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We generalize the concepts of finite-time Lyapunov exponent �FTLE� and Lagrangian coherent

structures to arbitrary Riemannian manifolds. The methods are illustrated for convection cells on

cylinders and Möbius strips, as well as for the splitting of the Antarctic polar vortex in the spherical

stratosphere and a related point vortex model. We modify the FTLE computational method and

accommodate unstructured meshes of triangles and tetrahedra to fit manifolds of arbitrary shape, as

well as to facilitate dynamic refinement of the FTLE mesh. © 2010 American Institute of Physics.

�doi:10.1063/1.3278516�

Riemannian manifolds are ubiquitous in science and en-

gineering, being the more natural mathematical setting

for many dynamical systems. For instance, transport

along isopycnal surfaces in the ocean and large-scale mix-

ing in the atmosphere are processes taking place on a

curved manifold, not a vector space. In this paper, we

generalize the notion of finite-time Lyapunov exponent

(FTLE) and Lagrangian coherent structures (LCS) to ar-

bitrary Riemannian differentiable manifolds. We show

that both notions are independent of the coordinate sys-

tem but depend on the chosen metric. However, we find

that LCS do not depend much on the metric. The FTLE

measures separation and tends to be large and positive

along LCS and very small elsewhere. For sufficiently

large integration times, the steep variations of the FTLE

field cannot be modified much by smooth changes in the

metric and the LCS remain essentially unchanged. Ap-

proximating, or even ignoring, the manifold metric does

not influence the result for large integration times, and

therefore, computing the FTLE field on manifolds is ro-

bust. Aside from these conclusions, we present a general

algorithm for computing the FTLE on manifolds covered

with meshes of polyhedra. The algorithm requires knowl-

edge of the mesh nodes, the image of the mesh nodes

under the flow, as well as information about node neigh-

bors (but not the full connectivity). We also used the same

algorithm in Euclidian spaces where the unstructured

mesh permits efficient adaptive refinement for capturing

sharp LCS features. We illustrate the results and meth-

ods on several systems: convection cells in a plane, on a

cylinder, and on a Möbius strip, as well as atmospheric

transport resulting from the 2002 splitting of the Antarc-

tic ozone hole in the spherical stratosphere and a related

point vortex model on the sphere.

I. INTRODUCTION

Consider an Euclidean domain ��R
n. A typical dy-

namical systems is given in the form of a velocity field

v�x , t� defined on ��R. In this case, the trajectories are

given by the solutions of the ordinary differential equation

ẋ=v�x , t�. Each trajectory is a function of time but it also

depends on the initial position x0 and the initial time t0. How

the trajectory changes as the initial time and the initial posi-

tion changes are a central interest in this paper. For this rea-

son, the trajectory which is solution of the initial value prob-

lem

ẋ = v�x,t� and x�t0� = x0, �1�

is denoted as x�t ; t0 ,x0�, which emphasizes the explicit de-

pendence on the initial condition. It is also convenient to

define the flow operator to further highlight the dependence

on the initial position x0. For a given initial time t0 and a

given final time t, the flow map is the function

�t0
t : � → �: x0 � �t0

t �x0� = x�t;t0,x0� . �2�

Autonomous systems do not depend on time. They satisfy

�t0+T
t+T =�t0

t for any T�R. For the associated velocity field,

this property translates into v�x , t�=v�x�. For two-

dimensional autonomous systems, regions of qualitatively

different dynamics can be efficiently captured by the stable

and unstable invariant manifolds of saddle points in the

system.
18

In higher dimensional autonomous systems, sepa-

ratrices are codimension 1 stable and unstable manifolds of

normally hyperbolic manifolds.
11,40

In the Poincaré sections of time-periodic systems, lobes

between the invariant manifolds govern particle transport

across separatrices.
48,47

In this paper, we consider the gener-

alization of this framework to systems with arbitrary time

dependence. In this case, saddle fixed points are nongeneric.

The points, where the instantaneous velocity vanishes, are

called hyperbolic stagnation points and usually meander in

time.
8

Such points are not trajectories and are not associated

with hyperbolic invariant manifolds.
36

The concept of LCS

a�
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extends the transport framework delineated by invariant

manifolds to time-dependent dynamical systems and to tran-

sient processes.
19,20,52,37

How can we define coherent structures without relying

on stagnation points and without using asymptotic notions

such as convergence, hyperbolicity, or exponential dichoto-

mies? Bowman
4

provided a robust and general answer. He

suggested to initiate a grid of virtual particles, integrate them

for a time on the scale of the observed process, and look at

the final separation between initially nearby particles �finite-

strain maps�. LCS correspond to curves with locally high

relative dispersion.

A remarkable aspect of Bowman’s procedure is its ro-

bustness and its ability to uncover structures in the most

complex and noisiest data sets. It can be improved by replac-

ing the linear separation between grid neighbors by a better

stretching estimate. Two such modern indicators are the

finite-time Lyapunov exponent �FTLE�19,20
and the finite-size

Lyapunov exponent �FSLE�.27,31
The two quantities are

closely related and delineate sharp ridges of high stretching

that behave almost like material lines.
52,37

In the remainder

of this paper, we will concentrate on FTLE but most of the

results and methods remain valid for other stretching indica-

tors such as FSLE or relative dispersion.

For a given time t0 and an initial position x0, the quantity

�t0

t0+T�x0� is the position after an integration time T. To quan-

tify particle separation and sensitivity to the initial condition

x0, the FTLE is defined based on the derivative of �t0

t0+T�x0�
with respect to x0. If we make a small perturbation and we

consider the evolution of trajectory starting at the position

x0+u instead of x0, the final position will be

�t0

t0+T�x0 + u� = �t0

t0+T�x0� +
��t0

t0+T

�x0

u + O��u�2� . �3�

The point x0 is sensitive to the initial condition if �t0

t0+T�x0

+u� separates from �t0

t0+T�x0�, even for small perturbations u.

The boundary between regions of qualitatively different dy-

namics can therefore be detected as the set of points for

which ���t0

t0+T
/�x0�u is very large for some direction u. To

quantify stretching and sensitivity to initial conditions, we

define the FTLE as

��x0,t0� =
1

�T�
ln�max

u�0

� ��t0

t0+T

�x0

u�
�u�

	 . �4�

In the equation above, the expression in parentheses gives

the maximum stretching between infinitesimally close trajec-

tories. The reason for taking the logarithm and dividing by

the magnitude of the integration time T is the parallel that we

then establish with autonomous systems. Indeed, for a time-

independent system, we have max
u�0

����t0

t0+T
/�x0�u�=e�t�u�,

where � is the largest Lyapunov exponent associated with the

trajectory starting at x0.

Note that the FTLE ��x0 , t0� is a function of position and

time but it also depends on the chosen integration time T.

The latter is not regarded as very large as our aim is to

investigate transient processes and finite-time mixing.
21,36

Additionally, �T� is used instead of T because computing the

FTLE for T�0 and T�0 produces repulsive LCS and at-

tractive LCS, respectively, and thus this definition facilitates

forward and backward time computations.

For a given point x0, the FTLE ��x0 , t0�, as defined

above, can also be seen as the norm of the differential of

�t0

t0+T at the point x0, that is

��x0,t0� =
1

�T�
ln �D�t0

t0+T� �
1

�T�
ln
max

u�0

�D�t0

t0+T�u��

�u�
� .

�5�

We will use the expression above to extend the definition of

the FTLE to non-Euclidean manifolds and to derive an algo-

rithm for computing FTLE on an unstructured mesh �for Eu-

clidean or non-Euclidean manifolds�.
The LCS are ridges in the FTLE field. They are codi-

mension 1 manifolds that maximize the FTLE in the trans-

verse direction. This notion is more formally defined by

Shadden et al.52
and Lekien et al.37

The objective is to gen-

eralize the concept of stable and unstable invariant manifolds

�of hyperbolic invariant objects� to time-dependent systems.

Whether in the ocean, in the atmosphere, or any other dy-

namical system, LCS are barriers to particle transport.
45

Interlacing of attractive and repulsive LCS gives rise to

lobes that govern transport across the regions delineated by

the LCS.
8

The LCS bound coherent patches of particles that

evolve independently from the surrounding environment and

exchange little matter and energy.
12

Such structures include

oceanic eddies,
2

separation profiles from a coastline or an

airfoil,
36,39

shed vortices over an airfoil,
6

and wake structures

behind swimming animals.
46

Shadden and Taylor
53

showed

that LCS indicate stagnation and mixing in blood vessels.

Tallapragada and Ross
57

showed that LCS are also relevant

for nonpassive finite-size particles in fluids, where inertial

effects are present.

Contrary to classical stable and unstable invariant mani-

folds, the LCS of time-dependent systems are not perfect

barriers to transport. Shadden et al.52
and Lekien et al.37

showed that the flux through a LCS is usually very small but

not exactly zero. As a result, one can usually consider LCS

as a material barrier with negligible flux, but with the possi-

bility of occasional bifurcations. Invariant manifolds cannot

bifurcate and cannot adequately describe transient processes.

The weak flux across the LCS of an aperiodic system makes

it possible for the LCS to bifurcate and capture finite-time

processes.

In the ocean, bifurcation of the LCS indicates a regime

change between qualitatively different kinds of motion.
35,33

Coulliette et al.7 showed that the position of LCS in coastal

regions determines whether contaminants will recirculate

along the coast or not. Lipinski et al.39
showed that LCS

bifurcation at the end of an airfoil is responsible for vortex

shedding.

In an atmospheric context, LCS correspond to atmo-

spheric transport barriers which separate different regions of

relatively well-mixed air. In this paper, we will look into

atmospheric transport and global-scale phenomena, such as

the splitting of the Antarctic polar vortex.
54,61,42

As the atmo-
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sphere is global in extent, it becomes necessary to consider

the spherical, and therefore non-Euclidean, nature of the

flow.

II. FINITE-TIME LYAPUNOV EXPONENTS
IN EUCLIDEAN SPACES

The computation of the FTLE can be further simplified

in Euclidean spaces by considering the matrix representation

of the differential D�t0

t0+T. Let us consider an orthonormal

basis �ê1 , ê2 , . . . , ên
 of Rn and the n�n matrix M = �mij� de-

fined by mij � êi · �D�t0

t0+T�ê j��.
Given the column vector U containing the coordinates of

a vector u�R
n in the orthonormal basis �ê1 , ê2 , . . . , ên
, the

column vector U�=MU gives the coordinates of D�t0

t0+T�u�
in the same basis. As a result, we have

��x0,t0� =
1

�T�
ln
max

u�0

�D�t0

t0+T�u��

�u�
�

=
1

2�T�
ln
max

U�R0
n

U⊤M⊤MU

U⊤U �
=

1

�T�
ln �largest singular value �M�� . �6�

We first review how the formula above can be used to com-

pute FTLE and LCS on a Cartesian mesh. We then turn to the

implementation for unstructured lists of triangles �in R
2� and

n-tetrahedra �in R
n�.

A. Computation with a Cartesian mesh

Let us consider a Cartesian mesh with grid points

�xijk ,yijk , . . . ,zijk��R
n. We compute the final position

�t0

t0+T�xijk ,yijk , . . . ,zijk�= �xijk� ,yijk� , . . . ,zijk� �. The matrix repre-

sentation of the flow differential is given by

M =�
xi+1j¯k� − xi−1j¯k�

2�x

xij+1¯k� − xij−1¯k�

2�y

¯
xij¯k+1� − xij¯k−1�

2�z

yi+1j¯k� − yi−1j¯k�

2�x

yij+1¯k� − yij−1¯k�

2�y

¯
yij¯k+1� − yij¯k−1�

2�z

] ] � ]

zi+1j¯k� − zi−1j¯k�

2�x

zij+1¯k� − zij−1¯k�

2�y

¯
zij¯k+1� − zij¯k−1�

2�z

�
M

+ O��� , �7�

where �=max��x ,�y , . . . ,�z
 is the maximum step size.

One can then find the largest singular value of the matrix

M̃ that approximates M for a sufficiently small grid spacing

�. Similarly, as suggested by Haller,
20

one can search for the

largest eigenvalue of M̃⊤M̃. The algorithm above is therefore

identical to the algorithm proposed as the two-dimensional

direct Lyapunov exponent �DLE� of Haller,
20

the two-

dimensional algorithm of Shadden et al.,52
or the

n-dimensional algorithm of Lekien et al.37

The major advantage of this algorithm is its robustness.

Regardless of the grid size �, an existing LCS passing be-

tween two grid points creates a visible shade in the approxi-

mated FTLE field. As shown in Fig. 1, there is more to this

algorithm than just approximating a derivative with finite

differences. If we were to approximate the derivative of the

flow using arbitrary control points, we may be missing some

LCS passing between grid points. Similarly, one could take

each grid point separately and integrate the velocity gradient

or get the Cauchy–Green strain tensor and the FTLE. This

would also lead to possible LCS obliteration. The DLE algo-

rithm estimates total �averaged� stretching in the mesh: Only

grid points are used in the computation of the derivatives by

finite differences.

The disadvantage of the technique is that the FTLE can

be underestimated if the elements are too large: One often

needs to refine the mesh in order to avoid saturation. The

advantage is that it detects LCS no matter what the distribu-

tion of grid points is. Even on coarse meshes, one is able to

identify a rough estimate of the LCS structure.

The singular value decomposition of M always exists

and is continuous with respect to any parameter, such as the

grid size �.
10

As a result, provided that the largest singular

value does not vanish, its logarithm is also continuous. This

is, however, the case since the flow is one to one. As a result,

none of the column vectors in M are identically zero �this

would violate the uniqueness of solutions�. This implies that

the rank of M is at least 1 and its largest singular value is

strictly positive.

Note that the FTLE is typically computed at grid resolu-

tions much higher than the flow resolution.
52,60

The FTLE

indicates long term particle separation and the LCS have a

017505-3 FTLE for non-Euclidean manifolds Chaos 20, 017505 �2010�

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.173.125.76 On: Wed, 20 Nov 2013 19:59:35



fine, foliated structure, even for flows defined on a coarse

grid. In time-periodic systems, the LCS correspond to the

invariant manifold of hyperbolic periodic orbit and they are

known to form tangles and arbitrary small lobes.
48,47

For

arbitrary time dependence, the LCS can also form meanders

of arbitrary small size, provided that the integration time is

long enough. To avoid saturation, the resolution of the mesh

has to be adapted to the amplitude of the deformation. Con-

sequently, the mesh resolution depends on the chosen inte-

gration time, rather than on the resolution or the input veloc-

ity. One of the contributions of this paper is to generalize the

FTLE algorithm to unstructured meshes that can be effi-

ciently refined by increasing the resolution only near the

LCS.

B. Computation with an unstructured mesh „in R
2…

While robust and efficient, the computation of FTLE us-

ing Cartesian meshes does not translate easily to arbitrary

manifolds. For manifolds such as spheres, tori, and more

complicated shapes, it is usually more convenient to cover

the space with a list of connected polygons. Another incen-

tive to use unstructured meshes is the need for higher reso-

lution. To obtain sharper and longer LCS, we need to

straddle them with grid points that are as close to each other

as possible. With Cartesian meshes, it is difficult to refine the

mesh other than uniformly. Using unstructured meshes, one

can easily adapt the resolution locally: Smaller elements are

needed in regions where FTLE indicate the presence of LCS,

while low FTLE areas can be decimated.
14

Another reason for computing FTLE on unstructured

meshes rather than Cartesian meshes is to match the format

of some input velocity fields. For instance, methods such as

normal mode analysis reconstruct coastal surface current

maps from radar data and provide reconstructed stream func-

tion and velocity potential on meshes of triangles.
34,29

Com-

puting FTLE on an unstructured mesh whose boundary

matches that of the input velocity field greatly improves the

smoothness of the FTLE map.

We begin by adapting the algorithm described in

Sec. II A for meshes of triangles in R
2. We then generalize

this method to meshes of n-tetrahedra covering a subspace of

R
n.

Consider a domain ��R
2 which is covered by a list of

N non-overlapping triangles. For each vertex pi= �	
1

�i�
,	

2

�i��,
we assume that the image by the flow, pi�=�t0

t0+T�pi�
= �


1

�i�
,


2

�i��, has been computed.

Point pi has an arbitrary ��2� number of neighbors from

which we must approximate the matrix of the derivative of

the flow map. Let us consider the N neighbors p j of pi and

construct the 2�N matrices

Y = 

1
�1� − 
1

�i� 
1
�1� − 
1

�i� ¯ 
1
�N� − 
1

�N�


2
�1� − 
2

�i� 
2
�1� − 
2

�i� ¯ 
2
�N� − 
2

�N� � �8�

and

X = 
	1
�1� − 	1

�i� 	1
�1� − 	1

�i� ¯ 	1
�N� − 	1

�N�

	2
�1� − 	2

�i� 	2
�1� − 	2

�i� ¯ 	2
�N� − 	2

�N� � . �9�

There does not usually exist a 2�2 matrix M such that

Y =MX, but we can compute the least square estimate

M̃ = YX⊤�XX⊤�−1, �10�

which minimizes the L2 error �Y −MX�2.

We can then proceed with the computation of the largest

singular value of M̃ and obtain an estimate of the FTLE at

point pi of the unstructured mesh. There is, however, a slight

modification that can be made to improve the algorithm. In

the procedure described above, each neighbor accounts for

two equally weighted data in the least square estimate. None-

theless, it is not uncommon for a vertex pi of an unstructured

mesh to have more neighbors in one direction than another.

In this case, the reconstructed matrix M is distorted by data

recorded in directions where the density of grid points is

higher. This distortion can be removed by weighting each

equation involved in the least square estimate. Let us con-

sider the Voronoi cell around vertex pi that is the polygon

pij pi+1 jpi−1 j

pi j−1

pi j+1

p
′

ij

p
′

i+1 j

p
′

i−1 j

p
′

i j−1

p
′

i j+1
FIG. 1. Computation of FTLE on a Cartesian mesh: A

mesh of points is initialized �left panel�, then integrated

for a given integration time T �right panel�. The deriva-

tive of the flow at one grid point is evaluated using

finite differences with other grid points. If one were to

evaluate the flow derivative using off grid test points

�gray dots�, a LCS �dashed line� passing between grid

points could go unnoticed.
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where all the points are closer to vertex pi than any other

vertex. The area of the Voronoi cell is

Vi =
1

8
�

pj is a

neigh.
of pi

Aij , �11�

where Aij is the area of the two triangles that contain both pi

and p j. We can then define

Y =�
A1i

8Vi
�
1

�1� − 
1
�i�� ¯

ANi

8Vi
�
1

�N� − 
1
�N��

A1i

8Vi
�
2

�1� − 
2
�i�� ¯

ANi

8Vi
�
2

�N� − 
2
�N��	 �12�

and

X =�
A1i

8Vi
�	1

�1� − 	1
�i�� ¯

ANi

8Vi
�	1

�N� − 	1
�N��

A1i

8Vi
�	2

�1� − 	2
�i�� ¯

ANi

8Vi
�	2

�N� − 	2
�N��	 . �13�

We now have

M = YX
⊤�XX

⊤�−1

M

+ O���

~
�14�

and we approximate the FTLE by

��pi,t0� =
1

�T�
ln��YX⊤�XX⊤�−1�� , �15�

where the norm of the matrix is defined as its largest singular

value. Note that the factors 8Vi cancel out from the equa-

tions, hence we can ignore them.

C. Computation with an unstructured mesh „in R
n…

To generalize the computation of FTLE to unstructured

meshes in R
n, we consider a domain ��R

n that is covered

by a mesh of n-dimensional tetrahedra. For each vertex

pi= �	
1

�i�
,	

2

�i�
, . . . ,	n

�i�� of the mesh, we consider the N neigh-

bors p j = �	
1

�j�
,	

2

�j�
, . . . ,	n

�j��. The images of these vertices un-

der the flow map are written as pi�=�t0

t0+T�pi�

= �

1

�i�
,


2

�i�
, . . . ,
n

�i�� and p j�=�t0

t0+T�p j�= �

1

�j�
,


2

�j�
, . . . ,
n

�j��.
This setting is depicted on Fig. 2.

For each pair of adjacent vertices pi and p j, we define

the hypervolume Aij as the sum of the hypervolumes of all

the n-tetrahedra that contain both pi and p j. We define the

n�N matrices

Y =�
A1i�
1

�1� − 
1
�i�� A2i�
1

�2� − 
1
�i�� ¯ ANi�
1

�N� − 
1
�N��

A1i�
2
�1� − 
2

�i�� A2i�
2
�2� − 
2

�i�� ¯ ANi�
2
�N� − 
2

�N��

¯ ] � ]

A1i�
n
�1� − 
n

�i�� A2i�
n
�2� − 
n

�i�� ¯ ANi�
n
�N� − 
n

�N��
	

�16�

and

X =�
A1i�	1

�1� − 	1
�i�� A2i�	1

�2� − 	1
�i�� ¯ ANi�	1

�N� − 	1
�N��

A1i�	2
�1� − 	2

�i�� A2i�	2
�2� − 	2

�i�� ¯ ANi�	2
�N� − 	2

�N��

¯ ] � ]

A1i�	n
�1� − 	n

�i�� A2i�	n
�2� − 	n

�i�� ¯ ANi�	n
�N� − 	n

�N��
	
�17�

and we approximate the FTLE by

��pi,t0� =
1

�T�
ln��YX⊤�XX⊤�−1�� , �18�

where YX⊤�XX⊤�−1 is a nonsingular n�n matrix from which

we can extract the strictly positive maximum singular value.

D. Example 1: Rayleigh–Bénard convection cells

To illustrate the use of the algorithm, we consider a two-

dimensional model of Rayleigh–Bénard convection cells in-

troduced by Solomon and Gollub.
56,55

The stream function is

given by

��x,y,t� = sin�
�x − g�t���sin�
y� . �19�

We consider that the lines y=0 and y=1 are material bound-

aries and that the stream function delineates an infinite hori-

zontal array of convection cells. For g�t�=0, the cells are

bounded by vertical segments x=k�Z and there is not any

pi

p1

p2

p3

pj
pN

p
′

i

p
′

1

p
′

2

p
′

3

p
′

j

p
′

N

FIG. 2. Deformation of an unstructured mesh under

the flow. Left panel: the node pi has N neighbors p1,

p2 , . . . ,p j , . . . ,pN. Right panel: under the action of the

flow, the node pi moves to the position pi�. The de-

formed edges p1�−pi� ,p2�−pi� , . . . , p j�−pi� , . . . ,pN� −pi�

are used to approximate the deformation tensor.
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cell transport. When g�t� is an oscillating function, the

boundaries become more complex and transport is possible

through the lobes of oscillating LCS.
5,33,36

In this paper, we used a quasiperiodic roll motion

g�t�=0.3 sin�4
t�+0.1 sin�2t�. The model can be equally

used with a fully aperiodic function g�t�. For instance, one

can define g�t� as a realization of a random process with zero

mean and Gaussian covariance in time �see Ref. 36 or

http://www.lekien.com/~francois/software/rndfieldgen�.
To capture long, sharp LCS, one typically needs very

dense meshes. Indeed, as illustrated in Fig. 3 for a Cartesian

mesh, the FTLE can be severely underestimated when the

grid size is too small �or the integration step T is too large�.
The initial element is stretched in a nonlinear way and the

folding of the element can lead to an improper estimate of

the stretching since only grid points are used to evaluate the

deformation.

To solve this problem and obtain sharp LCS, it is there-

fore necessary to use elements with very small sizes. Such a

high resolution cannot usually be achieved with Cartesian

meshes since one would need to refine the entire mesh. An

advantage of computing FTLE on an unstructured mesh is

the ability to refine the mesh only where needed. In this case,

we seek high resolution near the FTLE ridges, but not every-

where. Based on an estimate of the FTLE field on a rough

mesh, one can generate a new mesh of triangles and increase

the resolution only near the LCS.

Figure 4 illustrates such a refinement procedure for the

Rayleigh–Bénard convection cells using refinement rules

similar to that of Garth et al.13,14
The first row of Fig. 4

illustrates the preliminary computation. The domain is cov-

ered with a rough mesh containing about 3000 triangles,

each with roughly the same size. The upper right panel of

Fig. 4 shows the resulting FTLE field for the rough mesh. To

ease the analysis of Fig. 4, each triangle is plotted with a

uniform color corresponding to the maximum FTLE value of

the triangle nodes.

Using the FTLE estimate in the upper right panel of

Fig. 4, a more appropriate mesh can be designed. We identify

all the nodes of the rough mesh for which the FTLE estimate

is above 2.5. All the triangles containing at least one such

node are labeled for refinement. We then require a minimum

triangle diameter of 0.02 inside the selected zone. Note that

the triangles can still be rather small in regions where the

FTLE is below the threshold. The actual triangle size varies

depending on the proximity to the refined zone and the prop-

erties of the meshing algorithm. The resulting mesh has 8000

triangles and are shown, along with the corresponding FTLE,

on the second row of Fig. 4.

Note that the maximum value of the FTLE is higher in

the refined mesh. This is a consequence of the saturation

phenomena depicted in Fig. 3: The stretching induced by a

LCS passing between grid points is underevaluated by the

finite mesh size. By decreasing the distance between grid

points near the LCS, we refine the estimated FTLE value on

the LCS and, hence the maximum FTLE value for the do-

main. As a result, the right panels of Fig. 4 have different

level sets. To compare the FTLE distribution, the ranges are,

however, kept constant: When the maximum level set is in-

creased, the minimum level set is increased by the same

amount.

Based on the new FTLE estimate in the second row of

Fig. 4, we can continue the refinement process. We selected a

new FTLE threshold of 2.9 and set a minimum triangle di-

ameter of 0.01 for triangles above the threshold. The result-

ing mesh is shown on the third row of Fig. 4 and has 20 000

triangles. The resulting high quality FTLE field should be

compared to the relatively low quality result that a 100�200

Cartesian mesh would give �for the same number of ele-

ments�. The last refinement of Fig. 4 uses a threshold of 4.0

and a minimum length scale of 0.004. The final mesh pro-

vides very high FTLE details on a mesh with only 55 000

triangles. As a comparison, Fig. 6 of Shadden et al.52
shows

FTLE on a similar system based on a 160�320 Cartesian

mesh �51 200 elements�. The adaptive mesh obviously pro-

vides a tighter estimate of the LCS position.

An advantage of the refinement method described above

is that it increases the resolution near the steep FTLE ridge.

As shown by Shadden et al.,52
the flux through a LCS is as

small as the ridge is steep �sharp slope in a transverse direc-

tion� and the FTLE value is constant �along the ridge�. This

situation is hardly observable with Cartesian meshes as the

resolution of the mesh must be extremely high to avoid spu-

rious FTLE oscillation along the ridge. With the unstructured

t = t0

t = t1

t = tf

(apparent stretching)
t = tf

(actual stretching)

pi jpi j

pi j

pi j

pi+1 jpi+1 j

pi+1 j

pi+1 j

pi j+1pi j+1

pi j+1

pi j+1

pi+1 j+1pi+1 j+1

pi+1 j+1

pi+1 j+1

pp

p

p

FIG. 3. �Color online� Using elements that are too large

can lead to an underestimated FTLE. Starting with a

square element at t= t0, the stretching is well captured

by the motion of the four grid points at a later time

t= t1. Nevertheless, the deformation is nonlinear and the

element can fold at a later time t= t f. At this time, the

algorithm that uses the position of the four grid points

to evaluate FTLE will underestimate the actual

stretching.
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mesh, we can concentrate small elements along the ridge and

keep coarser elements elsewhere.

Note that the method described above is not designed to

compute FTLE in any subset of an Euclidean space. It works

only for compact submanifolds of Rn, with the same dimen-

sion n. For instance, it cannot be used to compute FTLE on

a sphere �codimension 1 in R
3�. In Sec. III, we extend this

method to arbitrary manifolds and, hence, make it possible to

compute FTLE on regions such as spheres, cylinders, and

Möbius bands.

III. FINITE-TIME LYAPUNOV EXPONENTS
IN RIEMANNIAN MANIFOLDS

A n-dimensional differentiable manifold M is a space in

which every point has a local neighborhood that looks like

R
n. More specifically there exist diffeomorphisms

�k: Uk � M → R
n, �20�

such that the finite sequence of open sets Uk covers M. Each

couple �Uk ,�k� is called a chart and for any point p�M, we
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FIG. 4. �Color� Computation of FTLE for the aperiodic convection cells of Solomon and Gollub �Ref. 56� using an unstructured mesh and dynamic mesh

refinement. The first row is the initial computation �rough estimate�. A mesh with 3000 triangles of equal size �upper left panel� is used to evaluate the FTLE

�upper right panel�. The second row shows the first refinement step. The domain is covered by 8000 triangles whose maximum diameter is set to 0.02 wherever

the FTLE estimate �upper right panel� is above 2.5. The third row uses the FTLE estimate from the second row to further refine the mesh. The new mesh has

20 000 triangles and the maximum triangle diameter is set to 0.01 for all the points where the previous FTLE estimate was above 2.9. In the last row, a final

mesh of 55 000 triangles is created by setting the maximum diameter to 0.004 for all points, where the previous FTLE estimate is above 4.0. The resulting

FTLE field shows a crisp LCS with roughly constant FTLE values �lower right panel�.
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can find at least one diffeomorphism from an open neighbor-

hood of p to an open set of Rn. A set of diffeomorphisms �k

whose domains cover M is a called an atlas.

Example: Consider the sphere M= ��x ,y ,z��R
3 �x2

+y2+z2=1
. We consider its partition into the following

three overlapping open sets:

U1 = ��x,y,z� � R
3�x2 + y2 + z2 = 1 and z �

1

4
 ,

U2 = ��x,y,z� � R
3�x2 + y2 + z2 = 1 and −

1

2 � z �
1

2
 ,

�21�

U3 = ��x,y,z� � R
3�x2 + y2 + z2 = 1 and z � −

1

4
 ,

and the diffeomorphic maps

�1: U1 → R
2: �x,y,z� � �1�x,y,z� � �x,y� ,

�2: U2 → R
2: �x,y,z� � �2�x,y,z� � �atan2�y,x�,z� , �22�

�3: U3 → R
2: �x,y,z� � �3�x,y,z� � �x,y� .

Each diffeomorphism �k maps a subset Uk of the manifold to

an open set of R
2 and the union of the subsets Uk is the

sphere. This shows that the unit sphere M is a two-

dimensional differentiable manifold.

Let us consider a manifold M. A dynamical system on

M is defined by a flow �t0
t :M→M which, for each point

p�M, returns its image p�=�t0
t �p�. The differential of �t0

t

at a point p�M is a linear map from TpM, the tangent

space at point p, to Tp�
M, the tangent space at point

p�=�t0
t �p�.

To define FTLE, we need a norm in TpM and in Tp�
M.

The computations in the next sections will require also an

inner product in the tangent spaces �to construct orthonormal

bases�. For this reason, we consider that M is a Riemannian

manifold, i.e., it is a differentiable manifold where each tan-

gent space TpM is equipped with an inner product �and an

associated norm� that varies smoothly with p. Note that this

is not a limitation as one can always find such a smooth

system of inner products for a given differentiable manifold

M. One way to find such an inner product and make a mani-

fold Riemannian is to exploit the Whitney embedding theo-

rem: Any n-dimensional manifold can be embedded in R
m,

provided that m�n is large enough.
62,24

Given an embedding

of the manifold in R
m, the inner product in the tangent spaces

can then be derived from the Euclidean inner product in R
m.

Furthermore, we will later show that the choice of the inner

product does not influence much the position of the resulting

LCS. Changing the metric results in a different FLTE field

but, while low FTLE values can change by much, the ridges

remain mostly the same.

Given a Riemannian manifold M, the definition of the

FTLE carries over easily. We have

��p,t0� �
1

�T�
ln��D�t0

t0+T��

=
1

�T�
ln
 max

u�TpM

�u��0

�D�t0

t0+T�u��Tp�
M

�u�TpM
� , �23�

where � · �TpM and � · �Tp�
M are the norms in the tangent

spaces TpM and Tp�
M.

A. FTLE in manifold coordinates

Note that the definition of the FTLE on a manifold does

not depend on the atlas �or coordinate system� used. Never-

theless, when one evaluates the FTLE, it is often more con-

venient to use local coordinates. By the definition of a dif-

ferentiable manifold, there must be an open set Up�M

containing p on which there exists a diffeomorphism

�p: Up � M → R
n. �24�

Since �p is a diffeomorphism, it has a C1 inverse

�p
−1: Vp � R

n
→ M: � � �−1��� , �25�

where Vp=�p�Up� is an open set. Since p is in the domain of

�p, it must belong to the image of �p
−1. We denote by

��= �	1
� ,	2

� , . . . ,	n
�� the unique point of Vp�R

n satisfying

�p
−1����=p.

Note that by definition of the diffeomorphism, the de-

rivative D�p
−1 is continuous, takes values in TpM, and is full

rank. The n vectors

�
e1 � D�p

−1�1,0, . . . ,0� = � ��p
−1

�	1

�
�=��

,

e2 � D�p
−1�0,1, . . . ,0� = � ��p

−1

�	2

�
�=��

,

]

en � D�p
−1�0,0, . . . ,1� = � ��p

−1

�	n
�

�=��

,

� �26�

can therefore be used as a basis of TpM. The basis vectors

do not necessarily have unit norm and are not necessarily

orthogonal. Nevertheless, M is a Riemannian manifold and

there is an inner product in TpM, which gives the ability to

use the Gram–Schmidt process and derive an orthonormal

basis �ê1 , ê2 , . . . , ên,
 from the basis �e1 ,e2 , . . . ,en
.
We can proceed similarly for the image p�=�t0

t0+T�p� and

Tp�
M, the tangent space at point p�. We denote by

�f̂1 , f̂2 , . . . , f̂n,
 the orthonormal basis of Tp�
M. We then build

the n�n matrix M = �mij� defined by

mij � f̂i · �D�t0

t0+T�ê j�� . �27�

Since the two bases have been orthonormalized with the ap-

propriate inner products, the norm of any vector in TpM or

in Tp�
M can be computed with its coordinates and we get

the expected FTLE formula
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��x0,t0� =
1

�T�
ln
max

U�R0
n

�MU�
�U� �

=
1

2�T�
ln
max

U�R0
n

U⊤M⊤MU

U⊤U �
=

1

�T�
ln �largest singular value �M�� . �28�

The only remaining step to compute the FTLE on the Rie-

mannian manifold is therefore the evaluation of the matrix M
using the manifold coordinates. Indeed, in practice, one will

not compute the actual flow map �t0

t0+T but the “coordinate

flow map” defined by

�t0

t0+T
: Vp → Vp�

: � � �� � �p�
��t0

t0+T��p
−1����� . �29�

In the equation above, one starts with manifold coordinates �

and computes the corresponding manifold point p using the

chart �p
−1. The flow �t0

t0+T is applied to p which returns the

image p�. We then get the coordinates �� of the image using

the chart �p�
�which might be different from the first chart

�p�. Combining all the steps above gives a “coordinate map”

�t0

t0+T that returns the final coordinates �� as a function of the

initial coordinates �. The map derivative D�t0

t0+T is the most

readily available deformation tensor as it only uses coordi-

nates. How can we derive the matrix M and the FTLE from

D�t0

t0+T?

Note that by definition, we have �t0

t0+T=�
p�

−1
��t0

t0+T
��p,

hence

D�t0

t0+T
= D�

p�

−1�
��

� D�t0

t0+T�
�

� D�p�p
. �30�

The Gram–Schmidt process was used to orthonormalize the

column vectors of D�p
−1 and is, hence, equivalent to the QR

decomposition

D�p
−1 = Qp � Rp, �31�

where Qp is a unitary linear operator �that is Qp :Rn

→TpM such that ∀� ,��R
n :Qp��� ·Qp���=� ·�� and Rp is

an upper diagonal matrix �linear operator from R
n→R

n�.
From this point of view, the Gram–Schmidt process is

equivalent to defining the new basis by

∀ j = 1, . . . ,n: ê j = Qp�1 j� , �32�

where 1 j denotes the vector of R
n that has all components

equal to zero except the jth that is equal to one.

Similarly, in Tp�
M, the Gram–Schmidt process is

equivalent to the QR decomposition

D�
p�

−1
= Qp�

� Rp�
, �33�

where Qp�
is unitary and Rp�

is the upper diagonal. The or-

thonormal basis in Tp�
M is then given by

∀i = 1, . . . ,n: f̂i = Qp�
�1i� . �34�

Direct computation gives

D�t0

t0+T�ê j� = D�
p�

−1�
��

� D�t0

t0+T�
�
�Rp

−11 j� �35�

and

mij = f̂i · �D�t0

t0+T�ê j�� = 1i · Rp�
D�t0

t0+T�
�
Rp

−11 j . �36�

As a result, the matrix M is given by

M = Rp�
D�t0

t0+T��Rp
−1 = Rp��

�	1�

�	1

�	1�

�	2

¯
�	2�

�	n

�	2�

�	1

�	2�

�	2

¯
�	2�

�	n

] ] � ]

�	n�

�	1

�	n�

�	2

¯
�	n�

�	n

	Rp
−1.

�37�

The equation above states that we can compute the FTLE in

coordinates. From the “coordinate deformation tensor,”

D�t0

t0+T, one needs to multiply by Rp�
on the left and by Rp

−1

on the right to obtain the matrix M whose largest singular

value gives the FTLE. Note that the matrix Rp is obtained

from the QR decomposition of the manifold charts. As

shown by Dieci and Eirola,
10

the matrix Rp must then vary

smoothly as a function of p.

B. Orthogonal coordinates

The equation above gives the matrix M from the coordi-

nate deformation tensor but it requires the QR decomposition

of the derivative of the coordinate map D�−1. If the manifold

coordinates are orthogonal, the vectors in the basis

�e1 ,e2 , . . . ,en
 are mutually orthogonal and the matrix Rp is

diagonal. We have

M =�
�1

�	1�

�	1

�1
−1 �1

�	1�

�	2

�2
−1 ¯ �1

�	2�

�	n
�n

−1

�2

�	2�

�	1

�1
−1 �2

�	2�

�	2

�2
−1 ¯ �2

�	2�

�	n
�n

−1

] ] � ]

�n

�	n�

�	1

�1
−1 �n

�	n�

�	2

�2
−1 ¯ �n

�	n�

�	n
�n

−1
	 , �38�

with �i= ���p
−1

/�	i� and �i= ���
p�

−1
/�	i��.

C. Orthonormal coordinates

If the coordinates are orthonormal, we have M =D�t0

t0+T.

In other words, the FTLE can be computed directly as the

largest singular value of the coordinate deformation tensor.

We will later use this property to derive an efficient algo-

rithm for FTLE computation.

D. Example 2: Convection cells on a torus

We consider a system similar to the example in Sec. II D

but instead of creating an infinite array of plane convection

cells, we wrap four cells around a cylinder. More specifically,

we consider the cylinder parametrized by
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�−1: �0,4
� � �−



2
,



2
� → R

3:

�	1,	2� � 
cos
	1

2
,sin

	1

2
,
	2



� �39�

and the same stream function as in Sec. II D that is

��	1,	2,t� = sin�	1 − g�t��sin
	2 +



2
� . �40�

In other words, for each point �x ,y ,z� on the cylinder, one

can use the diffeomorphism � to compute the manifold co-

ordinates �	1 ,	2�, then compute the stream function or the

velocity field using the formula above where the coordinates

x and y of Solomon and Gollub have been replaced by 	1 and

	2.

Since we have the parametrization of the manifold, we

can determine analytically the local basis. For given 	1 and

	2, we have

e1 = D�−1�1,0� =
1

2

− sin

	1

2
,cos

	1

2
,0� �41�

and

e2 = D�−1�0,1� = 
0,0,
1



� . �42�

The vectors above are orthogonal, hence we can compute

FTLE using Eq. �38� with �1=�1= �e1�=
1

2
and �2=�2

= �e2�=
1


 .

If �	1� ,	2�� represents the coordinates of a particle that

started at time t0 at position �	1 ,	2�, the deformation in

“manifold coordinates” reads

D�t0

t0+T
=�

�	1�

�	1

�	1�

�	2

�	2�

�	1

�	2�

�	2

	 . �43�

According to Sec. III B, the FTLE is given by the largest

singular value of the matrix

M =�
�	1�

�	1

�

2

�	1�

�	2

2

�

�	2�

�	1

�	2�

�	2

	 . �44�

To compute the FTLE, we can then cover the manifold with

a mesh of points, each with given 	1 and 	2 coordinates. We

then differentiate numerically the final positions with respect

to the initial positions as if the mesh was in R
2. The only

differences with a computation in Euclidean space are the

factors 
 /2 and 2 /
 that scale the off-diagonal elements of

M. The FTLE and corresponding LCS on the cylinder are

shown in Fig. 5.

E. Example 3: Convection cells on a Möbius strip

Instead of wrapping an even number of convection cells

around a cylinder as in the previous example, we can arrange

an odd number of cells into a continuous velocity field on a

Möbius strip. This construction does not correspond to a

known physical setting but provides a test case to illustrate

and test the methods developed above, as well as a first in-

stance of an FTLE field for a non-orientable manifold. We

consider the Möbius strip parametrized by

�−1: �0,3
� � �−



2
,



2
� → R

3:

�	1,	2� ��

1 +

	2



cos

	1

3
�cos

2	1

3


1 +
	2



cos

	1

3
�sin

2	1

3

	2



sin

	1

3

	 �45�

and the same streamfunction as in the previous example.

Direct computation shows that the coordinates are also or-

thogonal. In this case, we have �2=�2= �e2�=1 /
. The norm

of e1 depends on the position on the manifold and we have

�1 = �e1�	1,	2�� =
	2

2

9
2
+

4

9

1 +

	2



cos

	1

3
�2

�46�

and

�1 = �e1�	1�,	2��� =
	2�

2

9
2
+

4

9

1 +

	2�



cos

	1�

3
�2

. �47�

As a result, the deformation can be computed in manifold

coordinates 	1 and 	2 and the FTLE is given as the singular

value of

M =�
	2�

2

9
2
+

4

9

1 +

	2�



cos

	1�

3
�2

	2
2

9
2
+

4

9

1 +

	2



cos

	1

3
�2

�	1�

�	1


 	2�
2

9
2
+

4

9

1 +

	2�



cos

	1�

3
�2� �	1�

�	2




1




1

	2�
2

9
2
+

4

9

1 +

	2�



cos

	1�

3
�2

�	2�

�	1

�	2�

�	2

	 . �48�
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Figure 6 shows the corresponding FTLE for positive integra-

tion time, as well as the attractive and repulsive LCS. Note

that the Möbius strip is not an orientable surface. FTLE and

LCS are well defined on any Riemannian differentiable

manifold, whether orientable or not.

IV. FINITE-TIME LYAPUNOV EXPONENTS
ON DIFFERENTIABLE MANIFOLDS EMBEDDED IN R

m

The materials in Sec. III can, in principle, be used to

compute FTLE in any Riemannian differentiable manifold,

but it requires knowledge of an explicit atlas. In practice,

however, many manifolds of interest are only described nu-

merically. The maps in the atlas, and hence their derivatives,

might not be known analytically. For this reason, this section

presents a more general method for computing FTLE on dif-

ferentiable manifolds.

The rationale for the method is that any differentiable

manifold of dimension n can be embedded in the Euclidian

space R
m, provided that m is sufficiently large.

62,24
If we

begin with a Riemannian manifold, that is a manifold to-

gether with an inner product at each point, Nash and

Kuiper’s embedding theorem, combined with Whitney’s em-

bedding theorem, guarantees that the manifold can be iso-

metrically embedded in R
m.

41,32
The inner product on the

manifold then corresponds to the Euclidian inner product in

R
m. In other words, it is sufficient to consider only manifolds

embedded in R
m.

A. Finding the local basis

Consider the node pi of the unstructured mesh. As shown

in Fig. 7, we seek the effect of the flow derivative D�t0

t0+T on

vectors in the tangent space Tpi
M but we only have infor-

mation about the motion of the mesh node pi and its

neighbors p1 ,p2 , . . . ,p j , . . . ,pN that are all located on the

manifold M.

We consider that the manifold M is embedded in R
m

and, accordingly, we view the node pi and its neighbors

p1 ,p2 , . . . ,p j , . . . ,pN as vectors of R
m. The objective is to

determine a basis of Tpi
M �seen as embedded in Tpi

R
m

=Rm�. First we consider the N vectors u j =p j −pi

�j=1, . . . ,N�. If the grid size was infinitesimally small, the N
vectors of u j would exactly span the n-dimensional manifold

Tpi
M. In this case, we could find an orthonormal basis of

Tpi
M using the Gram–Schmidt process. Starting with the N

vectors u j �R
m, we would obtain n nonzero orthonormal

vectors ek �since Tpi
M has dimension n, during the Gram–

Schmidt process, N−n vectors would vanish and be elimi-

nated�.

FIG. 5. �Color� FTLE on a cylinder for a positive integration time �upper

panel� and a negative integration time �middle panel�. Corresponding

attractive and repulsive LCS �lower panel� �enhanced online�.
�URL: http://dx.doi.org/10.1063/1.3278516.1�

FIG. 6. �Color� FTLE �upper panel� LCS �lower panel� on a Möbius strip

�enhanced online�. �URL: http://dx.doi.org/10.1063/1.3278516.2�
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When the grid size is finite, the N vectors u j are not

exactly lying in Tpi
M. An orthonormal set of vectors that

approximately spans Tpi
M can, however, still be obtained

using a variant of the Gram–Schmidt process.

Let us begin by normalizing the N vectors u j and defin-

ing û j =u j / �u j�. In a regular Gram–Schmidt, the first vector

of the orthonormal basis is arbitrary. To reconstruct the local

basis from the N vectors û j, we need to avoid the “directions

pointing out of Tpi
M.” More specifically, for each basis vec-

tor candidate û j, we consider how well the other vectors also

align in this direction. The vector ûk− �ûk · û j�û j represents

the portion of ûk that cannot be captured by a projection on

û j. The quantity

�
k=1

N

�ûk − �ûk · û j�û j�
2 �49�

quantifies how well the set of vectors û1 , û2 , . . . , ûN can be

represented by the single vector û j. Accordingly, we define

the first basis vector as

ũ1 = arg min
ûj


�
k=1

N

�ûk − �ûk · û j�û j�
2� . �50�

To get a second basis vector, we proceed by recursion. We

have the direct sum

Tpi
M = span�ũ1
 � Tn−1, �51�

where Tn−1 is a subspace of dimension n−1 that best fits the

remaining N−1 vectors û j �all but the one that was selected

as ũ1�. As a result, we can subtract the projection on ũ1 from

each vector û j and consider the new set of vectors

û j
�2� = �0, if �û j − �û j · ũ1�ũ1� = 0,

û j − �û j · ũ1�ũ1

�û j − �û j · ũ1�ũ1�
, otherwise. � �52�

The second basis vector is then selected as

ũ2 = arg min
ûj

�2�

�

k=1

N

�ûk
�2� − �ûk

�2� · û j
�2��û j

�2��2� . �53�

Note that the search above should be restricted to only N−1

indices k and exclude the index corresponding to the first

basis vector. Nevertheless the first basis vector leads to a

vanishing û j
�2�

and will never correspond to the minimum in

the equation above. As a result, we can keep the N candidates

in the formula above.

Applying the method recursively, we derive the n step

algorithm below.

Initialization:

∀ j = 1, . . . ,N: û j
�1� =

u j

�u j�
.

Loop for i=1, . . . ,n:

ũi = arg min
ûj

�i�

�

k=1

N

�ûk
�i� − �ûk

�i� · û j
�i��û j

�i��2� ,

∀ j = 1, ¯ ,N:

pi

p1 p2

pj

v1

v2

vj

p
′

i

p
′

1

p
′

2

p
′

j

v
′

1

v
′

2

v
′

j

M

Tpi
M

Tp
′

i
M

FIG. 7. Approximation of the defor-

mation tensor �map from Tpi
M to

Tpi�
M� using an unstructured mesh on

a manifold M embedded in R
m.
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û j
�i+1� = �0, if �û j

�i� − �û j
�i� · ũi�ũi� = 0,

û j
�i� − �û j

�i� · ũi�ũi

�û j
�i� − �û j

�j� · ũi�ũi�
, otherwise. �

Termination: After the n steps, the set �ũ1 , ũ1 , . . . , ũn
 is an

orthonormal basis that spans Tpi
M in the limit of infinitesi-

mal mesh elements. The residual error

� = �
k=1

N

�ûk
�n+1��2 �54�

represents how well the n vectors of the orthonormal basis

capture the N input vectors. � vanishes when the number of

neighbors N is equal to n or when the N vectors u j all lie in

a n-dimensional subspace. If the residual error � is too high,

the mesh covering the manifold must be refined.

Given the N neighbors p1 ,p2 , . . . ,pN of a node pi, the

algorithm above provides an orthonormal basis of an ap-

proximation of Tpi
M. According to Sec. III C, since the ba-

sis is orthonormal, the FTLE can be computed directly in

coordinates. We can then process the data gathered on the

unstructured mesh using a method similar to that described

in Sec. II C. In this case the local coordinates are given by

the projection of the vectors p j −pi on the basis vectors. We

write

∀ j = 1, . . . ,N: ∀ k = 1, . . . ,n: 	k
�j� = �p j − pi� · ũ�k� �55�

and the matrix of initial coordinates is given by

X =�
A1i

8Vi
	1

�1� A2i

8Vi
	1

�2� ¯
ANi

8Vi
	1

�N�

A1i

8Vi
	2

�1� A2i

8Vi
	2

�2� ¯
ANi

8Vi
	2

�N�

] ] � ]

A1i

8Vi
	n

�1� A2i

8Vi
	n

�2� ¯
ANi

8Vi
	n

�N�
	 , �56�

where A ji is the hypervolume of all the n-tetrahedra that

contain both pi and p j and Vi is the hypervolume of the

Voronoi cell of node pi �as in Sec. II C�.
Let us denote the image of p j by p j�. We can consider the

N vectors u j�=p j�−pi� and apply the variant of the Gram–

Schmidt to obtain an orthonormal basis �ũ1� , ũ2� , . . . , ũn�
 of

Tpi�
M. Defining

∀ j = 1, . . . ,N: ∀ k = 1, . . . ,n: 
k
�j� = �p j� − pi�� · ũ�

�k�,

�57�

and the matrix of initial coordinates is given by

Y =�
A1i

8Vi

1

�1� A2i

8Vi

1

�2� ¯
ANi

8Vi

1

�N�

A1i

8Vi

2

�1� A2i

8Vi

2

�2� ¯
ANi

8Vi

2

�N�

] ] � ]

A1i

8Vi

n

�1� A2i

8Vi

n

�2� ¯
ANi

8Vi

n

�N�
	 . �58�

Since the two basis are orthonormal, the FTLE at point pi is

approximated by the same formula as in Sec. II C, that is

��pi,t0� =
1

�T�
ln��YX⊤�XX⊤�−1��

=
1

�T�
ln �largest singular value �YX⊤�XX⊤�−1�� .

�59�

B. Exploiting the embedding

The algorithm described in Sec. IV A evaluates FTLE on

any n-dimensional manifold embedded in R
m. Reconstruct-

ing an orthonormal basis in Tpi
M using the Gram–Schmidt

variant is usually straightforward provided that the mesh el-

ements are small enough and well conditioned. If the re-

sidual error is too large, it is always possible to refine the

mesh covering the manifold.

The same remark does not apply to the reconstruction of

the local basis in Tpi�
M. Indeed, the nodes p j� are defined as

the advection of the points p j. The triangles can be strongly

deformed by the flow and the vectors u j�=p j�−pi� might not

be small. The LCS are characterized by locally high values

of FTLE and stretching. Consequently, the deformation of

the mesh is high in the very regions where we need the

highest accuracy.

It is possible, however, to skip the reconstruction of the

basis in Tpi�
M and replace the n�N matrix Y of Sec. IV A

by the m�N matrix containing the coordinates in R
m �in

which the manifold is embedded�. More specifically, we con-

sider the coordinates �
̃
1

�j�
, 
̃

2

�j�
, . . . , 
̃m

�j�� of the vectors u j�

=p j�−pi� and we do not project on a basis of Tpi�
M. The

corresponding n�N matrix is given by

Ỹ =�
A1i

8Vi

̃1

�1� A2i

8Vi

̃1

�2� ¯
ANi

8Vi

̃1

�N�

A1i

8Vi

̃2

�1� A2i

8Vi

̃2

�2� ¯
ANi

8Vi

̃2

�N�

] ] � ]

A1i

8Vi

̃m

�1� A2i

8Vi

̃m

�2� ¯
ANi

8Vi

̃m

�N�
	 . �60�

Since the n-dimensional manifold is embedded in R
m, we

have m�n and the Whitney embedding theorem guarantees

that we can select m�2n.
62,24

The m�N matrix Ỹ is there-

fore larger than the n�N matrix Y. Nevertheless, the matrix

Ỹ does not require the computation of the local basis at the

final position pi� and is simpler to compute. In addition, using
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Ỹ leads to a more precise FTLE value as it does not rely on

the reconstruction of the local basis in Tpi�
M, which can be

imprecise due to the stretching of the mesh near the LCS.

The computation of the FTLE based on Ỹ is identical to

the computation based on Ỹ. The FTLE is given by

��pi,t0� =
1

�T�
ln �largest singular value �ỸX⊤�XX⊤�−1�� ,

�61�

where we substituted Ỹ for Y.

To prove the formula above, recall that M is embedded

in R
m. As a result, the tangent space can be decomposed as

R
m = Tpi�

M � Npi�
M , �62�

where Npi�
M is the normal space. Y is the matrix represen-

tation of D�t0

t0+T :Tpi
M→Tpi�

M. In the limit of infinitesi-

mally small elements, Ỹ is the matrix representation of a map

R
m→R

m that corresponds to the direct sum

D�t0

t0+T
� Om−n, �63�

where Om−n :Tpi
M→Npi�

M is the null operator. For a mesh

whose elements have a finite diameter h, the null operator

must be replaced by hW, with limh→0 hW=Om−n. As a result,

there must be a unitary m�m matrix R such that

RỸR⊤ = 
 Y

hW
� . �64�

Let us define

M = YX⊤�XX⊤�−1 �65�

and

M̃ = ỸX⊤�XX⊤�−1 = R⊤
 YX⊤�XX⊤�−1

hWX⊤�XX⊤�−1 �R . �66�

Direct computation gives

RM̃⊤M̃R⊤ = M⊤M + h2�XX⊤�−1XW⊤WX⊤�XX⊤�−1,

�67�

hence M̃⊤M̃ and M⊤M have the same eigenvalues up to a

term that vanishes as the square of the maximum element

diameter in the mesh �i.e., proportional to the element area�.
Provided that the mesh is sufficiently fine, we do not need to

reconstruct the local basis at the point pi�. We can just list the

coordinates in R
m and use Ỹ instead of Y in the FTLE

formula.

Note that the same trick does not apply to the initial

position. We cannot avoid the reconstruction of the local ba-

sis at pi� and list the Cartesian coordinates in a m�N matrix

X̃. Indeed the product X̃X̃⊤ would have �m−n� eigenvalues

then vanishes with h and it would be close to singular.

It is also worth noting that the product M⊤M we use in

the definition of the FTLE is an approximation of the right
finite-time Cauchy–Green deformation tensor. Although this

option has not been exploited yet, the FTLE can also be

derived using the left Cauchy–Green deformation tensor

MM⊤.
52

The same technique described in this section would

apply to the left Cauchy–Green deformation tensor. Indeed,

we have

M̃M̃⊤ = 
 MM⊤ hM�XX⊤�−1XW⊤

hWX⊤�XX⊤�−1M⊤ h2WX⊤�XX⊤�−2XW⊤
�

= 
MM⊤ hMP⊤

hPM⊤ h2PP⊤
� , �68�

with P=WX⊤�XX⊤�−1. Compared to MM⊤, the matrix M̃M̃⊤

has m−n extra eigenvalues but for sufficiently small h, they

are all smaller than the eigenvalues of MM⊤. Using the

identity

det
A B

C D
� = det�A� det�D − CA−1B� , �69�

we can then show that the matching eigenvalues of M̃M̃⊤

and MM⊤ differ by a term that vanishes as h2. As a result,

we have also

largest singular value �M̃� = largest singular value �M�

+ O�h2� . �70�

C. Example 4: The Antarctic polar vortex splitting
event of 2002

In late September of 2002, over a period of a few days,

the Antarctic ozone hole split in two, with one of the daugh-

ter fragments subsequently reasserting its position over the

pole while the other spread into the midlatitudes. The split is

clearly evident in the ozone concentrations shown in Fig. 8

while the splitting/reformation sequence is shown in Fig. 9.

A split ozone hole implies a split vortex and thus a sudden

stratospheric warming.
54

These types of warming occur in roughly half of all win-

ters in the Arctic
23

and are thought to be produced by the

dynamical momentum forcing resulting from the breaking

and dissipation of planetary-scale Rossby waves in the

stratosphere. Prior to 2002, however, no stratospheric sudden

warming had been observed in the Antarctic, where reliable

records go back half a century. The relatively early warming

�in September� followed by a reforming of the circumpolar

vortex was an unprecedented event. Because of the impor-

tance of the coherence of the stratospheric polar vortex for

stratospheric ozone depletion, the event made it onto the

front pages of newspapers worldwide and became a focus of

the atmospheric science community.
61

Figure 8 shows the

Antarctic ozone hole in September 2001 �1 year before the

split�, September 2002 �split ozone hole�, and September

2003 �1 year after the split�.
We view the event as one that caused a clear and iden-

tifiable topological bifurcation in the stratospheric flow field.

Thus it serves as a prototype atmospheric event on which to

study the effects of topological bifurcations on mixing and

transport of atmospheric tracers. Figure 9 shows the LCS

associated with the splitting event based on the 650 K isen-

trope of the National Centers for Environmental Prediction/

National Center for Atmospheric Research �NCEP/NCAR�
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reanalysis data,
28

an analysis �and forecast� system perform-

ing data assimilation using past data from 1948 to the

present.

To compute the FTLE, we consider the projection of the

points of the Southern hemisphere on the tangent plane at the

equator. In other words, for each point p= �x ,y ,z� in the

Southern hemisphere, we consider the manifold coordinates

�x ,y� and the chart

�−1: D → M: �x,y� � �
x

y

− �R2 − x2 − y2	 , �71�

where R is the radius of the Earth and D is a disk of radius R.

The above coordinates are not orthogonal and the full equa-

tion at the end of Sec. III A must be implemented to obtain

the FTLE. However, instead of computing the 2�2 matrix

representation of D�−1, we will exploit the embedding. The

sphere M is embedded in R
3 and the chart derivative

D�−1 :TpM→Tp�
M can also be seen as a function

D�−1 :TpM→R
3. From this point of view, the matrix repre-

sentation of the embedded chart is of size 3�2 and its QR
decomposition is of the form

D�−1 =�
1 0

0 1

x
�R2 − x2 − y2

y
�R2 − x2 − y2

	 = QR , �72�

where Q is a matrix of size 3�2 satisfying Q⊤Q= I and R is

an upper triangular matrix of size 2�2. Note that the “re-

duced QR decomposition” above is inspired by the Gram–

Schmidt process and does not match the usual QR decompo-

sition, where Q would be of size 3�3 and R would be of

size 3�2. The desired matrices above can, however, easily

be derived either from the Gram–Schmidt process, the modi-

fied Gram–Schmidt process or from the standard �full� QR
factorization.

16

The upper triangular matrix R can be computed analyti-

cally and depends on the coordinates x and y. Its inverse can

also be computed analytically and, according to Sec. III A,

the FTLE is given by the largest singular value of the matrix

R�x,y�MR−1�x0,y0� , �73�

where �x0 ,y0� are the initial coordinates, �x ,y� are the final

coordinates, and M is the matrix containing the finite differ-

ences of manifold coordinates. In other words, we keep track

of the manifold coordinates �x ,y� and we compute finite dif-

ferences as if the space was a plane. The only modification

due to the manifold chart is the multiplication by R�x ,y� �on

the left� and by R−1�x0 ,y0� �on the right� prior to computing

the singular value.

Figure 9 reveals that the computed LCS match the ma-

terial border of the ozone hole. It has been recognized that

transport in the stratosphere is dominated by advection from

large-scale structures and that on a time scale of days to

weeks, the transport is quasi-horizontal, along isentropic

surfaces,
22

i.e., on two-dimensional spherical layers like the

one shown in Fig. 9.

The bifurcating LCS structure is noteworthy in several

ways. The ridges show details of the lobe dynamics associ-

ated with the structures, something that would be more dif-

ficult to obtain from an analysis of potential vorticity fields

because vortex boundaries defined, for example, as potential

vorticity contours or regions of enhanced potential vorticity

gradients are less accurate. Although qualitatively the picture

of the vortex breakup and of the large-scale filamentation in

the LCS figure is similar to what can be seen in the potential

vorticity field, the LCS are more suitable for calculations of

transport �e.g., by lobe dynamics�, for which accurate bound-

aries and small-scale details of the time-dependent vortex

boundaries are needed. As showed by Green et al.17
and

d’Ovidio et al.,9 defining LCS based on Lagrangian criteria

instead of potential vorticity or other Eulerian quantities be-

comes essential for fluids with strong time dependence or in

turbulent regions.

Figure 10 shows how a new LCS appears in the center of

the polar vortex prior to the splitting and separates particles

based on which daughter vortex they will end up in.

We finish this study by discussing the effect of the ma-

trix R in the computation of the FTLE. For this example,

ignoring the matrices R�x ,y� and R�x0 ,y0� does not make

any visible difference in the computed LCS. The value of the

FIG. 8. �Color� The splitting of the Antarctic ozone hole, September 2002, as evident in total column ozone concentrations. September 2001 and 2003 are

shown for comparison �from Ref. 61�. An example of the computed LCS around the time of the splitting and reformation event is shown in Fig. 9 �enhanced

online�. �URL: http://dx.doi.org/10.1063/1.3278516.3�
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FTLE does change, but the variations are small for points

where the FTLE is high; the resulting ridges are almost iden-

tical. The differences get much higher when the chart deriva-

tive has higher variations, for example, considering the flow

near surface topography or along subsurfaces �e.g., invariant

manifolds� of high curvature. However as our calculations

were limited to one chart, specifically the southern hemi-

sphere below the 10S latitude, we did not see large variations

�but note that the FTLE in the chosen chart is clearly incor-

rect as we approach the equator�.
This effect can be understood by analyzing the structure

of the matrices R and M. Near a LCS, the finite-time coor-

dinate deformation tensor M has an exponentially growing

eigenvalue and an exponentially decaying eigenvalue. The

separation between the eigenvalues grows exponentially in

time and there are several orders of magnitude between the

two when we integrate particles for 8 days. In contrast, the

matrices R are bounded �regardless of the integration time�.
Consequently, a large eigenvalue in M induces a large eigen-

value in R�x ,y�MR�x0 ,y0�. The actual value of the FTLE

changes if we ignore R, but, provided that the integration

time is sufficiently large, the ridges will remain the same. An

important corollary is that the LCS computation is robust to

error in manifold modelization.

D. Example 5: A multivortex flow on a sphere

In Sec. IV C, we studied the 2002 splitting of the Ant-

arctic polar vortex using an explicit atlas of the spherical

Earth. An alternate method for computing FTLE in this sys-

tem is to cover the Earth with an unstructured mesh that we

consider embedded in R
3 �see, e.g., left panel of Fig. 11�. As

we follow the mesh nodes in their motion, the algorithm in

Sec. IV B provides an estimate of the FTLE for each of the

nodes. In this setting, the finite differences are taken with

respect to the edges of the two-dimensional meshes but the

differentiated functions are unprojected coordinates in R
3. In

other words, the matrix elements of X �2�N� are differences

between manifold coordinates �projection on the recon-

structed local basis� but the matrix elements of Y �3�N� are

differences in Cartesian x, y, and z coordinates.

By and large, this technique is more convenient and ef-

ficient. It does not require knowledge of analytical equations

of the charts nor the analytical computation of the tangent

bundle. Furthermore, it is simpler to implement and opti-

mize. When applied to the NCEP/NCAR reanalysis data in

Sec. IV C, we obtain the same FTLE field in less computa-

tion time.

To illustrate the method on a different, but related sys-

tem, we consider chaotic advection in a multivortex flow on

a sphere. This system is a semi-analytical model that offers a

useful paradigm for understanding how complicated spatial

structures can arise and evolve, such as the polar vortex split.

As a first attempt to model this event, we consider the mo-

tion of a passive tracer due to velocity field produced by four

self-advecting point vortices, all constrained to the surface of

the sphere �for additional details, see, e.g., Ref. 42�. We con-

sider this the simplest model for capturing some of the dy-

namical features of the event.

Additional important geophysical effects such as

rotation
26,43

or vertical density stratification further compli-

cate these dynamical processes but are not considered here.

The dynamics of point vortices moving on the surface of

a sphere is not as well understood as the corresponding pla-

nar problem.
3

However the model is very relevant both in

FIG. 9. �Color� The left column shows the superposition of the attractive

and repulsive LCS on the 650 K isentrope on the days surrounding the

Antarctic polar vortex splitting event of September 2002 �based on NCEP/

NCAR reanalysis data�. The attracting �repelling� curves, analogous to un-

stable �stable� manifolds, are shown in blue �red�. Before and after the

splitting event in late September, we see an isolated blob of air, bounded by

LCS curves, slowly rotating over Antarctica. In the days leading up to the

splitting, LCS curves form inside the vortex. The vortex pinches off, sending

the northwestern part of the ozone hole off into the midlatitudes while the

southwestern portion goes back to its regular position over Antarctica.

Note the formation of lobe at the edges where chaotic stirring occurs across

the LCS. The right column shows the corresponding daily ozone

concentration �based on NASA TOMS satellite data� �enhanced online�.
�URL: http://dx.doi.org/10.1063/1.3278516.4�
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atmospheric and oceanographic settings when one considers

large-scale phenomena where the spherical geometry of

Earth’s surface becomes important. The full spherical geom-

etry, as opposed to tangent plane approximations, is particu-

larly important when considering global streamline patterns

generated by a given vorticity distribution since the Poincaré

index theorem provides an important constraint on allowable

patterns.
30

These patterns, in turn, provide the dynamical

templates by which one can begin to understand the chaotic

advection of particles in a vortex-dominated flow, a topic

closely related to the dynamics of the point vortices.

Our interest is the simple case of four identical vortices,

initially on a constant latitudinal ring of colatitude �0 with

respect to the pole. When the vortices are evenly spaced

along the ring, the configuration is known to be a relative

equilibrium configuration.
38

We perturb the configuration symmetrically. We define

the perturbation parameter �, which takes the configuration

from its initial square shape ��=0�, to a rectangle ���0�,
ultimately to the singular limit of a two-vortex configuration

��=1�. The vortex motion consists of two frequencies which,

in general, are incommensurate.

FIG. 10. �Color� Prior to the splitting event, repulsive LCS appear in the core of the polar vortex indicating the onset of a bifurcation and a separation line

between particles that will end up in different vortices. To verify the dynamics we initiated two parcels of particles on 20 September, one on each side of the

nascent LCS. The simulation shows that the green parcel �northwest of the LCS� will remain in the core vortex while the purple parcel �southeast of the LCS�
is dragged into the secondary vortex and disintegrate at higher latitude �enhanced online�. �URL: http://dx.doi.org/10.1063/1.3278516.5�

FIG. 11. �Color� Left: Unstructured mesh on the Earth. Center: FTLE for T=10Trel �forward time�. Right: FTLE for T=−10Trel �backward time�.
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For a given �0, the parameter � naturally divides the

phase space into two regimes in which one would expect the

advected particle motion to share certain dynamical charac-

teristics.

For an unperturbed ring of N vortices on the sphere, for

4�N�6, there is a colatitudinal region of instability which

opens up in the equatorial zone, whereas for N�7 the ring is

unstable at all latitudes.
38

In particular, for N=4, the ring is

stable if �0�cos−1�1 /�3�, i.e., �0�54.7°.

The dynamics of the four identical vortices can be de-

composed into a superposition of relative vortex motion

along with a global rotation of the whole system around the

center of vorticity. The relative motion is periodic with pe-

riod Trel and frequency �rel=2
 /Trel. The global rotation can

be characterized by measuring the angular displacement ��0

about the center of vorticity between two configurations

separated by time Trel. The frequency of the global rotation

can be defined as �glob=��0 /Trel. The pair of frequencies

��rel ,�glob� depend on the parameters ��0 ,�� and are gener-

ally incommensurate, implying that the overall vortex mo-

tion is quasiperiodic.

Without loss of generality, we align the center of vortic-

ity with the south polar axis. The global rotation of the vor-

tices is then around the z-axis with frequency �glob. In the

rotating frame, the particle motion corresponds to a periodi-

cally forced Hamiltonian dynamical system that depends, in

general, on the pair of parameters ��0 ,��.42

For illustration, we consider a ring of vortices initially at

latitude �0=30° and with �=0.54, which roughly approxi-

mates the extent of the Antarctic polar vortex. In Fig. 11, we

show the FTLE field for the resulting particle velocity field

and the superimposed attraction and repulsion LCS in

Fig. 12. One notices the prominent rotating saddle point at

the pole with undulating stable and unstable manifolds,

which is also apparent in the real data �Fig. 9�.
Advection in a multivortex flow on a sphere provides an

important link between simple dynamical systems models

and much more complicated models of particle advection in

global geophysical flows, such as the polar vortex.
23,54

Tak-

ing the point of view of building dynamically consistent

simple models, we can add additional vortices of various

strengths, along with realistic rotation models, all of which

avoids the trouble of interpreting results belonging only to a

kinematic model.
22

Techniques developed and tested in these

simpler models for quantifying—and perhaps even

influencing—transport can be useful for more realistic mod-

els of global-scale geophysical phenomena, such as pollution

dispersion in the atmosphere and ocean,
35,2

polar vortex

break-up,
61,23

and large-scale transport of aerobiota, includ-

ing airborne plant pathogens and other invasive species.
1,25,51

V. CONCLUSIONS

This paper introduces numerical techniques for resolving

and representing evolving, and likely convoluted,

�n−1�-dimensional LCS in nonautonomous vector fields on

n-dimensional Riemannian manifolds, where the vector field

is known either analytically or from measured data.

We have shown that LCS exist for systems on any Rie-

mannian differentiable manifold, whether orientable or not.

While our first algorithm for computing FTLE requires

knowledge of charts and chart derivatives and is more theo-

retical in nature, we have developed a general algorithm for

computing FTLE on Riemannian manifolds covered by

meshes of polyhedra. Only the initial positions, the final po-

sitions, and a link list of node neighbors are required to use

the algorithm.

In addition to providing FTLE fields on Riemannian

manifolds, we also showed that the unstructured algorithm

can be efficiently used in Euclidean spaces where it gives the

opportunity to refine the mesh near the LCS while not in-

creasing the number of elements in other regions. Adaptive

meshing is an essential step in achieving FTLE computation

in high-dimensional spaces at a sufficiently high resolution.

High resolution FTLE fields are important for accurate auto-

mated ridge extraction algorithms.

In this paper, we have applied the developed methods to

compute FTLE in two-dimensional Riemannian manifolds.

However, the methods also apply to the computation of

FTLE for three-dimensional flows. In this case, the LCS are

two-dimensional surfaces. More generally, computation of

FTLE for a dynamical system on a n-dimensional manifold

leads to the identification of LCS of dimension n−1.
37

A

library encapsulating all the methods described in this paper

is available at http://www.lekien.com/~francois/software/

libunsdle. The library can compute FTLE on unstructured

meshes in spaces of any dimension �using an embedding or

not�.

FIG. 12. �Color� Superposition of the attractive and repulsive LCS for a

perturbed four vortex ring near the South Pole. As in the LCS shown in

Fig. 9 from atmospheric reanalysis data, the model shows a hyperbolic

region and the formation of filamentary structures that extend

over large portions of the sphere �enhanced online�.
�URL: http://dx.doi.org/10.1063/1.3278516.6�
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We also note that the present paper focuses on comput-

ing the FTLE but the definitions and methods extend easily

to FSLE.
27,31,9

In the finite time approach, we evaluate the

stretching of the elements for a prescribed finite horizon in

time. In the finite size scheme, one marks the time it takes to

reach a prescribed stretching ratio. The techniques developed

in this paper can be applied equally to FTLE or FSLE.

Further developments will include application to higher

dimensional manifolds relevant in mechanics such as prod-

ucts of the Lie groups SO�3�, SE�3�, and their tangent

bundles. With the appropriate visualization tools, computa-

tions in these phase spaces can aid the search for dynamical

structure in mechanical and biomechanical data from experi-

ments or computational models, such as separatrices between

stable and unstable motions.
44,15,49,58,59,50

Additionally, it

may be of interest to detect LCS structure on high-

dimensional invariant manifolds of possibly high curvature,

which are commonly found in phase space, such as energy

manifolds, center manifolds, and stable and unstable mani-

folds.
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