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Two-dimensional image motion is the projection of the three-dimensional motion of

objects, relative to a visual sensor, onto its image plane. Sequences of time-ordered

images allow the estimation of projected two-dimensional image motion as either

instantaneous image velocities or discrete image displacements. These are usually

called the opt~cal fZow field or the Lmage veloctty fzeld. Provided that optical flow is a

reliable approximation to two-dimensional image motion, it may then be used to

recover the three-dimensional motion of the visual sensor (to within a scale factor) and

the three-dimensional surface structure (shape or relative depth) through assumptions

concerning the structure of the optical flow field, the three-dimensional environment,

and the motion of the sensor. Optical flow may also be used to perform motion

detection, object segmentation, time-to-collision and focus of expansion calculations,

motion compensated encoding, and stereo disparity measurement. We investigate the

computation of optical flow in this survey: widely known methods for estimating optical

flow are classified and examined by scrutinizing the hypotheses and assumptions they

use, The survey concludes with a discussion of current research issues.

Categories and Subject Descriptors: 1.2.10 [Artificial Intelligence]: Vision and Scene

Understanding—motion; 1.3,1 [Computer Graphics]: Hardware—th-ee-dmzenszonal

&splays; 1.4.0 [Image Processing]: General—Lmage dzsplays, ~mage processing

soft ware; 1.4.8 [Image Processing]: Scene Analysis—time-uarying imagery; 1.4.10

[Image Processing]: Image Representation—lzierarch zeal; 1.5.0 [Pattern

Recognition]: General

General Terms: Algorithms, Measurement, Theory

Additional Key Words and Phrases: Disparity image displacement, image motion.

image velocity, multiple motions, parameter models, optical flow, transparency

1. INTRODUCTION times more general than optical flow,

A fundamental problem in processing se-
such as parametric models of motion, or

quences of images is the computation of descriptors adapted to restricted con-

optical flow, an approximation to image texts, such as when elements of the ge-

motion defined as the projection of veloci- ometry of the scene or the motion of the

visual sensor are partially or completelyties of SD surface points onto the imag- .

ing plane of a visual sensor. Optical flow predetermined.

is often a convenient and useful image The importance of motion in visual

motion representation. However, there processing cannot be understated: ap-

exist other motion descriptors, some- proximations to image motion may be
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used to estimate 3D scene properties and

motion parameters from a ‘moving visual

sensor,l to perform motion segmenta-

tion, g to compute the focus of

expansion and time-to-collision, 3 to per-

form motion-compensated image encod-

ing,~ to compute stereo disparity,5 to

measure blood flow and heart-wall mo-

tion in medical imagery [Prince and

McVeigh 1992], and, recently, to measure

minute amounts of growth in corn

seedlings [Barren and Liptay 1994;

Liptay et al. 1995].

1See Hay [ 1966], Longuet-Higgins [ 1981], Longuet-

Higgins and Prazdny [ 1980], Prazdny [ 1979], Tsal

et al [ 1982], Tsai and Huang [ 1984], Adiv [ 1985],

Barron et al [1990], Negahdaripour and Lee [ 1992],

Heeger and Jepson [ 1992], Zhang and Faugeras

[ 1992], Zheng and Chellappa [ 1993], De Micheli et

al [ 1993], Glachetti et al. [ 1994], Fermin and Imiya

[ 1994], and Iram et al [ 1994]

‘See Black and Anandan [ 1990], Ogata and Sato

[ 1992], Relchardt et al. [ 1988], Murray and Buxton

[1987], Spacek [1986], Duncan and Chou [1992],

Jam [1984], Bouthemy and Francols [1993], Ancona

[ 1992], Rognone et al, [ 1992], and Enkelmann

[1990].

3See Regan and Beverley [ 1982], Overington [ 1987],

Subbarao [ 1990], Jain [ 1983], Sundareswaran

[ 1992], and Burlina and Chellappa [ 1994].

4See Carpentlerl and Storer [1992], Dubols [1985],

Mounts [ 1969], Musmann et al. [ 1985], Netravali

and Robbms [ 1979], and Zheng and Blostem [ 1993]

5See Barnard and Thompson [ 1980], Cormlleau-

Peres and Droulez [ 1990], Jenkm et al, [ 1991], and

Langley et al. [1991].

1.1 Motion and Structure Paradigms

Traditionally, approximations to image

motion have been used to infer egomo-

tion and scene structure. Towards this

end, different motion and structure

paradigms have been developed,

sometimes using optical flow as an inter-

mediate representation of motion, corre-

spondences between image features, cor-

relations, or properties of intensity struc-

tures. These paradigms are generally

classified into three main groups:

Velocity. Three-dimensional motion

and scene structure may be inferred from

two-dimensional velocity fields [Hay

1966; Longuet-Higgins and Prazdny

1980; Prazdny 19791 by relating the mo-

tion and structure par~meters ~o optical

flow. These parameters include instanta-

neous translation and rotation rates and

possibly surface parameters or relative

depth. Figure 1 shows one frame and its

corres~ondinz owtical flow field for the. u.

synthetic Yosemite fly-through sequence,

produced by Lynn Quam at SRI.

Disparity. Image disparities, either

established as image feature correspon-

dences or local correlations, may be used

to commte three-dimensional transla-

tion ve&ors, rotation matrices, and sur-

face attributes [Longuet-Higgins 1981;

Tsai et al. 1982],

Intensity. Image intensities and their

derivatives are sometimes used directly

to obtain motion and structure parame-

ters,G thus avoiding an explicit interme-

diate representation of image motion

such as optical flow or disparity fields.

Usually, relating image motion estimates

or intensity derivatives to three-dimen-

sional motion and structure parameters

results in sets of nonlinear equations. In

addition, each of these paradigms has its

merits and detractions. deDendin~ on the,.
intended use and the characteristics of

‘See Aloimonos and Brown [1986], Aloi-

monos and Ristigous [ 1986], Horn and Weldon

[ 1987], Negahda&pour and Horn [ 1987], Heel

[ 1990], and Zmner [ 1986]
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Figure 1. (a) A frame of the Yosemite fly-throuzh: image sequence generated by Lynn Quam at SRI; and

(b) Its optical flow.
.

the imagery. However, their evaluation

is beyond the scope of this survey.

1.2 Optical Flow

The initial hypothesis in measuring im-

age motion is that the intensity struc-

tures of local time-varying image regions

are approximately constant under mo-

tion for at least a short duration [Horn

and Schunck 1981]. Formally, if I(x, t) is

the image intensity function, then

~(X, t) = 1(X + 8x, t + ($t), (1.1)

where 8x is the displacement of the local

image region at (x, f) after time 8 t. Ex-

panding the left-hand side of this equa-

tion in a Taylor series yields

I(x, t) =I(x, t) + VI. 8X+ at~, + 02,

(1.2)

where VI = (It, II) and It are the flrst-

order partial derivatives of 1(x, t),and

02, the second and higher order terms,

which are assumed negligible. Subtract-

ing 1(x, t)on both sides, ignoring 02 and

dividing by dt yields

VI. V+ I,=O, (1.3)

where VI = (1X, I> ) is the spatial inten-

sity gradient and v = (u, u ) is the image

velocity.7 Equation (1.3) is known as the

optical fZow constraint equation, and de-

fines a single local constraint on image

motion (see Figure 2). In the figure the

normal velocity v ~ is defined as the vec-

tor perpendicular to the constraint line,

that is, the velocity with the smallest

magnitude on the optical flow constraint

line. This constraint is not sufficient to

compute both components of v as the

optical flow constraint equation is ill-

posed.8 That is to say, only v, , the mo-

tion component in the direction of the

local gradient of the image intensity

function, may be estimated. This phe-

nomenon is known as the aperture prob-

lem [Unman 1979] and only at image

locations where there is sufficient inten-

sity structure (or Gaussian curvature)

can the motion be fully estimated with

the use of the optical flow constraint

equation (see Figure 3). For example, the

velocity of a surface that is homogeneous

or containing texture with a single orien-

tation cannot be recovered optically.

Because the normal velocity is in the

7The row convention for vectors is used, thus x . y

= xy T represents inner product.

8The optical flow constraint equation is one linear

equation m the two unknowns v = (u, u).
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Figure 2. The optical flow constraint equation defines

a hne m veloclty space.

2

apertures

Figure 3. Through apertures 1 and 3. only normal

motions of the edges formmg the square can be

estimated, due to a lack of local structure. Inside

aperture 2, at the corner point, the motion can be

fully measured as there M sufficient local structure;

both normal motions are vmlble.

direction of the spatial gradient YI,

Equation (1.3) allows one to write

– It TI
vl=—

llVIll~ “
(1.4)

Thus, the measurement of spatiotempo-

ral derivatives allows the recovery of nor-

mal image velocity.

From this definition, it becomes clear

that for optical flow to be exactly image

motion, a number of conditions have to

be satisfied. These are: a) uniform illu-

mination; b) Lam bertian surface re-

flectance, and c) pure translation parallel

to the image plane. Realistically, these

conditions are never entirely satisfied in

scenery. Instead, it is assumed that these

conditions hold locally in the scene and,

therefore, locally on the image plane. The

degree to which these conditions are sat-

isfied partly determines the accuracy

with which optical flow approximates im-

age motion. Alternatively, one can mea-

sure the displacement of small image

patches, for example by correlation, in

short image sequences (usually two or

three frames). Such image displacements

constitute a valuable approximation to

image velocity when certain conditions

are met. In particular, the ratio of sensor

translational speed to absolute environ-

mental depth, the 3D vertical and hori-

zontal sensor rotations, and the time in-

terval between frames must be small

quantities [Adiv 1985]. Optical flow may

also be computed as the disparity field

where, given two stereo images or two

adjacent images in some sequence, fea-

tures of interest in the images are ex-

tracted and matched via a correspon-

dence process.

Essentially, performing 2D motion de-

tection involves the processing of scenes

where the sensor is moving within an

environment containing both stationary

ACM Comput]ng Surveys, Vol 27, No 3, September 1995
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and nonstationary objects. Furthermore,

visual events such as occlusion, transpar-

ent motions, and nonrigid objects in-

crease the inherent complexity of the

measurement of optical flow.

1.3 Hierarchical Processing

Traditionally, optical flow was computed

using only one scale of resolution, usu-

ally defined by the visual sensor [Horn

and Schunck 1981], leading to the prob-

lem of measuring large image motions.

In this case, because of low sampling

rates and aliasing effects, Equation (1.3)

becomes inappropriate. A general way of

circumventing this problem is to apply

optical flow techniques in a hierarchical,

coarse-to-fine framework. Hierarchical

frameworks allow the images to be de-

composed in different scales of resolution

in the form of Gaussian or Laplacian

pyramids.g Because of a low-frequency

representation at coarser resolutions, the

optical flow constraint equation becomes

applicable in the case of large image mo-

tions [Kearney et al. 1987]. In addition to

handling fast motions, hierarchical pro-

cessing also offers increased computa-

tional efficiency. In such frameworks,

velocity or displacement estimates are

cascaded through each resolution level as

initial estimates subject to refinement.

At the coarsest level, initial estimates

are computed and then projected onto a

finer level of resolution and refined once

again. The final estimates are obtained

when the refinement reaches the finest

level of resolution (see Figure 4). Hierar-

chical processing is applicable to most

optical flow techniques. For example,

Glazer [1981] adapted Horn and

Schunck’s differential technique to such

a framework, Anandan [1989] used a hi-

erarchical area-based correlation method,

Heeger [1988] proposed a hierarchical

energy-based filtering technique in a

Gaussian pyramid, and Bergen et al.

‘See Anandan [1989], Battiti

mann [1986], Glazer [1987].

et al. [1991], Enkel-

[1992] proposed hierarchical parametric

models for optical flow.

1.4 Problems and Issues

Much progress has been made in optical

flow computation and yet, its accurate

estimation remains difficult because of

numerous theoretical and practical rea-

sons. Theoretically, we believe that opti-

cal flow, as an approximation to image

motion, largely determines the lower

bound on accuracy. In addition, scene

properties such as surface reflectance and

informative image events such as trans-

parency and occlusion were, until re-

cently, not adequately dealt with in most

models of image motion.

Optical Flow and Image Motion. The

interpretation of intensity variation as

pure relative motion is restrictive be-

cause velocity is a geometric quantity in-

dependent of illumination conditions.

Hence, estimating optical flow from in-

tensity variation only approximates

image motion. Conditions which make

optical flow different from image motion

include the absence of texture, in which

case optical flow is zero, and when the

true motion field violates the brightness

consistency model used for its approxi-

mation [Horn 1987]. Uniform scene illu-

mination and Lambertian surface

reflectance are either explicitly or implic-

itly assumed in most current optical flow

methods which use some form of the

brightness consistency assumption.

Highlights, shadows, variable illumina-

tion, and surface translucency are phe-

nomena violating the assumption and

have only been studied to a limited ex-

tent .10

Occluding Surfaces and Independently

Moving Objects. The problem posed by

occluding surfaces is currently being ad-

dressed by the research community. Oc-

clusion is difficult to analyze, despite the

fact that occlusion constitutes an impor-

tant source of visual information: optical

10See Mukawa [1993], Bergen et al. [1992], Fleet

and Jepson [1990], and Jepson and Black [1993].
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Figure4. Thehlerarchlcal computational model.

flow at occlusion boundaries maybe used

to determine the direction of translation

[Longuet-Higgins and Prazdny 1980] and

segment the scene into independently

moving surfaces [Adiv 1985; Thompson

and Pong 1990; Yang and Adelson 1994].

Until recently, most optical flow tech-

niques relied on a single-surface hypoth-

esis [Horn and Schunck 1981], which is a

rare visual event. The difficulty of han-

dling occlusion lies in the fact that image

surfaces may appear or disappear in time,

misleading tracking processes and caus-

ing numerical artifacts in intensity

derivatives.

Transparency. Transparent motions

created by physically translucent sur-

faces are also found in imagery. The

problem posed by transparent motions is

mainly one of handling multiple motion

distributions. Classical approaches to op-

tical flow measurement which use single

motion models are clearly inadequate

[Barren et al. 1994]. Recently, mixed dis-

tributions and superposition principles

have been applied to transparent mo-

tions [Bergen et al. 1992; Jepson and

Black 1993; Shizawa and Mase 1991].

Practical issues in computing optical flow

were addressed in a recent study [Barren

et al. 1994] that analyzed nine tech-

niques dating from 1981 to 1990, for ac-

ACM Comput]ng Surveys, Vol 27, No 3, September 1995
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curacy, density, and reliability of mea-
11 To test the implementa-

surements.

tions of these algorithms, both synthetic

and real data were used. The observed

performance of these algorithms led to

the following conclusions:

PrefWering and Differentiation. Tem-

poral smoothing is required in order to

avoid aliasing, and numerical differentia-

tion must be done carefully. The often-

stated requirement that differential

methods require image intensity be

nearly linear with motions less than one

spatial unit per frame arises from the

use of only two frames, poor numerical

differentiation, or input imagery cor-

rupted by temporal aliasing. With two

frames, derivatives are estimated using

simple backward differences that are ac-

curate only when the input is highly

oversampled and the intensity structure

is nearly linear. When temporal aliasing

cannot be avoided, hierarchical methods,

operating in a coarse-to-fine manner,

provide better results.

Reliability Measures. The need for

confidence measures to indicate the reli-

ability of computed velocities cannot be

understated. These confidence measures

can be used to threshold optical flow

fields or to weight velocities in post-mea-

surement processing (in a motion and

structure calculation, for example). Most

current differential methods do not pro-

vide confidence measures. However, in

Barron et al.’s study [1994], the smallest

eigenvalue of a least-squares matrix

[Simoncelli et al. 1991] was used success-

fully. Other possibilities, including the

determinant of a Hessian matrix (Gaus-

sian curvature) [Waxman et al. 1988],

the condition number of a solution ma-

trix [Fleet and Jepson 1990; Uras et al.

1988], the magnitude of local image gra-

dients, the principal curvature values

11See Horn and Schunck [1981], Nagel [1983a,

1987], Uras et al. [1988], Lucas and Kanade [1981],

Fleet and Jepson [1990], Fleet [1992], Heeger

[19881, Anandan [19891, Singh [ 1990], and Waxman

et al. [1988].

[Anandan 1989], and the eigenvalues of a

covariance matrix [ Singh 1992] were ex-

amined [Barren et al. 1994].

Accuracy. Hierarchical correlation

methods constitute robust motion mea-

surement schemes for image sequences

with significant contrast changes or large

displacements and severe aliasing.lz The

test image sequences used by Barron et

al. [1994] are all appropriately sampled

with small motions (typically between one

and four pixels per frame) and were fa-

vorable to differential approaches. In

spite of this, and as opposed to differen-

tial-based test results, their experiments

demonstrate that correlation methods ex-

perience difficulty with subpixel motions

as their error depends on the closeness of

image motion to an integer number of

pixels. Hierarchical differential-based

methods (using image warping or regis-

tration) may provide an alternative to

correlation methods.

One of the purposes of Barron et al.’s

study [1994] was to analyze the perfor-

mance of different optical flow methods

and to encourage others to compare nu-

merical results with theirs. Towards this

end, several authors now compare the

performance of their techniques with

those of this study for the same image
Is In addition, some eXperi-sequences.

mental work evaluating differential

techniques has recently appeared

[Handschack and Klette 1995]. Unfortu-

nately, a quantitative analysis is often

impossible for real image data (to obtain

the correct optical flow, one needs the

three-dimensional motion parameters as

well as the three-dimensional depth val-

ues everywhere). In this case, only a

qualitative analysis may be performed,

12Dutta et al.’s stop-and-shoot sequences constitute

interesting image sequence examples [ 1989].

“;See Bober and Kittler [1994], Haglund [1992],

Weber and Malik [1993], Liu et al. [1993], Black

and Jepson [1994], Xlong and Shafer [1994],

Haddadi and Kuo [1992], and Fleet and Langley

[1995b].
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but it was observed that some optical

flow fields, while being less accurate

quantitatively, may appear better quali-

tatively, such as those obtained with

methods incorporating global smoothing

constraints. An obvious way to evaluate

optical flow computations and yet avoid a

quantitative analysis is to use the com-

puted optical flow field in a motion and

structure calculation and examine the

accuracy of the 3J) motion parameters.

De Micheli et al. [1993] used optical flow

fields obtained with the method of Uras

et al. [1988] to estimate time-to-collision

and angular velocity in a Kalman filter

framework with good accuracy. More re-

cently, Barron and Eagleson [1995] have

proposed a motion and structure algo-

rithm to compute general first- and sec-

ond-order 3D motion and structure

parameters from time-varying optical

flow, also in a Kalman filter framework.

1.5 Scope and Purpose

There exist numerous computational

models for estimating image velocity,

which we classify into the following main

groups: intensity-based differential meth -

ods,l~ frequency-based filtering

methods,15 and correlatiombased meth -

ods. 16 In addition, there exist methods

for the computation of discontinuous

or multiple-valued optical flow and tech-

niques for performing temporal refine-

ments of motion estimates as more infor-

mation becomes available through the

image-acquisition process. These meth-

liSee Longuet-Hlggms and Prazdny [ 1980], Horn

and Schunck [ 1981], Lucas and Kanade [ 1981], Tre-

tiak and Pastor [ 1984], Enkelmann [ 1986], Glazer

[ 1987b, 1987a], Nagel [ 1983b, 1987, 1989], Uras et

al. [ 1988], Alsbett [ 1989], Tmtarelll and Sandml

[1990]. Schnorr [1991, 1992], S~moncell~

[ 1991], Sobey and Srmlvasan [1991], Black [1992].

Bergen et al. [ 1992], and Fleet and Langley [ 1995 b].

I“See Fleet and Jepson [ 1990], Grzywacz and Yullle

[ 1990], Heeger [ 1988]. and Watson and Ahumada

[1985]
15 see Anandan [1989], Barnard and Thompson

[ 1980], Kalivas and Sawchuk [ 1991], Korles and

Zimmerman [1986], Scott [ 1987], Smgh [ 1990], and

Sutton et al [ 1983]

ods are classified into the following

groups: multiple motion methods and

temporal refinement methods.

Most of these approaches can be un-

derstood as being comprised of three con-

ceptual stages of processing: prefiltering

(low-pass or band-pass) in order to ex-

tract signal structures of interest and to

enhance the signal-to-noise ratio, mea-

surement t extraction of the basic image

structures, such as spatiotemporal

derivatives or local correlation surfaces,

and measurement integration either by

regularization, correlation, or a least

squares computation. These approaches

are thought to be broadly equivalent

[Adelson and Bergen 1985, 1986] al-

though differences in implementation can

lead to significant differences in perfor-

mance. Given this particular classifica-

tion, this survey covers the optical flow

techniques that do not require solving

the correspondence problem. Hence, ar-

eas that are not covered by this survey

are feature-based matching methods in-

volving the correspondence problem and

stereo approaches to image motion.

One of the most fundamental uses for

optical flow is the computation of 3D

motion and structure. Typically, these

reconstruction algorithms are ill-condi-

tioned17 and the accuracy of optical flow

becomes of extreme importance. Achiev-

ing more accurate optical flow calcula-

tions requires not only careful attention

to details, but also that realistic imaging

properties be taken into account. In this

survey, we examine both older and newer

approaches to optical flow, with particu-

lar attention devoted to how the newer

approaches address the accuracy, den-

sity, and reliability issues raised by

Barron et al. [ 1994]. A recent survey

[Aggarwal and Nandhakumar 1988]

shows the current state-of-the-art up to

1988 not only for optical flow algorithms,

but also for feature-based motion algo-

rithms that require a solution to the cor-

respondence problem, and for motion and

lTAs opposed to the computation of optical flow,

whmh is L1l-powd,
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structure algorithms based on these two

paradigms.

2. OPTICAL FL(3W TECHNIQUES

We survey the following classes of optical

flow techniques: a) intensity-based differ-

en tial methods, b) multiconstraint meth-

ods > c) frequency-based methods, d)

correlation-based methods, e) multiple

motion methods, and f) temporal refine-

ment methods. The boundaries between

each class of methods are not always

clear: Weng’s method [1990] incorporates

both phase-based and feature-based

matching whereas Waxman et al.’s [ 1988]

applies a differential scheme on time-

varying edge maps. We classify the for-

mer as a phase-based method and the

latter as a differential method. In addi-

tion, multiple motion and temporal re-

finement methods for optical flow overlap

with other classes. However, their impor-

tance dictates that they be covered sepa-

rately. Following this classification, we

describe representative examples of cur-

rent state-of-the-art work in optical flow

measurement.

2.1 Differential Methods

Differential techniques compute image

velocity from spatiotemporal derivatives

of image intensities. The image domain

is therefore assumed to be continuous (or

differentiable) in space and time. Global

and local first- and second-order methods

based on Equation (1.3) can be used to

compute optical flow. Global methods use

(1.3) and an additional global constraint,

usually a smoothness regularization

term, to compute dense optical flows over

large image regions. ls Local methods use

normal velocity information in local

neighborhoods to perform a least squares

minimization to find the best fit for v.

The size of the neighborhood for obtain-

ing a velocity estimate determines

whether each individual technique is lo-

cal or global. A surface or contour model

18Often, the entire image is considered.

may also be used to integrate normal

velocities into full velocity. Occlusion,

manifested by discontinuous optical flow,

can be analyzed by line processes, mixed

velocity distribution, or parametric mod-

els. These techniques perform the seg-

mentation of optical flow into regions cor-

responding to various independently

moving objects or surfaces. Large 2D mo-

tions may be analyzed in a hierarchical

framework, possibly in conjunction with

warping methods.

2.1.1 Global Methods

Often, an explicit use of (1.3) is made in

conjunction with a regularization term

(usually a smoothness constraint).lg

Combined, they form a functional which

is minimized over the image domain.

Regularization by requiring a slowly

varying optical flow field was first intro-

duced by Horn and Schunck [1981] to

disambiguate normal measurements. It

was justified by the claim that neighbor-

ing velocities, if corresponding to the

same object surface, should be nearly

identical. These constraints were used to

define an error functional:

/( (VI. v + 1,)2 + A’ tr((Vv)~(Vv))) dx
D

(2.1)

over a domain of interest D, where v =

(u, u). The solution for v is given as a set

of Gauss-Seidel equations which are

solved iteratively. Uniform illumination

(at least locally) in the image domain of

interest, orthographic projection, and

pure translational motion parallel to the

scene are conditions that must be met for

the brightness constancy assumption

(dI/dt = O) to be satisfied. These hy-

potheses reduce the set of admissible vi-

sual events to restricted cases of realistic

time-varying imagery and motivate the

‘9 See Aisbett [1989], Bergen et al. [1992], Enkel-

mann [1986], Glazer [1987b, 1987a], Horn and

Schunck [1981], Nagel [1983a, 1983b, 1987],

Schnorr [1991, 1992].
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investigation of constraints generating

more applicable equations. For instance,

motion may cause a change in the den-

sity of features in a local image neighbor-

hood. Schunck [ 1985] accounts for this by

modifying ( 1.3), using the continuity

equation from fluid dynamics and trans-

port theory to obtain:

W. V+ I(U1+ U,)= –It. (2.2)

This equation is equivalent to (1.3) but

for an additional term containing flow

divergence which expresses expansion or

compression of an image neighborhood as

it undergoes an affine transformation.zo

Nagel [ 1989] suggests that the optical

flow constraint equation should be ex-

plicitly based on the geometric properties

of the 3D scene and derives

““v+’=’’t=a ’23)
where P is a 3D environmental point, P

is its 3D velocity, and ii is a unit vector

along the line-of-sight axis. This equation

assumes a known scene geometry. An

experimental evaluation of these con-

straints [Equations (1.3), (2.2), and (2.3)]

in Willick and Yang [1989] demonstrates

that ( 1.3) has slightly better accuracy

when applied to ray-traced synthetic

data. Negahdaripour and Yu [1993] pro-

pose replacing (1.3) with a more general

constraint that models a linear temporal

transformation of the image intensity

values. Prince and McVeigh [1992] derive

the variable brightness optical flow equa-

tion for an application using MR (mag-

netic resonance) image sequences. This

equation accounts for the fact that dI/dt

# O in these images by modeling inten-

sity changes over time as a function of

MR parameters, motion, and an initial

magnetically induced tag pattern.

Luettgen et al. [1994] present a multi-

‘(’An affine transformation includes translation, ro-

tation, and foreshortemng and may be expressed

with SIX parameters the Image velocity and Its

first-order derivatives

scale stochastic algorithm to regularize

Horn and Schunck’s smoothness con-

straint. The algorithm is noniterative and

provides confidence measures (multiscale

error covariance statistics) to determine

the optimal resolution level of optical flow

fields. The framework is generalizable to

other regularization problems. Mukawa

[1990] proposes a regularization method

to compute optical flow with a global

smoothness constraint and other con-

straints that model both diffuse and

specular lighting effects (via Phong shad-

ing) for a moving object in a scene with

one light source. The term being regular-

ized is

+ /-Lx((ql–CIX)2+ (qy –CI,)2]
R

+ II Z(c: +C:)=o.

R

(2.4)

The first term incorporates Horn and

Schunck’s smoothness constraint [1981].

The second term is the optical flow con-

straint equation with an additional term

q that is the difference of diffuse and

specular luminance over time, as first

suggested by Cornelius and Kanade

[ 1983]. The third and fourth terms ex-

ploit a relationship between the spatial

derivatives of luminance (q, and qY ) and

the original image intensity derivatives:

q, = c1. and qj = CIY. c is a function that

involves computing the ratios of diffuse

luminance at different times. The fourth

term ensures that c varies smoothly. A,

w and ZJ are simply constants weighing

the relative importance of each term in

the minimization.

2.1.2 Local Models

Local models of velocity assuming single

motion patterns are also common. For

example, Lucas and Kanade use a local

constant model for v [1984, 1981] which

is solved as a weighted least squares so-
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lution to (1.3). Velocity estimates are

computed by minimizing

z W2(X)(VI(X, t) “ V + 1,(X, t))’, (2.5)
XER

where W(x) denotes a window function

and R is a spatial neighborhood. Solu-

tions for v are obtained in closed form.

Modifications suggested by Simoncelli et

al. [1991] allow the use of the eigenval-

ues of the least squares matrix involved

in solving (2.5) as confidence measures in

subsequent processing. Chu and Delp also

use a local least squares approach [1989]

and solve (1.3) with a total least squares

calculation that accounts for errors in It

and also for independent errors in It and

lY .Z1 Weber and Malik [1993] also use

total least squares in their multicon-

straint approach, Campani and Verri

[1990] use a local model that assumes

first-order variation in local motion mea-

surements: an overconstrained system of

equations is solved with least squares to

recover velocity and its spatial deriva-

tives. However, these local models tend

to react poorly in the presence of multi-

ple motions within the neighborhoods

over which they operate.

The aperture problem may be analyti-

cally resolved by differentiating the opti-

cal flow constraint equations to obtain

equations involving second-order inten-
22 These constraints gen-

sity derivatives.

erally provide two or more equations in

the two components of v and, when non-

singular, can be used to obtain full mo-

tion estimates. For instance, Uras et al.

[1988] use the constraint

(VVI)VT = –VI, (2.6)

‘1 Consider fitting a line y = mx + b to noisy y

values. In standard least squares, this is accom-

plished by minimizing the vertical distance of each

y value from the fitted line assuming noiseless x

values. In total least squares, it is assumed that

there is noise in both the x and y values and the

technique minimizes the perpendicular distance of

y values from the fitted line [Zoltowski 1987].
22See Haralick and Lee [1983], Nagel [1983a, 19871,

Reichardt et al. [1988], Tretiak and Pastor [1984],

and Uras et al. [1988].

which results in an analytical expression

for both components of v at a single im-

age point. Nagel [1987] shows that image

points with high Gaussian curvature,

such as grayvalue corners, allows the re-

covery of full velocity in closed form.’d

Both Haralick and Lee [1983] and

Tretiak and Pastor [ 1984] use a combina-

tion of (1.3) and (2.6) to overcome the

aperture problem at individual image

points and to estimate full velocity.

Another local approach, which avoids

the need to estimate intensity deriva-

tives altogether, uses the Gauss diver-

gence theorem to convert the optical flow

constraint equation into

—– ~uIdydt + ~vIdxdt
s s

(2.7)

/
– I(uX + vy)dxdydt

v

/
+ Idxdy=O,

s

where S and V denote local integration

over surfaces and volumes of intensity

data [Gupta et al. 1993]. The size of the

surface and volume neighborhoods must

be sufficient to overcome the aperture

problem.

2.1.3 Surface Models

Pioneering work by Longuet-Higgins and

Prazdny [1980] examines the form of the

optical flow field for a moving monocular

observer in a rigid scene. They derive the

well known image velocity equation,

relating 3D motion and depth parame-

ters to 2D image motion (approximated

as optical flow). They show that these

parameters could be recovered from opti-

cal flow and its first- and second-order

derivatives. Longuet Higgins [ 1984] de-

23Gaussian curvature may be expressed as

det(VV1 ).
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rives the conditions necessary to recover

motion and structure from planar sur-

face motion. It is shown that two planes

with distinct surface orientations that are

engaged in different 3D motions may

have the same optical flow field. Wax-

man and Wohn [1985] describe the duaz

nature of these motion and structure pa-

rameters: one set of parameters can be

derived from the other. Subbarao and

Waxman [19851 demonstrate that these

solutions are unique over time. Horn

[1987] proves that multiple interpreta-

tions of a single optical flow field gener-

ated by arbitrarily shaped surfaces occur

only rarely.

A number of planar motion techniques

rely on normal velocity being available.24

Waxman and Wohn’s Velocity Functional

method [1985] assumes that a velocity at

a point on a curved surface can be ap-

proximated by a second-order Taylor

series expansion about that point. For

velocity v = ( ZL, u), one obtains

1 d2v
V(x, y)=v(o, o)+:+; +——

2 (7X2

r72v 1 l?2v
+— +–—

dx fly 2 ,Iyz “
(2.8)

Using the normal velocity constraint

equation, lj~ = v . n, a linear equation in

twelve unknowns, the two components of

v and their first- and second-order

derivatives, are obtained. Given twelve

or more normal velocities in a local

neighborhood on the curved surface,

these parameters can be recovered. In

the event that the local surface is planar,

then

~2v

[1

~zu

—=2— ,0 ,
(?X2 dx dy

‘~ The measurement of first-order spatiotemporal

density derivatives allows the computation of nor-

mal velocity

(72V

H
d2u

— ‘ oj2—2 (2.9)
r]y dx dy ‘

allowing (2.8) to be written as one equa-

tion in eight unknowns. Hence, only eight

normal velocities are required to recover

the velocity of a planar surface.

Murray and Buxton [ 1984] derive a

relation between normal velocity param-

eters of a planar surface, leading to a

linear equation of the form

Ilvlll; = c “ p, (2.10)

where vectors c and p contain expres-

sions for image coordinates of normal ve-

locity, the 3D motion parameters and the

planar surface normal. Given eight nor-

mal velocities, the components of p can

be determined and full velocity is ob-

tained as:

[

X2 Xy

v= Plx+P2Y –P3f+P7—+P8— ~
ff

2

1
P4x +Ps Y ‘P6f+p?z ‘p8~

ff

(2.11)

Further mathematical manipulation of p

yields equations for the recovery of 3D

motion parameters and surface orienta-

tion. If the aperture problem cannot be

overcome for some image locations in a

neighborhood, but surface parameters

can be estimated, then, because of the

use of a surface model, an image velocity

for each of these locations may be

inferred.

2.1.4 Contour Models

Many differential approaches to image

motion estimation rely on the presence of

contours or edges in image sequences.25

The computational stages of these meth-

ods consist of the extraction of relevant

image contours with prefiltering tech-

‘s See Buxton and Buxton [ 1984], Duncan and Chou

[ 1992], Hildreth [ 1984], Perrone [ 1990], and Wax-

man et al. [1988]
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Contour

NorrnaI F]OW

Es(mates Aiong

The Contour

True Velocity

least two normal flow

contour are different, then the full velocity of the contour can

Figure 5. If at estimates along a

be uniquely determined

niques followed by a differential estima-

tion of image motion. Essentially,

contours or edges exhibit strong signal-

to-noise ratios which facilitate their ex-

traction. In addition, it is a common be-

lief that they correspond to significant

image structures, although this claim

cannot be supported in any rigorous sense

[Fleet 1992]. In addition, computing opti-

cal flow at edges often leads to sparse

flow fields (usually, 10% of the field or

less, depending on the density of edges).

Hildreth [1984] proposes a smoothness

constraint to be applied to normal veloc-

ity estimates along contours extracted

from time-varying images. For a contour

S, the normal velocity estimates should

minimize

(2.12)

If at least two normal velocity estimates

along S are different, then the minimiza-

tion of the preceding integral yields a

unique velocity field at contour S (see

Figure 5). In practice, the functional

C7v 2

f(–)+B(V - ii – IIV111Z)2 dS,
(3s

(2.13)

where n is a unit vector in the direction

Ofvl , is minimized along contours. /3 is

a weighting factor and (v “ ii – Ilv ~ II2)2

expresses the squared difference between

estimated normal velocity and that pre-

dicted by the solution. Gong and Brady

formulate a similar constraint to be mini-

mized which includes a least squares dif-

ference term for tangential velocity

[1990]:

dv 2

J(–)+P(V o n – IIVLIIZ)2 dS
ds (2.14)

where t is a unit vector perpendicular to

n and a is a scalar expressing the confi-
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dence associated with the tangential

component of v, proportional to the de-

terminant of the Hessian matrix of the

underlying intensity structure. They

demonstrate that the tangential compo-

nent of v can be reliably estimated wher-

ever the determinant of the Hessian is

nonzero.

Buxton and Buxton’s method [ 1984] for

estimating optical flow is based on a

model of the motion of edges in image

sequences. They note that the signal-to-

noise ratio is enhanced at locations of

significant image features such as edges.

Their approach, guided by psychophysi-

cal evidence of spatiotemporal f~ltering in

human early visual processes, is a direct

extension of the Marr and Hildreth

center-surround edge detection operator

[ 1980]. They compute spatiotemporal

zero-crossings by convolving

[(
1 (?2

S(x, t)=– -r2+7— 11G(x> t)
u- dt2

(2.15)

with an image sequence, where the fh-st

term is the d’Alembert operator and the

second term is a Gaussian function, given

by

where the parameters a and u control

the spread of the envelope. Normal veloc-

ities can then be estimated at zero-cross-

ings by computing the partial first-order

derivatives of S’(X, t)as

St VS
vL=—

11’rs1122
(2.17)

with a least sauares calculation. The

choice for the values of the parameters a

and u is made a priori as the distribution

of edges in the image is unknown.

Duncan and Chou define a temporal

edge detector that minimizes the effects

of temporal variations in illumination

[ 1992]. The edge detector is the second-

order temporal derivative of a Gaussian

function:

~2G(t)
St(x, t) =

~t2

(2.18)
–2s3

—– ~(1 – 252t2)e.. <2t’

which is convolved in time with the im-

age sequence to produce a set of zero-

crossings induced by moving edges. The

authors theoretically and experimentally

show that variance in illumination does

not create zero-crossings in S~(x, t).Cen-

tral differences are used to estimate the

first-order derivatives of St in local

neighborhoods. Normal velocities are

computed as

(?St
-vS+. v, –— = o, (2.19)

C7t

which is equivalent to the usual optical

flow constraint equation. Lines defined

by v, are then intersected in local image

regions to obtain full velocity estimates.

Successful experiments are presented

with synthetic images containing signifi-

cant illumination variations.

Waxman et al. [1988] apply spatiotem-

poral filters to edge maps in order to

measure velocity at edges extracted with

DOG zero-crossings [Marr and Hildreth

1980]. Given a binary edge map E(x, t),

an activation profile A(x. t) is created by

smoothing the edge map with a spa-

tiotemporal Gaussian filter:

A(x, t)= G(x. t,o-., aY, a,)* E(x, t)

(2.20)

to which a differential method is applied.

At edge locations, where the Gaussian

profiles are centered, the spatial gradient

of A should be zero, and therefore a

second-order approach is adopted. The

velocity estimates are given by

(
A2tA,, –A,, ALV

v=
AXXA,, V –A:,( ‘

(2.21)
AY, AXX – AX, AX,

.)
AXXAJj –A~v “ ‘
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where derivatives of A are computed by

convolving the appropriate Gaussian

derivative kernels with the edge maps.

A different method for tracking edges

via zero-crossings is to use a radial con-

figuration of IDOG operators. Perrone

[1990] presents such a model to measure

normal velocities of moving edges. In the

radial configuration, temporal differ-

ences in the responses of the operators

provide sufficient information towards

determining normal velocity. A constant

model can then be applied to the normal

velocity distributions to obtain full

velocity.

2.1.5 Multiconstraint Methods

Multiconstraint methods use multiple in-

stances of Equation (1.3) or (2.6) to pro-

vide unambiguous expressions for image

motion at single image points.2G Liu et al.

[1993] use Equations (1.3) and (2.6): they

expand the spatiotemporal image with

Hermite polynomials and solve for v us-

ing standard least squares. Residual of

fit, condition number, and determinant

of the least squares matrix act as con!ii-

dence measures on the final optical flow

field, Overconstrained systems of equa-

tions can also be obtained with multiple

light sources [Woodham 1990] or by us-

ing images acquired with visual sensors

tuned to different regions of the light

spectrum. Spectral images include those

in the visible (three color planes) and

infrared spectrum. Markandey and

Flinchbaugh [1990] show that their mul-

tispectral approach produced similar ac-

curacy to Horn and Schunck’s algorithm

[1981] for synthetic image data and an

outdoor scene.

Functions other than (or coupled with)

intensity may be substituted in the opti-

cal flow constraint equation to obtain

overconstrained systems. These functions

can be thought of as the output of opera-

‘G See Woodham [1990], Liu et al. [1993], Srini-

vasan [1990], Sobey and Srinivasan [1991], Weber

and Malik [1993], Mitiche et al. [1987], and

Tistarelli and Sandini [1990].

tions applied to the image intensities.

For example, responses of pairs of lin-

early independent filters can be used

jointly with the optical flow constraint

equation for this purpose [ Srinivasan

1990; Sobey and Srinivasan 1991; Weber

and Malik 1993]. Mitiche et al. [1987] use

an overconstrained system of equations

constructed from the optical flow con-

straint equation for the same point in a

number of different images, derived from

the original one, generated by applying

functions to compute local values for con-

trast, average, variance, entropy, me-

dian, and power content. Srinivasan

[1990] proposes a similar approach,

using an overconstrained system of equa-

tions derived from images that are gener-

ated by applying six specialized spa-

tiotemporal filters on the original im-

ages. However, the aperture problem still

cannot be resolved when facing singulari-

ties in overconstrained systems of equa-

tions: these occur for particular intensity

structures, including uniform intensity

regions, highly structured or periodic

textures, etc.

2.1.6 Hierarchical Approaches

Differential optical flow methods also ex-

hibit problems with large 2D motions,

due to low sampling rates, thus violating

the Shannon sampling theorem. Apply-

ing differential methods in a coarse-to-

fine manner alleviates such problems.

Image warping may be used to keep the

images sufficiently well registered at the

scale of interest so that numerical differ-

entiation can be performed. Bergen et

al.’s hierarchical framework [1992] uni-

fies several different model-based optical

flow methods. Using a parametric model

based on affine transformations, scene

rigidity, surface planarity, or general mo-

tion in an image region allows one to

both judge the quality of the fit to the

data (perhaps splitting the retion if nec-

essary), and to fill in sparse optical flow

fields with the computed parameters.

Differential-based hierarchical frame-

works are proposed by Glazer [1987a,

1987 b], Enkelmann [1986], and Battiti et
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al. [1991]. In addition, Bergen et al. [1992]

show that many models of motion can be

expressed within a hierarchical frame-

work. Adaptive hierarchical methods

with respect to scale have also appeared

in Battiti et al. [ 1991], Koch et al. [1991],

Whitten [1990]. and Luettgen et al.

[1994].

2.2 Frequency-Based Methods

A second class of optical flow techniques

is based on the use of velocity-tuned fil-

ters. These techniques use orientation

sensitive filters in the Fourier domain of

time-varying images.J7 Among advan-

tages brought by these methods, it is

found that motion-sensitive mechanisms

operating on spatiotemporally oriented

energy in Fourier space can estimate mo-

tion in image signals for which matching

approaches would fail. For example, the

motion of random dot patterns may be

difficult to capture with feature-based or

correlation-based methods, whereas, in

Fourier space, the resulting oriented en-

ergy may be more readily extracted to

compute motion [Adelson and Bergen

1985].

The Fourier transform of a translating

2D intensity signal specified in (1.1) is

f(k, co) = fo(k)NvTk + CO), (2.22)

where ~o(k) is the Fourier transform of

1(x, O) and x denotes spatial position. 8 is

a Dirac delta function and k, O.Jdenote

spatiotemporal frequency. This yields the

optical flow constraint equation in

frequency space:

d’k+co=o, (2.23)

which shows that the velocity of a trans-

lating 2D pattern is a function of its

spatiotemporal frequency and forms a

27See Adelson and Bergen [ 1985], Fleet and Jepson

[1990], Grzywacz and Yullle [1990], Heeger [1988],

and Watson and Ahumada [ 1985]

plane through the origin of the Fourier

space.

2.2.1 Orientation Selectwe Filtering

Adelson and Bergen [ 1985] propose a

class of computational schemes that ex-

ploits the fact that detecting image

motion is equivalent to extracting spa-

tiotemporal orientation. Gabor filtering

is presented as a technique for extracting

spatiotemporal energy. A Gabor filter is a

Gaussian function multiplied by a sine or

cosine wave. For example, the function

is a 3D sine (odd) Gabor filter, where

(k, a) is the central frequency at which

response amplitude peaks. Adelson and

Bergen note that the response pattern of

such filters is affected by the contrast of

the signal: stimuli with low contrast gen-

erate low response amplitudes and vice

versa. Because the measurement of ve-

locity is independent of contrast ampli-

tudes, it is suggested that one use ratios

of responses from different filters for the

extraction of velocity estimates.

Jahne [ 1990] demonstrates that detec-

tion of spatiotemporal orientation is

analogous to eigenvalue analysis of the

inertia tensor. For instance, a point at

the origin of Fourier space corresponds to

a region of constant intensity and corre-

sponds to zero eigenvalues in tensor

space. Also, a line in frequency space is a

spatially oriented pattern moving with

constant velocity, and its normal velocity

can be obtained with the eigenvector cor-

responding to the zero eigenvalue.

Finally, a plane through the origin ex-

presses a spatially distributed pattern

moving with constant velocity and the

eigenvector associated with the maxi-

mum eigenvalue of the inertia tensor

gives the full velocity of the pattern.

Hence, Jahne [1990] suggests the use of
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inertia tensor analysis for detecting spa-

tiotemporal orientation and to avoid the

computational expense arising from the

large number of filters involved in both

Heeger’s [1988] and Fleet and Jepson’s

methods [1990]. However, this algorithm

was only tested on simulated image data.

Barman et al.’s work [1991] is similar to

Jahne’s, as they use spatiotemporal fil-

tering to recover both velocity (and

depth-scaled disparity in the case of mo-

tion stereo) and acceleration. A tensor is

computed from the response of six or

more quadrature filters, evenly spread in

one half of the Fourier space. Eigenval-

ues and eigenvectors of the tensor allow

one to determine which of several formu-

lae can be used to compute full or normal

velocity, if possible. Acceleration may also

be recovered as curvature of the spa-

tiotemporal surface in frequency space

[Barman 1991].

Often, these frequency-based velocity

techniques are presented as biological

models of human motion sensing:

Watson and Ahumada [1985] define an

orientation-selective mechanism that

agrees with psychophysical measure-

ments of human motion sensing. Their

mechanism uses a combination of 2D

spatial Gabor functions and lD temporal

filters tuned to several orientations for

the estimation of local image velocity.

The integration of the responses of these

sensors discriminates local measure-

ments as each sensor within a directional

group provides a linearly independent

component of the velocity vector.

Grzywacz and Yuille [1990] also propose

a frequency-based model of visual motion

sensing. Their model uses 3D orienta-

tion-selective Gabor filters to measure

motion energy in frequency space. Esti-

mates of velocity are also obtained by

integrating the responses of populations

of filters on a local basis.

2.2.2 Phase-Based Filtering

The method developed by Fleet and

Jepson [1990] defines component velocity

in terms of the instantaneous motion of

level phase contours in the output of

band-pass velocity-tuned Gabor filters.zs

These filters are used to decompose the

input signal according to scale, speed,

and orientation. Each filter output is

complex-valued and can be expressed as

A?(x, t) = p(x, t)e’d(x’~), (2.25)

where P(X, t) and 4(x, t) are the ampli-

tude and phase part of the output signal.

The component 2D velocity in the direc-

tion normal to level phase contours is

given by

–+,(X, t)vfw, t) (2 26)

VL =
Ilv@(x, t)ll; “ “

4,(x, t) is the temporal derivative of the
phase and V@(x, t) is its spatial gradient.

Phase derivatives are computed using the

identity

Im[R*(x, t) VR(x, t)]
v~(x, t) =

lR(x, t)12 ‘

(2.27)

where R* is the complex conjugate of

R(x, t), VR(X, t)is the gradient of R(x, t),

and Im denotes the imaginary part of a

complex number. Fleet and Jepson relate

velocity to local phase information be-

cause of the relative insensitivity of the

phase signal to amplitude variations due

to changes in scene illumination. These

distortions are often a consequence of the

geometry of perspective projection. Com-

ponent velocity can be obtained from the

output of each velocity-tuned channel on

the condition that the phase signal is

stable, Usually, instabilities are associ-

ated with neighborhoods about phase

singularities that may be detected with a

constraint stating that the distance be-

tween the instantaneous frequency and

the peak tuning frequency of the filter

should be minimal. Such a constraint,

when met, is sufficient to avoid velocity

estimation at phase singularities.

‘E The term component velocity is used to denote

the velocity normal to local phase structure whereas

normal velocity denotes velocity normal to local

intensity structure.
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Because each channel is considered inde-

pendently, there may be multiple mea-

surements at a single image location.

Then, if there is a sufficient number of

estimates, full velocity is recovered at a

single point or in a small neighborhood

by solving a linear system of equations

relating the measurements to an affine

model of optical flow. As currently formu-

lated, Fleet and Jepson’s method does

not provide confidence measures. There

is also a requirement for a large number

of filters to cover frequency space. In ad-

dition, it is interesting to note that local

phase information is also used in stere-

opsis for the measurement of image dis-

parities by Jenkin et al. [ 1991] and Lang-

ley et al. [ 1991]. Weng [ 1990] demon-

strates that the phase part of a signal in

a particular frequency channel provides

sufficient information to reconstruct the

signal within a multiplicative constant.

Windowed Fourier phase is used as the

correlation primitive in Weng’s matching

algorithm.

Phase is more robust than either in-

tensity derivatives or energ-ybased filter

responses for varying scene illumination.

This can be seen intuitively by consider-

ing a signal of the form A COS(tit + @).

Changing the amplitude, A, of the signal

will change its derivative values or the

response of an energy based (amplitude-

squared) filter, but will have little effect

on the phase of the signal or its deriva-

tives. Phase-based methods will also re-

spond to the component velocities of

multiple motions due to occlusion or

transparency, although a suitable mea-

surement integration method, such as a

mixed velocity model, is required to clus-

ter them into the correct full velocities.

Typically, frequency-based methods do

not provide a means of assigning confi-

dence to the computed velocities. Thresh-

olds may be provided [Fleet and Jepson

1990; Heeger 1988] but their use is bi-

nary: either a velocity is found at an

image location or one is not.

2.2.3 Hierarchical Approaches

Heeger [1980] presents a computational

model for the estimation of image veloc-

ity which uses quadrature pairs of spa-

tiotemporal Gabor filters. A family of

Gabor-energy filters, tuned to the same

spatial frequency band but to different

spatial orientations, is defined. The mag-

nitude of the spatial frequency tuning is,

therefore, invariant and other sets of fil-

ters can be designed for different fre-

quency channels. However, a single set of

such filters can be cascaded through a

Gaussian pyramid in order to cover dif-

ferent channels. For a translating 2D

pattern, the responses of these filters are

concentrated about a plane in frequency

space. Parseval’s theorem is used to de-

rive the expected responses R,(v) of the

Gabor-energy filters for a translating

stimulus:

R,(v) = e- 4~2uz2<r; m: H,(v, kL, m,) (2.28)

where

Hz(v, k,, cot)

v.k, +u,
.—

(Uaxcrf)z + (oc@2 + (aJ#”

The variables q, cry, and af are the

standard deviations of the Gabor filters.

If m, is the measured energy for filter i,

and i7i1 and ~, are the sums of m, and

R, which belong to the set of filters M,

having the same spatial orientation as

the ith filter:

i7i G= ~ ml

JEM,

E, = ~ RJ(v),

J E fif,

then a nonlinear least squares solution

for v which minimizes the difference be-

tween the predicted and measured ener-

gies,

should yield the correct estimate for v.

Certainty measures for velocity esti-

mates are expressed as conditional prob-

ability densities. A computationally

efficient method of convolving Gabor fil-
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ters, exploiting their separability proper-

ties, is also presented by Heeger.

2.3 Correlation-Based Methods

Numerical differentiation is sometimes

impractical because of small temporal

support (only a few frames) or poor sig-

nal-to-noise ratio [Barren 1994]. In these

cases, differential or frequency ap-

proaches may not be appropriate and it

is natural to consider matching methods.

2.3.1 Correlation-Based Matching

Typically, good, matchable features, such

as corner points, are sparse whereas poor,

easily mismatched features, such as

edges, are denser. Even when reasonably

unique features are available, establish-

ing the correct correspondences can be

problematic. Also further complicating

matters is occlusion of features that may

lead to matching errors.

Correlation-based matching ap-

proaches are less sensitive to these prob-

lems: they do not rely on the presence of

significant image features and variable

correlation window sizes can be used near

occlusion boundaries to handle multiple

motions [Little 1992]. These approaches

define displacement (which is an approx-

imation to velocity) as a shift that yields

the best fit between contiguous time-

varying image regions. Most of these ap-

proaches originate from computational

stereopsis, where the task is to correlate

image regions of a pair of images taken

from different viewing positions, under

perspective projection. It is assumed that,

at least locally, distortions caused by the

shift in the viewing angle are negligible

[Jenkin et al. 1991]. Matching image re-

gions often amounts to maximizing a

similarity measure. In particular, a cor-

relation coefficient between two func-

tions f and g is defined as the integral

of their product:

jf(x + ax)g(x)dx.
D

Finding 8x which maximizes this inte-

gral amounts to finding the shift between

f and g, if flx + 8x) = g(x).

Kories and Zimmerman use a mono-

tonicity operator for matching image

regions in adjacent images [1986]. The

operator is a 3 x 3 window in which the

central grayvalue is compared with its

neighbors and classified according to the

number of grayvalues that have a lower

value than the central one, The matching

process proceeds by first merging adja-

cent grayvalues sharing the same class.

The centroids of grayvalue regions shar-

ing the same classification are then

tracked with a simple correlation algo-

rithm to establish disparity estimates.

Sutton et al. [1983] propose a correla-

tion method that allows linear deforma-

tions of small image regions. A bilinear

reconstruction of the intensity surface is

computed for local image regions !2,. The

shift of such an intensity surface under

linear deformation is expressed as

where Xjl is the position of the deformed

neighborfiood Q ~, Vd ~ are the deforma-

tion parameters and d is the shift of 0,

in time. A correlation coefficient

which describes the squared differences

of neighborhoods Q, and Q:, is mini-

mized by a search in the motion domain

for values of d (I and Vd(ll. The esti-

mates for these six parameters must be

obtained iteratively, as no closed-form so-

lution for C is presented.

A region matching method that allows

affine deformations of intensity is pre-

sented by Kalivas and Sawchuk [1991].

An objective function that is defined in

terms of a displacement field undergoing

an affine transformation is minimized

over the entire image.

In order to avoid the computational

expense of iterative minimizations of

functional, Little et al. [19881 suggest

that the use of partially overlapping re-

gions for matching is sufficient to ap-

proximate an isotropic smoothness term

imposed on disparity estimates. Their ap-
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proximation of’ the functional

where ~ is a correlation operator, is

shown to be correct as the extent of the

matching region becomes larger.

2.3.2 Hierarchical Approaches

In the presence of large disparities, non-

hierarchical correlation algorithms be-

come sensitive to false matches, due to

the increase in search spaces required to

handle the faster motion. In addition, the

correlation of image areas is, in general,

computationally intensive. In order to re-

duce the amount of computations and the

potential for mismatches, one may use

coarse estimates of motion to direct the

matching process. Ogata and Sate’s algo-

rithm [1992] provides the correlation

computation with coarse estimates of mo-

tion obtained from velocity-tuned Gabor

filters. These estimates can then be used

to restrict the sizes of search areas and

thereby reduce the number of computa-

tions usually necessary to obtain

disparities.

The size of correlation windows is an

important parameter for region match-

ing. For instance, within a correlation

window, there must be enough variation

in the signal to reliably determine dis-

parity. However, the variation of dispar-

ity within the same window must remain

negligible as local matches operate under

the hypothesis of a constant velocity

model. The optimal window size then de-

pends on the structure of the underlying

signal. Okutomi and Kanade [ 1990] pro-

pose a statistical model of disparity

within correlation windows that assumes

that disparity values are constant but

exhibit increasing uncertainty as they are

farther from the central point of the win-

dow. This model establishes a relation

between the window size and the uncer-

tainty of disparity. This relation allows

one to minimize the uncertainty of the

measurements by adjusting the size of

the correlation window.

Hierarchical matching techniques can

improve the accuracy of the disparities

by operating on several frequency chan-

nels extracted from the images to be pro-

cessed. Low-frequency channels are used

to estimate large disparities that can be

refined by adding higher-frequency chan-

nels into the matching process.

Anandan’s method [1989] is based on a

Laplacian pyramid and a coarse-to-fine

SSD-based matching strategy. The

Laplacian pyramid allows for the estima-

tion of large inter frame disparities and

helps to enhance image structure, such

as edges, that is thought to be important

for matching (see Figures 4 and 6). The

SSD (sum of squared difference) measure

is defined as

n H

S(x, d) = ~ ~ W(i, j)

~=–n ~=–,~

(2.33)
X( I(x+(i, j), t)

–l(x+ (i, j), t + 1))2

where W(i, j) denotes a weighting func-

tion and d is restricted to the square

neighborhood of size (2 n + 1)2 centered

at x. At the coarsest level, the correct

displacements are assumed to be one

spatial unit per frame or less. SSD min-

ima are first located to integer accuracy

within small image regions. Subpixel dis-

placements are then computed by finding

the minimum of a quadratic approxima-

tion to the SSD surface about the integer

location that best minimizes S(x, d).

Confidence measures are derived from

the principal curvatures of the SSD sur-

face and used as weights in the func-

tional

[
tr((Vd)~(Vd))

D

+ Cma.(d ~~rna,– do “ &a.J2‘2”34)
+ em,.(d . ;m,. – do ~&,J’ dx

which is to be minimized over the entire

image velocity domain D. d~,, and ;~,~
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Figure 6. Hierarchical image decomposition: the original images are decomposed in a

hierarchical set of frequency channels prior to optic flow estimation.

are the normalized principal directions of

maximum and minimum curvature. do

denotes the displacements obtained by

the minimization of S(x, d) in the Lapla-

cian pyramid (usually, three levels are

used). At the coarsest level, where the

largest motion is assumed to be less than

one spatial unit per frame, SSD minima

are located to subpixel accuracy by find-

ing the minimum of the SSD correlation

surface and smoothed using iterative

equations based on (2.34). Then, using an

overlapped projection scheme, these dis-

placements are projected to the next level

in the pyramid. Matching and smoothing

are performed in this manner at each

level in the pyramid from the coarsest

level down to the finest level, the original

image, yielding the final optical flow field.

Singh’s approach [1992] is similar to

Anandan’s method [1989] as it also uses

SSD minimizations and a two-stage com-

putation. The first stage consists of the

computation of SSD values with three

adjacent high-pass filtered images 1– 1,

10 and Il. The three-frame SSD surface is

computed as

S(x, d) = So,l(x, d) + So -l(X, –d).

(2.35)

The surface S is then converted into a

probability distribution, defined as

RC(d) = e-~s(x> d), (2.36)
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where

ln(O.95)
k=

mm(S(x, d)) “

Subpixel velocity estimates dC are ob-

tained by computing the weighted aver-

age using the RC(d) values for a given

image area. Covariance matrices S, asso-

ciated with disparities d, are also com-

puted.

The second step of Singh’s algorithm

propagates velocity using a neighborhood

smoothness constraint. Again, a weighted

average approach is used in computing

d., an average of d, over small image

regions. dC and d. are then used to cre-

ate a covariance matrix S,. The correct

disparity field minimizes the functional

J(d – da) S;l(d – da)T
D (2.37)

+(d – dc)S,-l(d – dc)T dX,

which expresses the requirement of a

smoothly varying disparity field across

D. The eigenvalues Al and Az of matrix

[S,, + S, 1-1 act as confidence measures
for the estimates, Singh recommends the

use of a Laplacian pyramid with a

coarse-to-fine strategy as in Anandan

[ 1989] to estimate larger velocities. In

addition, Singh’s framework was ex-

tended with a Kalman filter approach in

order to record motion estimates along

with their confidence measures and to

integrate new measurements with exist-

ing estimates [Singh 1991].

2.4 Multiple Motion Methods

Many phenomena can cause multiple im-

age motions. Among them, occlusion and

transparency are important in terms of

their occurrence and significance in real-

istic imagery. In addition, their informa-

tion content is useful in later stages of

processing, such as motion segmentation

and 3D surface reconstruction. Occlusion

boundaries are described by the partial

occlusion of a surface by another, whereas

transparency is defined as occlusion of a

surface by translucent material. In real-

istic imagery, one finds occlusion to be

the most frequent cause of discontinuous

motion.zg

Among the limitations inherent to gra-

dient-based methods, the requirement

of differentiable intensity structures

throughout the image domain is perhaps

the most restrictive. At motion disconti-

nuities where most of the information

resides, the use of Equation (1.3) be-

comes problematic, because the intensity

derivatives theoretically do not exist. In

addition, typical correlation-based tech-

niques are sensitive to occlusion as im-

age structures near occlusion boundaries

may appear or disappear in time, possi-

bly leading to mismatches. Furthermore,

local optical flow constraints such as (1.3)

and local correlation methods are often

coupled with global requirements that

impose a spatial continuity on optical

flow. It is obvious that such isotropic re-

quirements cannot be satisfied in gen-

eral, as imagery often contains motion

discontinuities.

2.4.1 L\ne Processes

Other functional that attempt to esti-

mate discontinuous motion have been de-

veloped. One stratea~ to handle occlusion

involves using binary line processes that

explicitly model intensity discontinuities

[Geman and Geman 1984]. Koch et al.

[ 1989] relax the imposition of a smooth-

ness constraint at those pixels having a

large spatial gradient. This prevents

smoothing over discontinuities and as-

sumes that motion discontinuities occur

in the same location as intensity discon-

tinuities [Poggio et al. 1988]. Black [1992]

also shows how line processes could be

used in a robust (Kalman filter-like)

framework.

The nonbinary inhibition of smooth-

ness across intensity contours, was pro-

posed by Nagel [ 1983a, 1983b, 1987,

‘g Prazdny [ 1985] was one of the first to exphcitly

allow for dmparlty dlscontmultles locally in two

stereo Images.
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1986]. This approach is based on the

minimization of the functional

j (Vi. V +1,)’+ A’tr((Vv)’
D

where

in which the auantity (u. l.,

(u. 1., – v,, 1.)2,’ repre;enti~~

~(vv)) dx

(2.38)

– IX Iy

)
1; +8’

– Z.LYIX)2 +

the spatial

va~iation’o! v in the direction perpendic-

ular to the image gradient, is minimized

across intensity contours. This functional

is known as the oriented smoothness con-

straint. The minimization procedure can

be implemented using finite differences

[Barren et al. 19941 or finite elements

[Kirchner and Niemann 1992; Schnorr

1992]. This oriented smoothness ap-

proach has been recently extended into

the temporal domain [Nagel 1990]. A

similar method using an intensity-

weighted smoothing procedure is pre-

sented by Aisbett [1989]. This approach

is characterized by the inhibition of an

isotropic smoothness constraint for im-

age regions containing significant inten-

sity variations. Contrary to Nagel’s

method [1987], the inhibition of the

smoothness constraint is not directional.

In addition, the image intensities are as-

sumed differentiable and the domain of

application of the algorithm is explicitly

restricted to images that satisfy this re-

quirement.

Closed curves may also be used to sep-

arate image regions exhibiting different

velocities. Schnorr [1992] proposes a

method that consists of defining such a

curve, delimiting an arbitrary area

around the region where the existence of

an independent y moving object is as-

sumed, thus creating two domains Q,

and Q ~. Given two velocity fields v, and

VO, the closed curve defining the two do-

mains is iteratively refined by minimiz-

ing the functional

Jq Jflo

where f = ($, – V,)2, g = (*0 – Vo)z and

9, and $0 are measured velocities within

[1, and flO, respectively. However, as-

suming a priori knowledge about the po-

sition of the independently moving object

limits the generality of this method.

2.4.2 Mixed Velocity Distributions

Another strategy for estimating discon-

tinuous optical flow is to make explicit a

model for mixed velocity distributions

(usually two) at each image point. A

method of estimating discontinuous mo-

tion on a local basis, presented by

Schunck [1989], uses the optical flow

constraint equation (1.3) to compute sev-

eral constraint lines in velocity space for

small spatial neighborhoods. Clusters of

intersections of these lines with the con-

straint line of the central point of the

neighborhood are analyzed to determine

the smallest cluster containing at least

half the intersection points. The middle

point of this cluster thus defines the mo-

tion estimate v. If two motion patterns

are present within the neighborhood,

then v is considered as the dominant one.

Hence, velocity can be correctly esti-

mated across motion boundaries (see Fig-

ure 7). However, neighborhood sizes must

include significant constraint line varia-

tions, as finding intersections of con-

straint lines may become ill-conditioned

otherwise (this is simply another mani-

festation of the aperture problem).

Jepson and Black’s mixture models [ 1993]

also follow this approach, but use a ro-

bust estimation framework.

When multiple motions arise within a

single image region, a least squares solu-

tion to the optical flow constraint line

clustering problem leads to an average

estimate of these multiple motions. Not-

ing that difficulty, Black [1991, 1992,

1990] reformulates the problem of esti-

mating optical flow by using robust esti-

mators. This framework consists of the
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v Cluster of neighbouribng
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central pant
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Figure 7. The constraint hne from the central point of

the Image re~on being considered intersects with the

constraint hnes of neighboring Image points

minimization of a functional that ex-

presses the various assumptions made

about image motion:

E(v> V) = /i~E~(v) + &E~(v)
(2.40)

+ AT ET(v, V),

where ED(v) is the optical flow con-

straint equation, Es(v) is a spatial coher-

ence constraint (a spatial smoothness

term) and ET(v, V) is a temporal coher-

ence constraint:

ET(v, V) = /2T(V – ~, at) (2.41)

E~(v)=p~(Wv+It,a~) (2.42)

Es(v) = ~ PCY(V– VI , a,). (2.43)

ilEfi

V is a prediction about v at time t + 1.

pD, PS, and PT are robust, Lorentzbn

M-estimators. Their use is motivated by

the fact that the distribution of multiple”

motions within a single image region is

not Gaussian and to account for events

unmodeled by the brightness constancy

assumption. The robustness of these sta-

tistical estimators is characterized by

their relative insensitivity to deviations

from the assumed statistical model in the

set of measurements, allowing the esti-

mation of discontinuous optical flows. In

Figure 8 the influence function of the

Lorentzian probability distribution tends

to zero rapidly for deviations from the

mean. These are considered outliers

[Black 19921.

Multiple patterns of motion within a

single image region also arise from par-

tial transparency of occluding surfaces.

Bergen et al. [1992] present an algorithm

for estimating up to two different mo-

tions within a single intensity neighbor-

hood. The algorithm uses the following

steps: let VI and Vz be two distinct veloci-

ties within an arbitrary image region. An

iterative process is applied for estimating

VI and warping the corresponding image

region in the next two frames to compute

two difference images, D ~ and Dz, used

in turn to estimate Vz. If VI is a reason-

able estimate of one velocity pattern then

the residual intensity structure in DI

and Dz reflects the velocity Vz. The algo-

rithm is iterated until the estimates VI

and Vz stabilize. It is generally sufficient

to assume VI = Vz = O initially, if no a

priori knowledge is available. A least

squares method is employed for solving

VI and Vz, using (1.3).

Other approaches for the measurement

of multiple motions exist: the distribu-

tion of motion patterns may be regarded

as a superposition of data distributions.

Shizawa and Mase [ 1991] apply a super-

position principle to multiple motions and

show that existing algorithms for optical

flow, 3D motion and structure, etc., can

be generalized to handle many motion
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Figure 8. (a) A least squares fit through a cloud of points. (b) A robust fit through the same
cloud of points.

distributions. Similarly, multiple motions

can be thought of as a set of layers, each

describing a particular motion, over a

particular domain. Techniques to sepa-

rate these layers have been proposed by

many authors: Darrell and Pentland

[1991] explicitly take the support of ho-

mogeneous regions into account by using

a multi-layer, cooperative, robust estima-

tion framework. Jepson and Black [19931

use an expectation-maximization (EM)

algorithm to group a wide variety of com-

ponent velocities into a fixed number of

layers. Irani et al. [ 1994] determine a

dominant motion in an image using a

least squares approach and then group

and segment the outlying motions. Their

approach assumes that there is only one

dominant motion and many outlying mo-

tions, each of which is assumed to corre-

spond to independently moving objects.

Adiv [1985] uses a Hough transform on a

precomputed optical flow field to group

regions having velocities consistent with

roughly planar surfaces. This grouping is

based on finding neighboring velocities

sharing the same affine transformations.

Negahdaripour and Lee [1992] present a

segmentation process based on a hierar-

chical clustering method that does not

assume a precomputed optical flow field.

They fit an affine model to small regions

of the image and then repeatedly merge

neighboring regions based on similarity

of their affine parameters. Then, given

two sufficiently large planar regions, a

motion and structure calculation can be

performed. Wang and Adelson [ 1994] use

a clustering algorithm to group velocities

into layers, each consistent with an affine

motion. Bober and Kittler [1994] use a

block-based Hough transform in a robust

estimation framework (redescending ker-

nels) to obtain robust velocity estimates,

including multiple motions, by clustering

coherent motions at the same time the

motion estimation is performed. Two

confidence measures based on support

functions are also proposed. In addition,

hierarchical frameworks are known to

separate motion components with respect

to spatiotemporal frequencies. Burt et al.

[1991] suggest that multiple motions

could be handled separately using differ-

ent spatiotemporal frequency channels.

2.4.3 Parametric Models

Parametric models generally describe

image motion with bivariate polynomials

of varying order in the image coordinates

and provide strong constraints on mo-

tion, which usually results in the accu-

rate inference of optical flow [Black and

Jepson 1994]. These models possess de-

sirable qualities: the motion of large

image regions may be described with a

single set of parameters, due to the in-

creased flexibility of representation. In

addition, parametric models are ade-
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quate for the description of discontinuous

optical flow as each segmented region

may be described with a particular set of

motion parameters.

Bergen et al. [1992] consider the

computation of optical flow from the

viewpoint of image registration: given an

image sequence, the parameters that best

align an image with the next in the se-

quence are to be computed. This frame-

work unifies many of the approaches al-

ready surveyed. In all cases, a function is

to be minimized with respect to different

parameters modeling velocity. Their al-

gorithm has four basic components: pyra-

mid construction, motion estimation, im-

age warping, and coarse-to-fine refine-

ment. A Laplacian pyramid is used to

hierarchically represent the image data

[Burt and Adelson 1983], and motion es-

timation is performed by SSD minimiza-

tion with respect to a particular model of

motion. Image warping uses the current

parameter values to compute an optical

flow field at time t and then reconstructs

another image at time t from the image

at time t – 1. Image reconstruction is

performed using bilinear interpolation.

The warped image is then compared with

the original image and an error measure,

based on image difference, is minimized

with the Gauss-Newton method. The last

component is a propagation of motion

estimates from one level in the pyramid

to the next lower level where they are

used as initial guesses for the iterative

refinement.

Using Bergen et al.’s [1992] classifica-

tion, the optical flow methods previously

presented can be thought of as paramet-

ric, quasiparametric, or nonparametric.

Parametric models fully describe the

individual motion with a bivariate equa-

tion. For example, affine models approxi-

mate image velocity as:

u(x, y) =al(.x, .v) +azx+a~y

cl(x, y) =al(x, y) +a~x +aGy, (2.44)

which is reasonably valid when surfaces

are far from the observer or the image

region under analysis is small. This mod-

els optical flow as a superposition of uni-

form motion and rotation, dilation, and

shear. This is the model used by Fleet

and Jepson [ 1990, 1992] to integrate

component velocities in local neighbor-

hoods. Adiv [1985] also uses this model to

segment and flt velocity measurements

to local planar patches in the first stage

of his algorithm. Spetsakis [1994] uses

an affine flow model and a hierarchy of

Gabor filters. A second model assumes

planarity of local surfaces:

ZL(X, .V) =al(x, y) +azx +aJy

+ a7x2 + a8xy
(2.45)

t)(~,.~) ‘a~(~,y) +a~~+a6.V

+ a7xy + a8y2,

which is the velocity functional method

of Waxman and Wohn [ 1985] which they

extended to include second-order curved

surfaces. In both (2.44) and (2.45) the al’s

are neighborhood center velocities or

first- and second-order velocity deriva-

tives. These parameters completely de-

scribe a planar surface velocity field. Any

constant velocity model, such as Lucas

and Kanade’s [ 1981], is also an example

of a parametric model for general motion

[Bergen et al. 1992]. Usually, the order of

a parametric model describes its applica-

bility for large image regions.

Nonparametric models are those typi-

cally used in global optical flow recovery.

Horn and Schunck’s global smoothness

[ 1981] or Nagel’s oriented smoothness

constraint [ 1987] are examples of non-

parametric models. Quasiparametric

models use a combination of parametric

and nonparametric models. Bergen et al.

place rigid motion models in this class.

Rigid motion arises from rigidly moving

scene objects under perspective projec-

tion. Direct motion and structure meth-

ods are examples of this model: Hanna

[1991, 1993] shows that the rigidity as-

sumption can be used to overcome the

aperture problem in most cases. These

parametric models are presented in a

unified hierarchical framework [Bergen

et al. 1992]. The hierarchy yields in-
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creased computational efficiency and also

allows for increased accuracy and robust-

ness via coarse-to-fine refinements and

image warping.

Black and Jepson [1994] determine

coarse optical flow via a correlation

method [Black and Anandan 1993] and

fit parametric models to segmented re-

gions of the image by hypothesizing local

planarity and using coarse velocities to

perform segmentation. Standard area-

based regression techniques further re-

fine these motion estimates. Deviations

from planarity are modeled by allowing

local deformations in the motion esti-

mates. Hence, their approach does not

try to fit a single parametric model to the

whole image, but many parametric mod-

els to individual segmented regions. Also,

Haddadi and Kuo [1992] propose a para-

metric smoothness model that decom-

poses optical flow into irrotational and

solenoidal fields and imposes a smooth-

ness constraint on each field separately.

Parameters are iteratively improved and

smoothing across motion boundaries is

avoided.

2.5 Temporal Refinement Methods

Most of the preceding methods for com-

puting optical flow do not incorporate

motion estimates from previous calcula-

tions within an image sequence being

acquired: given two or more images, opti-

cal flow is computed only for one of the

images. Recently, there has been some

interest in incremental computation of

optical flow. 30 The advantages include

instantaneous access to optimal velocity

estimates, accuracy improvement as the

integration of optical flow over time is

performed, computational efficiency

gained by updating the estimates with

the current frame, and the ability to

adapt to discontinuous optical flow as the

observer or scene objects abruptly vary

their motions.

—

‘0 See Black [1992], Black and Anandan [1993],

Singh [ 1991], Fleet and Langley [ 1995b], Chin et al.

[1994].

Black’s [1992] algorithm may also be

viewed as an incremental model because

it minimizes an objective function that

incorporates conversion of image inten-

sity and spatiotemporal coherence in a

robust estimation framework. Temporal

continuity allows prediction of the next

image velocity, assuming uniform accel-

eration. Warping with bilinear interpola-

tion is used to estimate the acceleration.

Black and Anandan [1991] use a Markov

random field (MRF) method in a refor-

mulation of Black’s approach. The MRF

algorithm is parallel, local, and detects

occlusion boundaries in an incremental

fashion but, as formulated, can only han-

dle integer motions. Singh [1991] uses a

Kalman filter to integrate velocity esti-

mates computed by a hierarchical corre-

lation method [Singh 1990]. The Kalman

filter reduces the uncertainty of the esti-

mates over time. This framework also

detects occlusion boundaries. Fleet and

Langley [1995a] use low-pass recursive

filters to produce and update gradient-

based velocity estimates from a sequence

of images. Chin et al. [1994] present an

extension of Horn and Schunck’s [ 1981]

dense optical flow algorithm that uses a

temporal coherence constraint to produce

near optimal, recursive flow estimates

from multiple frames.

3. DISCUSSION

Although many methods and strategies

have appeared, the estimation of image

motion remains a challenging task: to

date, except in limited circumstances, no

technique is able to generate sufficiently

accurate and dense optical flow fields to

allow the general recovery of motion and

scene parameters in a realistic environ-

ment. In fact, motion and structure algo-

rithms need very accurate optical flow to

carry useful 3D motion and structure

computations [Barren et al. 19901. Also

needed are accurate means of determin-

ing the reliability of computed image ve-

locities. Such reliability measures have

been proposed: covariance matrix eigen-

values [ Simoncelli et al. 1991; Singh

1992], Gaussian curvature [Uras et al.
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1988], principal curvature [Anandan

1989; Heeger 1988], spatial gradient

[Barren et al. 1994], eigenvalues of a least

squares matrix [Simoncelli et al. 1991],

and support function values [Bober and

Kittler 1994]. These confidence measures

allow for thresholding, yielding more ac-

curate but sparser optical flow fields.

They may also be integrated in subse-

quent processing, such as weights in a

least squares motion and structure

calculation.

Of importance in an accurate estima-

tion of image motion in the surveyed

methods is the requirement for appropri-

ate spatiotemporal sampling rates, in or-

der to compute accurate spatiotemporal

derivatives for differential-based meth-

ods, to reduce the search areas for

matching-based methods, or to limit the

amount of aliasing when estimating opti-

cal flow with frequency-based filtering

methods. Too often, the assumption that

imagery is free of aliasing effects is made.

Conventional cameras usually produce

imagery with severe temporal aliasing,

especially for significant image motions.

Reducing aliasing effects may be accom-

plished by increasing temporal sampling

rates, image prefiltering, or by using hi-

erarchical processing. Of course, in-

creased temporal sampling rates lead to

more accurate optical flow computations.

However, for a number of reasons, in-

cluding small temporal support (only a

few images) or fast image motion, such

appropriately sampled imagery is not al-

ways available. In such cases, accurate

temporal derivatives may be difficult to

obtain and hierarchical matching-based

methods seem to be a natural choice. It

has also been observed that some pre-

filtering of the image sequence prior to

the extraction of basic image motion

measurements, such as intensity deriva-

tives or correlation surfaces, significantly

increases the accuracy of results [Barren

et al. 1994]. For instance, a spatiotempo-

ral Gaussian smoothing of the image

sequence results in more accurate

derivatives for the methods of Lucas and

Kanade [1984, 1981] and Horn and

Schunck [ 1981]. Anandan’s [1989] and

Singh’s [1992] computational schemes

also use prefiltering of the images by

computing hierarchical Laplacian im-

ages. It is believed that this high-pass

filtering emphasizes image structures

that are desirable for correlation.

Often, very restrictive assumptions

about image motion are posed. For exam-

ple, one of these assumptions requires

neighboring velocities arising from the

relative motion of a single surface to be

similar [Horn and Schunck 1981]. This

requirement is usually imposed by apply-

ing isotropic smoothness constraints onto

velocity estimates. However, only a few

simple cases of realistic imagery exhibit

continuous motion fields: realistic im-

ages, such as outdoor scenes, possess

complex structures for which global sin-

gle surface assumptions are inadequate.

Attempts at estimating discontinuous

image motion are proposed by Cornelius

and Kanade [ 1983] and Nagel [ 1983a,

1987, 1990] in the form of an inhibition

of the smoothness requirement across in-

tensity discontinuities. However, it is ob-

vious that intensity discontinuities may

not necessarily represent motion discon-

tinuities [Thompson et al. 1985]. The

prob (em posed by occluding surfaces

needs further investigation. Occlusion is

an important source of visual informa-

tion: optical flow at occlusion boundaries

can be used to determine the direction of

translation (the focus of expansion)

[Longuet-Higgins and Prazdny 1980] and

segment the scene into independently

moving objects [Thompson and Pong

1990], yet optical flow estimation at oc-

clusions is problematic. Adequate ap-

proaches to handling occlusion include

line approaches that explicitly model in-

tensity discontinuities and prevent

smoothing over them, layered or super-

posed parametric models, and mixed ve-

locity distribution models that assume

the presence of usually two velocities and

discriminate them according to some cri-

teria. In addition, occlusion has been re-

cently analytically described in Fourier

space [Beauchemin and Barron 1995;

Fleet and Langley 1995a].

Alternatively, optical flow may be esti-
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mated with local constraints only.31 In

these schemes, no smoothness require-

ments are imposed and motion disconti-

nuities may be preserved. Of course, the

accuracy at motion boundaries or at re-

gions of transparency highly depends on

the model of motion being used. For

instance, single motion models are inade-

quate for handling occlusion and trans-

parency properly. Nonetheless, the use of

local constraints or parametric models

may be more appropriate in general

[Barren et al. 1994], as no arbitrary

smoothness requirement is imposed on

the structure of optical flow.

Lighting effects also constitute a prob-

lem in many image sequences. Constant

scene illumination and Lambertian sur-

face reflectance are either implicitly or

explicitly assumed for most current opti-

cal flow methods that use the brightness

constancy assumption. Although the ef-

fects of highlights, shadows, and illumi-

nation conditions on the estimation of

optical flow have only been studied to a

limited degree, it is possible to partially

compensate for these effects and esti-

mate image motion as a geometric quan-

tity if the characteristics of the light

sources are known. Towards this, the use

of multiple light sources [Woodham 1990]

and sets of multispectral constraints on

im age motion [Markandey and

Flinchbaugh 1990] have been used.

Shading effects have also been modeled

[Mukawa 1993].

Aside from lighting conditions, some

surface reflectance phenomena also pose

difficulties. For example, transparent

surfaces usually lead to multiple motions

whereas highlights may create false mo-

tions. Perhaps due to their difficulty and

infrequency of occurrence, transparent

motions have been mainly ignored and

attempts at estimating multiple motions

have just begun to appear [Bergen et al.

31See Bergen et al. [1992], Campani and Verri

[ 1990], Fleet and Jepson [ 1990], Lucas and Kanade

[ 1981], and Uras et al. [ 1988].

1992; Jepson and Black 1993]. Methods

using orientation- and velocity-sensitive

filters may contribute to the solving of

this particular problem, as they provide

multiple measurements for each location

[Fleet and Jepson 1990]. Alternatively,

superposition principles and layered mo-

tions [Darrell and Pentland 1991;

Shizawa and Mase 1991; Wang and

Adelson 1994] are promising frame-

works. However, segmenting multiple

motion distributions remains difficult if

no a priori assumption is made on the

number of distributions present within a

support region.

Lastly, we would like to emphasize that

much of the image motion literature pre-

sents flow field examples for a few image

sequences, which can only be judged

qualitatively. Although the theory of op-

tical flow computation is being ad-

dressed, the practice of optical flow is

often neglected: far too little of the pub-

lished work provides quantitative error

analysis. Usually, only a qualitative com-

parison is possible. Even then, it is often

difficult to assess which techniques are

quantitatively better as authors typically

use their favorite image sequences, which

are not usually available to the commu-

nity and for which the correct image mo-

tion is unknown. A widely available set

of images for comparative testing is

needed. These images should have known

optical flow fields and allow a quantita-

tive error analysis. This is especially the

case for the newer work, as with the

layered approaches to optical flow, where

little or no quantitative analysis exists.

There are various means of performing

quantitative error analysis when correct

optical flow information is available: er-

ror can be expressed as absolute error,

relative error, angle error [Fleet and

Jepson 1990], RMS, or SNR ratios, allow-

ing one to compare optical flows for the

same image sequence. Furthermore,

quantitative analysis is possible without

motion information: RMS image recon-

struction error has been used to measure

error for real image sequences when the
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correct motion information is unavail-

able.3z
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