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ABSTRACT

The traditional first-order Compton-Getting effect, which relates

particle distributions as observed in two frames of reference moving

with constant relative velocity, is inadequate for the description of

low energy particles (less than a few hundred keV/nucleon) in the solar

system. An exact procedure is given for recovering both isotropic and

anisotropic distributions in the solar wind frame from observations

made in a spacecraft frame. The method is illustrated by analyzing a

particle event observed by the University of Maryland experiment on

IMP-7 on 31 October 1972.
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INTRODUCTION

A distribution of particles which is isotropic in one frame

of reference will display an anisotropy if observed from a different

frame of reference. This is referred to as the Compton-Getting effect

(Compton and Getting, 1935). For nonrelativistic particles the magni-

tude of the induced anisotropy (Gleeson and Axford, 1968; Forman, 1970)

is equal to (2 + 2y) (w/v), where y is the spectral index of the parti-

cle differential intensity, w is the relative speed of the two frames

of reference, and v is the particle speed. The above formula assumes

w << v. Recently Balogh, et al. (1973) have derived an expression for

the anisotropy accurate to order (w/v) 2 . For particle convection induced

by the solar wind, w is equal to the solar wind speed. Present day

satellite experiments respond to such low energies that the assumption

w << v can no longer be used. For example, one detector on the Univer-

sity of Maryland experiment on IMP-8 responds to heavy ions with energies

%20 keV/nucleon (Tums, et al., 1974). Since v (km/sec) = 440 [E(keV/

nucleon)] 2, this implies v = 5 w for typical solar wind speeds, and

v = 3 w during disturbed periods. Future experiments will undoubtedly

reach even lower energies.

In this letter we first derive an exact transformation of a particle

distribution which is isotropic in the solar wind frame. We then show

how a distribution with arbitrarily high anisotropy in the solar wind

frame may be transformed exactly into the observer's frame. The procedure

is illustrated by analyzing one of the "post-shock" particle spikes dis-

cussed by Gloeckler, et al (1974).



EXACT TRANSFORMATION FOR ISOTROPIC DISTRIBUTION

The exact transformation procedure is based on the Lorentz invari-

ance of the particle distribution function in phase space (Forman, 1970).

Let primed quantities refer to t.en solar wind frnme and unprimed quan-

tities to the observer's frame. All. particles are assumed to be non-

relativistic, since for relativistic particles the fiirst-order Compton-

Getting correction is a perfectly good opproximation.

The particle momenta in the two frames of reference are related by

the Lorentz transformation

P' = P- P w/v()

Here w is the solar wind velocit1 and v is the particle speed. (Equa-

tion (1) assumes w << speed of light). The magnitudes of the momenta

are related by

P' = P [1 - 2 (w/v) cos 0 + (w/vj)2]1/2, (2)

where 0 is the angle between the solar wind velocity and the direction

in which the observer is looking (i.e., cos 0 = (w-P)/(wP)).

The distribution function f(P) is the number of particles of momen-

tum in the volume element dPx, dPy, dPz, dx, dy, dz of phase space.

As demonstrated by Forman (1970), this function is a Lorentz invariant:

f(P) = f'(P') (3)
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For the case of a distribution which is isotropic in the solar wind

frame we have

f(P) = f'(P') (4)

If in addition the distribution function is a power law in the solar

wind frame, f'(P') - (P')-n', then equations (2) and (4) may be. com-

bined to yield

f(P) = f'(P) [1-2(w/v) cos 0 + (w/v)2]-nr/2 (5)

It is apparent from equation (5) that the spectrum is not a power law

in the observer's frame; both the shape and the intensity of the spec-

trum are functions of angle and energy. This may be seen quantitatively

by computing an effective spectral index for a given momentum and angle

as:

d(in f)
n (P)- d(ln (6)
eff d(ln P)

Using equation (5) this becomes

n' 1 - (w/v) cos e
neff= 1 - 2 (w/v) cos 0 + (w/v) ]  (7)

Introducing the particle differential intensity dJ/dE (particles per

cm2 - sec - ster - keV) and using the relation dJ/dE = P 2 f (Forman, 1970),

it follows that if the distribution function is a power law in momentum,

f = -n, then the differential intensity is a power law in kinetic energy,

dJ/dE a E- , with y = (n/2) - 1. Thus, using equation (7), the effective
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differential intensity spectral index is

, (y'+l)(w/v) [cos 0 - (w/v)] (8)
eff 1 - 2 (w/v) cos 0 + (w/v) (8)

Figure 1 shows Yeff plotted vs. 0 for (v/w) = 4 and 10, assuming a power

law spectrum in the solar wind frame with y' = 3. The steepest spectrum

is seen when looking towards the sun (0 = 00).

Again using the relation dJ/dE = P2 f we obtain, using equation (5),

dJ = const x E [- 2 (w/v) cos + (w/v)(9)

This differential intensity is plotted in Figure 2 for three values of 0

assuming a solar wind speed of w = 400 km/sec and a spectral index y' = 3

in the solar wind frame.

For small (w/v) we can expand equation (5) using n = 2 y + 2 to

obtain, correct to order (w/v) 2 ,

f( ) = f'(P) [1 + C (w/v) + D (w/v)21 , (10)

where

C = 2 (y' + 1) cos 0

D = (y' + 1)2 + (y' + 1) (y' + 2) cos 20

Here C is the familiar first-order Compton-Getting correction. The second

order term, D, has been obtained previously by Balogh, et al. (1973) by

expanding equation (4) in a Taylor series.



EXACT TRANSFORMATION FOR ANISOTROPIC DISTRIBUTION

We describe both frames of reference using spherical coordinate

systems with the polar axes along the sun earth line, and again use

primes to denote quantities defined in the solar wind frame. Thus the

moment;um P in the observer's frame is labeled by magnitude P, polar

angle 0, and azimuthal angle p. Since the azimuthal angles span planes

which are normal to the solar wind velocity, it follows that p = #'

(i.e., in cartesian coordinates Px = P,' Py = Py'). The change in the

magnitude of momentum is given by equation (2). The polar angle 0' must

also be Lorentz-transformed (see e.g., Jackson, 1962):

0' Tan-1 sin
cos - (w/v)

Thus equation (3) can be written quite generally as

f(P,0,4) = f'(P[1-2(w/v)cose + (w/v)2]11/2, Tan- 1 cosin w/v) ] , .(12)

In order to illustrate the use of equation (12), it is convenient to

make a number of simplifying assumptions. Firstly, we assume that the

detector system scans in the ecliptic plane so that the angle 4 need not

be considered. (It is a straightforward matter to consider different

orientations.) Secondly, we assume that the distribution function in the

solar wind frame is separable in the sense that

f(') = g'(P') h'(O') (13)
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This is probably a reasonable assumption over a limited energy range,

although it should be noted that equation (2) implies even a detector

responding only to an energy Eo will sample particle energies in the

solar wind frame ranging from [1 - (w/v)]2Eo to [1 + (w/v)] 2 E . Of

course, if equation (13) does not allow a sufficiently good fit to the

experimental data, a more general form must be used. Finally, we

assume a power law spectrum with g'(P') (P')-n'. Now equations (5),

(12), and (13) may be combined to yield the differential intensity seen

in the observer's frame:

dJ = const x E- ' [ - 2 (w/v) cos 0 + (w/v)2] - (y ' + 1 )

dE

x h' {Tan-1 [ sin . (14)
cos 0 - (w/v)

APPLICATION

The use of equation (14) will be illustrated by analyzing one of

the so-called "post-shock" spikes observed in interplanetary space by the

University of Maryland experiment on IMP-7, and discussed by Gloeckler,

et al. (1974) and Levy, et al. (1974). This particular sharp intensity

increase lasted from 1954 to 1956 UT on October 31, 1972. The detector

we are concerned with responds to alpha particles with energies between

95 and 135 keV/nucleon. The rate is sectored into four 900 sectors in the

ecliptic plane, so that it is not possible to uniquely recover the func-

tion h' in equation (14). (This indicates the importance of additional
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sectoring for future low energy experiments.) Instead, we must arbitrar-

ily assume a form for h', numerically integrate equation (14) over four

90' sectors, and then compare the resultant four numbers with the four

observed rates. Both observed and calculated rates are normalized to give

an average rate of 50 for each sector; there are thus three independent

rates to fit. We have assumed a two-parameter particle distribution in

the solar wind frame of the form h'(O') = 1 + b cos (0' - 0 '), with b

representing the magnitude of the anisotropy and 0 ' its direction.
0

The solar wind velocity during this time was w - 700 km/sec (H.

Rosenbauer and H. Grunwald, private communication, 1974), so that v = 7w.

The average differential intensity spectral index, obtained from the

observed intensities summed over all sectors for two detectors at differ-

ent energies, was y = 3.0 from '100 to 400 keV/nucleon. From Figure 1,

we expect this average value to be approximately equal to the value in

the solar wind frame, so we take y' = 3.0. Thus the normalized rates

obtained by integrating equation (14) depend on only two variables: b and

0 '. Therefore, if the three independent observed rates can be fit, some

confidence can be placed in the assumed form for h'. In this example,

the best fit was obtained by choosing b = 0.95 and 0 ' = 1460. In Figure

3 the dotted curve represents the assumed angular distribution of particles

in the solar wind frame. The solid curve (obtained from equation (14))

represents the same distribution as viewed from the observer's frame. The

normalized observed rate (with one sigma error) and the calculated rate

are shown for each sector.
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Since the agreement is really quite good, we conclude that our

assumed form for h' is an accurate representation of the actual particle

distribution in the solar wind frame during this event. Although the

magnitude of the derived anisotropy is large (95%), the particle distri-

bution is broad (0'FWHM = 1770 in the solar wind frame). A more sharply

peaked distribution cannot fit the data. This may be seen qualitatively

by considering a delta function distribution in the solar wind frame:

h'(O') =6(0' - 0 '). Equation (14) shows that the distribution would
o

also be a delta function in the observer's frame, 6(0 - 0 ). Equation

(11) shows that for 0 ' = 1460, 0 = 1410. Thus the calculated rate
o o

would be 200 for sector 1, and zero for the other three sectors. This

would obviously be a poor fit to the observed rates shown in Figure 3.

The average direction of the magnetic field in the ecliptic plane

during this time period, observed on the same satellite, was 1520 + 60

(shown by the arrow in Figure 3), where the variation represents real

fluctuations in the field direction (N. Ness and R. Lepping, private

communication, 1974). Thus the particle streaming was essentially field

aligned with the particles coming from an easterly, anti-solar direction.

From similar analyses, this same conclusion also holds for the other

post-shock spikes described by Gloeckler, et al. (1974).
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FIGURE CAPTIONS

Figure 1. Spectral index in the observer's frame as a function of

direction assuming a spectral index y' = 3 in the solar wind frame.

Figure 2. Differential intensity in the observer's frame for three dif-

ferent directions assuming a solar wind speed of 400 km/sec and an iso-

tropic power law differential intensity in the solar wind frame with

y = 3.

Figure 3. Angular particle distributions in the solar wind frame (dotted

curve) and satellite frame (solid curve) deduced from observations of

alpha particles (95-135 keV/nucleon) in a "post-shock" spike (1954-1956

UT October 31, 1972). The upper number in each bracket is the observed

normalized counting rate (with one sigma error) for each sector, and the

lower number is the calculated rate obtained by integrating the solid

curve over that sector. The arrow indicates the average direction of the

magnetic field in the ecliptic plane during this time period.
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