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Abstract: In the representation approach to computable analysis (TTE) [Grz55,
KW85, Wei00], abstract data like rational numbers, real numbers, compact sets or
continuous real functions are represented by finite or infinite sequences (Σ∗, Σω) of
symbols, which serve as concrete names. A function on abstract data is called comput-
able, if it can be realized by a computable function on names. It is the purpose of this ar-
ticle to justify and generalize methods which are already used informally in computable
analysis for proving computability. As a simple formalization of informal programming
we consider flowcharts with indirect addressing. Using the fact that every computable
function on Σω can be generated by a monotone and computable function on Σ∗ we
prove that the computable functions on Σω are closed under flowchart programming.
We introduce generalized multi-representations, where names can be from general sets,
and define realization of multi-functions by multi-functions. We prove that the function
computed by a flowchart over realized functions is realized by the function computed
by the corresponding flowchart over realizing functions. As a consequence, data from
abstract sets on which computability is well-understood can be used for writing realiz-
ing flowcharts of computable functions. In particular, the computable multi-functions
on multi-represented sets are closed under flowchart programming. These results allow
us to avoid the “use of 0s and 1s” in programming to a large extent and to think in
terms of abstract data like real numbers or continuous real functions. Finally we gen-
eralize effective exponentiation to multi-functions on multi-represented sets and study
two different kinds of λ-abstraction. The results allow simpler and more formalized
proofs in computable analysis.
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1 Introduction

By the Church/Turing Thesis a partial word function f : ⊆ (Σ∗)k → Σ∗ is
computable by a digital computer, iff it can be computed by a Turing machine
[HU79], which is the mathematical model of computation introduced by A.Turing
in 1936 [Tur36]. This concept of computability can be extended to countable
sets of “abstract” data like natural or rational numbers or finite graphs. For this
purpose abstract data are encoded by “concrete” words w ∈ Σ∗ and a function
on abstract data is called computable, if it can be realized by a computable word
function on codes.

Computability on the set of real numbers cannot be introduced in this way
since the supply Σ∗ of (finite) names is only countable. Various models have been
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proposed for studying aspects of computability on the real numbers. For discus-
sion of models see, for example, [SHT99], [Wei00, § 9], [TZ04]. This article is
based on the representation approach (Type-2 theory of effectivity, TTE) to com-
putable analysis [KW85, Wei00], which generalizes a definition of computable
real functions introduced by Grzegorczyk and Lacombe [Grz55, Lac55, Grz57].

In TTE, abstract data like real numbers, compact sets or continuous real
functions are represented by infinite sequences p ∈ Σω of symbols from a finite
alphabet Σ which serve as concrete names. A function on abstract data is called
computable, if it can be realized by a computable function on names. Concrete
computations on infinite sequences of symbols can be defined, for instance, by
Type-2 machines which are Turing machines with infinite input and output tapes
performing infinite computations. For example, for the real numbers the “Cauchy
representation” ρC : ⊆Σω → R [Wei00] induces the Grzegorczyk/Lacombe com-
putability (GL-computability) of real functions. Addition, division, the expo-
nential function and many other real functions are GL-computable. Infinite se-
quences of natural numbers (B = NN, Baire space) can be used as names instead
of infinite sequences of symbols (Σω, Cantor space) equivalently.

The representation approach as a foundation of computability in analysis has
been criticized repeatedly, for example in [BCSS98]: “ ... the Turing model ... with
its dependence on 0s and 1s is fundamentally inadequate for giving a foundation
to the theory of modern scientific computation where most of the algorithms
– with origins in Newton, Euler, Gauss, et al. – are real number algorithms.”
and after some further comments: “ These reasonings give some justification for
taking as a model for scientific computation a machine model that accepts real
numbers as inputs.” Furthermore, in more advanced applications of TTE where
computability of higher level operators is proved [ZW03] the use of Σω as set of
names is cumbersome and may hide the main ideas which should be expressed
more abstractly.

For an algorithmic foundation of numerical analysis in [BSS89] generalized
Turing machines have been suggested which explicitly operate on real numbers
instead of symbols from a finite alphabet with vectors of real numbers as inputs
and outputs, real number assignments “x ← 1” and “x ← y op z” for the
algebraic operations op ∈ {+,−, ·, /}, and real number branchings “x < y ?”.
Although this model looks very concrete and expresses the way most numerical
mathematicians are presumably thinking, the “BSS-machines” are unrealistic for
the following reason: Computers cannot handle exact real numbers but (usually)
operate on floating point numbers instead. Since these computer REALs are not
even closed under the arithmetic operations, rounding errors occur repeatedly
during computations. Such errors are usually tolerable for the basic algebraic
operations, since they are continuous but may be disastrous if they cause false
branchings. Notice that branchings such as < : R×R → {0, 1} are not continuous.
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The BSS model is neither sound nor complete for the computable real functions
[Wei00, Section 9.7].

In computer science higher level programming languages are introduced in
order to avoid thinking in terms of concrete computations on 0s and 1s at the
machine level. Apart from BSS-machines there are several approaches to formal-
ize programming in analysis. As a modification of the BSS-machines the “feasible
real-RAMs” [BH98] have “approximate” tests [BC90], which are multi-valued,
instead of ordinary tests and a limit operator. Feasible real-RAMs operate di-
rectly on the real numbers. They can be translated to the realistic Type-2 ma-
chines. Since every computable real function can be obtained in this way, this
abstract model is sound and complete. Moreover, feasible real-RAMs have real-
istic computational complexity. Another approach is Brattka’s generalization of
the definition of the μ-recursive functions [Bra96, Bra03]. His “defining terms”
considered as a programming language can be translated to Type-2 machines
computing the real functions (w.r.t. the standard representation of the real num-
bers) and more generally computable functions on admissibly represented metric
spaces. The language is sound and complete for the computable multi-functions
(see also [Her99]). The real numbers and other spaces can be embedded in in-
terval domains [Sco70]. Languages for exact real number computation can be
developed from this idea [Esc96, ES99, EE01, EMR07, DG99, CDG06]. As an
abstract model of computation in [TZ04] Tucker and Zucker choose the “while”-
array programming language [TZ99, TZ00], extended with a nondeterministic
“countable choice” assignment, called the WhileCC∗ model. Using this model
they introduce the concept of approximable many-valued computation on met-
ric algebras. For metric algebras with an effective representation α, WhileCC∗

approximability implies computability in α and under certain reasonable con-
ditions the converse is true. Their article generalizes and extends results from
[Ste99].

In terms of [TZ04] Theorem 30, a main result of this paper, can be described
as follows. Instead of the WhileCC∗ model we use flowcharts with indirect
addressing which are essentially equivalent. In particular, we do not provide
a language syntactically, and we assume that computability on finite and infi-
nite sequences of symbols as well as on the natural numbers is already given.
The metric partial algebra is replaced by a (finite) set of multi-represented sets
and relatively computable (or continuous) functions which can be used in the
flowchart. It is shown that the multi-function computed by the flowchart is again
relatively computable (continuous). This corresponds to the soundness result in
[TZ04], where, however, soundness is considered only for the restriction of the
computed function to the computable points of the metric algebras with respect
to canonical numberings α (called “representations” in [TZ04]). This soundness
theorem is an immediate consequence of Theorems 15 and 23 (provided the dif-
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ference between WhileCC∗ and flowcharts is ignored).
In this article, which extends the preliminary version [Wei05], we add a tool-

box to the existing framework of TTE. In Section 2 we recapitulate how contin-
uous (computable) functions on Σω can be generated by monotone (monotone
computable) functions on Σ∗ [Wei00]. In Section 3 we introduce composition and
restriction for multi-functions. In Section 4 we define flowcharts with indirect ad-
dressing and their semantics. In Section 5 we consider flowcharts operating on
Σω with continuous functions. We prove that the function computed by such a
flowchart is generated by the word function computed by the flowchart, which is
obtained from the first one by replacing all the functions on Σω by generating
word functions. Consequently, if only computable functions on Σω are used, the
flowchart computes a computable function. In Section 6 we introduce general-
ized multi-representations where “generalized” means that arbitrary sets can be
used as sets of names and “multi” means that many objects may have a com-
mon name (see the explanations in Section 6). Generalized representations allow
us the use of simpler but still abstract data as names instead of sequences of
symbols. This generalizes [Bla00] where domains are allowed as sets of names.
In Section 7 we prove for generalized multi-representations and realizing as well
as realized multi-functions: the function computed by a flowchart over realized
functions is realized by the function computed by the corresponding flowchart
over realizing functions. In Section 8 we consider computability. As the most
important result we conclude that the relatively computable multi-functions are
closed under flowchart programming. This generalizes results in [BH98] (feasible
real RAMs), in [Wei00] (closure under primitive recursion) and in [Bra96, Bra03].
By the other main result, instead of using “concrete” names from Σω we may
use data from more abstract sets on which computability is well-understood for
writing realizing flowcharts of computable functions. Both results allow us to
get rid of the 0s and 1s in programming and to think in terms of abstract data
like real numbers or continuous real functions. In Section 9 we generalize effec-
tive exponentiation to multi-representations and generalize the important type
conversion theorem [Wei00, Theorem 3.3.15].

The main motivation for this article came from the wish to make practical
work in computable analysis easier. The results should simplify (or justify the
current practice of) many proofs of computability in advanced applications. Al-
though it does not intend to design a programming language this article can
be considered as a step towards a higher level programming language for com-
putable analysis.

2 Computability on Sequences of Symbols

The computable functions on finite and infinite sequences of symbols can be
defined by generalized Turing machines. In this section we introduce some no-
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tations and extend two results from Chapter 2 in [Wei00], namely, we show
that continuous functions can be generated by monotone-constant or monotone
word functions, and that computable functions can be generated by monotone-
constant or monotone computable word functions. Furthermore, the composition
of functions is generated by the composition of generators.

Throughout this paper we use the terminology from [Wei00]. Let Σ be a
finite alphabet such that {0, 1}⊆Σ. Let Σ∗ be the set of finite words over Σ

with the empty word ε, and let Σω := {a0a1 . . . | ai ∈ Σ} be the set of all
infinite sequences over Σ. By |w| we denote the length of the word w ∈ Σ∗, and
by � the prefix relation on Σ∗ ∪ Σω. We extend the prefix relation to vectors
by (x1, . . . , xk) � (y1, . . . , yk) ⇐⇒ (∀i)xi � yi . For p = a0a1a2 . . . ∈ Σω

let p<k := a0 . . . ak−1 be the prefix of p ∈ Σω of length k. By 〈 , 〉 we denote
various computable standard injective tupling functions, see Definition 2.1.7 in
[Wei00]. In particular, for i, j ∈ N := {0, 1, 2, . . .}, let 〈i, j〉 := (i + j) · (i +
j + 1)/2 + j be the Cantor pairing function. Using the “wrapping function”
ι : Σ∗ → Σ∗, ι(a1 . . . ak) := 110a10 . . . 0ak011 we define 〈x, y〉 := ι(x)ι(y) and
〈x, p〉 := 〈p, x〉 := ι(x)p for x, y ∈ Σ∗ and p ∈ Σω. For p, q ∈ Σω, let 〈p, q〉 :=
(p(0)q(0)p(1)q(1) . . .), and for p0, p1, p2, . . . ∈ Σω, define 〈p0, p1, p2, . . .〉 ∈ Σω by
〈p0, p1, p2, . . .〉(〈i, j〉) := pi(j).

On Σ∗ we consider the discrete topology (i.e. every set X⊆Σ∗ of words is
open). On Σω we consider the Cantor topology defined by the basis {wΣω | w ∈
Σ∗} (i.e. every set wΣω := {q ∈ Σω | w � q} is open, and every open set is a
union of such sets). On Cartesian products we consider the product topologies.

A Type-2 machine M is a multi-tape Turing machine with k input tapes
(for some k ≥ 0) finitely many work tapes and a single one-way (!) output tape
together w ith a type specification (Y1, . . . , Yk → Y0), Yi ∈ {Σ∗, Σω} (Figure 1).
The function fM : ⊆Y1 × . . .× Yk → Y0 computed by the Type-2 machine M is
defined as follows:
Case Y0 = Σ∗: fM (p1, . . . , pk) = w, iff M halts on input (p1, . . . , pk) with
w ∈ Σ∗ on the output tape;
Case Y0 = Σω: fM (p1, . . . , pk) = p0, iff M computes forever on input
(p1, . . . , pk) and writes p0 ∈ Σω on the output tape.

As usual we write f(y) ↓ for y ∈ dom(f) and f(y) ↑ for y �∈ dom(f). It is
known that every function f : ⊆Y1 × . . . × Yk → Y0 computable in this way is
continuous, and that its domain is an r.e. open set for Y0 = Σ∗ and a Gδ-set (i.e.
a countable intersection of open sets) in the Kleene class Π2 for Y0 = Σω. Since
later on we will not consider natural domains the following (somewhat unusual)
terminology is convenient.

Definition 1 (Turing computable, computable). We call a function f : ⊆ Y1 ×
. . . × Yk → Y0 Turing computable, iff f = fM for some Type-2 machine M , and
we call it computable, if it has a Turing computable extension.

805Weihrauch K.: The Computable Multi-Functions on Multi-represented Sets ...



...

��
��

M

...

...

...

...

...

...

�

�

��

⎫⎪⎪⎬
⎪⎪⎭

input tapes

⎫⎪⎪⎬
⎪⎪⎭

work tapes

...

...

�
�
�
���

�
�
�

�
�
�

�
���

�
�

�
�	

�



�

p1

pk

p0 output tape (one-way)

Figure 1: A Type-2 machine

Continuous Type-2 functions can be approximated by word functions. In
the following we generalize [Wei00, Lemma 2.1.11]. For technical reasons we
use “momotone-constant” functions instead of monotone-constant functions and
partial monotone functions instead of total monotone functions.

Definition 2. Call a function h : ⊆(Σ∗)k → Σ∗ monotone-constant, iff

(h(y) ↓ and y � y′) =⇒ (h(y′) ↓ and h(y) = h(y′)) ,

and monotone, iff

(h(y) ↓ and y � y′) =⇒ (h(y′) ↓ and h(y) � h(y′)) .

For monotone-constant functions g define T∗(g) : ⊆(Σω)k → Σ∗, and for mono-
tone functions h define Tω(h) : ⊆(Σω)k → Σω by

T∗(g)(x) = w : ⇐⇒ (∃y ∈ (Σ∗)k) (y � x and g(y) = w) ,

Tω(h)(x) = q : ⇐⇒ q = sup�{h(y) | y � x and h(y) exists} .

Notice that T∗(g) and Tω(h) are well-defined by the “generating functions”
g and h, respectively. By Lemma 3 Turing computable functions f : ⊆(Σω)k →
Σ∗ or f ′ : ⊆ (Σω)k → Σω can be generated by computable word functions
g : ⊆ (Σ∗)k → Σ∗ which are monotone-constant or monotone, respectively. We
include the continuous versions.

Lemma3. 1. A function f : ⊆ (Σω)k → Σ∗ is continuous with open domain,
iff f = T∗(g) for some monotone-constant function g : ⊆(Σ∗)k → Σ∗.
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2. A function f : ⊆ (Σω)k → Σ∗ is Turing computable, iff f = T∗(g) for some
Turing computable monotone-constant function g : ⊆(Σ∗)k → Σ∗.

3. A function f : ⊆ (Σω)k → Σω is continuous with Gδ-domain, iff f = Tω(h)
for some monotone function h : ⊆(Σ∗)k → Σ∗.

4. A function f : ⊆(Σω)k → Σω is Turing computable, iff f = Tω(h) for some
Turing computable monotone function h : ⊆(Σ∗)k → Σ∗.

For a proof modify the proofs of Lemma 2.1.11 and Theorem 2.3.7 in [Wei00]
appropriately. The proof shows how a Type-2 machine can be converted to a
Turing machine of a generating function and conversely. The Turing computable
functions are “almost” closed under composition.

Lemma4 [Wei00]. For k, n ∈ N and X1, . . . , Xk, Y1, . . . , Yn, Z ∈ {Σ∗, Σω}
and Turing computable functions gi : ⊆X1 × . . .×Xk → Yi and f : ⊆Y1 × . . .×
Yn → Z (i = 1, . . . , n), the composition f ◦ (g1, . . . , gn) : ⊆X1 × . . . × Xk → Z

1. is Turing computable, if Z = Σω or Yi = Σ∗ for all i,

2. has a Turing computable extension h : ⊆X1 × . . . × Xk → Z such that

dom(h) ∩ dom(g1, . . . , gn) = dom(f ◦ (g1, . . . , gn)) ,

if Z = Σ∗ and Yi = Σω for some i.

Proof: Although the proof is easy and can be found in [Wei00]), we sketch
it here for the case k = n = 1. Let M and N be Type-2 machines computing f

and g1, respectively.
If Y1 = Σ∗ let L be a Type-2 machine which on input x first runs the machine

N to compute g1(x) ∈ Σ∗ and then runs the machine M on input g1(x).
If Y1 = Σω, let L be a machine which runs M and N alternately using the

output tape of N as the input tape of M . It runs N on input x until it writes
one symbol and interrupts, then it runs one step of M , then it continues the
computation of N until it writes one symbol and interrupts, then it runs one
further step of M , and so on. For Z = Σω the machine L computes f ◦ g1,
and for Z = Σ∗ the machine L computes an extension h of f ◦ g1 such that
dom(h) ∩ dom(g1) = dom(f ◦ g1). �

By the following lemma, composition of functions on Σω can be obtained by
composing generating functions. We denote the restriction of f : ⊆ X → Y to
Z⊆X by f |Z : ⊆X → Y .
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Lemma5. Let g1, . . . , gn : ⊆ (Σ∗)k → Σ∗ be monotone, let f : ⊆ (Σ∗)n → Σ∗

be monotone-constant and let h : ⊆(Σ∗)n → Σ∗ be monotone. Then

T∗(f) ◦
(
Tω(g1), . . . , Tω(gn)

)
= T∗

(
f ◦ (g1, . . . , gn)

)∣∣
T

i dom(Tω(gi))
, (1)

Tω(h) ◦
(
Tω(g1), . . . , Tω(gn)

)
= Tω

(
h ◦ (g1, . . . , gn)

)∣∣
T

i dom(Tω(gi))
. (2)

Proof: For convenience we consider n = 1. Suppose, Tω(g)(p) exists.
(1) For p ∈ Σω and x ∈ Σ∗,

T∗(f) ◦ Tω(g)(p) = x ⇐⇒ (∃y � Tω(g)(p)) f(y) = x

⇐⇒ (∃y, z) (z � p , y � g(z) and f(y) = x)

⇐⇒ (∃z � p) f ◦ g(z) = x

⇐⇒ T∗(f ◦ g)(p) = x .

(2) For p ∈ Σω and v ∈ Σ∗,

v � Tω(h) ◦ Tω(g)(p) ⇐⇒ (∃w ∈ Σ∗)
(
w � Tω(g)(p) and v � h(w)

)
⇐⇒ (∃w, u ∈ Σ∗)

(
u � p , w � g(u) and v � h(w)

)
⇐⇒ (∃u ∈ Σ∗)

(
u � p and v � h ◦ g(u)

)
⇐⇒ v � Tω(h ◦ g)(p) .

�

3 Multi-Functions

Many problems in computable analysis can be solved not by computable func-
tions, but only by computable multi-functions [Luc77]. In such cases the result
of a computation may depend on the used name, different names of the same
object may give different results. In this section we introduce multi-functions,
which are also called correspondences. For further details see [KT84, Wei00]. We
distinguish two kinds of composition and we generalize the “restriction” relation
from (single-valued) functions to multi-functions.

A multi-valued function, multi-function for short, from A to B is a triple
f = (A, B, Rf ) such that Rf⊆A × B (the graph of f). We will denote it by
f : A ⇒ B. For a ∈ A let f(a) := {b ∈ B | (a, b) ∈ Rf}. For X⊆A let
f [X ] := {b ∈ B | (∃a ∈ X)(a, b) ∈ Rf}, dom(f) := {a ∈ A | f(a) �= ∅}, and
range(f) := f [A]. If, for every a ∈ A, f(a) contains at most one element, f is a
usual partial function denoted by f : ⊆A → B.

In applications multi-functions can express various ideas, for example, non-
determinism, randomness, uncertainty, reachability or set-valued functions. In
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this article we have two kinds of usage, which are distinguished also formally by
the operation of composition. In one of the applications we have in mind, for
a multi-function f : A ⇒ B, f(a) is interpreted as the set of all results which
are “acceptable” on input a ∈ A. Any concrete computation, a realization of f ,
will produce on input a ∈ dom(f) some element b ∈ f(a), but often there is no
method to select a specific one.

Example 1 (multi-functions). 1. f : R ⇒ Q, f(x) := {r ∈ Q | x < r},

2. g : R × R ⇒ N, g(x1, x2) := {i ∈ N | xi > 0},

3. ≤k: R × R ⇒ N, ≤k (x, y) :=

⎧⎨
⎩

{0} if x < y

{0, 1} if y ≤ x ≤ y + 2−k

{1} if y + 2−k < x ,

4. h : C(R) ⇒ R, h(f) := {x ∈ R | f(x) = 0}.
In TTE with respect to the canonical representations the function f (find

some rational upper bound), the function g (find some i such that xi > 0) and
≤k (approximate branching) are computable but cannot be replaced by com-
putable single-valued functions while the multi-function h (zero finding) is not
even computable [Wei00]. Functions like g can be applied in Gaussian elimi-
nation, where indices i, j must be determined such that aij �= 0. Approximate
branching can be used in Newton iteration where some n must be determined
such that after n iterations the error is less than a given bound. More generally,
every branching in a naive real number algorithm gives rise to a multi-function,
since characteristic functions cfA : Rn → N (for non-trivial A⊆Rn) cannot be
realized exactly (Cor. 4.3.16 in [Wei00]).

Notice that a multi-function f : A ⇒ B is well-defined by the values f [{a}] =
f(a)⊆B for all a ∈ A. Therefore, a multi-function from A to B could also be
defined as a usual (single-valued) function f : A → 2B. We will write f(a) = ↑,
if a �∈ dom(f), that is f [{a}] = ∅. For multi-functions fi : A ⇒ Bi (i = 1 . . . , k)
define the juxtaposition (f1, . . . , fk) : A ⇒ B1 × . . . × Bk by

(f1, . . . , fk)(a) := f1(a) × . . . × fk(a) .

And for multi-functions fi : Ai ⇒ Bi (i = 1 . . . , k) define the product
(f1 × . . . × fk) : A1 × . . . × Ak ⇒ B1 × . . . × Bk by

(f1 × . . . × fk)(a1, . . . , ak) := f1(a1) × . . . × fk(ak) .

In this article we consider two kinds of composition of multi-functions.

Definition 6 (composition). For f : A ⇒ B and g : B ⇒ C define

1. g � f : A ⇒ C by g � f(a) := g[f(a)],
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2. g ◦ f : A ⇒ C by g ◦ f(a) := g[f(a)] for all a ∈ dom(g ◦ f), where

a ∈ dom(g ◦ f) : ⇐⇒ a ∈ dom(f) and f(a)⊆dom(g).

Notice that a ∈ dom(g � f) ⇐⇒ a ∈ dom(f) and f(a) ∩ dom(g) �= ∅.
For single-valued f , g � f = g ◦ f . The composition � is the usual composition
of binary relations and can be used, for example, for modelling reachability
or nondeterminism. The composition ◦ is appropriate for the multi-functions
in Example 1. We generalize the concept of restriction/extension from (single-
valued) functions to multi-functions as follows.

Definition 7. For multi-functions f, g : A ⇒ B,

f � g : ⇐⇒
(
dom(f)⊆dom(g) and (∀ a ∈ dom(f)) g(a)⊆f(a)

)

(f “restricts” g, g “extends” f).

For single-valued functions, f �g means that f restricts g in the usual mean-
ing. For multi-functions f � g can be interpreted as g “tightens” or “improves”
f . For a ∈ A, “f(a) = B” is better or sharper than “f(a) =↑”, since “every
value b ∈ B is acceptable” is better than “no b ∈ B is acceptable”. And for
X, Y ⊆B, f(a) = X is sharper or tighter than f(a) = Y , if ∅ �= X⊆Y . Notice
that f � g is not related to graph inclusion. Examples: Let Rf = {(0, 0), (0, 1)}
and Rg = {(0, 0), (1, 1)}. Then f � g (f restricts g, g is sharper than f) but
neither Rf⊆Rg nor Rg⊆Rf . Let Rf = {(0, 0)} and Rg = {(0, 0), (0, 1), (1, 1)}.
Then Rf⊆Rg but neither f � g nor g � f .

Lemma8. 1. The total single-valued functions are the maximal elements in
the �-order.

2. The compositions � and ◦ are associative.

3. The composition ◦ is monotone w.r.t. extension:
g ◦ f � g′ ◦ f ′ if f � f ′ and g � g′ .

4. The composition � is monotone w.r.t. graph inclusion:
Rg�f⊆Rg′�f ′ if Rf⊆Rf ′ and Rg⊆Rg′ .

4 Flowcharts with Indirect Addressing

The Turing computable functions f : ⊆ (Σ∗)k → Σ∗ are closed under com-
position. More generally, they are closed under “flowchart computation”, that
is, the function computed by a flowchart composed of Turing computable word
functions is Turing computable. In Section 5 we prove that also the computable
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functions on Σω are closed under flowchart computation. In this section we de-
fine flowcharts and their operational semantics on arbitrary data types. Since
direct addressing fixes the number of variables which can be used in a flowchart
we consider indirect addressing. For convenience addresses (and Boolean values)
are words in Σ∗.

Although dated, flowcharts are still used in computable analysis for proving
computability informally. Since in this article we are not interested in defining a
programming language, we do not define GOTO programs or WHILE programs
syntactically but introduce flowcharts mathematically like Turing machines or
finite automata and thus presumably make it easier for the non-expert to un-
derstand the formalism and meaning of the theorems. For our purpose it is
convenient to define (uninterpreted) flowchart schemes and then flowcharts by
assigning types to the variables and typed functions to the function symbols.

Definition 9 (flowchart scheme). Let Var⊆Σ∗ be a recursive set (set of vari-
ables). A flowchart scheme F is given by

1. a finite set Q of labels;

2. an initial label lin ∈ Q and a final label lfin ∈ Q (lin �= lfin);

3. a finite set Fun of function names, each f ∈ Fun with fixed arity μ(f) ∈ N;

4. a mapping Stmt assigning to each label l ∈ Q \ {lfin} a statement

Stmt(l) = (u := f(u1, . . . , uμ(f)), l′) (3)

or

Stmt(l) = (if u then l′, l′′) (4)

such that l′, l′′ ∈ Q, f ∈ Fun and u, u1, . . . , uμ(f) ∈ Var;

5. a vector (v1, . . . , vm) of pairwise different input variables vi ∈ Var;

6. the output variable v0 ∈ Var .

Flowcharts operate on structures τ = (Xτ , . . .) (where Xτ is a set), which
we will call types in this article. For convenience, if in a context a type τ is used
like a set, then it means the set Xτ . For example, x ∈ τ means x ∈ Xτ and
f : τ1 × . . . × τk ⇒ τ means a multi-function f : Xτ1 × . . . × Xτk

⇒ Xτ .
In the following we will consider fixed types Pointer and Bool such that

XPointer = Var⊆Σ∗ and XBool = Bool = {0, 1}⊆Σ∗.

Definition 10 (interpretation, flowchart). An interpretation I of the flowchart
scheme F is given by a finite set T I of types and a function assigning to each
variable v ∈ Var a type I(v) ∈ T I and to each function name f ∈ Fun a multi-
function f I such that
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1. {Pointer,Bool} ∈ T I ;

2. I(v1), . . . , I(vm) �∈ {Pointer,Bool} ;

3. f I : τ1 × . . .× τμ(f) ⇒ τ for types τ1, . . . , τμ(f) ∈ T I \ {Pointer,Bool} and
τ ∈ T I ;

4. the function v �→ I(v) is computable.

We call the pair (F, I) a flowchart.

In (4) “computable” means computable w.r.t. some (arbitrary) injective nota-
tion ν of the finite set T I . We define the multi-function f I

F computed by the
flowchart (F, I) by operational semantics. A computation is a sequence (li, σi)i

of configurations where the li are labels and the σi are states. A state assigns a
value of correct type (or the undefined ↑) to every variable. The first two lines
in Figure 3 shows an example for values I(v)

Definition 11 (semantics). Let (F, I) be a flowchart.
A state is a mapping σ on the set Var of variables such that

σ(v) ∈ I(v) ∪ {↑} .

Let StateI be the set of states. Let Q×StateI be the set of configurations. Define
the next-relation I on the set of configurations as follows:

(l, σ) I (l̄, σ̄) : ⇐⇒ 1. or 2. (5)

1. Assignment: There are variables u, u1, . . . , uk ∈ Var of type Pointer and
a function symbol f ∈ Fun such that

− Stmt(l) = (u := f(u1, . . . , uk), l̄) , (6)

− f I : I ◦ σ(u1) × . . . × I ◦ σ(uk) ⇒ I ◦ σ(u) , (7)

− σ̄ ◦ σ(u) ∈ f I(σ ◦ σ(u1), . . . , σ ◦ σ(uk)) , (8)

− σ̄(v) = σ(v) for v �= σ(u) . (9)

2. Branching: There are a variable u ∈ Var of type Pointer and labels l′, l′′ ∈
Q such that

− Stmt(l) = (if u then l′, l′′) (10)

− I(σ(u)) = Bool , (11)

−

⎧⎨
⎩

σ ◦ σ(u) = 1 and (l̄, σ̄) = (l′, σ)
or

σ ◦ σ(u) = 0 and (l̄, σ̄) = (l′′, σ) .

(12)
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Consider x = (x1, . . . , xm) ∈ I(v1) × . . . × I(vm).
An “x-computation” is a finite or infinite sequence (l0, σ0), (l1, σ1), . . . of config-
urations such that:

− l0 = lin ; (13)

−

⎧⎨
⎩

σ0(v) = v if I(v) = Pointer ,

σ0(v1) = x1, . . . , σ0(vm) = xm,

σ0(v) = ↑ otherwise ;
(14)

− (li−1, σi−1)
I (li, σi) for i = 1, 2, . . . . (15)

A computation is maximal, if it is infinite or it is finite and its last element
has no I –successor. A computation is acceptable, if it is finite, and its last
configuration is (lfin, σ) for some state σ such that σ(v0) exists.

The function f I
F : I(v1) × . . . × I(vm) ⇒ I(v0) computed by the flowchart

(F, I) is defined as follows:

f I
F (x) =

⎧⎪⎪⎨
⎪⎪⎩

{y | y = σn(v0) for the last configuration (ln, σn)
of some maximal x-computation}

if every maximal x-computation is acceptable,
∅ otherwise.

(16)

Notice that in case of assignment implicitly

– l �= lfin in (5),

– σ(u), σ(u1), . . . , σ(uk) ∈ Var exist,

– σ̄ ◦ σ(u), σ ◦ σ(u1), . . . , σ ◦ σ(uk) exist,

– f I(σ ◦ σ(u1), . . . , σ ◦ σ(uk)) exists.

and in case of branching implicitly

– l �= lfin in (5),

– σ(u) ∈ Var exists,

– σ ◦ σ(u) ∈ Bool exists.

By (16), f I
F (x) �= ∅ (exists) if, and only if, every maximal x-computation is

acceptable. This condition generalizes the definition of dom(g ◦ f) (Definition 6)
for multi-functions. Since v �→ I(v) is Turing computable, the type conditions
(7) and (11) can be checked computably during runtime. By Definition 10.3,
functions cannot be applied to variables or Boolean values, i.e. addresses or
Boolean values cannot be used to compute new data. This restriction, however,
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is imposed merely for simplifying our proofs by reducing the number of cases. It
is inessential since in applications the set T I of types may contain further types
behaving like Bool and Pointer as ordinary data which can be used without
limitations. Of course, for non-trivial flowcharts we need non-trivial functions
f I : τ1 × . . . × τμ(f) ⇒ τ for types τ1, . . . , τμ(f) ∈ T I \ {Pointer,Bool} and
τ ∈ {Pointer,Bool} from “abstract” types to the fixed concrete data types
Pointer or Bool. By (14) at the beginning σ0(v) = v, hence σ0 ◦ σ0(v) = v. In
order to get indirect access to other variables w the flowchart scheme must have
assignments of the form (u := hw(), l), which must be interpreted by I(h)() :=
w ∈ Var.

Example 2 (acceptable computation). Consider Heron’s method to compute the
squareroot of a real number a > 0 with small error given by e ∈ Q : x0 := a,
xn+1 := (xn + a/xn)/2), halt, if |x2

n − a| ≤ e. The following informally written
flowchart F0 with direct addressing solves the problem. The input (a, e) is in
(v1, v2), the output is in v0. Define h : R → R, g : ⊆ R × R → R and f :
R × R × Q ⇒ Bool by h(x) := x, g(x, a) := (x + x/a)/2 and f(x, a, e) = {0} for
|x2 − a| ≥ e, f(x, a, e) = {1} for |x2 − a| ≤ e/2 and f(x, a, e) = {0, 1} otherwise.

0 : v0 := h(v1), 1;
1 : v0 := g(v0, v1), 2;
2 : v3 := f(v0, v1, v2), 3;
3 : if v3 then 4, 1.

The statement at Label 2 means “compute some b ∈ f(v0, v1, v2)”. We convert
this flowchart to a flowchart (F, I) with indirect addressing for the same purpose.
Let F be the following flowchart scheme:

5 : u0 := c0(), 6
6 : u1 := c1(), 7
7 : u2 := c2(), 8
8 : u3 := c3(), 0

0 : u0 := h(u1), 1;
1 : u0 := g(u0, u1), 2;
2 : u3 := f(u0, u1, u2), 3;
3 : if u3 then 4, 1.

Thus, we have labels Q = {0, 1, . . . , 8}, lin = 5, lfin = 4, variables {u0, . . . , u3,

v0, . . . , v3} ∈ Var and function names c0, . . . , c3, f , g, h. We interpret the flow-
chart as follows: The types I(v) of the variables can be seen in Figure 2. The
interpretations of the function symbols are I(c0)() := v0, . . . , I(c3)() := v3,
I(f) := f , I(g) := g, and I(h) := h.

In the flowchart (F, I) at label 5 + i, the pointer ui is initialized to the vari-
able vi (i = 0, 1, 2, 3). Then an indirect access in state σ to ui gives the value
σ ◦ σ(ui) = σ(vi), that is, the same value as a direct access to vi. Therfore,
the flowchart (F, I) computes the same function as F0. As an example, Fig-
ure 2 shows a computation with input (2, 1/3). Since 1/6 < |(3/2)2 − 2| < 1/3,
σ7(v3) := 1 leads to another (shorter) acceptable computation.
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label Variable v u0 u1 u2 u3 v0 v1 v2 v3 . . .

I(v) Poin. Poin. Poin. Poin. R R Q Bool . . .

5 σ0(v) u0 u1 u2 u3 ↑ 2 1/3 ↑ . . .

6 σ1(v) v0 u1 u2 u3 ↑ 2 1/3 ↑ . . .

. . .

0 σ4(v) v0 v1 v2 v3 ↑ 2 1/3 ↑ . . .

1 σ5(v) v0 v1 v2 v3 2 2 1/3 ↑ . . .

2 σ6(v) v0 v1 v2 v3 3/2 2 1/3 ↑ . . .

3 σ7(v) v0 v1 v2 v3 3/2 2 1/3 0 . . .

1 σ8(v) v0 v1 v2 v3 3/2 2 1/3 0 . . .

2 σ9(v) v0 v1 v2 v3 3/2 2 1/3 0 . . .

3 σ10(v) v0 v1 v2 v3 17/12 2 1/3 1 . . .

4 σ11(v) v0 v1 v2 v3 17/12 2 1/3 1 . . .

Figure 2: An acceptable computation for input (2, 1/3).

The following variant (F ′, J) of the flowchart (F, I) makes proper use of
indirect addressing for storing the successive contents of register v0 in registers
wi := 110i. We introduce new variables and extend the interpretation I to J as
follows: J(u4) := J(u5) := Pointer, J(110i) := R, sJ : Var → Var, sJ (v) := v0,
dJ
1 () := 11 ∈ Var dJ

2 () := u4 ∈ Var.

5 : u0 := c0(), 6
6 : u1 := c1(), 7
7 : u2 := c2(), 8
8 : u3 := c3(), 9
9 : u4 := d1(), 10

10 : u5 := d2(), 0

0 : u0 := h(u1), 1
1 : u0 := g(u0, u1), 12

12 : u4 := h(u0), 13
13 : u5 := s(u5), 2
2 : u3 := f(u0, u1, u2), 3
3 : if u3 then 4, 1.

Since u5 points to u4, Statement 13 changes the variable w in u4 to the new value
w0. Obviously, during a computaion of (F, J) the intermediate values σi(v0) (in
Figure 2 the values in the column “v0”) are stored successively in the registers
11, 110, 1100, etc. and could be used in a succeding computation.

In order to simplify the framework we have considered only indirect address-
ing. But Example 2 shows how direct addressing can be simulated by indirect
addressing. The definitions and theorems below can be generalized to flowcharts
with indirect and direct addressing.
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Definition 12 (direct and indirect addressing). Definitions 9 and 11 can be gen-
eralized to flocharts with direct and indirect addressing as follows. Instead of
variables v use “marked” variables (v, s), where s = d means direct addressing
and s = i means indirect addressing. Definition 11.1 must be adjusted appropri-
ately.

Lemma13. Let F be flowchart scheme with direct and indirect addressing and
let I be an interpretation of F . From F construct a flowchart scheme F ′ as
follows: For each variable v in F add a new variable v′, insert the assignment
“v′ := cv()”at the beginning of F , and in all statements of F replace (v, d) by
v′ and (v, i) by v. Extend the interpretation I to I ′ by I ′(v′) := Pointer and
I(cv)() := v for all v in F .

Then f I
F = f I′

F ′ .

Proof: The statement is obvious, since after initializing the values σ(v′) to v

they remain unchanged forever and every indirect access to v′ is like a direct
access to v since σ ◦ σ(v′) = σ(v). �

If every function name is interpreted by a single-valued function, then for
every input x there is at most one maximal x-computation, since the element
relation “∈” in (8) can be replaced by equality “=”. In this case also the function
f I

F is single-valued.

5 Computations on Σ∗ Generate Computations on Σω

By Lemma 4 the computable functions on Σω are closed under composition, that
is, g ◦ f is computable if f and g are computable. Although a Type-2 machine
computing g ◦ f on input p can never finish computing the intermediate value
f(p), we may abstractly think as if it first computes q := f(p) ∈ Σω and then
g(p) ∈ Σω.

In this section we prove that the computable functions on Σω are closed
even under “flowchart programming”. If we have a flowchart F composed of
computable functions on Σω then the function fF computed by the flowchart
is computable. Although a Type-2 machine computing fF will never compute
any intermediate value completely, we nevertheless can abstractly think as if
there were a machine which computed one by one intermediate values from Σω

according to the rules given by the flowchart.
By Lemma 3, every computable function f on Σω can be generated by a

computable monotone word function h, f = Tω(h). By Lemma 5, an extension
of the composition of generated functions is generated by the composition of
generating functions: Tω(h2 ◦ h1) extends Tω(h2) ◦ Tω(h1).
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In this section we generalize this property from composition to flowcharts.
Roughly speaking, let (F, J) be a flowchart composed of monotone word func-
tions h and let (F, I) be the flowchart obtained from (F, J) by substituting Tω(h)
for h everywhere, then Tω(fJ

F ) extends f I
F . (More precisely, the flowcharts will

contain also monotone-constant functions for computing addresses and Boolean
values).

In this section we consider fixed types Σ∗ and Σω such that XΣ∗ = Σ∗

and XΣω = Σω.

Lemma14. Let F be a flowchart scheme. Let I and J be interpretations such
that for each f ∈ Fun, f I and fJ are single-valued and (1) to (3):

1. T I = {Σω,Pointer,Bool}, T J = {Σ∗,Pointer,Bool} and

J(v) =
{

I(v) if I(v) ∈ {Pointer,Bool}
Σ∗ if I(v) = Σω ;

2. for Y ∈ {Pointer,Bool}, if f I : ⊆ (Σω)k → Y , then fJ : ⊆ (Σ∗)k → Y is
monotone-constant such that T∗(fJ ) extends f I ;

3. if f I : ⊆ (Σω)k → Σω, then fJ : ⊆ (Σ∗)k → Σ∗ is monotone such that
Tω(fJ) extends f I .

Then:

4. If f I
F : ⊆ (Σω)m → Y , Y ∈ {Pointer,Bool}, then the function fJ

F : ⊆
(Σ∗)m → Y is monotone-constant and T∗(fJ

F ) extends f I
F .

5. If f I
F : ⊆(Σω)m → Σω, then the function fJ

F : ⊆(Σ∗)m → Σ∗ is monotone
and Tω(fJ

F ) extends f I
F .

Proof: See Appendix A. �

We call a function to Pointer or Bool Turing computable or monotone-
constant, if it is Turing computable or monotone-constant, respectively, as a
function to Σ∗. Remember that by Definition 1 we call a function on Σ∗ or Σω

computable, if it has a Turing computable extension. By the next theorem the
computable functions on Σω are closed under flowchart programming.

Theorem 15. Let (F, I) be a flowchart such that T I = {Σω,Pointer,Bool},
I(v0) = Σω and f I is computable for every function name f occurring in F .
Then the function f I

F : ⊆(Σω)m → Σω is computable.

Proof: By Lemma 3, for each f there is a monotone-constant Turing computable
word function hf such that T∗(hf ) extends f I if f : ⊆ (Σω)m → Σ∗, and a
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monotone Turing computable word function hf such that Tω(hf ) extends f I

if f : ⊆ (Σω)m → Σω. Let J be the corresponding interpretation of F such
that fJ = hf for each f according to Lemma 14. Then fJ

F is monotone and
Tω(fJ

F ) extends f I
F . It is known from computability theory that the function fJ

F

is Turing computable. (Remember that type checking during runtime is Turing
computable.) By Lemma 3, Tω(fJ

F ) is Turing computable. Therefore, f I
F has a

Turing computable extension. �

The results in this section can be proved for flowcharts with direct addressing
accordingly. Such flowcharts and their semantics can be defined without recourse
to basic computability.

6 Realization for Multi-Representations

In TTE, the representation approach to computable analysis, abstract objects
are “encoded” or realized by “names” w ∈ Σ∗ or p ∈ Σω, and computable func-
tions on sets of abstract objects are realized by computable functions on names.
So far mainly single-valued naming systems γ : ⊆U → X , U⊆{Σ∗, Σω}, have
been considered [Wei00]. However, it has turned out that in some applications
multi-valued naming systems are useful or needed (multi-representation of con-
tinuous partial functions without fixing their domains, multi-representation of
the set of quasi-compact subsets of R<, which has no representation because
its cardinality is bigger than that of the continuum [Wei93, Col05, GW05]).
Multi-representations have been investigated in some detail in [Sch03, Wei05].
In the following we continue these studies. Since we also want to use already
represented objects as names of more general ones we introduce generalized
multi-representations. Examples are the Domain representations [Bla97, Bla00,
BSHT02], where the standard set Σω of names is replaced by Scott-Ershov do-
mains.

Definition 16. 1. A generalized multi-representation is a multi-function
γ : U ⇒ X such that range(γ) = X .

2. If U ∈ {Σ∗, Σω}, γ is called a multi-representation.

(Notice that in [Wei00] the term “representation” is reserved for functions δ :
⊆ Σω → X and “notation” for functions γ : ⊆ Σ∗ → X .) Examples of repre-
sentations are standard notations νN : ⊆Σ∗ → N and νQ : ⊆Σ∗ → Q and the
Cauchy representation ρ : ⊆ Σω → R of the real numbers [Wei00]. In [GW05]
multi-representations of partial continuous functions and of quasi-compact sets
are used. A multi-representation can be considered as a naming system for the
points of a set X where each name can encode many points. If x ∈ δ(u) then
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in general the information given by u is not sufficient to identify the point x. A
multi-representation can be interpreted also as a naming system of an attribute
on M . However, we will use a multi-representation γ : U ⇒ X not like the single-
valued representation γ̄ : ⊆U → A of the set A⊆2X of subsets of X such that
γ̄(u) = γ[{u}]. The difference becomes clear from the definitions of reducibility
and of induced computability.

First we generalize the concept of realization [Wei00] from single-valued to
multi-valued representations, and from single-valued functions on Σω and Σ∗ as
realizations [Wei05] to arbitrary multi-functions.

Definition 17. For generalized multi-representations β : U ⇒ X and
γ : V ⇒ Y and multi-functions f : X ⇒ Y and r : U ⇒ V , r is a (β, γ)-
realization of f , iff for all u ∈ U and x ∈ X ,

x ∈ β(u) ∩ dom(f) =⇒
(
r(u) �= ∅ and ∀v ∈ r(u).f(x) ∩ γ(v) �= ∅

)
. (17)

If β is a product, we will usually write

(β1, . . . , βk, γ)-realization instead of ((β1 × . . . × βk), γ)-realization. (18)
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Figure 3: Each v ∈ r(u) is a name of some y ∈ f(x), if u is a name of x ∈ dom(f).

Whenever u is a β-name of x ∈ dom(f), then every v ∈ r(u) is a γ-name
of some y ∈ f(x) (see Figure 3). (18) is in accordance with the definition of
(γ1, . . . , γk, δ)-realization introduced in [Wei00, Wei05]. The property

r(u) �= ∅ and ∀v ∈ r(u).f(x) ∩ γ(v) �= ∅

in (17) generalizes earlier definitions. For single-valued realizing functions r it is
equivalent to

f(x) ∩ γ ◦ r(u) �= ∅ [Wei05] (19)

γ ◦ r(u) ∈ f(x) if f : X ⇒ Y and γ : ⊆V → Y [Wei87, Wei00], (20)

f(x) ∈ γ ◦ r(u) if f : ⊆X → Y and γ : V ⇒ Y [Wei93, Sch03], (21)

f(x) = γ ◦ r(u) if f : ⊆X → Y and γ : ⊆V → Y [KW85]. (22)
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Condition (20) has been used in [Wei87, Wei00] for defining computability of
multi-functions w.r.t. single-valued representations. For example, the multi-func-
tion f in Example 1 “for x ∈ R find some r ∈ Q which is slightly greater” is
computable w.r.t. the standard representations of R and Q [Wei00].

In [Sch03, Page 47 (2.10)] for single-valued realizations the condition f(x)⊆γ◦
r(u) is used instead of f(x) ∩ γ ◦ r(u) �= ∅ (19). For single-valued γ, however,
this condition does not reduce to the useful definition (20) and forces f to be
single-valued. In particular by this definition, for no representations of R and Q

the multi-function f in Example 1 is computable (or continuous).
For our generalized concept of restriction and extension for multi-functions

(Definition 7) we obtain as expected:

Lemma18. If r is a (β, γ)-realization of f , then r′ is a (β, γ)-realization of f ′

for every extension r′ of r and every restriction f ′ of f .

Proof: Suppose (17) is true for u ∈ U and x ∈ X . Assume x ∈ β(u) ∩ dom(f ′).
Since f ′�f , x ∈ β(u)∩dom(f). By (17) r(u) �= ∅ and ∀v ∈ r(u).f(x)∩γ(v) �= ∅.
Since r � r′, r′(u) �= ∅ and ∀v ∈ r′(u).f(x) ∩ γ(v) �= ∅. Since x ∈ dom(f ′),
f(x)⊆f ′(x) and therefore, ∀v ∈ r′(u).f ′(x) ∩ γ(v) �= ∅. �

For technical reasons we prove the following simple lemma.

Lemma19 (realization of tupling). For generalized multi-representations
β : U ⇒ X and γi : Vi ⇒ Yi (i = 1, . . . , k) let ri : U ⇒ Vi be a (β, γi)-
realization of fi : X ⇒ Yi. Then (r1, . . . , rk) is a (β, (γ1 × . . . × γk))-realization
of (f1, . . . , fk).

Proof: By assumption for i = 1, . . . , k,

x ∈ β(u) ∩ dom(fi) =⇒ ri(u) �= ∅ and ∀v ∈ ri(u).fi(x) ∩ γi(v) �= ∅ .

Assume, x ∈ β(u)∩dom(f1, . . . , fk). Then for all i = 1, . . . , k: x ∈ β(u)∩dom(fi),
hence ri(u) �= ∅, ∀v ∈ ri(u) and fi(x)∩ γi(v) �= ∅. Therefore, (r1, . . . , rk)(u) �= ∅
and for all (v1, . . . , vk) ∈ r1(u) × . . . × rk(u),

f1(x) × . . . × fk(x) ∩ γ1(v1) × . . . × γk(vk) �= ∅ ,

hence
(f1, . . . , fk)(x) ∩ (γ1 × . . . × γk)(v1, . . . , vk) �= ∅ .

�

As expected, the composition of “multi-realized multi-functions” is realized
by the composition of realizations (Figure 4).
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Figure 4: Composition of realizations

Lemma20 (realization of composition). Let β : U ⇒ X, γ : V ⇒ Y and δ :
W ⇒ Z be generalized multi-representations. If r : U ⇒ V is a (β, γ)-realization
of g : X ⇒ Y and s : V ⇒ W is a (γ, δ)-realization of h : Y ⇒ Z, then
s ◦ r : U ⇒ W is a (β, δ)-realization of h ◦ g : X ⇒ Z.

Proof: By assumption,

x ∈ β(u) ∩ dom(g) =⇒ r(u) �= ∅ and ∀v ∈ r(u).g(x) ∩ γ(v) �= ∅ (23)

y ∈ γ(v) ∩ dom(h) =⇒ s(v) �= ∅ and ∀w ∈ s(v).h(y) ∩ δ(w) �= ∅ . (24)

Assume

x ∈ β(u) ∩ dom(h ◦ g) . (25)

We have to show

s ◦ r(u) �= ∅ and (26)

∀w ∈ s ◦ r(u). δ(w) ∩ h ◦ g(x) �= ∅ . (27)

By (25),

x ∈ dom(g) and g(x)⊆dom(h) . (28)

By (23,25,28), r(u) �= ∅ and ∀v ∈ r(u).g(x) ∩ γ(v) �= ∅, hence by (28),

r(u) �= ∅ and ∀v ∈ r(u).∃y ∈ g(x).y ∈ dom(h) ∩ γ(v) . (29)

By (24,29) ∀v ∈ r(u).s(v) �= ∅. This proves (26). Also by (24,29),

∀v ∈ r(u).∃y ∈ g(x).∀w ∈ s(v).h(y) ∩ δ(w) �= ∅ . (30)

For showing (27) assume w ∈ s ◦ r(u). Then v ∈ r(u) and w ∈ s(v) for some
v ∈ V . By (30), ∃y ∈ g(x).h(y) ∩ δ(w) �= ∅ , hence h ◦ g(x) ∩ δ(w) �= ∅. This
proves (27). �

Corollary 21 (multi-variate composition). Let βi : Ui ⇒ Xi (i = 1, . . . , k),
γj : Vj ⇒ Yj (j = 1, . . . , l) and δ : W ⇒ Z be generalized multi-representations.
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1. Let rj : U1 × . . . × Uk ⇒ Vj be a ((β1 × . . . × βk), γj)-realization of gj :
X1 × . . . × Xk ⇒ Yj (j = 1, . . . , l) and

2. let s : V1×. . .×Vl ⇒ W be a ((γ1×. . .×γl), δ)-realization of f : Y1×. . .×Yl ⇒
Z.

Then s ◦ (r1, . . . , rl) is a ((β1 × . . . × βk), δ)-realization of f ◦ (g1, . . . , gl).

Proof: By Lemma 19 (r1, . . . , rl) is a ((β1 × . . .×βk), (γ1 × . . .× γl))-realization
of (g1, . . . , gl). The statement follows from Lemma 20 �

We will prove a much more general theorem in Section 7. Realization is down-
wards transitive. If h realizes g and g realizes f then h realizes f w.r.t. the
composed representations (Figure 5).

Lemma22. Let γ : X ⇒ Y , δ : Y ⇒ Z, γ′ : U ⇒ V and δ′ : V ⇒ W

be generalized multi-representations. If h : X ⇒ U is a (γ, γ′)-realization of
g : Y ⇒ V and g : Y ⇒ V is a (δ, δ′)-realization of f : Z ⇒ W , then h : X ⇒ U

is a (δ � γ, δ′ � γ′)-realization of f : Z ⇒ W .
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Figure 5: Realization is transitive downwards.

Proof: Consider x ∈ X and z ∈ Z such that

z ∈ δ � γ(x) ∧ z ∈ dom(f) . (31)

We have to show

x ∈ dom(h) ∧ ∀u ∈ h(x).f(z) ∩ δ′ � γ′(u) �= ∅ . (32)

By assumption for all y ∈ Y ,

y ∈ γ(x) ∧ y ∈ dom(g) =⇒ x ∈ dom(h) ∧ ∀u ∈ h(x).g(y) ∩ γ′(u) �= ∅ (33)

z ∈ δ(y) ∧ z ∈ dom(f) =⇒ y ∈ dom(g) ∧ ∀v ∈ g(y).f(z) ∩ δ′(v) �= ∅ . (34)
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By (31) for some y ∈ Y ,

z ∈ δ(y) ∧ y ∈ γ(x) . (35)

By (34,31,35),

y ∈ dom(g) ∧ ∀v ∈ g(y).f(z) ∩ δ′(v) �= ∅ . (36)

By (33,35,36),

x ∈ dom(h) ∧ ∀u ∈ h(x).g(y) ∩ γ′(u) �= ∅ . (37)

Thus the first part of (32) has been proved. For showing the second part suppose
u ∈ h(x). By (37) there is some v ∈ V such that

v ∈ g(y) ∩ γ′(u) . (38)

By (36), f(z)∩δ′(v) �= ∅ and by (38), f(z)∩δ′�γ′(u) �= ∅. Thus also the second
part of (32) has been proved. �

Notice that for multi-representations we apply the relational composition �,
while for realizing and realized multi-functions in Lemma 20 we apply the stricter
“multi-function composition” ◦. According to the different interpretations of the
concept of multi-function we use different kinds of composition.

7 Flowcharts Realizing Flowcharts

In this section we generalize Lemma 20 from composition to flowcharts with
indirect addressing on represented sets. We also generalize [Wei05, Theorem 8.1]
from multi-representations to generalized multi-representations.

Let F be a flowchart scheme as given in Definition 9. Remember that
v1, . . . , vm are the input variables and v0 is the output variable of F . Let γvar :
Pointer → Pointer and γbool : Bool → Bool be the identity on Var and
{0, 1}, respectively. Let GR be a finite set of generalized multi-representations
γ : τ ⇒ τ ′ on types such that γvar, γbool ∈ GR, no other element of GR operates
on Pointer or Bool, that is,

τ, τ ′ �∈ {Pointer,Bool} if γ : τ ⇒ τ ′ and γ �∈ {γvar, γbool} , and (39)

γ = γ1 if γ : τ ⇒ τ ′ and γ1 : τ1 ⇒ τ ′ . (40)

Theorem 23. Let (F, I) and (F, J) be flowcharts such that

1. for every v ∈ Var there is some γv : τv ⇒ τ ′
v in GR, such that J(v) = τv and

I(v) = τ ′
v,
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2. for every function symbol f in F there are functions δi : τi ⇒ τ ′
i (i =

0, . . . , μ(f)) in GR such that

fJ : τ1 × . . . × τμ(f) ⇒ τ0,

f I : τ ′
1 × . . . × τ ′

μ(f) ⇒ τ ′
0

and fJ is a (δ1 × . . . × δμ(f), δ0)-realization of f I .

Then fJ
F : τv1 × . . . × τvm ⇒ τv0 is a (γv1 × . . . × γvm , γv0)-realization of f I

F :
τ ′
v1

× . . . × τ ′
vm

⇒ τ ′
v0

( see Definitions 9, 10, 11).

Therefore, the function f I
F computed by the flowchart (F, I) is realized by

the function fJ
F computed by the flowchart scheme F interpreted with realizing

functions. Figure 6 shows interpretations I and J with states σ′ and σ, respec-
tively. The example has the special property “σ′(v) ∈ γv ◦ σ(v) if σ′(v) exists”,
which will be the invariant in the proof of Proposition 37. By Definition 10(3),
γ1, . . . , γμ(f) �∈ {γvar, γbool} in Theorem 23.2 above.

Proof: See Appendix B. �

Variable v v̄ v′ v1 u0 ū u2 w . . .

J(v) = (Uv, . . .) N R Σω Pointer Bool Bool Pointer . . .

σ(v) 237 −4.3 ↑ v′ 1 0 u0 . . .

I(v) = (Xv, . . .) Σ∗ R< R Pointer Bool Bool Pointer . . .

σ′(v) 00a10 4.3 ↑ v′ ↑ 0 u0 . . .

Figure 6: Interpretations I and J with states

8 Computability Induced by Multi-Representations

In this section we draw our main conclusions from the technical results proved
in Sections 5 and 7. By multi-representations, where the “names” are finite or
infinite strings, computability and continuity can be transferred from Σ∗ and
Σω to the represented sets [Wei93, Wei00, Sch03, Wei05].

Definition 24 (induced effectivity). 1. For multi-representations γi : Ui ⇒ Xi,
Ui ∈ {Σ∗, Σω} (i = 0, . . . , k), a multi-function f : X1 × . . . × Xk ⇒ X0 is
(γ1, . . . , γk, γ0)-continuous or (γ1, . . . , γk, γ0)-computable, iff it has a contin-
uous or computable (γ1, . . . , γk, γ0)-realization, respectively.
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2. For multi-representations γ : U ⇒ X and γ′ : U ′ ⇒ X ′ (U, U ′ ∈ {Σ∗, Σω})
a function h : ⊆U → U ′ translates (or reduces) γ to γ′, iff γ(u)⊆γ′ ◦h(u) for
all u ∈ dom(γ). Continuous and computable reducibility and equivalence,
respectively, are defined by

γ ≤t γ′ ⇐⇒ some continuous h translates γ to γ′ (“t-reducible”) ,

γ ≤ γ′ ⇐⇒ some computable h translates γ to γ′ (“reducible”) ,

γ ≡t γ′ ⇐⇒ γ ≤t γ′ and γ′ ≤t γ (“t-equivalent”) ,

γ ≡ γ′ ⇐⇒ γ ≤ γ′ and γ′ ≤ γ (“equivalent”).

3. A point x ∈ X0 is γ0-computable, iff x ∈ γ0(p) for some computable p ∈ U0.

Lemma25. 1. A function h : ⊆Y → Y ′ translates γ to γ′, iff X⊆X ′ and h is
a (γ, γ′)-realization of the embedding 1IXX′ .

2. If f : X ⇒ X ′ is (γ, γ′)-computable and x ∈ dom(f) is γ-computable, then
y ∈ f(x) for some γ′-computable point y ∈ X ′.

The proof follows immediately from the definitions. The multi-functions com-
putable relative to multi-representations are closed under composition.

Corollary 26. If gj is (γ1, . . . , γk, δj)-continuous (-computable) for j = 1, . . . , n

and f is (δ1, . . . , δn, δ0)-continuous (-computable), then f ◦ (g1, . . . , gn) is
(γ1, . . . , γk, δ0)-continuous (-computable).

Proof: This follows from Corollary 21 and the fact that the continuous functions
as well as the computable functions on Σ∗ and Σω are closed under composition
(Lemma 4). �

By Definition 24, every multi-representation of a set X induces a computabil-
ity concept for functions from and toX Equivalent multi-representations of X

induce the same computability on X .

Corollary 27. Two multi-representations of a set X induce the same kind of
continuity (computability) on X, iff they are t-equivalent (equivalent).

Proof: The “if” follows from Lemma 25 and Corollary 26. Let γ : U ⇒ X

and γ′ : U ′ ⇒ X be multi-representations such that γ �≤ γ′. Then 1IXX is
(γ, γ)-computable but not (γ, γ′)-computable by Lemma 25. Therefore, γ and
γ′ induce different kinds of computability on the set X . Continuity is treated
correspondingly. �

The next lemma summarizes some further useful observations. The proofs
are straightforward.
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Lemma28. 1. For multi-representations γ, δ, if γ ≤t δ and δ is single-valued,
then γ is single-valued.

2. Let h be a (γ, δ)-realization of a multi-function f . If card(γ−1[{x}]) = 1
for all x ∈ dom(f) and δ is single-valued, then h realizes a single-valued
extension of f .

3. Every notation ν : Σ∗ ⇒ M has an equivalent representation δν : Σω ⇒ M .
(Define δν(ι(w)0ω) := ν(w).)

By (1) any t-equivalence class contains only single-valued representations or
only properly multi-valued representations. By (3) we may replace notations ν

by their equivalent representation whenever convenient. For example, a realizing
flowchart operating on names from Σ∗ and Σω can be replaced by a realizing
flowchart operating only on Σω to which Lemma 14 can be applied.

Definition 29. Call a multi-function on types (Xi, γi) that are multi-represented
sets computable, if it has a computable realization and continuous, if it has a
continuous realization with respect to these representations.

Notice that this realization is a function on Σ∗ or Σω. From Theorem 23 we
obtain as a main result that the computable functions on represented sets are
closed under flowchart programming.

Theorem 30. Let (F, I) be a flowchart on multi-represented sets such that each
occurring multi-function is computable. Then the multi-function f I

F computed by
the flowchart (F, I) is computable.

Proof: By Lemma 28(3) we may assume that the sets are represented by Σω.
According to Definition 10 let I be an interpretation of F with the types Pointer
or Bool and types τ ′, which are multi-represented sets (X, δ), δ : Σω ⇒ X . For
applying Theorem 23 for every variable v let γv := γbool if τ ′ = Bool, γv := γvar

if τ ′ = Pointer and γv : Σω ⇒ τ ′ with γ(p) = δ(p) if τ ′ = (X, δ). Since each
function used for the interpretation I is computable, it has a computable realiza-
tion on Σω and Σ∗. These realizing functions can be used for an interpretation
J of the flowchart scheme F such that the conditions of Theorem 23 hold true.
Then by Theorem 23 and Theorem 15, the function f I

F is computable (on rep-
resented sets, Definition 29). �

In many applications Theorem 30 cannot be applied but algorithms on names
of points must be written. Very often, however, it is not necessary to return to
programming on Σ∗ and Σω. The next theorem shows how represented sets
with computable functions can be used instead. Consider X = U = Σω in
Lemma 22 and Figure 5. The function f is (δ � γ, δ′ � γ′)-computable, iff f
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can be realized (w.r.t. the generalized multi-representations (δ, δ′)) by a (γ, γ′)-
computable function g. Therefore, if we understand computability on (Y, γ),
γ : Σω ⇒ Y , sufficiently well, we can prove computability on (Z, δ � γ) by
finding computable functions on Y realizing functions on Z w.r.t. the generalized
multi-representation δ : Y ⇒ Z. Theorem 31 extends this idea to flowchart
computations.

Theorem 31. Let (F, I) and (F, J) be flowcharts as in Theorem 23. Suppose
that in addition for every variable v, the type τv is Pointer or Bool or a multi-
represented set (Tv, βv), βv : Σω ⇒ Tv. If all the multi-functions fJ

F are com-
putable then f I

F is (γv1 � βv1 , . . . , γvm � βvm , γv0 � βv0)-computable.

Proof: Immediately from Theorems 23, 30 and Lemma 22 �

Theorems 30 and 31 are very useful tools for proving computability of multi-
functions on multi-represented sets. The user is no longer restricted to express
everything in “0s and 1s” and to describe how Turing machines (or Type-2 ma-
chines) operate on codes. By Theorem 30 multi-functions already known to be
computable can be combined in flowcharts to compute new multi-functions. Ev-
ery flowchart containing only computable functions defines a computable func-
tion. Thus the user may think in terms of computable operations on real num-
bers, open sets, continuous functions etc. without using details of the definitions
of the representations.

If in some applications details of the representations have to be considered,
Theorem 31 allows to do this on some abstract level. As an example consider the
Cauchy representation ρ : ⊆Σω → R of the real numbers. It can be decomposed
into a representation γ : ⊆ Σω → Qω of the sequences of rational numbers
and a generalized representation λ : ⊆ Qω → R computing the limit of fast
converging Cauchy sequences, ρ = λ � γ. If the user understands computability
on Qω sufficiently well he can avoid to think and speak about codes of rational
numbers using 0s and 1s. Both theorems justify and generalize methods which
are already used informally in computable analysis.

9 Exponentiation

There are some canonical operators for constructing new representations from
given ones such as restriction, conjunction, Cartesian product and exponenti-
ation. Such constructions are used in higher level programming languages for
defining new data types. Exponentiation is the most interesting one. For single-
valued functions on represented or on multi-represented sets it has been studied
to some extent in [Wei00, Sch02, Sch03].
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In the following we generalize the type conversion theorem for exponentiation
[Wei00, Theorem 3.3.15], [Sch02, Sch03] to multi-functions on multi-represented
sets. As we have already mentioned in the discussion of Definition 17, for multi-
functions our concept of realization differs from that one in [Sch03].

First, we generalize the definition of [γ1 → γ2], the standard representation
of the (total) (γ1, γ2)-continuous functions for single-valued representations γ1

and γ2 [KW85][Wei00, Definition 3.3.13][Sch02, Sch03] to multi-representations
and multi-functions starting from Definition 17 of realization. For convenience
we consider only multi-representations with infinite names (Lemma 28(3)).

Let η : Σω → F be the standard representation of the set F of partial
continuous functions h : ⊆ Σω → Σω with Gδ-domain (a set is Gδ if it is a
countable intersection of open sets). It is an analogue to an “admissible Gödel
numbering” ϕ of the partial recursive functions [Rog67]. In [Wei00] η is defined
as follows: η〈w,q〉(p) is the result of the Type-2 machine with code w on input
(p, q) ∈ Σω × Σω. An equivalent representation η′ can be defined as follows:
η′

q := Tω(h) where q is interpreted as a listing of graph(h) of a monotone word
function h : ⊆ Σ∗ → Σ∗ (Definition 2). For η we have the utm-theorem (the
universal function uη, uη(q, p) := ηq(p), is Turing computable), the computable
smn-theorem (for every Turing computable function f : ⊆ Σω → Σω there is
a computable function s : Σω → Σω such that f〈p, q〉 = ηs(p)(q)), and the
continuous smn-theorem (for every function f ∈ F there is a continuous function
s : Σω → Σω such that f〈p, q〉 = ηs(p)(q)) [Wei00].

Definition 32. For multi-representations δi : Σω ⇒ Xi (i = 1, 2) define

1. the product representation [δ1, δ2] : Σω ⇒ X1 × X2 by
[δ1, δ2]〈p1, p2〉 := δ1(p1) × δ2(p2),

2. the multi-representation [δ1 ⇒ δ2] of the set CM(δ1, δ2) of the (δ1, δ2)-
continuous multi-functions f : X1 ⇒ X2 by
[δ1 ⇒ δ2](p) = f ⇐⇒ ηp realizes f w.r.t. (δ1, δ2).

3. Let [δ1 →p δ2](p) be the restriction of [δ1 ⇒ δ2] to the set CP(δ1, δ2) of the
partial (δ1, δ2)-continuous functions f : ⊆X1 → X2.

4. Let [δ1 → δ2](p) be the restriction of [δ1 ⇒ δ2] to the set C(δ1, δ2) of the
total (δ1, δ2)-continuous functions f : X1 → X2.

(See Definition 17 and Figure 3). Notice that [δ1 → δ2] is multi-valued in general
and that even for single-valued representations δi the representations [δ1 ⇒ δ2]
and [δ1 →p δ2] are multi-valued in general, since ηp realizes every restriction of
f if it realizes f (Lemma 18). We generalize Theorem 3.3.15 in [Wei00] on type
conversion as follows.
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Theorem 33 (type conversion). Let δX : Σω ⇒ X, δY : Σω ⇒ Y , and δZ :
Σω ⇒ Z be multi-representations. Define an operator T from the ([δX , δY ], δZ)-
continuous multi-functions f : X × Y ⇒ Z to the set of total functions from X

to the multi-functions from Y to Z by

T (f)(x)(y) := f(x, y). (41)

For γ1 := [[δX , δY ] ⇒ δZ ] and γ2 := [δX → [δY ⇒ δZ ]],

1. T is (γ1, γ2)-computable and T−1 is (γ2, γ1)-computable.

2. T ◦ γ1 ≡ γ2,

3. A function f is ([δX , δY ], δZ)-computable, iff T (f) is (δX , [δY ⇒ δZ ])-com-
putable.

Notice that T (f) is single-valued for each f : X × Y ⇒ Z. In programming,
the operator T can be expressed by λ abstraction, by (41) formally,

T (f) = λx.λy.f(x, y) .

The theorem generalizes the utm-theorem and the smn-theorem for η. The oc-
currence of total functions from X in γ2 corresponds to the totality of the index
function s in the smn-theorem for η.

Proof: For any f : X × Y ⇒ Z and p, s ∈ Σω,

f ∈ γ1(p)

⇐⇒ f ∈ [[δX , δY ] ⇒ δZ ](p)

⇐⇒ (∀x, y)(∀q, r)
(
(x, y) ∈ dom(f) ∩ [δX , δY ]〈q, r〉

=⇒ f(x, y) ∩ δZηp〈q, r〉 �= ∅
)
. (42)

and

T (f) ∈ γ2(s)

⇐⇒ T (f) ∈ [δX → [δY ⇒ δZ ]](s)

⇐⇒ (∀x, q)
(
x ∈ δX(q) =⇒ T (f)(x) ∈ [δY ⇒ δZ ]ηs(q)

)
⇐⇒ (∀x, q)

(
x ∈ δX(q) =⇒

(∀y, r)(y ∈ dom(T (f)) ∩ δY (r) =⇒ T (f)(x)(y) ∩ δZηηs(q)(r) �= ∅)
)

⇐⇒ (∀x, q)(∀y, r)
(
x ∈ δX(q) ∧ y ∈ dom(T (f)(x)) ∩ δY (r)

=⇒ f(x, y) ∩ δZηηs(q)(r) �= ∅)
)

⇐⇒ (∀x, y)(∀q, r)
(
(x, y) ∈ dom(f) ∩ [δX , δY ]〈q, r〉

=⇒ f(x, y) ∩ δZηηs(q)(r) �= ∅)
)
. (43)

829Weihrauch K.: The Computable Multi-Functions on Multi-represented Sets ...



By the utm-theorem and the computable smn-theorem for η there are com-
putable functions a, b : Σω → Σω such that

ηp〈q, r〉 = ηηa(p)(q)(r) and ηηs(q)(r) = ηb(s)〈q, r〉 .

From (42) and (43) we conclude f ∈ γ1(p) ⇒ T (f) ∈ γ2a(p) and T (f) ∈
γ2(s) ⇒ f ∈ γ1b(s), hence, T is (γ1, γ2)-computable and T−1 is (γ2, γ1)-
computable. Theorem 33(2) is equivalent to Theorem 33(1). Theorem 33(3) fol-
lows from Theorem 33(1), since T is a single-valued computable operator and,
therefore, maps computable elements to computable elements. �

For single-valued representations and functions and a representation γ of
(δX , δY )-continuous functions, the apply function is (γ, δX , δY )-computable, iff
γ ≤ [δX → δY ] [Wei00]. We generalize this result as follows.

Corollary 34. For multi-representations δX , δY and a multi-representation γ of
multi-functions f : X ⇒ Y , the apply multi-function is (γ, δX , δY )-computable,
iff γ ≤ [δX ⇒ δY ]. In particular, the apply multi-function is ([δX ⇒ δY ], δX , δY )-
computable.

Proof: For every function h ∈ range(γ), every x ∈ X and every y ∈ Y ,

y ∈ T (apply)(h)(x) ⇐⇒ y ∈ apply(h, x) ⇐⇒ y ∈ h(x).

Therefore, T (apply) is the identity on range(γ). By Theorem 33,

apply is (γ, δX , δY )-computable

⇐⇒ T (apply) is (γ, [δX ⇒ δY ])-computable

⇐⇒ γ ≤ [δX ⇒ δY ] .

Remember that by Definition 24, the identity on range(γ) is (γ, γ′)-computable,
iff γ ≤ γ′. �

For multi-functions there is another kind of type conversion. As an example
consider a (δX , νN, νQ)-computable multi-function f : X × N ⇒ Q such that
for all x ∈ X , |ai − aj | ≤ 2−i, if i ≤ j, ai ∈ f(x, i) and aj ∈ f(x, j). Then
there is a computable multi-function Sf : X ⇒ QN such that |g(i) − g(j)| ≤
2−i for every g ∈ Sf(x). Applying the computable limit operator Lim for fast
converging Cauchy sequences [Wei00] we obtain a computable (single-valued)
function Lim ◦ Sf : X → R.

Theorem 35 (type conversion (ii)). Let δX , δY , δZ be multi-representations of
X, Y and Z, respectively, δY , δZ single-valued and δY injective. For the set G1
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of the ([δX , δY ], δZ)-continuous multi-functions and the set G2 of the (δX , [δY →
δZ ])-continuous multi-functions define S : G1 → G2 as follows:

x ∈ dom(Sf) ⇐⇒ (∀ y ∈ Y ) f(x, y) �= ∅
g ∈ Sf(x) ⇐⇒ (∀ y ∈ Y ) g(y) ∈ f(x, y) .

Then for γ1 := [[δX , δY ] ⇒ δZ ] and γ2 := [δX ⇒ [δY → δZ ]], S is (γ1, γ2)-
computable.

The operator S is single-valued but not injective in general since S(f) =
S(f |{x|(∀y)f(x,y) �=∅}).

Proof: By the utm-theorem and the smn-theorem for η there is a computable
function a : Σω → Σω such that

ηp〈q, r〉 = ηηa(p)(q)(r) .

For f ∈ G1,

f ∈ γ1(p) =⇒ (∀x, y, q, r)[(x, y) ∈ dom(f) ∧ x ∈ δX(q) ∧ δY (r) = y

=⇒ δZηp〈q, r〉 ∈ f(x, y)]

=⇒ (∀x, q)[x ∈ dom(Sf) ∧ x ∈ δX(q)

=⇒ (∀y, r)[δY (r) = y =⇒ δZηηa(p)(q)(r) ∈ f(x, y)]]

If we abbreviate h(y) := δZηηa(p)(q)(δ
−1
Y (y)), then hδY (r) = δZηηa(p)(q)(r) and

hence h = [δY → δZ ]ηa(p)(q). We obtain

f ∈ γ1(p) =⇒ (∀x, q)[x ∈ dom(Sf) ∧ x ∈ δX(q)

=⇒ (∀y, r)[δY (r) = y =⇒ ([δY → δZ ]ηa(p)(q)(y)) ∈ f(x, y)]]

=⇒ (∀x, q)[x ∈ dom(Sf) ∧ x ∈ δX(q)

=⇒ (∀y)[([δY → δZ ]ηa(p)(q)(y)) ∈ f(x, y)]]

=⇒ (∀x, q)[x ∈ dom(Sf) ∧ x ∈ δX(q)

=⇒ [δY → δZ ]ηa(p)(q) ∈ Sf(x)]

=⇒ Sf ∈ [δX ⇒ [δY → δZ ]]a(p) ∈ γ2a(p) .

Therefore, S is (γ1, γ2)-computable. �

10 Final Remarks

For simplicity the results in this article have been formulated and proved for
flowcharts with indirect addressing. By the remarks at the end of Section 4 thy
apply to flowcharts with direct and indirect addressing as well.
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Most representations, which are of interest to some “users”, are very elemen-
tary or can be constructed from simple ones by operations such as “restriction”,
“factorization”, “Cartesian product”, “set of finite subsets”, “countable conjunc-
tion” or “λ-abstraction”, see Definition 32, Section 3.3 in [Wei00], [Sch02]. By
Corollary 27 two multi-representations induce the same computability, iff they
are equivalent. Therefore, the computability concept on a set X is characterized
by an equivalence class E of multi-representations of X . Let a c-type (computa-
tion type) be a pair τ = (X, E) and call a function f : τ1 ⇒ τ2 computable, iff it
is (δ1, δ2)-computable for some δ1 ∈ E1 and δ2 ∈ E2. The operations on multi-
representations mentioned above map equivalent representations to equivalent
ones, hence can be defined on c-types.

It is known that important elementary c-types can be characterized with-
out mentioning representations by requiring that some functions become com-
putable, and that some of the constructions on c-types can be characterized by
requiring that some functions from, on or to the new c-types are computable
[Bra99, Her99]. This shows the possibility to define important c-types abstractly
and to write programs operating on them without mentioning representations
at all. For such programming systems it should be possible to prove not only
soundness but completeness as well. However, the final implementation of such
a program on a computer (Turing machine) must map sequences of symbols and
therefore must be specialized to single representatives of the equivalence classes
of representations. Furthermore, the user must “understand” at least the input
and output representations. Otherwise he cannot feed the machine with mean-
ingful data and cannot understand its results.
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A Proof of Lemma 14

In this proof we may assume Q⊆Σ∗. Since all the functions f I and fJ are single-
valued, by (8) the next-relations I and J are single-valued, i.e. for each
input there is at most one maximal computation. For x ∈ (Σ∗)m and p ∈ (Σω)m

let xi and pi the ith component of x and p, respectively. For x ∈ (Σ∗)m let
(lx0 , σx

0 ), (lx1 , σx
1 ), . . . be the maximal x-computation on the flowchart (F, J), and

for p ∈ (Σω)m let (lIp
0 , σIp

0 ), (lIp
1 , σIp

1 ), . . . be the maximal p-computation on
the flowchart (F, I). In the following proposition we consider the label and the
register contents after n steps as functions of the input to the flowchart.

Proposition36. For n ∈ N and v ∈ Var,
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1. The function x �→ lxn is monotone-constant and T∗(x �→ lxn) extends p �→ lIp
n ,

2. if J(v) ∈ {Pointer,Bool}, then x �→ σx
n(v) is monotone-constant and

T∗(x �→ σx
n(v)) extends p �→ σIp

n (v),

3. if J(v) = Σ∗, then x �→ σx
n(v) is monotone and

Tω(x �→ σx
n(v)) extends p �→ σIp

n (v),

Proof: (Proposition 36) (By induction on n)

n = 0:
– Since (∀z)(x �→ lx0 )(z) = lin and (∀q)(p �→ lIp

0 )(q) = lin, the function x �→ lx0 is
monotone-constant and T∗(x �→ lx0 ) extends p �→ lIp

0 .
– For J(v) = Pointer, (∀z)(x �→ σx

0 (v))(z) = v and (∀q)(p �→ σIp
0 (v))(q) = v,

therefore, x �→ σx
0 (v) is monotone-constant and T∗(x �→ σx

0 (v)) extends p �→
σIp

0 (v).
– For J(v) = Bool, (∀z)(x �→ σx

0 (v))(z) = ↑ and (∀q)(p �→ σIp
0 (v))(q) = ↑, there-

fore, x �→ σx
0 (v) is monotone-constant and T∗(x �→ σx

0 (v)) extends p �→ σIp
0 (v).

– For v = vi (1 ≤ i ≤ m), (∀z)(x �→ σx
0 (vi))(z) = zi and (∀q)(p �→ σIp

0 (vi))(q) =
qi, therefore, x �→ σx

0 (v) is monotone and Tω(x �→ σx
0 (v)) extends p �→ σIp

0 (v)
– For J(v) = Σ∗ and v �∈ {v1, . . . , vm}, (∀z)(x �→ σx

0 (v))(z) = ↑ and (∀q)(p �→
σIp

0 (v))(q) = ↑, therefore x �→ σx
0 (v) is monotone and Tω(x �→ σx

0 (v)) extends
p �→ σIp

0 (v).

n =⇒ n + 1:
Assume that Proposition 36(1) - 36(3) are valid for some n.

(A) monotone-constant/monotone: First, we prove that the functions are
monotone-constant or monotone, respectively, for n + 1. Let x, y ∈ (Σ∗)m such
that x � y. We have to prove

lxn+1 = lyn+1 , if lxn+1 exists, (44)

σx
n+1(v) = σy

n+1(v) if J(v) �= Σ∗ and σx
n+1(v) exists, (45)

σx
n+1(v) � σy

n+1(v) if J(v) = Σ∗ and σx
n+1(v) exists. (46)

If lxn+1 exists or σx
n+1(v) exists for some v, then the (n + 1)st configuration

(lxn+1, σ
x
n+1) exists. Therefore assume that the configuration (lxn+1, σ

x
n+1) exists.

Then the configuration (lxn, σx
n) exists. We investigate the two cases “assignment”

and “branching” from Definition 11 separately.

(A1) Assignment:
Suppose, Stmt(lxn) = (u := f(u1, . . . , uk), l̄) for some u, u1, . . . , uk, f, l̄.
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Then by (8),

lxn+1 = l̄ and σx
n+1 ◦ σx

n(u) = fJ(σx
n ◦ σx

n(u1), . . . , σx
n ◦ σx

n(uk)) . (47)

First, we show that (lyn+1, σ
y
n+1) exists.

By (47), σx
n(u′) ∈ Var exists for u′ = u, u1, . . . , uk, hence by induction hypothesis

σy
n(u′) ∈ Var exists and σx

n(u′) = σy
n(u′) for u′ = u, u1, . . . , uk . (48)

Since by (47), σx
n ◦ σx

n(u′) ∈ Σ∗ exists for u′ = u1, . . . , uk, from (48) and by
induction hypothesis

σy
n ◦ σy

n(u′) exists and σx
n ◦ σx

n(u′) � σy
n ◦ σy

n(u′) for u′ = u1, . . . , uk . (49)

Since fJ is (monotone-constant or) monotone, by (47),

fJ(σy
n ◦ σy

n(u1), . . . , σy
n ◦ σy

n(uk)) exists. (50)

Since by induction hypothesis lyn = lxn, Stmt(lyn) = (u := f(u1, . . . , uk), l̄) .

Therefore by Definition 11(1), (lyn+1, σ
y
n+1) exists such that

lyn+1 = l̄ and σy
n+1 ◦ σy

n(u) = fJ(σy
n ◦ σy

n(u1), . . . , σy
n ◦ σy

n(uk)) . (51)

We verify (44 – 46).

From (47) and (51), lyn+1 = l̄ = lxn+1. Therefore, (44) is true.

Suppose, J(v) �= Σ∗ and σx
n+1(v) exists.

– Suppose, v �= σy
n(u) (= σx

n(u)).
By induction hypothesis, σy

n(v) = σx
n(v) and therefore by (9),

σx
n+1(v) = σx

n(v) = σy
n(v) = σy

n+1(v) .

– Suppose, v = σy
n(u) (= σx

n(u)).
Since fJ maps to J ◦σx

n(u) = J(v) �= Σ∗, by Lemma 14(2), fJ is monotone-
constant. From (47 – 51),

σx
n+1(v) = σx

n+1 ◦ σx
n(u)

= fJ(σx
n ◦ σx

n(u1), . . . , σx
n ◦ σx

n(uk))

= fJ(σy
n ◦ σy

n(u1), . . . , σy
n ◦ σy

n(uk))

= σy
n+1 ◦ σy

n(u)

= σy
n+1(v) .
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Therefore, (45) is true.

Suppose, J(v) = Σ∗ and σx
n+1(v) exists.

– Suppose, v �= σy
n(u) (= σx

n(u)).
By induction hypothesis, σx

n(v) � σy
n(v) and therefore by (9),

σx
n+1(v) = σx

n(v) � σy
n(v) = σy

n+1(v) .

– Suppose, v = σy
n(u) (= σx

n(u)).
Since fJ maps to J ◦σx

n(u) = J(v) = Σ∗, by Lemma 14(2), fJ is monotone.
From (47 – 51),

σx
n+1(v) = σx

n+1 ◦ σx
n(u)

= fJ(σx
n ◦ σx

n(u1), . . . , σx
n ◦ σx

n(uk)

� fJ(σy
n ◦ σy

n(u1), . . . , σy
n ◦ σy

n(uk)

= σy
n+1 ◦ σy

n(u)

= σy
n+1(v) .

Therefore, (46) is true.
Thus we have proved (44-46) for assignments.

(A2) Branching:
Suppose, Stmt(lxn) = (if u then l′, l′′) for some u, l′, l′′.
By induction hypothesis, lxn = lyn, therefore, Stmt(lyn) = (if u then l′, l′′). Since
σx

n ◦ σx
n(u) exists, J(u) = Pointer and J ◦ σx

n(u) = Bool. By induction hypoth-
esis, σx

n(u) = σy
n(u) and σx

n ◦ σx
n(u) = σy

n ◦ σx
n(u) = σy

n ◦ σy
n(u) We obtain

lxn+1 =
{

l′ if σx
n ◦ σx

n(u) = 1

l′′ if σx
n ◦ σx

n(u) = 0

}
=

{
l′ if σy

n ◦ σy
n(u) = 1

l′′ if σy
n ◦ σy

n(u) = 0

}
= lyn+1 .

Therefore (44) is true.
Suppose, σx

n+1(v) exists. Since σx
n+1 = σx

n and σy
n+1 = σy

n, by induction hypoth-
esis

σx
n+1(v) = σx

n(v)
{

= σy
n(v) = σy

n+1(v) if I(v) �∈ Σ∗ ,

� σy
n(v) = σy

n+1(v) if I(v) ∈ Σ∗ .

Thus we have proved (44-46) (with n + 1 replaced for n) for branchings.

Therefore, the functions in Proposition 36 are monotone-constant or monotone,
respectively, for n+1. Next, we prove the extension properties in Proposition 36
for n + 1.
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(B) Extension:
Assume that the extension properties from Proposition 36 are true for n. By
Definition 2 it remains to show for arbitrary q ∈ (Σω)m and v ∈ Var:

If lIq
n+1 exists, then (∃y � q) lyn+1 = lIq

n+1 . (52)

If I(v) ∈ {Pointer,Bool} and σIq
n+1(v) exists, then

(∃y � q)σy
n+1(v) = σIq

n+1(v) .
(53)

If I(v) = Σω and σIq
n+1(v) exists, then

(∀j)(∃y � q)
(
σy

n+1(v) � σIq
n+1(v) and |σy

n+1(v)| ≥ j
)
.

(54)

If lIq
n+1 or σIq

n+1(v) exists, then the (n + 1)st configuration (lIq
n+1, σ

Iq
n+1) exists.

Therefore, assume that (lIq
n+1, σ

Iq
n+1) exists. Then (lIq

n , σIq
n ) exists. We investigate

the two cases “assignment” and “branching” from Definition 11 separately.

(B1) Assignment:
Suppose, Stmt(lIq

n ) = (u := f(u1, . . . , uk), l̄) for some u, u1, . . . , uk, f, l̄.
Then

lIq
n+1 = l̄ and σIq

n+1 ◦ σIq
n (u) = f I(σIq

n ◦ σIq
n (u1), . . . , σIq

n ◦ σIq
n (uk)) . (55)

By induction hypothesis,

lzn = lIq
n for sufficiently long z � q . (56)

Since J(u) = I(u) = Pointer and σIq
n (u) exists, by induction hypothesis

vu := σIq
n (u) = σz

n(u) for sufficiently long z � q . (57)

For i = 1, . . . , k, σIq
n ◦ σIq

n (ui) exists by (55), wi := σIq
n (ui) ∈ Var and since

J(ui) = I(ui) = Pointer, by induction hypothesis,

σz
n(ui) = σIq

n (ui) for sufficiently long z � q . (58)

Since I(wi) = Σω, by induction hypothesis

x �→ σx
n(wi) is monotone and Tω(x �→ σx

n(wi)) extends p �→ σIp
n (wi) (59)

for i = 1, . . . , k.

Suppose, I(vu) ∈ {Pointer,Bool}.

Then fJ : ⊆(Σ∗)k → Σ∗ is monotone-constant such that T∗(fJ) extends f I : ⊆
(Σω)k → Σ∗ by assumption on I and J . By (59) and Lemma 5,

T∗(x �→ fJ(σx
n(w1), . . . , σx

n(wk)) extends p �→ f I(σIp
n (w1), . . . , σIp

n (wk)) .(60)
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Hence, for sufficiently long z � q,

fJ(σz
n(w1), . . . , σz

n(wk)) = f I(σIq
n (w1), . . . , σIq

n (wk)) (61)

and therefore by (56-58) for sufficiently long z � q,

lzn = lIq
n , σz

n(u) = σIq
n (u) and fJ(σz

n ◦ σz
n(u1), . . . , σz

n ◦ σz
n(uk)) exists .(62)

Therefore, for sufficiently long z � q, Stmt(lzn) = (u := f(u1, . . . , uk), l̄) and
(lzn+1, σ

z
n+1) exists.

In particular lzn+1 = l̄ = lIq
n+1 for sufficiently long z � q, if lIq

n+1 exists.
Therefore, Property (52) is true for I(vu) ∈ {Pointer,Bool}.

We verify (53) and (54) for I(vu) ∈ {Pointer,Bool}.
Assume that σIq

n+1(v) exists.
(a1) Suppose, I(v) �= Σω, v �= vu.

Then σIq
n+1(v) = σIq

n (v) and σz
n+1(v) = σz

n(v) for sufficiently long z � q.
By induction hypothesis, σz

n(v) = σIq
n (v) for sufficiently long z � q. There-

fore, σz
n+1(v) = σIq

n+1(v) for sufficiently long z � q.
(a2) Suppose, I(v) �= Σω, v = vu.

Then by (61, 62) for sufficiently long z � q,

σz
n+1(vu) = σz

n+1 ◦ σz
n(u)

= fJ(σz
n ◦ σz

n(u1), . . . , σz
n ◦ σz

n(uk))

= f I(σIq
n ◦ σIq

n (u1), . . . , σIq
n ◦ σIq

n (uk))

= σIq
n+1 ◦ σIq

n (u)

= σIq
n+1(vu) .

Therefore, σz
n+1(vu) = σIq

n+1(vu) for sufficiently long z � q.
(a3) Suppose, I(v) = Σω.

Since by assumption I(vu) ∈ {Pointer,Bool}, v �= vu and therefore as in
(a1), σIq

n+1(v) = σIq
n (v) and σz

n+1(v) = σz
n(v) for sufficiently long z � q.

Consider j ∈ N. By induction hypothesis σz
n(v) � σIq

n (v) and |σz
n(v)| ≥ j

for sufficiently long z � q. Therefore, σz
n+1(v) � σIq

n+1(v) and |σz
n+1(v)| ≥ j

for sufficiently long z � q.
Therefore, Properties (53) and (54) are true for I(vu) ∈ {Pointer,Bool}.

Suppose I(vu) = Σω.

Then fJ : ⊆(Σ∗)k → Σ∗ is monotone such that Tω(fJ ) extends
f I : ⊆(Σω)k → Σω by assumption on I and J . By Lemma 5 and (59),

Tω(x �→ fJ(σx
n(w1), . . . , σx

n(wk))) extends p �→ f I(σIp
n (w1), . . . , σIp

n (wk)) .(63)
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Therefore by (56-58), for sufficiently long z � q,

lzn = lIq
n , σz

n(u) = σIq
n (u) and fJ(σz

n ◦ σz
n(u1), . . . , σz

n ◦ σz
n(uk)) exists .(64)

And for sufficiently long z � q, Stmt(lzn) = (u := f(u1, . . . , uk), l̄) and
(lzn+1, σ

z
n+1) exists. In particular lzn+1 = l̄ = lIq

n+1 for sufficiently long z � q,
if lIq

n+1 exists. Therefore, Property (52) is true for I(vu) = Σω.

We verify (53) and (54) for I(vu) = Σω. Assume that σIq
n+1(v) exists.

(b1) Suppose, I(v) �= Σω, v �= vu.
The arguments are the same as in (a1) above.

(b2) Suppose, I(v) = Σω, v = vu.
Consider j ∈ N. Then by (63, 64) for sufficiently long z � q, |σz

n+1(vu)| ≥ j

and

σz
n+1(vu) = σz

n+1 ◦ σz
n(u)

= fJ(σz
n ◦ σz

n(u1), . . . , σz
n ◦ σz

n(uk))

� f I(σIq
n ◦ σIq

n (u1), . . . , σIq
n ◦ σIq

n (uk))

= σIq
n+1 ◦ σIq

n (u)

= σIq
n+1(vu) .

Therefore, σz
n+1(vu) � σIq

n+1(vu) and |σz
n+1(vu)| ≥ j for sufficiently long

z � q.
(b3) Suppose, I(v) = Σω v �= vu.

The arguments are the same as in (a3) above.
Therefore, Properties (53) and (54) are true for I(vu) = Σω.

(B2) Branching:
Suppose, Stmt(lIq

n ) = (if u then l′, l′′) for some u, l′, l′′.
Then σIq

n ◦ σIq
n (u) exists,

lIq
n+1 =

{
l′ if σIq

n ◦ σIq
n (u) = 1

l′′ if σIq
n ◦ σIq

n (u) = 0

and σIq
n+1 = σIq

n . Since u ∈ Var and σIq
n (u) ∈ Var, by induction hypothesis

lzn = lIq
n , σz

n(u) = σIq
n (u) and σz

n(u)◦σIq
n (u) = σIq

n ◦σIq
n (u) and therefore, σz

n(u)◦
σz

n(u) = σIq
n ◦ σIq

n (u) for sufficiently long z � q. Consequently for sufficiently
long z � q, (lzn+1, σ

z
n+1) exists and

lIq
n+1 =

{
l′ if σIq

n ◦ σIq
n (u) = 1

l′′ if σIq
n ◦ σIq

n (u) = 0
(65)

=
{

l′ if σz
n ◦ σz

n(u) = 1

l′′ if σz
n ◦ σz

n(u) = 0
(66)

= lzn+1 . (67)
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Therefore, (52) is true. Since σIq
n+1 = σIq

n and σz
n+1 = σz

n for sufficiently long
z � q, Properties (53) and (54) can be proved as in (a1) and (a3) above.

Thus the proof of Proposition 36 is finished. � (Proposition 36)

We prove Lemma 14 for the case f I
F : ⊆(Σω)k → Σω.

For the case f I
F : ⊆(Σω)k → Y , Y ∈ {Pointer,Bool}, the proof is similar.

First, we show that fJ
F in monotone. Assume that fJ

F (y) exists and suppose
y � z. By Definition 11 there is some n such that (lyn, σy

n(v0)) = (lfin, fJ
F (y)).

By 36(1), lyn = lzn, and by 36(3), σy
n(v0) � σz

n(v0) since J(v0) = Σ∗. Therefore,
(lzn, σz

n(v0)) = (lfin, σz
n(v0)) and so fJ

F (z) = σz
n(v0). We obtain fJ

F (y) � fJ
F (z).

Next, we show that Tω(fJ
F ) extends f I

F . Suppose f I
F (q) exists, let j ∈ N.

There is some n such that (lIq
n , σIq

n (v0)) = (lfin, f I
F (q)). By 36(1) lzn = lIq

n for
sufficiently long z � q. Since I(v0) = Σω, by 36(3), σz

n(v0) � σIq
n (v0) and

|σz
n(v0)| ≥ j for sufficiently long z � q. Therefore, for sufficiently long z � q,

(lzn, σz
n) = (lfin, σz

n), hence fJ
F (z) = σz

n(v0) � σIq
n (v0) = f I

F (q) and |fJ
F (z)| ≥ j.

Hence, Tω(fJ
F ) extends f I

F .

B Proof of Theorem 23

For γv : τv ⇒ τ ′
v let Uv and Xv be the sets underlying the types τv and τ ′

v,
respectively. Hence we can write γv : Uv ⇒ Xv. Let v1, . . . , vm the input registers
and let v0 the output register of the flowchart scheme F (Definition 9). For
ū ∈ Uv1 × . . . × Uvm , w ∈ Uv0 and z̄ ∈ Xv1 × . . . × Xvm by (17) we must show:

if z̄ ∈ (γv1 × . . . × γvm)(ū) ∩ dom(f I
F ) (68)

then fJ
F (ū) �= ∅ and ∀w ∈ fJ

F (ū). f I
F (z̄) ∩ γv0(w) �= ∅ . (69)

By (39) for each variable v, I(v) = J(v) = Pointer, if γv = γvar and I(v) =
J(v) = Bool, if γv = γbool. Let us say that the state σ of (F, J) realizes the
state σ′ of (F, I), if

(∀ v ∈ Var) σ′(v) ∈ γv ◦ σ(v) if σ′(v) exists. (70)

In Figure 6, σ realizes σ′. If σ realizes σ′ then

σ(v) = σ′(v) if γv ∈ {γvar, γbool} and σ′(v) exists. (71)

The following proposition generalizes (17) in Definition 17.

Proposition37. Let (l, σ) be a configuration of the flowchart (F, J and let (l, σ′)
be a configuration of the flowchart (F ; I) such that σ realizes σ′ and (l, σ′) has
a I -successor.

Then (l, σ) has a J -successor and for all (l̄, σ̄) such that (l, σ) J (l̄, σ̄)
there is some σ̄′ such that (l, σ′) I (l̄, σ̄′) and σ̄ realizes σ̄′.
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Proof: (Proposition 37) Since (l, σ′) has a I -successor, Stmt(l), which is ei-
ther an assignment or a branching, can be applied to the configuration σ′.

Assignment: Suppose Stmt(l) = (u := f(u1, . . . , uk), l̄) for some f and
u, u1, . . . , uk ∈ Var. Then by (8), f I(σ′ ◦ σ′(u1), . . . , σ′ ◦ σ′(uk)) �= ∅. Since σ

realizes σ′ by (71) there are variables t, t1, , . . . , tk such that

t = σ′(u) = σ(u), t1 = σ′(u1) = σ(u1), . . . , tk = σ′(uk) = σ(uk).

By By Assumption (40) and Condition 2 from Theorem 23, generalized multi-
representations γt1 , . . . , γtk

, γt ∈ GR are uniquely determined by the type of f I

such that fJ is a (γt1 × . . . × γtk
, γt)-realization of f I . Therefore, if

(σ′(t1), . . . , σ′(tk)) ∈ (γt1 × . . . × γtk
)(σ(t1), . . . , σ(tk)) and (72)

(σ′(t1), . . . , σ′(tk)) ∈ dom(f I) (73)

then fJ(σ(t1), . . . , σ(tk)) �= ∅ and (74)

(∀w ∈ fJ(σ(t1), . . . , σ(tk)) f I(σ′(t1), . . . , σ′(tk)) ∩ γt(w) �= ∅ (75)

(72) is true since σ realizes σ′, (73) is true since (l, σ′) has a successor.
Therefore, (74, 75) are true. Since fJ(σ(t1), . . . , σ(tk)) = fJ(σ ◦ σ(u1), . . . , σ ◦
σ(uk)), by (74) (l, σ) has a J -successor.

Let (l̃, σ̄) be a J -successor of (l, σ). By the form of the statement of l,
l̃ = l̄. The configuration σ̄ differs from σ (at most) for the variable t = σ(u) =
σ′(u) and any next configuration of σ′ differs from σ′ (at most) for the variable
t = σ(u) = σ′(u). So by (70) for the new value σ̄(t) ∈ fJ(σ◦σ(u1), . . . , σ◦σ(uk))
it suffices to find some new value σ̄′(t) such that σ̄′(t) ∈ γt ◦ σ̄(t) and σ̄′(t) ∈
f I(σ′(t1), . . . , σ′(tk)). The existence of such a value is guaranteed by (75).

Branching: Suppose Stmt(l) = (if u then l′, l′′). Since a I -successor
exists, t := σ′(u) ∈ Var exists and σ′(t) ∈ Bool exists by Definition 11(2). From
(71), σ(u) = σ′(u) and σ(t) = σ′(t). Therefore, the unique successor of (l, σ) is
(l′, σ) or (l′′, σ) if the unique successor of (l, σ′) is (l′, σ′) or (l′′, σ′), respectively.

�(Proposition 37)
Assume (68), i.e., z̄ ∈ (γv1 × . . . × γvm)(ū) ∩ dom(f I

F ). We must prove (69).
Let (l0, σ0) and (l0, σ′

0) be the initial configurations of F with interpretation
J and input ū and of F with interpretation I and input z̄, respectively. Then
σ0 realizes σ′

0. The values f I
F (ū) and fJ

F (z̄) are defined by means of acceptable
computations, see Definition 11.

Proposition38. There is an acceptable u-computation for (F, J).

Proof: (Proposition 38) Define inductively sequences (l0, σ0), (l1, σ1), . . . and
(l0, σ′

0), (l1, σ′
1), . . . such that (li, σi)

J (li+1, σi+1), (li, σ′
i)

I (li+1, σ
′
i+1) and

σi+1 realizes σ′
i+1 as follows:
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Suppose, li �= lfin (the final label). Since z̄ ∈ dom(f I
F ) and li �= lfin, the

z̄-computation (l0, σ′
0), . . . , (li, σ′

i) cannot be maximal by (16) and hence (li, σ′
i)

has a I -successor. By Proposition 37, (li, σi) has a J -successor (li+1, σi+1)
and there is some I -successor (li+1, σ

′
i+1) of (li, σ′

i) such that σi+1 realizes
σ′

i+1.
If li = lfin (the final label) then (li, σi) and (li, σ′

i) are the last elements of
the sequences.

Let (l0, σ′
0), (l1, σ

′
1), . . . be the maximal computation constructed in this way.

Since it is a z̄-computation and z̄ ∈ dom(f I
F ), by (16) it must be acceptable

and therefore has a last element (lfin, σ′
n) with defined result σ′

n(v0) ∈ f I
F (z̄).

Therefore, (l0, σ0), (l1, σ1), . . . has a last element (lfin, σn). Since σn realizes σ′
n,

by (70) σ′
n(v0) ∈ γv0 ◦ σn(v0). Therefore, σ′

n(v0) exists and hence we have an
acceptable ū-computation for (F, J). �(Proposition 38)

Proposition39. For every ū-computation (l0, σ0), . . . , (ln, σn) in (F, J) there
is a z̄-computation (l0, σ′

0), . . . , (ln, σ′
n) in (F, I) such that σi realizes σ′

i for i =
1, . . . , n.

Proof: (Proposition 39) This is true for n = 0. Let (l0, σ0), . . . , (ln, σn),
(ln+1, σn+1) be a ū-computation. By induction hypothesis there is a z̄-computa-
tion (l0, σ′

0), . . . , (ln, σ′
n) such that σi realizes σ′

i for i = 1, . . . , n. Since (ln, σn)
has a J -successor, ln is not the final label lfin. Since z̄ ∈ dom(f I

F ), every
maximal z̄-computation is acceptable, hence (ln, σ′

n) has a I -successor. By
Proposition 37, (ln, σ′

n) has a I -successor (ln+1, σ
′
n+1) such that σn+1 realizes

σ′
n+1. �(Proposition 39)

Proposition40. Every maximal ū-computation in (F, J) is acceptable.

Proof: (Proposition 40) Let S := (l0, σ0), . . . , (ln, σn) be a maximal ū-com-
putation. Let S′ := (l0, σ′

0), . . . , (ln, σ′
n) be some z̄-computation according to

Proposition 39. Suppose, ln �= lfin. Since every maximal z̄-computation is ac-
ceptable, this computation cannot be maximal and must have an I -successor.
By Proposition 37 (ln, σn) must have a J -successor (contradiction). Therefore,
ln0lfin. Then S′ is a maximal z̄-computation, σ′

n(v0) exists. Since by Proposi-
tion 39, σn realizes σ′

n, σn(v0) exists. Therefore, the computation S is acceptable.
�(Proposition 40)

Since there is an acceptable ū-computation and every maximal ū-computation
is acceptable, by (16) fJ

F (ū) �= ∅, which is the first part of (69). It remains to
show ∀w ∈ fJ

F (ū). f I
F (z̄) ∩ γv0(w) �= ∅, the second part of (69).
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Suppose, w ∈ fJ
F (ū). Then there is an acceptable ū-computation

S := (l0, σ0), . . . , (ln, σn) such that w = σn(v0). By Proposition 39 there is
a z̄-computation S′ := (l0, σ′

0), . . . , (ln, σ′
n) such that σn realizes σ′

n. Since S

is acceptable, ln = lfin. Then S′ is a maximal z̄-computation which must be
acceptable by (16), hence σ′

n(v0) ∈ f I
F (z̄). Since σn realizes σ′

n, σ′
n(v0) ∈ γv0 ◦

σn(v0). We obtain σ′
n(v0) ∈ f I

F (z̄)∩γv0 (w), hence f I
F (z̄)∩γv0 (w) �= ∅. Therefore,

(69) has been proved.
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