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THE COMPROMISE VALUE FOR N~U-GAMES

Petcr Borm,~l IIans Keiding,~1 Richard P. McLean,91 Saskia Oo~rtwijnal and Stef Tijs~l

Abslrnct. The compromise value is Introduced as a single-valued solution concept for NTU-

games. It is ehown that the compromise value coincides with the r-value for TU-games and

with the Kalai-Smorodinaky solution for bargaining problems. In addition the axiomatic char-

acterizations of both the two-person Kalai-Smorodinsky eolution and the r-value can be extended

to the compromise value for large classes of NTU-gamea.

We also present an alternative N'!'U-extension of thc TU r-value ( called the N'IU r-value) which

coincides with the Nash solution (or two-person bargaining problems. The definition of the NTU

r-value is analogoua to that of the Shapley NTU-value

Both the compromise value and the NTU r-value are illustrated by means of the Roth-Schafer

examples.
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I. INTRODUCTION

The Shapley value of TU (-ltansferable Utility)-games, introduced by Shnpley (1953), has

been generalized to NTU (-Non Transferable Utility)-games in various ways. Shaptey (1969) de-

fined the NTU-value and flarsanyi (1959, 1963), Owen (1971) and Imai (1983) considered other

possible extenaions. For the NTU-value an axiomatic characterization has been pmvided by

Aumann (1985a) and Kern (1985), for the Harsanyi solution by Hart (1985a) and for monotonic

solutions by Kulni and Snmet (1985).

This paper introciuces the compmmise value as an extension of the r-valuc of 7~ja (1981)

for quasi-balanced TU-gamr~ to the class of compromise admissible NTU-games.

The compromise value es deflned in section 3 is a one-point solution concept that is based

upon the upper and lower bounds for the core of an NTU-game that are given in section 2.

Interestingly, the compromise value coincides with the solution of Knlni and Smorodinsky (1975,

in short KS-solution) for the special case of bargaining games.

Section 9 shows that both the axiomatic characterization of the 2-person KS-solution and

the axiomatic characterization of the r-value given by 7~js (1987) can be extended to the com-

promise value on a class of NTU-games. As a result, the compromise value is an extension of

the KS-solution to NTU-games from a definitional as well as an axiomatic viewpoint. This may

at first seem rather confusing if one recalls the paper of Roth (1979) showing, by means of an

example, that there can be no solution for general nrperson bargaining problems which satisfies

the (analogues of the) axioms of the 2-person KS-solution. Roth's example will be discuseed

in detail and, as we will see, the issue here ia comprehensivenesa in combination with a weaker

version of Pareto optimality.

Hnth (1980) and Shnjer (1980) introduced two special classes of games for which, in their

opinion, the Shapley NTU-value leads to a counterintuitive outcome. This led to an intereating

discussion of the NTU-value in the papers of Aumann (1985b, 1986), Roth (1986) and Hart

(1985b). In Section 5 the Roth-Shafer examples are discussed in some detail and we compare

the compromise value to the Shapley and Harsanyi NTU-values for these examples.

Section 6 briefly discu.gses some results on the NTU r-value which ie defined along the linesof

the Shapley NTU-value. Among others, it is seen that the NTU r-value coincides with the Nash

solution for 2-person bargaining problems and that one can prove existence (i.e. non-emptiness)

for (a subclass of ) compactly and convexly generated NTU-games.

Notation. Let x, y E R" and C, D C R". We have x?(~)y if and only if x; ? (~) yti for
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n
alliE{1,...,n},Rf:-{zERnIZ~O}BndR~.~:-{ZER'~IZ~O} ,xy:-~x;y;ER,

ta i
x.y:-(x,y,,...,x„vn)ERn, x~C:-{xteER"~cEC}andCfD:-{CfdER ~~CE

C,d E D}.
Fhrther, Conv(C) denotes the convex hull of C e.nd

Comp(C) :- {z E R" ~ there is a c E C such that z c c}

is the comprehensive hull of C.
Finally, with N :- {1,... ,n} and i E N, e; E R" denotes the i-th unit vector and eN -~ e{

tEN
is the n-tuple of l~s, and for S C N, xs :- (x~)~ES E Rs and x is identified with (xs,xN`s).
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2. NTU-GAMES: BOUNDS FOR THE CORE

An N7'U-game is a pair (N, V) where N:- { 1, 2, ..., n} is the set of players and V is a

set-valued function that assigns to each conlition S E 2N`{0} a non-empty eet V(S) C R9 of

attainable payoff vectora. For each player i E N we assume there is e individunl rntiona! payoff

v(i) E R such that V({i}) -{a E R ~ a c v(i)} while, for each S E 2N`{2J},

(i) V(S) is closed and comprehenaive (i.e. if a E V(S) and 6 E Rg is such that b c a, then

6 E V(S)).
(ii) V(S) fl {a E Rs ~ a? (v(j))~ES} is bounded.

An NTU-game (N, V) will be o[ten identified with V. The core C(V) consista of thoee attainable

payoff vectors for the grand coalition N which are stable with respect to (strict) domination.

More specifically, with

Dom (V(S)) :- {a E Rs ~ 3~v{~ : 6~ a} (1)

representing the set of dominated payoff vectors for a coalition S E 2N`{0},

C(V) :- {n E V(N) ~~3sezN`{o} : as E Dom (V(S))}. (2)

Let i E N. Assuming that the ooalition N`{i} will never agree to a payoff vector a E RN`{:}

with a E Dom (V(N`{i})) or a~ c v(j) for some j E N`{i}, the highest posaible marginal

contribution of player i by joining the coalition N`{i} is given by

K;(V) :- sup{t E R ~ 3,EON~i~3 :(ar t) E V(N),a ~ Dom (V(N`{i}))
(3)

8nd 6 ~ (V(J))lEN`(i]}'

K;(V ) is called the ulopin payojjof playcr i. I3y assumption (ii) in the definition ofan NTU-game

we have that K;(V) c oo. However, K;(V) --oo might occur.

Assume K~(V) E R for all j E N and consider a coalition S to which player i belongs. The

formation of such a coalition is attractive for a player j E S`{i} if he geta ( slightly) more that

the utopia payoff K~(V). Thus, player i can lay a rightful claim to the remntinder ps(V) which

is given by

ps(V) :- sup{t E R ~ 3oER,~i~3 :(t,n) E V(S) and a~ K~{;}(V)}. (4)

Among the 2"-3 possible coelitions with i E S, player i can choose one where this remainder is

maximal. Let
ki(V) :- s;~Ps(V) (5)
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denote the minimo! right of plqyer i. Clearly k;(V) ? v(i), but it might occur that k;(V) - ao.

In this paper we concentrate on NTU-gamea for which all utopia payoffs and minimal rights

for the various players are real numbers. In particular, thia is the case for NTU-gamee with a

non-empty core: theorem 1 shows that K(V) -(K~(V))~EN and k(V) - (k~(V))~EN eatabliah

an upper and }ower bound for the core, respectively.

THEOREM 1. Let (N, V) be an NTU-game with x E C(V). Then

k(V) G x c K(V).

Proof. ObviouslY, (2) and (3) imply

K~(V) ? sup{t E R ~ 3,ER,.~~~} :(a, t) E C(V)} ? x~

for all j E N. Hence, x C K(V).

Let i E N and choose a coalition T 3 i such that k;(V) - pT(V) - max ps(V).s:;Es
Suppose k;(V) ~ x;. Then we can choose E 1 0 such that k;(V) ~ x; -~E. Further, by (4), there

exists a vector a E Rr`{:} such that (x; -l-E,a) E V(T) and a 1 K~{;}(V).

However, this would imply that

xT C(x;r KT`{;}(V)) C(xi ~ E,6) E V(T),

which contradicts the fact that x E C(V). Hence, k(V) L x. !7

The vectors k(V) and K(V) induce familar bounda for TU-games and two-person bargaining

games.

(a) TU-games. A TU-game is a pair (N, v) where v is a function that assigns to each coalition

S a real number v(S) with v(0) - 0. The core C(v) is defined by
C(v) :- {a E RN ~~ n; - v(N), ~ a; ? v(S) for all S C N}.

iEN iES

For a TU-game (N,v), Ttijs (1981) introduced a utopia vector M(v) E RN and a minimal right

vector m(v) E RN as follows. For i E N,

M;(v) :- v(N) - v(N`{i}) and m;(V) :- s~(v(S) -~ Mj(v)). (6)
~ES`{:}

For x E C(v), it was shown that m(v) c x c M(v).

Associating an NTU-game (N,V) to a TU-game (N,v) by defining

V(S) :- {a E Rs I ~a; 5 v(S)} (7)
íE3
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for all S E 2N`{0}, it is straighforward to verify that C(v) - C(V), and that M(v) - K(V)
and m(v) - k(V) if v is such that v(N`{i}) 1 ~ v(j) for all i E N.

~EN`{ij
(b) Bargaining problems. In an n-person bnrgaining pmblem (C, d), the non-empty set C C

R" representa the set of feasibie outcomes and d E C is the disagreement point. Moreover, we

assume that the tollowing properties are satisfied:

(i) C is closed, convex and comprehensive.

(ii) There is an xo E C with xo ~ d.

(iii) Ca -{x E C ~ x? d} is bounded.
For eech bargaining problem (C, d), Knlnti and Smomdinsky (1975) introduced the utopia point

u(C,d) E RN by defining u,(C,d) :- max{a E R ~ 36ERN~i~~ :(n,6) E Cd} for all i E N. Each

bargaining problem (C, d) corresponds to an NTU-game (N, V) defined by setting V(N) - C

and V(S) -{a E Rs ~ a c ds} for S C N, S~ 0. Then, one easily obtains that u(C, d) - K(V)

and d - k(V).

S. THE COMPROMISE VALUE

In this section the compromise value is introduced as an extension of the r-value for quaei-
balanced TU-games (cf. Ttijs (1981)) to the class of compromise admissible NTU-games.
Here, an NTU-game (N, V) is called compmmise admissible if the utopia vector K(V) and the

minimal right vector k(V) of section 2 satisfy the following two properties:

(i) k(V) c K(V).
(ii) k(V) E V(N), K(V) ~ Dom(V(N)).
By CN we denote the class of all compromise admissible NTU-games with piayer set N. Clearly,

we have

r.Fa.trtn ~. Every NTU-game with a non-empty core is compromise admissible.

Proof. Let (N, V) bc an N'I'U-gan~e with x E C(V). Then, using thoorem 1, k(V) c x C K(V).

In particular, since x E V(N), comprehensiveness implies that k(V) E V(N).

Suppose K(V) E Uom(V(N)). Then thcre is an y E V(N) such that y 1 K(V) ? x. However,

this contradicts the fact that x E C(V). We may conclude that the conditions (i) and ( ii) are

satisfied. O

For V E CN the compromise vnlue T(V) E RN is defined as the unique vector on the line
segment between k(V) and K(V) which ]iea in V(N) and ia closeat to the utopia vector K(V).
More specifically,

T(V) :- avK(V) f ( 1 - av)k(V), (8)
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where

i1y :- max{a E~O, 1] ~ aK(V) }(1-a)k(V) E V(N)}. (9)

Note that ay is well-defined because k(V) E V(N) and V(N) is cloeed and compreheneive.

Using the notationa of aection 2, a TU-game (N, v) ia called quasi-óalanced if m(v) ~ M(v)

and ~ m;(v) c v(N) ~ ~ M;(v). For aquasi-balanced TU-game (N,v) the T-VaiLC T(V) E RN
~EN iEN

ie defined as the unique vector lying on the line segment between m(v) and M(v) which is

efficient, i.e. ~ r(v) - v(N).
iEN

Asaume v(N`{i}) ~ ~ v(j) for all i E N and let V be the NTU-game corresponding to v
jEN`{i}

(cf. (7)). One easily verifies that v is quesi-balanced if and only if V is compromise admissible,

and that the r-value of v coincides with the compromise value of V.
For a bargaining problem (C, d) one finds that the compromise value of the oorresponding

NTU-game V ia the unique undominated feasible outcome lying on the line aegment between

the disagreement point d and the utopia point u(C,d). In pariicular, thia outcome corresponds

to the KS-eolution for the bargaining problem (C, d).

4. AXIOMATIC CHARACTERIZATIONS

Aa we have seen, the compromise value'definitionally' extends the Kalai-Smorociinsky solu-

tion to NTU-gamea. In the first part of this section we ahow that the axiomatic characterization

of the 2-person KS-solution can be extended to the n-person NTU-case as well.

Recalling the axioms of Kalai and Smorodinsky (1975), we firat have to note that they used a

alightly different definition of a bargaining problem in which the comprehenaivenesa requirement

is dropped.

More [ormally, a KS-bargaining game (C, d) is such that 0~ C C R", d E C and

(i) C ia compact and convex

(ii) There is an xs E C with xs~d.

I.et BN denote the class of all KS-bargaining problems on N. For a(bargaining) eolution conoept

ry: BN y RN, Kalni and Smomdinsky (1975) and Roth (1979) considered the following four

properties.

Parelo optimaltity: ibr all (C, d) E BN thcre dces not exiat an x E C with

x? ry(C, d) and x~ y(C, d).

Symmetry. If d; - dj for all i, J E N 8nd C C R'~ ia SllC}1 that (C;);EN E C
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implics that (c„i;l);EN E C for each permutation ~r : N-. N, then

ry;(C, d) - ryj(C, d) for all i, j E N.

(Restrieted) Monotonicity. For all (C, d), (D, d) E BN with C C D and u(C, d) - u(D, d) lt

holds that

?'(C, ~ 5 7(D, d).

Invarinnce: For all (C, d) E BN and each affine function j: R" --. R" with j(x) - ax f~, x E
R", for some a E Rf} and Q E R", it holds that

7(j(C),t(d)) - j(ry(C,d)).

It was shown that the KS-solution is the unique solution on the class of 2-pen;on bargaining

problems which satisfies (the restriction of) these four properties. However, by means of the
following example, Roth (1979) showed that there could be no solution which satiefiee the first

three propcrties for general n-person bargaining problems.

EXAMPLEI. I.etN-{1,2,3},C-Conv({0,0,0),(0,1,1),(1,0,1)})andd-(0,0,0). Suppose

there is a solution ry that satisfies Pareto-optimality, symmetry and monotonicity. Then, by

Pareto-0ptimality

ry(C,d) E Conv({0,1,1),(1,0,1)}).

If a sceond bargaining problem (D, d) is defined by

D:-{(x~,xz,x3)ER3~x~fx~fx3~2andOcx;LlforalliE{1,2,3}},

then symmetry and Pareto optimality imply ry(D,d) - (3, 3, y).
However, since C C D and u(C, d) - u(D, d) -(1,1,1), monotonicity would imply that

ry(C,d) ~(3 , 3, ~), giving a contradiction. Note that the Kalai-Smorodinsky solution of (C,d)

equals (0,0,0).

Modifying the problem (C, d) to fit in the formalism of bargaining problems introduced in

Section 2 by considering Comp(C) instead of C(cf. Peters and Tijs (1984)), one ftnds that the
KS-solution (i.e. the compromise value of the associated NTU-game) equals (~, ~, ~).

As wc will soe in Lemma 3 and Theorem 4 below, comprehensiveness together with a

weakening of Pareto-optimality (and symmetry) will allow an axiomatic extension of the 2-
person KS-solution to the compromise value for a class of NTU-games.

Let F: CN -~ RN be a solution concept for compromise admissible NTU-games. The rule

F is called ejJictienl if

F(V) E V(N)` Dom (V(N)) for all V E CN. (10)
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F is symmelric if for all V E CN and i, j E N

k;(V) - k~(V), K;(V) - K~(V) ~ F;(V) - Fj(V). (11)

Flirther F satisfies monotonicity if for all V, W E CN

k(V) - k(W), K(V) - K(W),V(N) C W(N) ~ F'(V) c l~(W) (12)

For an NTU-game (N, V), a E R~t and Q E RN we can define the NTU-game (N, a. V.}Q) by

(a. V f Q)(S) :- as ~ V(S) f {,BS} for all S E 2N`{0}.

One easily verifiea that for compromise admisaible V, a r V f Q is compromiae admisaible too.

The rule F satisfies invnrtiance if for all V E CN, a E R~~ and Q E RN,

F(a . V f Q) - a s F(V ) f,B (13)

Note that both efficiency and symmetry establish weaker conditiona than Pareto optimality and

symmetry for the special case of bargaining problems, while monotonicity and invarianoe are
immediate extensions of their "bargaining-counterparts".

c~rtMa s. The compromise value T: CN y RN satisfies efficiency, symmetry, monotonicity

and invariance.

Prooj. Symmetry and monotonicity are obvious. Invariance followe from the fact that for all

V E CN, a E R~~ and Q E RN it holds that

K(a.VfQ)-asK(V)fQandk(a.V~-Q)-ask(V)fQ.

Let V E CN. We show efficiency by proving that T(V) E V(N)`Dom ~V(N)~. By definition we

have T(V) E V(N). Suppose T(V) E Dom (V(N)~.

Then there is an y E V(N) auch that y~T(V). Comprehensiveneas and the definition of T(V)

imply that T(V) - K(V). Then however K(V) E Dom (V(N)~ which contradlcta the fact

that v E cN. o

Let CN denote the class of all compromise admissible NTU-games that satiafy the following

thrce propcrties:

(i) V(N) is convex and {x E V(N) ~ x? k(V)} is non-level in the sense that ita boundary has

no segments parallel to a coordinate hyperplane ( cf. Aumann (1985)).

(ii) k(V)GK(V).
(iii) (kN~{:}(V),K;(V)~ E V(N) for all i E N.



10

Convexity and non-levclness are important assumptions in the axiomatic characterizations

of the Shapley NTU value and the Harsanyi solution ( see Aumann (1985a) and Hart (1985a)).

Condition (iii) requires that each playera utopia payoff cannot be "too big" relative to the

minimal right payoffs of the other players. For example, the clasa I'N contains all NTU-games

satisfying condition (i) that correspond to bargaining problema.

R.estricting the domain of a solution concept to I'N, the four properties discussed above

establish an axiomatic characterization of the compromise value.

THEOAEM ~. Tlle compromiSe Vallle T ÍS t}le llrllQlle TUIe On 1'N that 88tÍBReB eÍ('1Cleney, Bym-

metry, monotonicity and invariance.

Proof. (a) Using Lemma 3 it is seen that the compromise value satisfies the four propertiea. With

respect to invariance one should note that V E I'N, a E Rt~ and ~ E RN imply asV f,B E I'N.

(b) I.et F: I'N ~ RN satisfy the four properties and let W E I'N. We prove that F(W) - T(W).

Defining V:- W- k(W) it follows that k(V) - 0 and, since k(V)GK(V), a E R~f with

a; :- ~K;(V))-r for i E N is well-defined.

Obviously, k(a. V) - a. k(V) - 0 and K(a. V) - a. K(V) - eN, so the compromise value

T(a ~ V) lies on the line segment connecting the origin and eN. Moreover, by (i) and (iii) in

the definition of ['N we have that Conv({el,... ,e„}) C a. V(N), so efficiency of T implies

T(a t V) ? neN. Non-levelness implies T(a. V) G eN.

Now consider the NTU-game U defined by

U(S):-r{xERS~xcO} ifS~O,SxN
`Comp ~Conv({e~,...e,,,T(a. V)})) if S - N

Obviously, since T(a.V) c eN, K(U) - eN and, consequently k(U) - 0. Hence U ie compromise

admissible and (ii) and (iii) in the definition of I'N are satisfied. Trivially, U(N) is convex and,

using the fact that T(a. V)GeN, one readily verifies that {x E U(N),x ? 0} is non-level which

implies that U E I'N.

Using symmetry of F it follows that F;(U) - F~(U) for all i, j E N, so by efficiency and the

conatruction of U(N) we have
F(U) - T(a : V).

Clearly U(N) C a. V(N) and monotonicity implies

F(U) C F(a ~ V), i.e. T(a r V) c F(a s V)

But then, using efTiciency and non-levelness, T(a ~ V) - F(a. V).

Hence, by invariance of both T and F, T(V) - F(V) and T(W) - F(W) which finishes the

proof. 0
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We now provide an alternative axiomatic characterization of the compromise value based

on the characterization of the TU r-value of Tijs ( 1987).

Let F:CN -a RN. The rule F is said to have the minimd right pmperly if

F(V) - k(V) f F(V - k(V)) for all V E CN, (14)

and F has the nestricted pnoportionality pnoperty if F(V) ia a multiple of the utopia vector K(V)

for all V E CN with k(V) - 0.
Efficiency together with these two properties characterize the compromise value on CN , where CN

is the class of all compromise admissible NTU-games (N, V) for which {x E V(N) ~ x? k(V)}

is non-level.

rweoresM a. The compromise value T is the unique rule on CN that satisfies efficiency, the

minimal right properiy and the restricted proporiionality property.

ProoJ. (a) Obviously, the compromise value T: CN y RN satisftes the minimal right property

and restricted proportionality. For e(lïciency we refer to Lemma 3.

(b) Let F: CN y RN satisfy the thrce properties stated in the theorem. Let V E CN. We prove

that F(V) -T(V).
Using the minimal right property, we deduce that F(V) - k(V) -}. F(V - k(V)).

Since k(V - k(V)) - 0, the restrictod propertionality property implies there is a J1 E R such

that F(V) - k(V) f~K(V - k(V)) - aK(V) f (1 -~)k(V).

Using non-levelness of {x E V(N) ~ x? k(V)}, the efficiency of F impliea that a- ay wlth a~

as in (9). Hence, F(V) -T(V). ~

5. EXAMPLES

!n this section, we compute the compromise value for two well known examples. The ftrst

is found in Roth (1980) and the second is a modification of an example of Shajer (1980) that is

(ound in llart and Kurz (1983). 'Phese examples havc provoked an interesting discuasion in the

literaturc focusing on the interpretation of the Shapley NTU value (defined in Shnpley (1969)

and axiomatized in Aumann (1985a)) and the Harsanyi solution (defined in Harsnnyi (1963)

and axiomatized in Hart (1985a)). We will assume that the reader is familiar with these two

concepts and the detailed discussions in Aumann (1985b), Roth (1986), Aumann (1986) and

Hart (1985b).

EXAMPLE 9. Let N -{1,2,3}. For a parameter p with 0 c p c z, the NTU-game (N,Vp) is
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defined by (the subscripts denote players):

Vp({i})-{a;ER~a;~O} (iEN)

Vp({1,2}) - {(ni,ns) E R~ I(ai,as) 5(2, 2)}

Vp({1,3}) - {(ai,a3) E R~ ~(ai,aa) c(R 1-P)}

Vy({2,3}) -{(as,aa) E R~ ~(as,aa) c(P,1 - P)}

Vp({1,2,3}) - {a-(al,az,as) E R9~a C 6 for sorce 6 E Conv{(2, 2,0),(p,0,1-p),(O,p, l-p)}}.

IfOcpcz,then

c(vp) - corw{(2, 2,o),(Z,p,o)} ucor~„{(2, Z,o),(p, 2,0)}

and
K(vn) - (2, 2,0) and k(Va) - (P,P,o).

Fluther, (N,V~) is a symmetric game with

c(v~) -{(2, Z,o),(Z,o, 2),(0, 2, 2)}, K(v~) -(2, 2, 2) and k(v~) -(o,o,o).

For the games Vn with 0 c p G 2, it follows that the compromise value T(Vp) equals the core

element K(Vy) -(~, ~,0). Further, one finds that av} - q. So, for p- ~, the compromise

V81lle 18 eqllal t0 ( 3~ 3~ 3)'

In Table 1, we compare the compromise value, the Shapley NTU value and the Harsanyi

NTU value (or Example 2.

TAIILE 1

P-0 OGPc~ P-~

Shapley {(z,z,0),(á,~,3)} (~,~,g) (9,3,~)
~ i i i z i i i

H8r68nyl (Z , 2,~) (2 - 3, Z-~, ~) (j, jr y)

Compromise (Z,Z,O) (z,~,o) (3 ,3r~)

If p- z, the game V,) is completely symmetric and all three solutions yield the natural

outcome (9, 3, ~). For 0 c p ~ z, Roth argues that (z, ~,0) is the most "reasonable" outoome

since it is the unique (strong) core outcome, it yields to players 1 and 2 the highest paesible

payoffs that they can attain in the game Vy and players 1 and 2 can attain their payoffs without

player 3. Aumann hes counterargued that if coalitions can form randomly, then player 3's

expected payoff could be positive if playera 1 and 2 are willing to "settle" when they are paired

with player 3 in order to avoid being shut out later. As p decreases, the negotiating position
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of player 3 becomes weaker since 1 and 2 have little to lose if they [ail to etrike a bargain with

3. Thus, player 3's payoff is arguably positive but decreasing In p. This is precisely how the

Harsanyi solution behaves. On the other hand, the Shapley NTU value and the comprornise

value are "extreme" outcomes. Informally, the Shapley NTU value treats pleyer 3 as if he were

"as powerful" as players 1 and 2(i.e. as ifp- z) even when p is close to 0. On the other hand,

the compromise value treats player 3 as if he were "powerless" relative to ple~yers 1 and 2(i.e.

as if p- 0) even if p is close to ~. Mathematically, the TU game from which the Shapley NTU

value is computed treats the players symmetrically if 0 G p c~. At the other extreme, the

utopia and the minimal right payoffa for player 3 in Vy are 0 if 0~ p G~.

ExwMP~E s. Consider an exchange market with three traders and two commodities, where the

initial endowment ~; E R~ and the utility function u; : R~ -~ R of trader i E{1,2,3} are given
by

~1 - (1 - E, ~), ~ - (~, 1 - E), ~3 - (E, E)

ui(ci,cz) - uz(c~,cz) - min{ci,cz} and u3(cl,cz) - 2(c~ f cz) for all (cl,c~) E Rt

for some 0 C E G 5.

This exchange market corresponds to an NTU-game ( N, V) with N -{ 1, 2, 3} end

V,(S) :- {a E RS ~ 3~a-.R~V~es : u.(I(i)) ? n„ ~ f(1) -~~i} for all S E 2N`{0}.
~ES ~es

So,in particular, with subscripts representing players,

Va({1}) -{a~ E R ~ n~ c 0}, V({2}) - {az E R ~ az c 0}, V({3}) - {a3 E R ~ a3 C E},

V~({1,2})-{(a~,az)ERz~a~fnz~1-e, a151-E,azc1-E},

VQ({1,3}) -{(ai,na) E Rz I a~ f a3 C 1-F lE, nl G E, a3 C 1 f lE}r
2 2 2 2
1 1 1 1

Ve({2,3}) -{(nz,a3) E Rz ~ nz ~-63 5 2 f 2E, nz C E, a3 5 2 f 2E}r

V`({1,2,3}) - {(ai,nz,a3) E Rz3~ al-F az f a3 c 1, al C 1, az c 1,n3 c 1}.

One can check that

C(VE) -{(ai, az, a3) E R3 I a~ f az -t. a3 - 1, ai ? E, az ? E, ns - E}

and that K(V`) -(1 - 2E,1 - 2e,e) and k(V`) -(E, E,E). Therefore, T(V.) -(~ - s, 3- s, E).

We compare the Shapley NTU value, the Harsanyi NTU value and the Compromise value for

example 3 in Table 2 below.
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TAIILE 9

Shapley

ilarsanyi

Compromise

(r~-,~.~-~~á}~)
(~-é~s,~-mé.~)

(~ - ~~~ - g~E)

Shafer has argued that in this example of a pure exchange economy, the Shaply NTU value

is not reasonablc ba:ause player 3 receives a utility leve] of at least á even if e- 0 because

of the utility producing properties of player 3's utility function. However, the same "safety va.

coordination" argument given above can be applied to this example to juatify a payoff to ple~yer

3 that is positive but decreasing in s. Both the Harsanyi payoff and the compromise value payoff

are consistent with such an argument with the compromise value giving 1 and 2 more (and 3

leas) than they receive in the Harsanyi value.

6. THE NTU r-VALUE

In Shapley (1969) the J~-transfer TU-game associated with an NTU-game ia introduced and
the NTU (Shapley)-value is obtained from the Shapley value of these games. Analogously, this

section introduces the NTU r-value by means of the r-value of quasi-balanoed a-transfer games.

Let (N,V) be an NTU-game. Define ON :- {a E RN ~ a? 0, ~ a; - 1}. A vector
iEN

~ E ~N is called V-Jeasible if sup{ ~ a;a; ~ a E V(S)} c oo for all S E 2N`{0}. For each
iES

V-feeaible vector a E ~N the TU-game (N,va) with

va((d) :- 0, va(S) :- sup{~ ~,ai ~ a E V(S)}
iES

for S E 2N`{0} (15)

is called a a-transJergame corresponding to V.

It for all V-feasible a the corresponding a-transfer games are quasi-balanced, then the game V
is called r-admissible. By AN we denote the class of all r-admissible NTU-games wlth pl~yer

set N. For V E AN the NTU r-value r(V) C RN is defined by

r(V) :- {x E V(N) ~ there is a V-feasible a E AN such that r(va) -~ ~ x} (16)

For TU-games the NTU r-value coincides with the r-value. Consider an NTU-game (N, V)

that arises from a quasi-balanced TU-game (N, v). Obviously, a-( n~ n~'''~ n)~s the umque

V-feasible vector in ON. FLrther, since va(S) - ~v(S) for all S E 2N, r(va) - nr(v) -.1.r(v).
Hence, r(V) - {r(v)}.
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For two-person bargaining problems, the NTU r-value and the Nash bargaining eolution (cf.

Naah (1950)) coincide. Let ({1,2}, V) correspond to a bargaining problem (C,d). Obviously, V

ie r-admissible. Since for each (quasi-balanced) two-pereon TU-game, the Shapley value and the

r-value coincide, it follows that the NTU-value and the NTU r-value are the same for each (two-

person) bargaining game. Moreover, since the NTU-value coincidea with the Neah bargaining

solution ( cf. Shapley ( 1969)), this also holds for the NTU r-value.

To further illustrate the NTU r-value, recronsider the game V, of Example 3 in Section 5.
One easily checks that each a E ON is V,-feasible. The corresponding a-transfer gar~a are
denoted by v.,a.
Let a E ON and x E V,(N) be such that a. x- r(v.,a).
Suppose there exists a player ti E N such that a; G maNx aj. Since v,,a(N) - jmaNx aj and

~ rj(v.,a) - v.,a(N), one finds that x; - 0 and, consequently r(v.,a) - 0. Distinguishing
jEN
cases, some calciilation ahows that M;(vQ,a) ~ 0, m;(v~,a) ? 0 and ~ mj(v,,a) ~ v,,a(N).

jEN

However, since this should imply that r(vQ,a) ~ 0, we arrive at a contradiction.

We may conclude that a-( s, 3, 3). Then v`,a is given by

vQ,a(0) - 0, v~,a({1}) - v.,a({2}) - 0, v,,a({3}) - 3 e, v.,a({1,2}) - 3- 3e,

vs,a({1,3}) -vQ,a({2,3}) - 6 f se and v~,a({1,2,3}) - 3.

Hence, r(va,a) - M(v.,a) - m(vQ,a) - (e - ée, 8 - BE, ~e) and r(V,) - {(3 - ~e,; - ~f,E)}.

Note that the compromise value and the (unique) NTU r-value of V, coincide.

An NTU-game (N,V) is called zem-nc(jv,sted if v(i) ? 0 for all i E N and convexfy and
compactly genernted if, for each S E 2N`{0} there exists a convex and compact set C(S) C Rs
such that

V(S) - {a E Rs ~ 3~EC~sI : a C c}. (17)

Note that the Shafer game of example 3 satisftes these two propertiea.

Using the same lineof argument as in the existence prnoof of the NTU-value given by Shapley

(1969), one can show

zHEOaEM s. [,et the NTU-game (N,V) be r-admissible, zero-adjustcd and convexly and com-

pactly generated. Then r(V) ~ 0.

Let (N, V) be an NTU-game. Note that the NTU r-value is defined only if for allV-feasible

a E ~N the corresponding a-transfer games are quasi-balanced. However, the definition readily



ls
can be extended to a larger class of games by requiring that only some teasible a E AN give rise
to quasi-balanccd J~-transfer games. More specifically, we introduce

r'(V) :- {x E V(N) (there is a V-feasible a E ON such that va is (18)

quasi-balanced and a. x- T(va)}

Obviously, if V is T-admissible, then T'(V) - T(V). Using this extended definition, the NTU

T-value can be calculated for the Roth games Vp of example 2 for 0 C p C~. Since Vy is

compactly generated, each a E ~N is V~feasible. The corresponding a-transfer games vD,a are

given by vD,a({i}) - 0 for all i E N,

vD,a({1,2}) - Z(Jtti.as),un.a({1,3}) -P~1-F(1-P)aa,uv.a({2,3}) -P~zf(1-P)as and

vv.a(N) - max{2(at f az)rPal f(1-P)~ir P~z f(1-P)a9}.

Note that VD is not T-admissible because for á-( tó ~ tó ~ ló)~~~ that

I
MI(vn.T,) - 0 C 10 - mt(vn.á)r

which implies that vD á is not quasi-balanced. With respect to T' it can be shown that

1 1
T~(VD) -{( r1 r rl r x3) I x3 C O} U{x E RN I ~ 2j G 1, 21 C Pr x2 C Pr x3 - 1-P}

jEN

(or all 0 ~ pc ~ , and

1 1 1 1
T'(Vl~z) -{x E RN ~ xl - 2, xzfx, c 2 } U{x E RN ~ xs - 2,xt}xg C 2}

1 1
U{x E RN ~ xy - 2, xt~x~ c 2}.

Remark. Should one restrict attention to positive V-feasible vectors a only, there doea not exist

an NTU T-value in casep- z and, (or 0 c p c z, there is a unique NTU T-value ( z, ~,0).
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