \in L_{n}\right\}$, $\operatorname{ker} \pi_{n}=\overline{\operatorname{span}}\left\{f_{i, j}^{m}-g_{n-i, n-j}^{k}+\eta: 0 \leq i, j, m, k \leq n, \eta \in L_{n}\right\}$, and $\operatorname{ker} \pi_{n}^{*}=\operatorname{ker} \pi_{n}$ for $n \in \mathbb{N}$, in particular we have $\operatorname{ker} \pi_{0}=\operatorname{ker} \pi_{0}^{*}=L_{0}$;
(d) $\left.\operatorname{ker} \pi_{n}\right|_{\operatorname{ker} \varphi_{T^{*}}}=\overline{\operatorname{span}}\left\{\left(f_{i, j}^{m}-f_{i, j}^{k}\right)+f_{x, y}^{z}: 0 \leq i, j, m, k \leq n\right.$, one of $x, y, z \geq n+1\}$, $\left.\operatorname{ker} \pi_{n}^{*}\right|_{\operatorname{ker} \varphi_{T}}=\overline{\operatorname{span}}\left\{\left(g_{i, j}^{m}-g_{i, j}^{k}\right)+g_{x, y}^{z}: 0 \leq i, j, m, k \leq n\right.$, one of $x, y, z \geq n+1\}$, $\Theta_{*}^{-1}\left(\left.\operatorname{ker} \pi_{n}\right|_{\operatorname{ker} \varphi_{T^{*}}}\right)=\Theta^{-1}\left(\left.\operatorname{ker} \pi_{n}^{*}\right|_{\operatorname{ker} \varphi_{T}}\right)$, and $\left.\left.\operatorname{ker} \pi_{n}^{*}\right|_{\operatorname{ker} \varphi_{T}} \simeq\{a \in \mathcal{A}: a(n)=0\} \simeq \operatorname{ker} \pi_{n}\right|_{\operatorname{ker} \varphi_{T^{*}}} ;$
(e) $\left.\operatorname{ker} \pi_{n}^{*}\right|_{\mathcal{I}}=\overline{\operatorname{span}}\left\{g_{i, j}^{m}-g_{i,}^{m+1}: 0 \leq i, j \leq m\right.$ in \mathbb{N}, and $\left.m \neq n\right\}=$ $\left.\operatorname{ker} \pi_{n}\right|_{\mathcal{I}}=\overline{\operatorname{span}}\left\{f_{i, j}^{m}-f_{i, j}^{m+1}: 0 \leq i, j \leq m\right.$ in \mathbb{N}, and $\left.m \neq n\right\}$ is isomorphic to the ideal $\left\{a \in \mathcal{A}_{0}: a(n)=0\right\}$.

Remark 5.8. Note that the representations $\left.\pi_{n}\right|_{\operatorname{ker} \varphi_{T^{*}}}$ and $\left.\pi_{n}^{*}\right|_{\operatorname{ker} \varphi_{T}}$ are equivalent to the evaluation map $\varepsilon_{n}: f \in \mathcal{A} \mapsto f(n) \in B\left(H_{n}\right)$ of \mathcal{A} on H_{n}, so we have $\left.\left.\operatorname{ker} \pi_{n}\right|_{\operatorname{ker} \varphi_{T^{*}}} \simeq \operatorname{ker} \pi_{n}^{*}\right|_{\operatorname{ker} \varphi_{T}}$ is isomorphic to $\{f \in \mathcal{A}: f(n)=0\}$, and $\left.\operatorname{ker} \pi_{n}\right|_{\mathcal{I}}=\left.\operatorname{ker} \pi_{n}^{*}\right|_{\mathcal{I}} \simeq\left\{f \in \mathcal{A}_{0}: f(n)=0\right\} ;$ and $\operatorname{ker} \pi_{\infty} \simeq \operatorname{ker} \pi_{\infty}^{*} \simeq \mathcal{A}$.
Proof of Proposition 5.7. Fix $n \in \mathbb{N}$. We show for ker π_{n}, and skip the proof for $\operatorname{ker} \pi_{n}^{*}$ because it contains the same arguments. We clarify firstly that the space

$$
\mathcal{J}:=\overline{\operatorname{span}}\left\{f_{i, j}^{m}-g_{n-i, n-j}^{k}+\eta: 0 \leq i, j, m, k \leq n, \eta \in L_{n}\right\}
$$

is an ideal of $\left(\mathbf{c} \times_{\tau} \mathbb{N}, v\right)$ by showing $v \mathcal{J} \subset \mathcal{J}$ and $v^{*} \mathcal{J} \subset \mathcal{J}$. Let $i=n$, then

$$
\begin{aligned}
v v_{k} v_{k}^{*}\left(1-v^{*} v\right) v_{n-j} & =v\left(v^{*} v v_{k} v_{k}^{*}\right)\left(1-v^{*} v\right) v_{n-j} \\
& =v v_{k} v_{k}^{*} v^{*} v\left(1-v^{*} v\right) v_{n-j} \\
& =v_{k+1} v_{k+1}^{*}\left(v-v v^{*} v\right) v_{n-j}=0
\end{aligned}
$$

therefore $v\left(f_{n, j}^{m}-g_{0, n-j}^{k}+\eta\right)=v v_{n} v_{m}^{*} v_{m}\left(1-v v^{*}\right) v_{j}^{*}-v v_{k} v_{k}^{*}\left(1-v^{*} v\right) v_{n-j}+v \eta=$ $f_{n+1, j}^{m}+v \eta$ belongs to \mathcal{J} because $f_{n+1, j}^{m} \in L_{n}$. If $0 \leq i \leq n-1$, then $1 \leq i+1 \leq n$
and $n-i \geq 1$, and we have

$$
\begin{aligned}
v v_{n-i}^{*} v_{k} v_{k}^{*} & =v v^{*} v_{n-i-1}^{*} v_{n-i-1} v_{n-i-1}^{*} v_{k} v_{k}^{*} \\
& =v_{n-i-1}^{*} v_{n-i-1} v v^{*} v_{n-i-1}^{*} v_{k} v_{k}^{*} \\
& =v_{n-i-1}^{*} v_{n-i} v_{n-i}^{*} v_{k} v_{k}^{*} \\
& =v_{n-i-1}^{*} v_{\max \{n-i, k\}} v_{\max \{n-i, k\}}^{*},
\end{aligned}
$$

so $v\left(f_{i, j}^{m}-g_{n-i, n-j}^{k}+\eta\right)=f_{i+1, j}^{m}-g_{n-(i+1), n-j}^{\max \{n-i, k\}}+v \eta \in \mathcal{J}$.
Now we check for $v^{*} \mathcal{J}$, and assume $i=0$, then

$$
\begin{aligned}
v^{*}\left[f_{0, j}^{m}-g_{n, n-j}^{k}+\eta\right] & =v^{*}\left[v_{m}^{*} v_{m}\left(1-v v^{*}\right) v_{j}^{*}-v_{n}^{*} v_{k} v_{k}^{*}\left(1-v^{*} v\right) v_{n-j}+\eta\right] \\
& =0-g_{n+1, n-j}^{k}+v^{*} \eta \in \mathcal{J}
\end{aligned}
$$

because $g_{n+1, n-j}^{k} \in L_{n}$. It follows by similar computations for $1 \leq i \leq n$ that

$$
v^{*}\left[f_{i, j}^{m}-g_{n-i, n-j}^{k}+\eta\right]=f_{i-1, j}^{\max \{i, m\}}-g_{n-(i-1), n-j}^{k}+v^{*} \eta \in \mathcal{J} .
$$

Next we show that $\mathcal{J}=\operatorname{ker} \pi_{n}$, one inclusion $\mathcal{J} \subset \operatorname{ker} \pi_{n}$ is clear because $\pi_{n}\left(f_{i, j}^{m}\right)=\pi_{n}\left(g_{n-i, n-j}^{k}\right)=T_{i}\left(1-T T^{*}\right) T_{j}^{*}$ and $L_{n} \subset \operatorname{ker} \pi_{n}$. For the other inclusion, let $\sigma: \mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N} \rightarrow B\left(H_{\sigma}\right)$ be a nondegenerate representation with $\operatorname{ker} \sigma=\mathcal{J}$. Note that $B\left(H_{n}\right)=\operatorname{span}\left\{e_{i j}:=T_{i}\left(1-T T^{*}\right) T_{j}^{*}: 0 \leq i, j \leq n\right\}$. Since $\left\{f_{i, j}^{n}: 0 \leq i, j \leq n\right\}$ is a matrix-units for $B\left(H_{\sigma}\right)$, there is a homomorphism ψ of $B\left(H_{n}\right)$ into $B\left(H_{\sigma}\right)$ which satisfies $e_{i j} \mapsto \sigma\left(f_{i, j}^{n}\right)$. Therefore $\sigma=\psi \circ \pi_{n}$, and hence $\operatorname{ker} \pi_{n} \subset \operatorname{ker} \sigma=\mathcal{J}$.

Using the spanning elements of $\operatorname{ker} \pi_{n}$ and $\operatorname{ker} \pi_{n}^{*}$, and the equation $f_{i, j}^{m}-$ $g_{n-i, n-j}^{k}=-\left(g_{n-i, n-j}^{k}-f_{n-(n-i), n-(n-j)}^{m}\right)$, we see that they contain each other, therefore $\operatorname{ker} \pi_{n}=\operatorname{ker} \pi_{n}^{*}$ for every $n \in \mathbb{N}$. The ideal L_{0} is $\operatorname{ker} \pi_{0}=\operatorname{ker} \pi_{0}^{*}$ because $f_{0,0}^{0}-g_{0,0}^{0}=v^{*} v-v v^{*} \in L_{0}$.

For (d), let now \mathcal{J} be $\overline{\operatorname{span}}\left\{\left(f_{i, j}^{m}-f_{i, j}^{k}\right)+f_{x, y}^{z}: 0 \leq i, j, m, k \leq n\right.$, one of $x, y, z \geq n+1\}$. Then the same idea of calculations shows that \mathcal{J} is an ideal of $\operatorname{ker} \varphi_{T^{*}}$, and it is contained in $\left.\operatorname{ker} \pi_{n}\right|_{\operatorname{ker} \varphi_{T^{*}}}$, then for the other inclusion let σ be a nondegenerate representation of $\operatorname{ker} \varphi_{T^{*}}$ such that $\operatorname{ker} \sigma=\mathcal{J}$, get the homomorphism $\psi: B\left(H_{n}\right) \rightarrow B\left(H_{\sigma}\right)$ defined by $\psi\left(e_{i j}\right)=\sigma\left(f_{i, j}^{n}\right)$, and hence the equation $\psi \circ \pi_{n}=\sigma$ implies that $\left.\operatorname{ker} \pi_{n}\right|_{\operatorname{ker} \varphi_{T^{*}}}=\mathcal{J}$. By computations on the spanning elements we see that the equation $\Theta_{*}^{-1}\left(\left.\operatorname{ker} \pi_{n}\right|_{\operatorname{ker} \varphi_{T^{*}}}\right)=$ $\Theta^{-1}\left(\left.\operatorname{ker} \pi_{n}^{*}\right|_{\operatorname{ker} \varphi_{T}}\right)$ is hold. The same arguments work for the proof of (e), and we skip this.
Remark 5.9. The map $n \in \mathbb{N} \cup\{\infty\} \mapsto I_{n}:=\operatorname{ker} \pi_{n}^{*} \in \operatorname{Prim}\left(\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}\right)$ parameterizes the open subset $\left\{P \in \operatorname{Prim}\left(\mathbf{c} \times_{\tau}^{\text {piso }} \mathbb{N}\right): \operatorname{ker} \varphi_{T} \simeq \mathcal{A} \not \subset P\right\}$ of $\operatorname{Prim}\left(\mathbf{c} \times_{\tau}^{\text {piso }} \mathbb{N}\right)$ homeomorphic to $\operatorname{Prim} \mathcal{A}$. Note that the ∞ corresponds to the ideal $\operatorname{ker} \pi_{\infty}^{*}=\operatorname{ker} \varphi_{T^{*}} \in \operatorname{Prim}\left(\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}\right)$, and it corresponds to $\mathcal{I}=$ $\left.\operatorname{ker} \varphi_{T^{*}}\right|_{\operatorname{ker} \varphi_{T}} \in \operatorname{Prim} \mathcal{A}$.

Lemma 5.10. (i) $\bigcap_{n=0}^{m} I_{n}=L_{m}$ for every $m \in \mathbb{N}$;
(ii) $\bigcap_{n \in \mathbb{N}} I_{n}=\{0\}$;
(iii) $\{0\} \nsubseteq\left(\bigcap_{n>m} I_{n}\right) \subset \operatorname{ker} \pi_{\infty}^{*} \cap \operatorname{ker} \pi_{\infty}$ for every $m \in \mathbb{N}$.

Proof. Part (i) follows from (5.2) and Lemma 5.6. For (ii), note that q_{∞} is the identity map on $\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$, and that $\oplus_{i \in \mathbb{N}} \pi_{i}=\left(\oplus_{i \in \mathbb{N}}\left(\pi_{J^{i}}^{\mathbb{N}} \times J^{i}\right)\right) \circ$ id. So $\bigcap_{n \in \mathbb{N}} I_{n}=\{0\}$ by faithfulness of $\oplus_{i \in \mathbb{N}}\left(\pi_{J^{i}}^{\mathbb{N}} \times J^{i}\right)$ [7, Corollary 5.5].

The inclusion $\bigcap_{n>m} I_{n} \subset \operatorname{ker} \pi_{\infty}^{*}$ for every $m \in \mathbb{N}$ follows from the next arguments:

$$
\begin{aligned}
\bigcap_{n>m} \operatorname{ker}\left(\left.\pi_{n}^{*}\right|_{\operatorname{ker} \pi_{\infty}}\right) & \simeq\{f \in \mathcal{A}: f(n)=0 \forall n>m\} \\
& \subset\left\{f \in A: \lim _{n \rightarrow \infty} f(n)=0\right\} \\
& =\left.\mathcal{A}_{0} \simeq \operatorname{ker} \pi_{\infty}^{*}\right|_{\operatorname{ker} \pi_{\infty}} \subset \operatorname{ker} \pi_{\infty}^{*} \in \operatorname{Prim} \mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}
\end{aligned}
$$

so the two ideals $J:=\bigcap_{n>m} I_{n}$ and $L:=\operatorname{ker} \pi_{\infty}$ of $\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$ satisfy $J \cap L \subset$ $\operatorname{ker} \pi_{\infty}^{*}$, therefore either $J \subset \operatorname{ker} \pi_{\infty}^{*}$ or $L \subset \operatorname{ker} \pi_{\infty}^{*}$, but the latter is not possible. To show $J \subset \operatorname{ker} \pi_{\infty}$, since $\operatorname{ker} \pi_{n}=\operatorname{ker} \pi_{n}^{*}$ for each n, we act similarly using the fact that

$$
\bigcap_{n>m} \operatorname{ker}\left(\left.\pi_{n}\right|_{\operatorname{ker} \pi_{\infty}^{*}}\right) \simeq\{f \in \mathcal{A}: f(n)=0 \forall n>m\} \subset \operatorname{ker} \pi_{\infty} \in \operatorname{Prim} \mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N} .
$$

Therefore, $J \subset \operatorname{ker} \pi_{\infty}^{*} \cap \operatorname{ker} \pi_{\infty}$. Moreover, since $g_{0,0}^{0}-g_{0,0}^{1} \neq 0$ which satisfies $\pi_{n}^{*}\left(g_{0,0}^{0}-g_{0,0}^{1}\right)=0$ for all $n \geq 1$, it follows that $\{0\} \nsubseteq\left(\bigcap_{n>m} I_{n}\right)$.

Remark 5.11. Part (ii) of Lemma 5.10 confirms with the fact that \mathcal{I} is an essential ideal of $\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$ [7, Lemma 6.8].

Next consider for $z \in \mathbb{T}$, the character $\gamma_{z} \in \hat{\mathbb{Z}} \simeq \mathbb{T}$ defined by $\gamma_{z}: m \mapsto \bar{z}^{m}$. Note that the map $\gamma_{z}: k \in \mathbb{N} \mapsto \gamma_{z}(k)$ is a partial-isometric representation of \mathbb{N} in $\mathbb{C} \simeq B(\mathbb{C})$. Consequently for each $z \in \mathbb{T}$, we have a representation $\pi_{\gamma_{z}} \times \gamma_{z}$ of $\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$ on \mathbb{C} such that $\pi_{\gamma_{z}} \times \gamma_{z}\left(v_{k}\right)=\gamma_{z}(k)=\bar{z}^{k}$ for $k \in \mathbb{N}$, and it is irreducible. Moreover we know that the homomorphism $\Psi: \mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N} \rightarrow C(\mathbb{T})$ is the composition of the Fourier transform $\mathbb{C} \times_{\mathrm{id}} \mathbb{Z} \simeq C^{*}(\mathbb{Z}) \simeq C(\mathbb{T})$ with $\ell \times \delta^{*}: \mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N} \rightarrow \mathbb{C} \times$ id \mathbb{Z}, in which $\ell:\left(x_{n}\right) \in \mathbf{c} \mapsto \lim _{n} x_{n} \in \mathbb{C}$ and δ is the unitary representation of \mathbb{Z} on $\mathbb{C} \times$ id \mathbb{Z}.
Lemma 5.12. For $z \in \mathbb{T}$, the character $\gamma_{z}: k \mapsto \bar{z}^{k}$ in $\hat{\mathbb{Z}} \simeq \mathbb{T}$ gives an irreducible representation $\pi_{\gamma_{z}} \times \gamma_{z}$ of $\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$ on \mathbb{C} such that $\pi_{\gamma_{z}} \times \gamma_{z}=$ $\varepsilon_{z} \circ\left(\ell \times \delta^{*}\right)$. Denote by J_{z} the primitive ideal $\operatorname{ker} \pi_{\gamma_{z}} \times \gamma_{z}$ of $\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$. Then $\operatorname{ker} \pi_{\infty}$ and $\operatorname{ker} \pi_{\infty}^{*}$ are contained in J_{z} for every $z \in \mathbb{T}$. Moreover every ideal I_{n} for $n \in \mathbb{N}$ is not contained in any J_{z}.
Proof. By using the Fourier transform we can view $\mathbb{C} \times_{\mathrm{id}} \mathbb{Z} \simeq C^{*}(\mathbb{Z})$ as $C(\mathbb{T})$, and it follows that $v_{k} \in \mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$ is mapped into the function $\iota_{k}: t \mapsto \bar{t}^{k} \in C(\mathbb{T})$.

We know that primitive ideals of $C(\mathbb{T})$ are given by the kernels of evaluation maps $\varepsilon_{t}(f)=f(t)$ for $t \in \mathbb{T}$, and the character γ_{z} is a partial-isometric representation of \mathbb{N} in \mathbb{C} for $z \in \mathbb{T}$. Then by inspection on the generators, we see
that the representation $\pi_{\gamma_{z}} \times \gamma_{z}$ of $\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$ on \mathbb{C} satisfies $\pi_{\gamma_{z}} \times \gamma_{z}=\varepsilon_{z} \circ\left(\ell \times \delta^{*}\right)$. So the primitive ideal $J_{z}:=\operatorname{ker} \pi_{\gamma_{z}} \times \gamma_{z}$ of $\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}$ is lifted from the quotient $\left(\mathbf{c} \times_{\tau}^{\text {piso }} \mathbb{N}\right) / J \simeq C(\mathbb{T})$.

Since $\pi_{\gamma_{z}} \times \gamma_{z}\left(f_{i, j}^{m}\right)=0=\pi_{\gamma_{z}} \times \gamma_{z}\left(g_{i, j}^{m}\right), \operatorname{ker} \pi_{\infty}=\operatorname{ker} \varphi_{T}$ and $\operatorname{ker} \pi_{\infty}^{*}=$ $\operatorname{ker} \varphi_{T^{*}}$ are contained in J_{z} for every $z \in \mathbb{T}$. Finally, since $\pi_{\gamma_{z}} \times \gamma_{z}\left(v_{n+1}\right)=$ $\bar{z}^{n+1} \neq 0$ for $n \in \mathbb{N}, I_{n} \not \subset J_{z}$ for any $z \in \mathbb{T}$.

Theorem 5.13. The maps $n \in \mathbb{N} \cup\{\infty\} \cup\left\{\infty^{*}\right\} \mapsto I_{n}$ and $z \in \mathbb{T} \mapsto J_{z}$ combine to give a bijection of the disjoint union $\mathbb{N} \cup\{\infty\} \cup\left\{\infty^{*}\right\} \cup \mathbb{T}$ onto $\operatorname{Prim}\left(\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}\right)$, where $I_{\infty^{*}}:=\operatorname{ker} \varphi_{T}$. Then the hull-kernel closure of a nonempty subset F of

$$
\mathbb{N} \cup\{\infty\} \cup\left\{\infty^{*}\right\} \cup \mathbb{T}
$$

is given by
(a) the usual closure of F in \mathbb{T} if $F \subset \mathbb{T}$;
(b) F if F is a finite subset of \mathbb{N};
(c) $F \cup \mathbb{T}$ if $F \subset\left(\{\infty\} \cup\left\{\infty^{*}\right\}\right)$;
(d) $F \cup\left(\{\infty\} \cup\left\{\infty^{*}\right\} \cup \mathbb{T}\right)$ if $F \neq \mathbb{N}$ is an infinite subset of \mathbb{N};
(e) $\mathbb{N} \cup\{\infty\} \cup\left\{\infty^{*}\right\} \cup \mathbb{T}$ if $\mathbb{N} \subseteq F$.

Proof. The diagram 5.1 together with Proposition 5.7 gives a bijection map of $\mathbb{N} \cup\{\infty\} \cup\left\{\infty^{*}\right\} \cup \mathbb{T}$ onto $\operatorname{Prim}\left(\mathbf{c} \times{ }_{\tau}^{\text {piso }} \mathbb{N}\right)$.

Lemma 5.10(ii) gives the closure of the subset F in (e), and Lemma 5.10(iii) gives the closure of the subset F in (d). If $F \subset\left(\{\infty\} \cup\left\{\infty^{*}\right\}\right)$, then $\bar{F}=F \cup \mathbb{T}$ because $\operatorname{ker} \pi_{\infty}^{*}, \operatorname{ker} \pi_{\infty} \subset J_{z}$ for every $z \in \mathbb{T}$ by Lemma 5.12 .

To see that $\bar{F}=F$ for a finite subset $F=\left\{n_{1}, n_{2}, \ldots, n_{j}\right\}$ of \mathbb{N}, we note that if an ideal $P \in \operatorname{Prim}\left(\mathbf{c} \times_{\tau} \mathbb{N}\right)$ satisfies $\bigcap_{i=1}^{j} I_{n_{i}} \subset P$, then

- $P \neq J_{z}$ for any $z \in \mathbb{T}$ because $v_{n_{j}+1} \in \bigcap_{i=1}^{j} I_{n_{i}}$ but $v_{n_{j}+1} \notin J_{z}$;
- $P \neq I_{\infty}, I_{\infty^{*}}$ because $v_{n_{j}+1} \in \bigcap_{i=1}^{j} I_{n_{i}}$ but $v_{n_{j}+1} \notin I_{\infty}, I_{\infty^{*}}$;
- $P \neq I_{n}$ for $n \notin F$ because $\left(g_{0,0}^{n}-g_{0,0}^{n+1}\right) \in \bigcap_{i=1}^{j} I_{n_{i}}$ but $\left(g_{0,0}^{n}-g_{0,0}^{n+1}\right) \notin$ I_{n} for $n \notin F$.
So it can only be $P=I_{j}$ for some $j \in F$. Finally the usual closure of F in \mathbb{T} is followed by the fact that the map $z \mapsto J_{z}$ is a homeomorphism of \mathbb{T} onto the closed set $\operatorname{Prim} C(\mathbb{T})$.

References

[1] S. Adji, Invariant ideals of crossed products by semigroups of endomorphisms, Proc. Conference in Functional Analysis and Global Analysis in Manila, 1-8, October 1996, Springer, Singapore 1996.
[2] S. Adji and A. Hosseini, The Partial-Isometric Crossed Products of \mathbf{c}_{0} by the Forward and the Backward Shifts, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), no. 3, 487-498.
[3] S. Adji, M. Laca, M. Nilsen, and I. Raeburn, Crossed products by semigroups of endomorphisms and the Toeplitz algebras of ordered groups, Proc. Amer. Math. Soc. 122 (1994), no. 4, 1133-1141.
[4] S. Adji and S. Zahmatkesh, Partial-isometric crossed products by semigroups of endomorphisms as full corners, J. Aust. Math. Soc. 96 (2014), no. 2, 145-166.
[5] N. J. Fowler, P. Muhly, and I. Raeburn, Representations of Cuntz-Pimsner Algebras, Indiana Univ. Math. J. 52 (2003), no. 3, 569-605.
[6] B. K. Kwaśniewski and A. V. Lebedev, Crossed products by endomorphisms and reduction of relations in relative Cuntz-Pimsner algebras, J. Funct. Anal. 264 (2013), no. 8, 18061847.
[7] J. Lindiarni and I. Raeburn, Partial-isometric crossed products by semigroups of endomorphisms, J. Operator Theory 52 (2004), no. 1, 61-87.
[8] G. J. Murphy, Ordered groups and Toeplitz algebras, J. Operator Theory 18 (1987), no. 2, 303-326.
[9] I. Raeburn and D. P. Williams, Morita Equivalence and Continuous-Trace C ${ }^{*}$-Algebras, Mathematical Surveys and Monographs, Vol. 60, American Mathematical Society, Providence, RI, 1998.

Sriwulan Adji
Ji Alam Nirwana 32 A
Graha Nirwana
Resor Dago Pakar
Bandung 40191, Indonesia
E-mail address: sriwulan.adji@gmail.com
Saeid Zahmatkesh
Department of Mathematics and Computer Science
Faculty of Science
Chulalongkorn University
Bangkok 10330, Thailand
E-mail address: zahmatkesh.s@gmail.com

[^0]: Received October 7, 2014; Revised March 6, 2015.
 2010 Mathematics Subject Classification. Primary 46L55.
 Key words and phrases. C^{*}-algebra, endomorphism, semigroup, partial isometry, crossed product, primitive ideal, hull-kernel closure.

