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THE COMPROMISE VALUE FOR NTU-GAMES
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Abstract. The compromise value is introduced as a single-valued solution concept for NTU-
games. It is shown that the compromise value coincides with the 7-value for TU-games and
with the Kalai-Smorodinsky solution for bargaining problems. In addition the axiomatic char-
acterizations of both the two-person Kalai-Smorodinsky solution and the 7-value can be extended
to the compromise value for large classes of NTU-games.

We also present an alternative N'TU-extension of the TU 7-value (called the NTU r-value) which
coincides with the Nash solution for two-person bargaining problems. The definition of the NTU
7-value is analogous to that of the Shapley NTU-value

Both the compromise value and the NTU r-value are illustrated by means of the Roth-Schafer
examples.
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I. INTRODUCTION

The Shapley value of TU (=Transferable Utility)-games, introduced by Shapley (1953), has
been generalized to NTU (=Non Transferable Utility)-games in various ways. Shapley (1969) de-
fined the NTU-value and Harsanyi (1959, 1963), Owen (1971) and Imai (1983) considered other
possible extensions. For the NTU-value an axiomatic characterization has been provided by
Aumann (1985a) and Kern (1985), for the Harsanyi solution by Hart (1985a) and for monotonic
solutions by Kalai and Samet (1985).

This paper introduces the compromise value as an extension of the r-value of Ttjs (1981)

for quasi-balanced TU-games to the class of compromise admissible NTU-games.
The compromise value as defined in section 3 is a one-point solution concept that is based
upon the upper and lower bounds for the core of an NTU-game that are given in section 2.
Interestingly, the compromise value coincides with the solution of Kalai and Smorodinsky (1975,
in short KS-solution) for the special case of bargaining games.

Section 4 shows that both the axiomatic characterization of the 2-person KS-solution and
the axiomatic characterization of the r-value given by Tijs (1987) can be extended to the com-
promise value on a class of NTU-games. As a result, the compromise value is an extension of
the KS-solution to NTU-games from a definitional as well as an axiomatic viewpoint. This may
at first seem rather confusing if one recalls the paper of Roth (1979) showing, by means of an
example, that there can be no solution for general n-person bargaining problems which satisfies
the (analogues of the) axioms of the 2-person KS-solution. Roth’s example will be discussed
in detail and, as we will see, the issue here is comprehensiveness in combination with a weaker
version of Pareto optimality.

Roth (1980) and Shafer (1980) introduced two special classes of games for which, in their
opinion, the Shapley NTU-value leads to a counterintuitive outcome. This led to an interesting
discussion of the NTU-value in the papers of Aumann (1985b, 1986), Roth (1986) and Hart
(1985b). In Section 5 the Roth-Shafer examples are discussed in some detail and we compare
the compromise value to the Shapley and Harsanyi NTU-values for these examples.

Section 6 brielly discusses some results on the NTU r-value which is defined along the lines of
the Shapley NTU-value. Among others, it is seen that the NTU r-value coincides with the Nash
solution for 2-person bargaining problems and that one can prove existence (i.e. non-emptiness)
for (a subclass of) compactly and convexly generated NTU-games.

Notation. Let z,y € R® and C,D C R*. We have z > (>)y if and only if z; > (>) y; for
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alli€(l,...,n), R? == {z€R"| 2> 0} and R}, := {z € R" | 2> 0}, 2y := 3 2y € R,
ey :=(T1¥1y++- 1 Znkn) ER", 2+ C:={z*c€R" | c € C} andC+D:={c+lE:ER"|cE
C,d e D}.

Further, Conv(C) denotes the convex hull of C and

Comp(C) := {2 € R* | there is a ¢ € C such that z < ¢}

is the comprehensive hull of C.
Finally, with N := {1,... ,n} and i € N, e; € R" denotes the i-th unit vector and ey = 3 &
{EN

is the n-tuple of 1's, and for S C N, zs := (2;)jes € R and z is identified with (zs,Zn\s)-



2. NTU-GAMES: BOUNDS FOR THE CORE

An NTU-game is a pair (N, V) where N := {1,2,...,n} is the set of players and V is a
set-valued function that assigns to each coalition S € 2V\{@} & non-empty set V(S) C R¥ of
attainable payoff vectors. For each player i € N we assume there is a individual rational payoff
(i) € R such that V({i}) = {a € R | a < v(i)} while, for each S € 2V\{@},

(i) V(S) is closed and comprehensive (i.e. if a € V(S) and b € R is such that b < a, then

be V(8)).

(i) V(S)n {a € R¥| a2 (v(j));q} is bounded.

An NTU-game (N, V) will be often identified with V. The core C(V) consists of those attainable
payoff vectors for the grand coalition N which are stable with respect to (strict) domination.
More specifically, with

Dom (V(8)) := {a € R® | Jev(s): b > a} (1)
representing the set of dominated payoff vectors for a coalition § € 2V\{@},
Cc(V):= {G e V(N) | ﬁasegaf\{g} :ag € Dom {V(S]}}. (2)

Let i € N. Assuming that the coalition N\{i} will never agree to a payoff vector a € R¥\{?}
with a € Dom (V(N\{i})) or a; < v(j) for some j € N\{i}, the highest possible marginal
contribution of player i by joining the coalition N\{i} is given by

Ki(V) := sup{t € R| 3,cama (a,t) € V(N),a ¢ Dom (V(N\{i}))
and a 2 (v(j))jem\(s) }-

K,(V) is called the utopia payo[Jof player i. By assumption (i) in the definition of an NTU-game
we have that K;(V) < co. However, K;(V) = —oo might occur.

Assume K;(V) € R for all j € N and consider a coalition S to which player i belongs. The
formation of such a coalition is attractive for a player j € §\{i} if he gets (slightly) more that
the utopia payoff K;(V). Thus, player i can lay a rightful claim to the remainder pf(V) which
is given by

®3)

pE(V) :=sup{t € R| 3,cparcr : (t,0) € V(S) and a > Kg\(3(V)}. (4)

Among the 2! possible coalitions with i € S, player i can choose one where this remainder is
maximal. Let

k() = max pf(V) ®)
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denote the minimal right of player i. Clearly ki(V) > v(i), but it might occur that k;(V) = oo.
In this paper we concentrate on NTU-games for which all utopia payoffs and minimal rights
for the various players are real numbers. In particular, this is the case for NTU-games with a
non-empty core: theorem 1 shows that K(V) = (K;(V))jen and k(V) = (kj(V))jen establish
an upper and lower bound for the core, respectively.

THEOREM 1. Let (N, V) be an NTU-game with z € C(V). Then

k(V) <z < K(V).

Proof. Obviously, (2) and (3) imply
K;(V) > sup{t € R| 3,cpmun : (8,2) €C(V)} 2 x4

for all j € N. Hence, z < K(V).

Let i € N and choose a coalition T 3 i such that ki(V) = p7 (V) = max ).

Suppose k;(V) > z;. Then we can choose € > 0 such that k;(V) > zi+t Further, by (4), there
exists a vector a € RT\} such that (z; +£,a) € V(T) and a > K\ (53 (V)-

However, this would imply that

rr < (:I!(,K'r\[.-}(vn < (x; + E.O} € V(T},
which contradicts the fact that z € C(V). Hence, k(V) < z. a

The vectors k(V) and K (V) induce familar bounds for TU-games and two-person bargaining
games.
(a) TU-games. A TU-game is a pair (N,v) where v is a function that assigns to each coalition
S a real number v(S) with v(&) = 0. The core C(v) is defined by

C(v):={aeRV| )_‘_‘,wa.- =u(N), T ai 2 v(S) forall S C N}.
For a TU-game (N, v), ‘;ﬁs (1981) int;::uned a utopia vector M(v) € RV and a minimal right
vector m(v) € R¥ as follows. Fori € N,

Mi(v) == u(N) = o(N\{i}) and my(V) := max(u(S) = 3 M;(v). (6)
JES\(i}

For x € C(v), it was shown that m(v) < z £ M(v).
Associating an NTU-game (N, V) to a TU-game (N,v) by defining

V() = {a € R® | T o < u(S)} ™

iES
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for all § € 2¥\{@}, it is straighforward to verify that C(v) = C(V), and that M(v) = K(V)
and m(v) = k(V) if v is such that y(N\{i}) 2 ¥ wv(j)forallie N.
JEN\(i}

(b) Bargaining problems. In an n-person bargaining problem (C, d), the non-empty set C C
R™ represents the set of feasible outcomes and d € C is the disagreement point. Moreover, we
assume that the following properties are satisfied:

(i) C is closed, convex and comprehensive,

(ii) There is an z° € C with z° > d.
(lii) Cq:={z € C |z 2 d} is bounded.
For each bargaining problem (C,d), Kalai and Smorodinsky (1975) introduced the utopia point
u(C,d) € RY by defining ui(C,d) ;= max{a € R | Jyemmrin ¢ (a,b) € Ca} for all i € N. Each
bargaining problem (C,d) corresponds to an NTU-game (N, V) defined by setting V(N) = C
and V(S) = {a € R | a < dg} for § € N, § # @. Then, one easily obtains that u(C, d) = K (V)
and d = k(V).

3. THE COMPROMISE VALUE

In this section the compromise value is introduced as an extension of the r-value for quasi-
balanced TU-games (cf. Tijs (1981)) to the class of compromise admissible NT'U-games.
Here, an NTU-game (N, V) is called compromise admissible if the utopia vector K(V) and the
minimal right vector k(V) of section 2 satisfy the following two properties:
(i) k(V) < K(V).
(i) k(V) € V(N), K(V) ¢ Dom(V(N)).
By € we denote the class of all compromise admissible NTU-games with player set N. Clearly,

we have

LEMMA 2. Every NTU-game with a non-empty core is compromise admissible.

Proof. Let (N, V) be an NTU-game with z € C(V). Then, using theorem 1, k(V) < z < K(V).
In particular, since € V(N), comprehensiveness implies that k(V) € V(N).

Suppose K(V) € Dom(V(N)). Then there is an y € V(N) such that y > K(V) > z. However,
this contradicts the fact that z € C(V). We may conclude that the conditions (i) and (ii) are
satisfied. o

For V € CN the compromise value T(V) € R is defined as the unique vector on the line
segment between k(V) and K (V) which lies in V(N) and is closest to the utopia vector K (V).
More specifically,

T(V) = AvK(V) + (1 = Av)k(V), (8



where
Av i=max{\ € [0, 1] | AK (V) + (1-A)k(V) € V(N)}. (9)

Note that Ay is well-defined because k(V) € V(N) and V(N) is closed and comprehensive.

Using the notations of section 2, a TU-game (N, v) is called quasi-balanced if m(v) < M(v)
and Z mi(v) <u(N) < ): M;(v). For a quasi-balanced TU-game (N, v) the r-value 7(v) € RV
is deﬁned as the unique vu:wr lying on the line segment between m(v) and M(v) which is
efficient, i.e. E 1i(v) = v(N).

Asaumneu(N\{s}) > Z: u(J) for all i € N and let V be the NTU-game corresponding to v

(cf. (7)). One easily verlﬁes that v is quasi-balanced if and only if V' is compromise admissible,
and that the r-value of v coincides with the compromise value of V.

For a bargaining problem (C, d) one finds that the compromise value of the corresponding
NTU-game V is the unique undominated feasible outcome lying on the line segment between
the disagreement point d and the utopia point u(C,d). In particular, this outcome corresponds
to the KS-solution for the bargaining problem (C, d).

4. AXIOMATIC CHARACTERIZATIONS

As we have seen, the compromise value ‘definitionally’ extends the Kalai-Smorodinsky solu-
tion to NTU-games. In the first part of this section we show that the axiomatic characterization
of the 2-person KS-solution can be extended to the n-person NTU-case as well.

Recalling the axioms of Kalai and Smorodinsky (1975), we first have to note that they used a
slightly different definition of a bargaining problem in which the comprehensiveness requirement
is dropped.
More formally, a KS-bargaining game (C, d) is such that @ # C CR™, d € C and

(i) C is compact and convex

(ii) There is an z° € C with z°>d.
Let BV denote the class of all KS-bargaining problems on N. For a (bargaining) solution concept
v : BN — R¥, Kalai and Smorodinsky (1975) and Roth (1979) considered the following four
properties.
Pareto optimality: For all (C,d) € BN there does not exist an z € C with

z > %(C,d) and z £ 7(C, d).

Symmetry: 1f d; = d; for all i,j € N and C C R is such that (¢;)ien € C
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implics that (cx(q))ien € C for each permutation 7 : N — N, then
%(C,d) = %(C,d) for all i,j € N.

(Restricted) Monotonicity: For all (C,d), (D,d) € BY with C C D and u(C,d) = u(D,d) it
holds that

7(C,d) < (D, d).
Invariance: For all (C,d) € BN and each affine function f : R® — R™ with f(z) =az+8, z €
R", for some a € R}, and B € R", it holds that

1(/(C), £(d)) = S(+(C,d)).

It was shown that the KS-solution is the unique solution on the class of 2-person bargaining
problems which satisfies (the restriction of) these four properties. However, by means of the
following example, Roth (1979) showed that there could be no solution which satisfies the first
three properties for general n-person bargaining problems.

ExAaMmPLE 1. Let N = {1,2,3}, C = Conv({0,0,0),(0,1,1),(1,0,1)}) and d = (0,0, 0). Suppose
there is a solution 7 that satisfies Pareto-optimality, symmetry and monotonicity. Then, by
Pareto-optimality

~(C,d) € Conv({0,1,1),(1,0,1)}).

If a second bargaining problem (D, d) is defined by
D = {(z1,22,23) €R* |z, + 22+ 23 <2and 0 < z; < 1 for all § € {1,2,3}},

then symmetry and Pareto optimality imply (D, d) = (4,4, 2).
However, since C C D and u(C,d) = u(D,d) = (1,1,1), monotonicity would imply that
7(C,d) £ (3,%,2), giving a contradiction. Note that the Kalai-Smorodinsky solution of (C, d)
equals (0,0,0).

Modifying the problem (C, d) to fit in the formalism of bargaining problems introduced in
Section 2 by considering Comp(C) instead of C (cf. Peters and Tijs (1984)), one finds that the
KS-solution (i.e. the compromise value of the associated NTU-game) equals (4, §, 4).

As we will see in Lemma 3 and Theorem 4 below, comprehensiveness together with a
weakening of Pareto-optimality (and symmetry) will allow an axiomatic extension of the 2-
person KS-solution to the compromise value for a class of NTU-games.

Let F : C¥ — RY be a solution concept for compromise admissible NTU-games. The rule
F is called efficient il

F(V) € V(N)\ Dom (V(N)) for all V € C". (10)



F is symmelricif forall V€ CN and i,j € N
k(V) =k;(V), Ki(V) = K5(V) = F(V) =Fy(V). (11)
Further F satisfies monotonicity if for all V, W € ¢V
k(V) = k(W), K(V) = K(W),V(N) CW(N) = F(V)<FW) (12)
For an NTU-game (N, V), a € R}, and g € R¥ we can define the NTU-game (N, a*V + 8) by
(asV +B)(S) := ag + V(S) + {Bs} for all S € 2V\{2}.

One easily verifies that for compromise admissible V, a + V + § is compromise admissible too.
The rule F satisfies invariance if for all V € C¥, a € RY, and § € RV,

FlasV+B)=asF(V)+8 (13)

Note that both efficiency and symmetry establish weaker conditions than Pareto optimality and
symmetry for the special case of bargaining problems, while monotonicity and invariance are
immediate extensions of their "bargaining-counterparts”.

LEMMA 3. The compromise value T : C¥ — R satisfies efficiency, symmetry, monotonicity
and invariance.

Proof. Symmetry and monotonicity are obvious. Invariance follows from the fact that for all
Vec¥ aeRy, and # e R" it holds that

K(a+V +8) =a+K(V)+pand kasV + ) =a»k(V) + 8.

Let V € N, We show efficiency by proving that T(V) € V(N)\Dom (V(N)). By definition we
have T(V) € V(N). Suppose T(V) € Dom (V(N)).

Then there is an y € V(N) such that y>T'(V). Comprehensiveness and the definition of T(V)
imply that T(V) = K(V). Then however K(V) € Dom (V(N)) which contradicts the fact
that V ecV. (]

Let 'V denote the class of all compromise admissible NTU-games that satisfy the following
three properties:
(i) V(N) is convex and {z € V(N) | z > k(V)} is non-level in the sense that its boundary has
no segments parallel Lo a coordinate hyperplane (cf. Aumann (1985)).
(ii) k(V)<K(V).
(iii) (kwy(iy(V), Ki(V)) € V(N) for ell i € N.
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Convexity and non-levelness are important assumptions in the axiomatic characterizations
of the Shapley NTU value and the Harsanyi solution (see Aumann (1985a) and Hart (1985a)).
Condition (iii) requires that each players utopia payoff cannot be "too big” relative to the
minimal right payoffs of the other players. For example, the class 'V contains all NTU-games
satisfying condition (i) that correspond to bargaining problems.

Restricting the domain of a solution concept to I'V, the four properties discussed above
establish an axiomatic characterization of the compromise value.

THEOREM 4. The compromise value T is the unique rule on TN that satisfies efficiency, sym-
metry, monotonicity and invariance.

Proof. (a) Using Lemma 3 it is seen that the compromise value satisfies the four properties. With
respect Lo invariance one should note that V € ", aeRY,and B e RN imply asV +8 € 'y,
(b) Let F: TN — RN satisfy the four properties and let W € I'V. We prove that F(W) = T(W).
Defining V := W — k(W) it follows that k(V) = 0 and, since k(V)<K(V), A € RY, with
A= (Ki(V)) ™" for i € N is well-defined.
Obviously, k(A= V) = A+ k(V) = 0 and K(A+ V) = A« K(V) = e, s0 the compromise value
T(A+ V) lies on the line segment connecting the origin and ey. Moreover, by (i) and (iii) in
the definition of TV we have that Conv({ei,...,en}) C A #* V(N), so efficiency of T' implies
T(A+ V) 2 Ley. Non-levelness implies T(A* V) <en.
Now consider the NTU-game U defined by
U(S):z{({:zeﬂslzsﬁ ifS#@,SCN
omp (Conv({ei,...en, T(A*V)})) ifS=N
Obviously, since T(A+V) < en, K(U) = en &nd, consequently k(U) = 0. Hence U is compromise
admissible and (i) and (iii) in the definition of I'V are satisfied. Trivially, U(N) is convex and,
using the fact that T(A= V)<ey, one readily verifies that {z € U(N),z > 0} is non-level which
implies that U € 'V,
Using symmetry of F it follows that Fy(U) = F;(U) for all i,j € N, s0 by efficiency and the
construction of U(N) we have
FU)=T(MsV).

Clearly U(N) C A+ V(N) and monotonicity implies
F(U) S F(A+V), ie. T(As V) S F(As V)

But then, using efficiency and non-levelness, T(A+ V) = F(A* V).
Hence, by invariance of both T and F, T(V) = F(V) and T(W) = F(W) which finishes the
proof. O
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We now provide an alternative axiomatic characterization of the compromise value based
on the characterization of the TU r-value of Tijs (1987).
Let F :CN — RY. The rule F is said to have the minimal right property if

F(V) =k(V)+ F(V —k(V)) forall V eC¥, (14)

and F has the restricted proportionality property if F(V) is a multiple of the utopia vector K(V)
for all V € €V with k(V) = 0.

Efficiency together with these two properties characterize the compromise value on CN, where CV
is the class of all compromise admissible NTU-games (N, V) for which {z € V(N) | z = k(V)}

is non-level.

THEOREM 5. The compromise value T' is the unique rule on CN that satisfies efficiency, the
minimal right property and the restricted proportionality property.

Proof. (8) Obviously, the compromise value T : C¥ — R¥ satisfies the minimal right property
and restricted proportionality. For efficiency we refer to Lemma 3.

(b) Let F : CV — RV satisfy the three properties stated in the theorem. Let V € CN. We prove
that F(V) = T(V).

Using the minimal right property, we deduce that F(V) = k(V) + F(V — k(V)).

Since k(V — k(V)) = 0, the restricted propertionality property implies thereis a A € R such
that F(V) = k(V) 4+ AK(V = k(V)) = AK(V) + (1 = )k(V).

Using non-levelness of {z € V(N) | z > k(V)}, the efficiency of F implies that A = Ay with Ay
as in (9). Hence, F(V) = T(V). ]

5. EXAMPLES

In this section, we compute the compromise value for two well known examples. The first
is found in Roth (1980) and the second is a modification of an example of Shafer (1980) that is
found in Hart and Kurz (1983). These examples have provoked an interesting discussion in the
literature focusing on the interpretation of the Shapley NTU value (defined in Shapley (1969)
and axiomatized in Aumann (1985a)) and the Harsanyi solution (defined in Harsanyi (1963)
and axiomatized in Hart (19858)). We will assume that the reader is familiar with these two
concepts and the detailed discussions in Aumann (1985b), Roth (1986), Aumann (1986) and
Hart (1985b).

EXAMPLE 2. Let N = {1,2,3). For a parameter p with 0 < p < }, the NTU-game (N, V) is
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defined by (the subscripts denote players):
Vel{i}) ={ai€R|a; <0} (ieN)
(11,2)) = {(an,02) € R | (an,0) < (5, )}
Vo({1,3}) = {(a1,83) € R? | (a1,03) < (p,1 - p)}
Vp({2,3)) = {(a2,03) € R? | (a2,83) < (p,1 - p)}
V,({1,2,3}) = {a=(a1,82,03) € R%a < b for some b € COﬂU{(2 2.0) (p,0,1-p),(0,p,1-p)}}.

If0<p< 4}, then

C(Vy) = Conv{(3, 3,0), (5,9, 0} UConv{(5, 3,00, (7, 3,00}

K(%) = (3,3,0) and k(%) = (3,5,0).

Further, (N, V*) is a symmetric game with

CVy) = (3 3:01(5,0,2), 0.3, )} K(V}) = (5.3 7) and k(Vy) = (,0,0).

For the games V;, with 0 < p < 4, it follows that the compromise value T'(V;) equals the core
element K(V;) = (},4,0). Further, one finds that dvyy = 3. So, for p = 4§, the compromise
value is equal to (4,1,4)

In Table 1, we compare the compromise value, the Shapley NTU value and the Harsanyi
NTU value for Example 2.

p=0 0<p<i} p=3%
Shapley (40,44 Gid %49
Harsanyi (3.9 G-%3-%%® Gy
Compromise (3:3:0) (3:%:0) CF 1))

If p = §, the game V} is completely symmetric and all three solutions yield the natural
outcome (4, 4,4). For 0 < p < 4, Roth argues that (3, §,0) is the most "reasonable” outcome
since it is the unique (strong) core outcome, it yields to players 1 and 2 the highest possible
payoffs that they can attain in the game Vj, and players 1 and 2 can attain their payoffs without
player 3. Aumann has counterargued that if coalitions can form randomly, then player 3's
expected payoff could be positive if players 1 and 2 are willing to "settle” when they are paired
with player 3 in order to avoid being shut out later. As p decreases, the negotiating position
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of player 3 becomes weaker since 1 and 2 have little to lose if they fail to strike a bargain with
3. Thus, player 3's payoff is arguably positive but decreasing in p. This is precisely how the
Harsanyi solution behaves. On the other hand, the Shapley NTU value and the compromise
value are "extreme” outcomes. Informally, the Shapley NTU value treats player 3 as if he were
"as powerful” as players 1 and 2 (i.e. as if p = }) even when p is close to 0. On the other hand,
the compromise value treats player 3 as if he were ”powerless” relative to players 1 and 2 (i.e.
as if p = 0) even if p is close to }. Mathematically, the TU game from which the Shapley NTU
value is computed treats the players symmetrically if 0 < p < }. At the other extreme, the
utopia and the minimal right payoffs for player 3 in V; are 0if 0 < p < §

EXAMPLE 8. Consider an exchange market with three traders and two commodities, where the
initial endowment w; € R} and the utility function u; : R — R of trader i € {1,2,3} are given
by

W =(1-¢0), wa=(0,1-¢), wa=(g,¢€)

ui(e1, e2) = uz(cr, 2) = min{ey, ca} and us(er, c2) = '12'(01 + ¢z) for all (e1,¢3) € RE

forsome 0 <e < %.
This exchange market corresponds to an NTU-game (N, V) with N = {1,2,3} and
Ve(S) = {a € RS | 3.5 paVies 1w f(i) 2 i, Y S(G) = Z“’J} for all S € 2¥\{0}.
j€s j€S
So, in particular, with subscripts representing players,
V(1) = (a1 €R a1 <0}, V({2}) = {az € R | a2 <0}, V({3)) = (as €R | as e},
Ve({1,2)) = {(a1,02) €eR* [a1 + @2 < 1—¢, a1 S 1 €02 < 1 ¢},

1.1 |
Vo({1,3) = {(a1,a3) eR? |ay +a3 < = + =€, 6, <€, a3 < ¢ +§s}.

2 2
1 1 1 G !
Ve({2,3}) = {(a2,83) €R? |aa + a3 < 7+t36 01<¢€ 0 < 3 +§E}.

Vi({1,2,3}) = {(a1,az,03) €R*3|a; +02+a3 <1, 81 <1, a3 < l,a3 < 1}.
One can check that
C(V.) = {(a1,0z,03) €R* | 6y +az+a3 =1, a) > €, az 2 €, a3 =¢}

and that K(V;) = (1 — 26,1 — 2¢,¢) and k(V;) = (¢,¢,€). Therefore, T(Ve) = (} — §.3 — §:6)-

We compare the Shapley NTU value, the Harsanyi NTU value and the Compromise value for
example 3 in Table 2 below.
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Shapley EH-Bs-8i1+9
Harsanyi G-%1-%%9
Compromise (i -4 * ~4.9

Shafer has argued that in this example of a pure exchange economy, the Shaply NTU value
is not reasonable because player 3 receives a utility level of at least } even if £ = 0 because
of the utility producing properties of player 3's utility function. However, the same "safety vs.
coordination” argument given above can be applied to this example to justify a payoff to player
3 that is positive but decreasing in €. Both the Harsanyi payoff and the compromise value payoff
are consistent with such an argument with the compromise value giving 1 and 2 more (and 3
less) than they receive in the Harsanyi value.

6. THE NTU r-VALUE

In Shapley (1969) the A-transfer TU-game associated with an NTU-game is introduced and
the NTU (Shapley)-value is obtained from the Shapley value of these games. Analogously, this
section introduces the NTU r-value by means of the r-value of quasi-balanced A-transfer games.

Let (N,V) be an NTU-game. Define Ay = {A € RY | A 20, & X = 1}. A vector

A € Ay is called mewleifmp{EA.m | a € V(S)} < oofnrallSE?"\{G} For each
V -feasible vector A € Ay the TU- game (N,vy) with

vA(@) := 0, vi(S):= snpfz Ma; |a € V(S)} for S € 2M\{@) (15)

eSS
is called a A-transfer game corresponding to V.
If for all V-feasible A the corresponding A-transfer games are quasi-balanced, then the game V'

is called 7-admissible. By AY we denote the class of all T-admissible NTU-games with player
set N. For V € AN the NTU r-value 7(V) C R¥ is defined by

(V) := {z € V(N) | there is a V-feasible A € Ay such that 7(vy) =Asz}  (16)

For TU-games the NTU r-value coincides with the r-value. Consider an NTU-game (N, V)
that arises from a quasi-balanced TU-game (N,v). Obviously, A = (1,1,...,1) is the unique
V-feasible vector in Ay. Further, since vy(S) = 1v(S) for all S € 2V, 1'(0;) Lr(v) = As7(v).
Hence, 7(V) = {r(v)}.
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For two-person bargaining problems, the NTU r-value and the Nash bargaining solution (cf.
Nash (1950)) coincide. Let ({1,2}, V) correspond to a bargaining problem (C, d). Obviously, V
is T-admissible. Since for each (quasi-balanced) two-person TU-game, the Shapley value and the
r-value coincide, it follows that the NTU-value and the NTU 7-value are the same for each (two-
person) bargaining game. Moreover, since the NTU-value coincides with the Nash bargaining
solution (cf. Shapley (1969)), this also holds for the NTU 7-value.

To further illustrate the NTU 7-value, reconsider the game V, of Example 3 in Section 5.
One easily checks that each A € Ay is V.-feasible. The corresponding A-transfer games are
denoted by v,

Let A € Ay and z € V,(N) be such that A+ z = 7(v,,).

Suppose there exists a player i € N such that A; < Eneag)\j. Since vea(N) = %Aj and

5 75(ve,2) = ve,a(N), one finds that z; = 0 and, consequently 7;(ve,») = 0. Distinguishing

JEN

cases, some calculation shows that M;(ve,x) > 0, mi(ve,a) > 0 and Y mj(ve,n) # vea(N).
JEN

However, since this should imply that 7i(ve,2) > 0, we arrive at a contradiction.

We may conclude that A = (4, 4,1). Then v, is given by

Us,)(g) =0, T-’s,l{{ 1}) = Uc.A({2}) =0, U‘,A({s}) = %E, Ug'*{{ 1,2}} = % - %g'
ve,a({1,3}) = vea({2,3)) = é + ée and vea({1,2,3}) = %

H‘mml T(”I,A} = M(”c.)) = m('-’l.a\} = (% G *8,* - %E. ie) and T(VC) - {(i> = *‘:* == %“ !)}-
Note that the compromise value and the (unique) NTU r-value of V; coincide.

An NTU-game (N, V) is called zero-adjusted if v(i) 2 0 for all i € N and convezly and
compactly generated if, for each S € 2V\{@} there exists a convex and compact set C(S) C RS
such that

V(S) = {a €R® | 3,ec(sy:a < c}. (17)

Note that the Shafer game of example 3 satisfies these two properties.
Using the same line of argument as in the existence proof of the NTU-value given by Shapley

(1969), one can show

THEOREM 6. Let the NTU-game (N, V) be r-admissible, zero-adjusted and convexly and com-
pactly generated. Then 7(V) # @.

Let (N, V) be an NTU-game. Note that the NTU r-value is defined only if for all V-feasible
A € Ay the corresponding A-transfer games are quasi-balanced. However, the definition readily
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can be extended to a larger class of games by requiring that only some feasible A € Ay give rise
to quasi-balanced A-transfer games. More specifically, we introduce

(V) := {z € V(N) |there is a V-feasible A € Ay such that v, is (18)
quasi-balanced and A« z = 7(v))}

Obviously, if V is T-admissible, then 7*(V) = 7(V). Using this extended definition, the NTU
r-value can be calculated for the Roth games Vj of example 2 for 0 < p < 4. Since V, is
compactly generated, each A € Ay is Vj-feasible. The corresponding A-transfer games vy, 5 are
given by vpa({i}) =0 foralli € N,
1
vpa({1,2]) = 5(Ai+22), p.a({1,3)) = P+ (1-p) s, vpa({2, 3}) =pra+(1-p)As and

1
vpa(N) = m{i{’\l + A2),pA1 + (1-p)As, pAz + (1—p)As}-
Note that V, is not 7-admissible because for X = (i, %, &) we have that

1
My(v,x) =0 < 35 =mi(v,3),

which implies that v, 5 is not quasi-balanced. With respect to 7* it can be shown that
P

" 11
(V) = {(5:5:2s) | 25 <0ju{zeRY|) z;<1, 2. <p, 22 <p, 23 = 1-p}
JEN

for all 0 £ p<3}, and
i N 1 1 N 1 1
T (Vug) ={2 eER” |z, = bL T+ < E} U {2 ER” |z = 5,.’-‘-14—23 < '2-}
1
U{IERNIZQ = 5. 2|+23£%}.

Remark. Should one restrict attention to positive V-feasible vectors A only, there does not exist
an NTU r-value in case p = 4 and, for 0 < p < 4, there is & unique NTU r-value (4,4,0).
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