THE COMPUTATION OF RESONANCES IN OPEN SYSTEMS USING A PERFECTLY MATCHED LAYER.

SEUNGIL KIM AND JOSEPH E. PASCIAK

ABSTRACT. In this paper, we consider the problem of computing resonances in open systems. We first characterize resonances in terms of (improper) eigenfunctions of the Helmholtz operator on an unbounded domain. The perfectly matched layer (PML) technique has been successfully applied to the computation of scattering problems. We shall see that the application of PML converts the resonance problem to a standard eigenvalue problem (still on an infinite domain). This new eigenvalue problem involves an operator which resembles the original Helmholtz equation transformed by a complex shift in coordinate system. Our goal will be to approximate the shifted operator first by replacing the infinite domain by a finite (computational) domain with a convenient boundary condition and second by applying finite elements on the computational domain. We shall prove that the first of these steps leads to eigenvalue convergence (to the desired resonance values) which is free from spurious computational eigenvalues provided that the size of computational domain is sufficiently large. The analysis of the second step is classical. Finally, we illustrate the behavior of the method applied to numerical experiments in one and two spatial dimensions.

1. INTRODUCTION

In this paper, we consider the approximation of resonance values in open systems using approximations coming from the PML (perfectly matched layer) technique. Problems involving resonances in open systems result from many applications, including the modeling of slat and flap noise from an airplane wing, gravitational waves in astrophysics, and quantum mechanical systems. We consider the approximation of resonances in the frequency domain in this paper.

As a model problem, we consider a resonance problem in three dimensional space which results from a compactly supported perturbation of the Laplacian, i.e.,

$$Lu = -\Delta u + L_1 u$$

¹⁹⁹¹ Mathematics Subject Classification. 65N30,78M10.

Key words and phrases. Perfectly matched layer, PML, resonances, nonsymmetric eigenvalue problem.

This work was supported in part by the National Science Foundation through grant DMS-0609544.

where L_1 is symmetric and lives on a bounded domain $\Omega \subset \mathbb{R}^3$. We then seek k such that there are non-trivial "eigenfunctions" ψ satisfying

$$L\psi = k^2\psi.$$

The function ψ is required to satisfy an outgoing condition corresponding to the wave number k. A resonance value k corresponds to an improper eigenvalue problem and the corresponding eigenvector grows exponentially. This exponential growth makes the problem difficult to formulate and an even more difficult to approximate numerically.

The PML technique was introduced by Bérenger for scattering problems [4, 5]. The idea was to surround the area of computational interest by an absorbing media (layer) which was perfectly free of reflection. Bérenger's original formulation involved splitting the equations in the absorbing layer. Subsequent formulations avoid this splitting and often can be interpreted as a complex stretching, c.f., [10]. A properly devised complex stretching (or change of variable) preserves the solution inside the layer while introducing exponential decay at infinity. Thus, it is natural to truncate the problem to a finite domain, introduce a convenient boundary condition on the artificial boundary and apply the finite element method. This is a very successful technique which has been investigated both theoretically and computationally.

For scattering problems, one traditionally introduces a PML stretching which depends on the wave number yielding wave number independent decay [19]. In contrast, for PML resonance problems, we use a stretching independent of the wave number. This results in wave number dependent decay. This is important in that when this decay is stronger than the exponential growth of the resonance eigenfunction, this eigenfunction is transformed into a proper eigenfunction for the PML equation (still on the infinite domain). In fact, the resulting PML eigenfunction still has residue exponential decay. Because of this decay, it is natural to consider truncating to a finite domain and subsequently applying the finite element method. The goal of this paper is to study the eigenvalue behavior when the eigenvalues of the (infinite) PML problem are approximated by those corresponding to a finite element method on a truncated computational domain.

The application of PML for the computation of resonances is not new. It turns out that PML is related to what is called "spectral deformation theory" developed by Aguilar, Balslev, Combes and Simon [1, 3, 16, 22]. This theory shows that the PML eigenvalues for the infinite domain problem coincide with the resonance values of the original problem for rather general scaling schemes. The experimental behavior of truncated PML approximations to resonances in open systems was investigated in [13, 14]. Our paper provides the first theoretical analysis of the convergence of the truncated PML eigenvalue approximation.

PML AND RESONANCES

In many applications, the convergence of approximate eigenvalues is the result of classical perturbation theory (cf. [17]). Indeed, one is able to conclude basic eigenvalue convergence provided that one can show that approximate operators converge in norm to the appropriate continuous operator. The PML eigenvalue problem is interesting as norm convergence does not hold in this case and so eigenvalue convergence has to be proved in a more basic way.

The convergence of the eigenvalues obtained by finite element discretization has had a long history of research. Osborn [21] and Bramble-Osborn [8] consider the case of second order elliptic problems on bounded domains. In this case, the solution operator is compact and it is possible to prove convergence in norm of the discrete approximation. More recent work has been done on the Maxwell eigenvalue problem [6, 7, 18, 20]. This problem is more difficult than the uniformly elliptic problem mentioned above due to a non-compact inverse however, in this case, the only trouble is due to gradient fields and results in a non-discrete spectrum consisting of only one point, the origin. In contrast, the PML problem is posed on an infinite domain and its inverse has essential spectrum while the inverse of the truncated PML problem is compact. Accordingly, there cannot be norm convergence and the analysis of the convergence of eigenvalues/eigenvector must proceed in a non-standard fashion. Of course, the critical property here is the decay of the approximated eigenfunctions and it is this property which is central to our analysis.

We note that the convergence of the eigenvalues associated with the finite element approximation to those of the PML problem on the truncated domain is standard, see, Bramble and Osborn [8]. Their results can be used to show that the corresponding discrete eigenvalues converge to those of the continuous PML problem (on the truncated domain) without the occurrence of spurious modes. Thus, the goal of this paper is to analyze the convergence (as the size of the truncated domain increases) of the eigenvalues of the continuous truncated problem to those of the infinite PML problem.

The organization of the remainder of this paper is as follows. In Section 2, the PML method is applied to resonance problems resulting from a compactly supported perturbation of the Laplacian. There we show how PML turns the resonance problem into a standard eigenvalue problem. In Section 3, the truncated PML problem is introduced and we show that any compact subset of the resolvent set for the infinite domain PML operator is contained in the resolvent set for the finite domain operator provided that truncation domain is sufficiently large. This shows that there are no spurious eigenvalues associated with the domain truncation. In Section 4, we use the exponential decay of eigenfunctions for both the infinite and truncated PML problems to analyze the convergence of eigenvalues. Finally, in Section 5, the results of numerical experiments are provided which illustrate the behavior of PML approximations on some simple resonance problems.

2. PML and the Resonance Problem.

We consider a linear operator

$$L = -\Delta + L_1$$

where L_1 is a linear operator with support contained in the ball Ω_0 centered at the origin of radius r_0 . For example, we can consider Schrödinger operators $-\Delta + V$ with a real valued potential V supported in $\overline{\Omega}_0$. We shall concentrate on this example as more general applications are similar.

We consider the Helmholtz problem:

(2.1)
$$Lu - k^2 u = f \quad \text{on} \quad \mathbb{R}^3.$$

Here k is a complex number and the support of f is contained in Ω_0 . To uniquely determine u, we need to set a "boundary condition." We consider solutions which are outgoing. Since L coincides with $-\Delta$ outside of Ω_0 , u can be expanded in terms of Hankel functions and spherical harmonics. Because the solutions are outgoing, this expansion takes the form

(2.2)
$$u(x) = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} a_{n,m} h_n^1(kr) Y_n^m(\hat{x}) \text{ for } r \ge r_0.$$

Here $\hat{x} = x/|x|$, $\{h_n^1(r)\}$ are spherical Bessel functions of the third kind (Hankel functions), $\{Y_n^m\}$ are spherical harmonics (see, e.g., [19] for details) and $\{a_{n,m}\}$ are constants.

We shall be interested in weak solutions of (2.1) which are, at least, locally in H^1 . This means that the series (2.2) converges in $H^{1/2}(\Gamma_0)$ where Γ_0 is the boundary of Ω_0 . It follows that the series converges in H^1 on any annular domain $r_0 < r < R$

Remark 2.1. Resonances are solutions of (2.1) with f = 0 satisfying the outgoing condition. For resonances, the resonance value k has a negative imaginary part and so u increases exponentially as r becomes large. Accordingly, the Sommerfeld condition

(2.3)
$$\lim_{r \to \infty} r\left(\frac{\partial u}{\partial r} - iku\right) = 0$$

is not satisfied in this case. There are no exponentially decreasing eigenfunctions for this equation corresponding to such k. Thus any numerical method for computing resonances based on (2.3) is questionable at best.

The PML approach [9] provides a convenient way to deal with (2.1) with the outgoing condition. We will use a spherical PML. Let r_1 be greater than r_0 and Ω_1 denote the open ball of radius r_1 centered at the origin with the boundary Γ_1 .

PML AND RESONANCES

The PML problem is defined in terms of a function $\tilde{\sigma} \in C^2(\mathbb{R}^+)$ satisfying

$$\tilde{\sigma}(r) = \begin{cases} 0 & \text{for } 0 \le r < r_0, \\ \text{increasing for } r_0 \le r < r_1, \\ \sigma_0 & \text{for } r_1 \le r. \end{cases}$$

A typical C^2 function in $[r_0, r_1]$ with this property is given by

$$\tilde{\sigma}(x) = \sigma_0 \frac{\int_{r_0}^x (t - r_0)^2 (r_1 - t)^2 dt}{\int_{r_0}^{r_1} (t - r_0)^2 (r_1 - t)^2 dt}$$

The PML approximation can be thought of as a formal complex shift in coordinate system. The PML solution is defined by

(2.4)
$$\tilde{u}(x) = \begin{cases} u(x), & \text{for } |x| \le r_0, \\ \sum_{n=0}^{\infty} \sum_{m=-n}^{n} a_{n,m} h_n^1(k\tilde{r}) Y_n^m(\hat{x}), & \text{for } r = |x| \ge r_0 \end{cases}$$

with $\tilde{r} = r(1 + i\tilde{\sigma}(r))$. Clearly, \tilde{u} and u coincide for $|x| \le r_0$. Moreover, \tilde{u} satisfies (2.5) $\tilde{L}\tilde{u} - k^2\tilde{u} = f$ in \mathbb{R}^3

where \widetilde{L} coincides with L for $|x| \leq r_0$ and is given, in spherical coordinates (r, θ, ϕ) , by (2.6)

$$\widetilde{L}v = -\left(\frac{1}{\widetilde{d}^2 dr^2} \frac{\partial}{\partial r} \left(\frac{\widetilde{d}^2 r^2}{d} \frac{\partial v}{\partial r}\right) + \frac{1}{\widetilde{d}^2 r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial v}{\partial \theta}\right) + \frac{1}{\widetilde{d}^2 r^2 \sin^2 \theta} \frac{\partial^2 v}{\partial \phi^2}\right) + Vv.$$

Here $\tilde{d} = 1 + i\tilde{\sigma}$ and $d = \tilde{r}' \equiv 1 + i\sigma$ with $\sigma \equiv \tilde{\sigma} + r\tilde{\sigma}'$.

We shall see that (2.5) has a well posed variational formulation in $H^1(\mathbb{R}^3)$ when k is real and positive. Let χ be in $C_0^{\infty}(\mathbb{R}^3)$. Assuming that \tilde{u} is locally in $H^1(\mathbb{R}^3)$, we have

(2.7)
$$A(\tilde{u},\chi) - k^2 B(\tilde{u},\chi) = (\tilde{d}^2 f,\chi)_{\mathbb{R}^3}$$

where

(2.8)
$$A(\tilde{u},\chi) \equiv \left(\frac{\tilde{d}^2}{d}\frac{\partial \tilde{u}}{\partial r}, \frac{\partial}{\partial r}\left(\frac{\chi}{\bar{d}}\right)\right)_{\mathbb{R}^3} + \left(\frac{1}{r^2}\frac{\partial \tilde{u}}{\partial \theta}, \frac{\partial \chi}{\partial \theta}\right)_{\mathbb{R}^3} + \left(\frac{1}{r^2\sin^2\theta}\frac{\partial \tilde{u}}{\partial \phi}, \frac{\partial \chi}{\partial \phi}\right)_{\mathbb{R}^3} + (V\tilde{u},\chi)_{\Omega_0}$$

and

(2.9)
$$B(\tilde{u},\chi) \equiv (d^2\tilde{u},\chi)_{\mathbb{R}^3}.$$

The PML problem corresponding to a scattering problem was studied in [9] however the techniques there easily extend to our problem. We consider first the case when k is real and positive. In this case, the Sommerfeld condition can be used as a replacement of the outgoing condition. To obtain a uniqueness result for the PML problem, we introduce the following theorem. Let A_{r_0,r_2} be an annulus bounded by two spheres of radius $r_0 < r_2$.

Theorem 2.2. Suppose that $u \in H^1(A_{r_0,r_2})$ and $\tilde{d} \in C^2(\mathbb{R}^3)$ and $d'' \in L^2_{loc}(\mathbb{R}^3)$. If u satisfies $A(u,v) = k^2 B(u,v)$ for all $v \in C^\infty_0(A_{r_0,r_2})$, then

(2.10)
$$u(x) = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \left(a_{n,m} h_n^1(k\tilde{r}) + b_{n,m} h_n^2(k\tilde{r}) \right) Y_n^m(\hat{x})$$

and the series converges in $H^1(A_{r_0,r_2})$.

Sketch of proof. For $u \in H^1(A_{r_0,r_2})$, by the L²-orthogonality of $\{Y_n^m\}$, u can be written as

(2.11)
$$u(x) = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} f_{n,m}(|x|) Y_n^m(\hat{x}).$$

First, one shows that $f_{n,m}$ is in $H^2([r_0, r_2])$ and satisfies

(2.12)
$$\frac{1}{r^2 \tilde{d}^2 d} \frac{\partial}{\partial r} \left(\frac{r^2 \tilde{d}^2}{d} \frac{\partial f_{n,m}(r)}{\partial r} \right) + \left(k^2 - \frac{n(n+1)}{r^2 \tilde{d}^2} \right) f_{n,m}(r) = 0.$$

Next, one shows that the initial value problem (2.12) with the initial conditions $f_{n,m}(r_0)$ and $f'_{n,m}(r_0)$ given has a unique solution in $H^2([r_0, r_2])$. Since $h_n^1(\tilde{r})$ and $h_n^2(\tilde{r})$ solves (2.12), it follows that

$$f_{n,m}(r) = a_{n,m}h_n^1(k\tilde{r}) + b_{n,m}h_n^2(k\tilde{r})$$

for suitable constants $a_{n,m}$ and $b_{n,m}$. By the asymptotic behavior of h_n^1 and h_n^2 for large n the series (2.10) converges uniformly on A_{r_0,r_2} and it is easy to show the series converges in $H^1(A_{r_0,r_2})$.

The uniqueness of solutions to the PML problem (2.7) now follows from the above theorem and the proof of Theorem 1 of [11]. Following [9], the perturbed form

$$\widetilde{A}(u,\chi) = \left(\frac{\widetilde{d}^2}{d^2}\frac{\partial u}{\partial r}, \frac{\partial \chi}{\partial r}\right)_{\mathbb{R}^3} + \left(\frac{1}{r^2}\frac{\partial u}{\partial \theta}, \frac{\partial \chi}{\partial \theta}\right)_{\mathbb{R}^3} + \left(\frac{1}{r^2\sin^2\theta}\frac{\partial u}{\partial \phi}, \frac{\partial \chi}{\partial \phi}\right)_{\mathbb{R}^3} - d_0^2k^2(u,\chi)_{\mathbb{R}^3}$$

is coercive. As $A_k(w, v) \equiv A(w, v) - k^2 B(w, v)$ is a low order perturbation of A(w, v) on a bounded domain, the inf-sup condition,

(2.13)
$$||u||_{H^1(\mathbb{R}^3)} \le C_k \sup_{\phi \in H^1(\mathbb{R}^3)} \frac{|A_k(u,\phi)|}{\|\phi\|_{H^1(\mathbb{R}^3)}} \text{ for all } u \in H^1(\mathbb{R}^3)$$

follows from uniqueness (see, [9] for details). The analogous inf-sup condition for the adjoint operator holds as well:

(2.14)
$$\|\phi\|_{H^1(\mathbb{R}^3)} \le C_k \sup_{u \in H^1(\mathbb{R}^3)} \frac{|A_k(u,\phi)|}{\|u\|_{H^1(\mathbb{R}^3)}} \text{ for all } \phi \in H^1(\mathbb{R}^3)$$

Fix k = 1 above. We define $T : L^2(\mathbb{R}^3) \to H^1(\mathbb{R}^3)$ by T(f) = w where w is the unique solution of

$$A_1(w,\phi) = B(f,\phi) \quad \forall \phi \in H^1(\mathbb{R}^3).$$

That T is a bounded operator of $L^2(\mathbb{R}^3)$ into $H^1(\mathbb{R}^3)$ follows easily from (2.13) and (2.14). We can clearly restrict T to an operator on $H^1(\mathbb{R}^3)$ and so its resolvent and spectrum are well defined.

Given a function \tilde{u} satisfying (2.4), we can define $u(\tilde{u})$ by $u(\tilde{u}) = \tilde{u}$ for $r \leq r_0$ and $u(\tilde{u})$ given by the series (2.2) for $r > r_0$ (with coefficients from the series for \tilde{u}).

The following theorem connects the resonance values with the eigenvalues of the PML operator T. This result for general stretching functions $\tilde{\sigma}$ is given by the Aguilar-Balslev-Combes-Simon Theorem [16] however the definitions required for their theory and its connection to the PML formulation above would require a lengthy discussion. Instead, we present a simple proof which works when the solutions of the PML problem are available in the explicit form (2.4).

Theorem 2.3. Let $\text{Im}(d_0k)$ be greater than zero and set $\lambda = 1/(k^2 - 1)$. If there is a nonzero outgoing solution u (locally in H^1) satisfying (2.1) with f = 0 then \tilde{u} given by (2.4) is an eigenfunction for T with an eigenvalue λ . Conversely, if \tilde{u} is an eigenfunction for T with an eigenvalue λ , then \tilde{u} is of the form (2.4) for $r \geq r_0$ and $u = u(\tilde{u})$ satisfies (2.1) with f = 0 and the outgoing condition.

For the proof of the above theorem, we shall require the following proposition (a special case of Lemma 6.1). Its proof is provided in the appendix.

Proposition 2.4. Let β be a constant with positive imaginary part. Suppose that w satisfies the Helmholtz equation

$$\Delta w + \beta^2 w = 0$$

outside of Ω_1 and satisfies the Sommerfeld boundary condition

(2.16)
$$\lim_{r \to \infty} r\left(\frac{\partial w}{\partial r} - i\beta w\right) = 0.$$

Then for any $r_2 > r_1$, if $|x| \ge r_2$ then

$$|w(x)| \le Ce^{-\mathrm{Im}(\beta)|x|} ||w||_{H^{1/2}(\Gamma_1)}$$

Proof of Theorem 2.3. Suppose that u is outgoing, locally in H^1 and satisfies (2.1) with f = 0. Then u has a series representation (2.2). The resulting \tilde{u} defined by (2.4)

converges uniformly on compact sets of Ω_0^c . It follows from the definition of \widetilde{L} and the uniform convergence that \widetilde{u} satisfies

$$(\widetilde{L} - k^2)\widetilde{u} = 0.$$

Outside of Ω_1 , this coincides with (2.15) with $\beta = d_0 k$. As in the proof of Theorem 2.14 of [12], \tilde{u} satisfies (2.16). For $\phi \in C_0^{\infty}(\mathbb{R}^3)$,

$$A(\tilde{u},\phi) - k^2 B(\tilde{u},\phi) = 0.$$

This is the same as

(2.17)
$$A_1(\tilde{u},\phi) = (k^2 - 1)B(\tilde{u},\phi).$$

Now, Proposition 2.4 implies that \tilde{u} is in $L^2(\mathbb{R}^3)$ and so (2.17) and the inf-sup conditions (2.13) and (2.14) imply that \tilde{u} is in $H^1(\mathbb{R}^3)$. It clearly satisfies $\tilde{u} = (k^2 - 1)T\tilde{u}$.

Suppose, conversely, that $\tilde{u} \in H^1(\mathbb{R}^3)$ is an eigenfunction for T with eigenvalue λ . Then \tilde{u} satisfies (2.17). By Theorem 2.2, \tilde{u} can be written as a series (2.10) for $|x| \geq r_0$. It follows that \tilde{u} has a series expansion with contributions from $h_n^1(d_0kr)$ and $h_n^2(d_0kr)$ for $r \geq r_1$. As each of the terms involving $h_n^2(d_0kr)$ increase exponentially with r, their coefficients must be zero, i.e., \tilde{u} has a series expansion of the form of (2.4). Then $u = u(\tilde{u})$ satisfies (2.1) with f = 0 and is outgoing. This completes the proof of the theorem.

Remark 2.5. It is clear that the PML method only gives the resonances which satisfy $\text{Im}(d_0k) > 0$, i.e., those which are in the sector bounded by the positive real axis and the line $\arg(z) = \arg(1/d_0)$. To get the resonances to the left of this line, we need to increase σ_0 .

The Aguilar-Balslev-Combes-Simon theory is part of spectral deformation theory [16] which provides additional information about the spectrum of the PML operator \widetilde{L} . Specifically, these results imply that the essential spectrum of \widetilde{L} is

$$\sigma_{ess}(L) = \{ z \mid \arg(z) = -2 \arg(1 + i\sigma_0) \}$$

(cf. Theorem 18.6 [16]). This implies that the eigenvalues of \widetilde{L} corresponding to resonances are isolated and of finite multiplicity. Note that if z is in $\sigma_{ess}(\widetilde{L})$, $\operatorname{Im}(d_0k) = 0$.

3. The truncated PML problem

As indicated by Proposition 2.4, the PML-eigenfunctions decay exponentially. Later we shall show that the generalized eigenfunctions decay as well. It is then natural to approximate them on a bounded computational domain with a convenient boundary condition. To this end, we introduce a bounded (computational) domain Ω_{∞} whose boundary is denoted by Γ_{∞} . We shall always assume that the transition layer is in Ω_{∞} , i.e., $\Omega_1 \subset \Omega_{\infty}$. We assume that the outer boundary of Ω_{∞} is given by dilation of a fixed boundary by a parameter δ , e.g., Ω_{∞} is a cube of side length 2δ . The techniques of [9] can be used to show that the sesquilinear form $A_1(\cdot, \cdot)$ still satisfies an inf-sup condition on $H_0^1(\Omega_{\infty})$ provided that $\delta \geq \delta_0$ and δ_0 is sufficiently large, i.e., for $u \in H_0^1(\Omega_{\infty})$,

(3.1)
$$\|u\|_{H^{1}(\Omega_{\infty})} \leq C \sup_{\phi \in H^{1}_{0}(\Omega_{\infty})} \frac{|A_{1}(u,\phi)|}{\|\phi\|_{H^{1}(\Omega_{\infty})}}.$$

The analogous inf-sup condition for the adjoint operator holds as well:

(3.2)
$$\|\phi\|_{H^1(\Omega_{\infty})} \le C \sup_{u \in H^1_0(\Omega_{\infty})} \frac{|A_1(u,\phi)|}{\|u\|_{H^1(\Omega_{\infty})}}.$$

Here and in the remainder of this paper, C is independent of δ once δ is sufficiently large.

Because of the above inf-sup condition, we can define the operator $T_{\delta}: H^1(\mathbb{R}^3) \to H^1_0(\Omega_{\infty}) \subset H^1(\mathbb{R}^3)$ by $T_{\delta}f = u$ where $u \in H^1_0(\Omega_{\infty})$ is the unique solution to

$$A_1(u,\phi) = B(f,\phi)$$
 for all $\phi \in H_0^1(\Omega_\infty)$.

Our goal will be to study how the spectrum of T_{δ} is related to that of T. Our first theorem shows that the resolvent set for T_{δ} approaches that of T as δ becomes large. This means that the truncated problem does not result in spurious eigenvalues in the region of interest, $\text{Im}(d_0k) > 0$.

Theorem 3.1. Let U be a compact subset of R(T), the resolvent set of T, whose image under the map $z \mapsto \sqrt{(1+z)/z} \equiv k(z)$ satisfies $\operatorname{Im}(d_0k(z)) > 0$ for all $z \in U$. Here we have taken $-\pi < \arg(k(z)) \leq 0$. Then, there exists a δ_0 (depending on U) such that for $\delta > \delta_0$, $U \subset R(T_{\delta})$.

We shall need the following proposition for the proof of the above theorem. Its proof is given in the appendix.

Proposition 3.2. Assume that w is in $H^1(\mathbb{R}^3)$ and satisfies (2.15) in Ω_1^c with $\beta^2 = d_0^2 k(z)^2$ and $z \in U$ as in Theorem 3.1. Then there is a positive number α and $\delta_0 > r_1$ such that for $\delta \geq \delta_0$

$$\|w\|_{H^{1/2}(\Gamma_{\infty})} \le Ce^{-\alpha\delta} \|w\|_{H^{1/2}(\Gamma_{1})}.$$

The constants C and α can be taken independent of $z \in U$ and $\delta \geq \delta_0$.

Proof of Theorem 3.1. Let $R_z(T) = (T-zI)^{-1}$ be the resolvent operator and $||R_z(T)||_{H^1(\mathbb{R}^3)}$ denote its operator norm. This norm depends continuously for $z \in R(T)$ so there is a constant $C = C_U$ such that

$$||R_z(T)||_{H^1(\mathbb{R}^3)} \le C$$
 for all $z \in U$.

For $u \in H^1(\mathbb{R}^3)$, set $\phi = (T - zI)u$. Then for $z \in U$, using (2.13),

(3.3)
$$\begin{aligned} \|u\|_{H^{1}(\mathbb{R}^{3})} &\leq C \|\phi\|_{H^{1}(\mathbb{R}^{3})} \leq C \sup_{v \in H^{1}(\mathbb{R}^{3})} \frac{|A_{1}(\phi, v)|}{\|v\|_{H^{1}(\mathbb{R}^{3})}} \\ &= C \sup_{v \in H^{1}(\mathbb{R}^{3})} \frac{|\widetilde{A}_{z}(u, v)|}{\|v\|_{H^{1}(\mathbb{R}^{3})}}. \end{aligned}$$

Here we have set $\widetilde{A}_z(\cdot, \cdot) \equiv B(\cdot, \cdot) - zA_1(\cdot, \cdot)$. The inf-sup condition for the adjoint holds as well by similar reasoning.

We will show that the corresponding inf-sup conditions on the truncated domain hold for all $z \in U$ if δ_0 is large enough. Namely, for $u \in H^1_0(\Omega_\infty)$,

(3.4)
$$||u||_{H^{1}(\Omega_{\infty})} \leq C \sup_{v \in H^{1}_{0}(\Omega_{\infty})} \frac{|A_{z}(u,v)|}{||v||_{H^{1}(\Omega_{\infty})}}$$

and

(3.5)
$$\|u\|_{H^1(\Omega_{\infty})} \le C \sup_{v \in H^1_0(\Omega_{\infty})} \frac{|A_z(v,u)|}{\|v\|_{H^1(\Omega_{\infty})}}.$$

Once we show (3.4) and (3.5), then it follows that the solution $v \in H_0^1(\Omega_{\infty})$ to the variational problem

(3.6)
$$\widetilde{A}_z(v,\phi) = A_1(w,\phi) \text{ for all } \phi \in H^1_0(\Omega_\infty)$$

satisfies

$$(T_{\delta} - zI)v = w.$$

This shows that z is in $R(T_{\delta})$.

We start with (3.3) to verify (3.4). The test function v appearing in (3.3) is decomposed $v = v_0 + v_1$ where v_1 solves

(3.7)
$$\widetilde{A}_{z}(\chi, v_{1}) = 0 \text{ for all } \chi \in H^{1}_{0}(\Omega_{\infty} \setminus \overline{\Omega}_{1})$$
$$v_{1} = 0 \text{ on } \Omega_{1}$$
$$v_{1} = v \text{ on } \Omega^{c}_{\infty}.$$

This problem is uniquely solvable. Indeed, let $\chi \in H^1_0(\Omega_\infty \setminus \overline{\Omega}_1)$ and γ be in \mathbb{C} . Then

$$\widetilde{A}_z(\gamma\chi,\chi) = z(\gamma d_0^2 k(z)^2(\chi,\chi) - \gamma D(\chi,\chi)).$$

Here $D(\cdot, \cdot)$ denotes the Dirichlet form. Now, since U is compact, there is an ϵ with $0 < \epsilon < \pi$ such that $\epsilon < \arg(d_0^2 k(z)^2) < \pi$ for all $z \in U$. Taking $\gamma = \exp(-i\epsilon/2)$ above implies that both $-\gamma$ and $\gamma d_0^2 k(z)^2$ have positive imaginary part. It follows that

$$|\widetilde{A}_z(\gamma\chi,\chi)| \ge C \|\chi\|_{H^1(\Omega_\infty \setminus \overline{\Omega}_1)}^2.$$

10

The unique solvability of (3.7) follows and we have

(3.8)
$$\|v_1\|_{H^1(\mathbb{R}^3)} \le C \|v\|_{H^1(\mathbb{R}^3)}$$

Next for $u \in H_0^1(\Omega_\infty)$, we write $u = u_0 + u_1$ where

$$A_z(u_1, \chi) = 0 \text{ for all } \chi \in H^1_0(\Omega_\infty \setminus \overline{\Omega}_1)$$
$$u_1 = u \text{ on } \Omega_1$$
$$u_1 = 0 \text{ on } \Omega^c_\infty.$$

As above, this problem is also uniquely solvable and

4

$$||u_1||_{H^1(\mathbb{R}^3)} \le C ||u||_{H^1(\Omega_\infty)}.$$

We then have

$$\widetilde{A}_z(u,v) = \widetilde{A}_z(u,v_0) + \widetilde{A}_z(u_0,v_1) + \widetilde{A}_z(u_1,v_1) = \widetilde{A}_z(u,v_0) + \widetilde{A}_z(u_1,v_1).$$

Now, let \tilde{u}_1 solve

$$\begin{aligned} \widehat{A}_z(\widetilde{u}_1, \eta) &= 0 \quad \text{for all} \quad \eta \in H^1_0(\Omega_1^c) \\ \\ \widetilde{u}_1 &= u \quad \text{on} \quad \Omega_1. \end{aligned}$$

The argument showing unique solvability of (3.7) works as well here.

We then have

$$\widetilde{A}_{z}(u_{1}, v_{1}) = \widetilde{A}_{z}(u_{1} - \widetilde{u}_{1}, v_{1}) + \widetilde{A}_{z}(\widetilde{u}_{1}, v_{1}) = \widetilde{A}_{z}(u_{1} - \widetilde{u}_{1}, v_{1}).$$

Now

$$\widetilde{A}_z(u_1 - \widetilde{u}_1, \phi) = 0 \text{ for all } \phi \in H^1_0(\Omega_\infty \setminus \overline{\Omega}_1) \oplus H^1_0(\Omega_\infty^c)$$

from which it follows that

$$\|u_1 - \tilde{u}_1\|_{H^1(\mathbb{R}^3)} \le C \|\tilde{u}_1\|_{H^{1/2}(\Gamma_\infty)} \le C e^{-\alpha\delta} \|u\|_{H^{1/2}(\Gamma_1)}$$

We used Proposition 3.2 for the last inequality above. It then follows from (3.8) and a standard trace estimate that

$$|\tilde{A}_{z}(u_{1}, v_{1})| \leq Ce^{-\alpha\delta} ||u||_{H^{1}(\Omega_{\infty})} ||v||_{H^{1}(\mathbb{R}^{3})}$$

Thus,

$$\|u\|_{H^{1}(\Omega_{\infty})} \leq C \sup_{v_{0} \in H^{1}_{0}(\Omega_{\infty})} \frac{|\widetilde{A}_{z}(u, v_{0})|}{\|v_{0}\|_{H^{1}(\Omega_{\infty})}} + Ce^{-\alpha\delta} \|u\|_{H^{1}(\Omega_{\infty})}.$$

The inf-sup condition (3.4) follows taking δ_0 large enough so that $Ce^{-\alpha\delta_0} < 1$. The proof of (3.5) is similar. This completes the proof of the theorem.

SEUNGIL KIM AND JOSEPH E. PASCIAK

4. EIGENVALUE CONVERGENCE

We study eigenvalue convergence in this section. As mentioned above, the eigenvalues of T corresponding to resonances are isolated and of finite multiplicity. Let λ be such an eigenvalue. Since λ is isolated, there is a neighborhood of it with all points excluding λ in R(T). Let $\rho > 0$ be such that the circle of radius ρ centered at λ is in this neighborhood. We denote this circle by Γ .

The following projector will play a major role in the eigenvalue convergence analysis: For $u \in H^1(\mathbb{R}^3)$, define

(4.1)
$$P_{\Gamma}(u) = \frac{1}{2\pi i} \int_{\Gamma} R_z(T) u \, dz$$

Its range is denote by V and is the generalized eigenspace associated with the eigenvalue λ .

By Theorem 3.1, $R(T_{\delta})$ contains Γ for sufficiently large δ . For such δ , we define the corresponding projector:

(4.2)
$$P_{\Gamma}^{\delta}(u) = \frac{1}{2\pi i} \int_{\Gamma} R_z(T_{\delta}) u \, dz$$

Its range will be denoted by V_{δ} , which is the subspace of $H_0^1(\Omega_{\infty})$ spanned by the generalized eigenfunctions associated with the eigenvalues of T_{δ} inside Γ . A main result of this paper is contained in the following theorem.

Theorem 4.1. For any ρ sufficiently small, there is a $\delta_1 > 0$ such that

$$\dim(V) = \dim(V_{\delta})$$

for $\delta > \delta_1$.

Remark 4.2. The above theorem shows that the eigenvalues for the truncated problem converge to those of the full problem. This convergence respects the eigenvalue multiplicity in the sense that the sum of the multiplicities of the eigenvalues inside the circle of radius ρ for the truncated problem equals the multiplicity of λ for any ρ provided that $\delta \geq \delta_1(\rho)$ is sufficiently large.

The typical approach for proving eigenvalue convergence results such as Theorem 4.1 involves showing that the approximate operator (T_{δ} in this case) converges in norm to the full operator. This fails for our application as T_{δ} cannot converge to Tin norm since T_{δ} is compact for any δ while T is not. Moreover, T_{δ} is not even norm continuous as a function of δ .

Instead, our eigenvalue convergence analysis is based on the exponential decay of the generalized eigenfunctions both in V and V_{δ} . The main technical results are contained in the following three lemmas whose proofs are given in the appendix. **Lemma 4.3.** Let V be as above. Then there are constants α , C and $M > r_1$ such that for all $\psi \in V$,

(4.3)
$$|\psi(x)| \le Ce^{-\alpha |x|} \|\psi\|_{H^1(\mathbb{R}^3)} \text{ for } |x| > M.$$

As T_{δ} is compact, the generalized eigenspace V_{δ} has a finite dimension and a basis of the form $\psi_{i,j}$, $i = 1, \ldots, k$, $j = 1, \ldots, m(i)$. Here if λ_i^{δ} is an eigenvalue of T_{δ} inside Γ for $i = 1, \cdots, k$ and we may take

$$\psi_{i,j} = (T_{\delta} - \lambda_i^{\delta})\psi_{i,j+1}$$
 and $(T_{\delta} - \lambda_i^{\delta})\psi_{i,1} = 0.$

A priori we do not have a bound on the dimension of V_{δ} . To deal with this, we consider subspaces of \widetilde{V}_{δ} of dimension at most $\dim(V) + 1$. Specifically, let \widetilde{V}_{δ} have a basis of the form $\{\psi_{i,j}\}, \psi_{i,j}, i = 1, \ldots, k, j = 1, \ldots, \tilde{m}(i)$ with $\{\psi_{i,j}\}$ as above and $\sum_{i} \tilde{m}(i) \leq \dim(V) + 1$. The space \widetilde{V}_{δ} is invariant under T_{δ} and P_{Γ}^{δ} . The following lemma gives a decay estimate for functions in \widetilde{V}_{δ} . The constant can be taken so that it only depends on the dimension of V provided that δ is large enough.

Lemma 4.4. Let \widetilde{V}_{δ} be as above. Then there are constants α, C and $M > r_1$ such that for $\delta > M$ and $\psi_{\delta} \in \widetilde{V}_{\delta}$,

(4.4)
$$|\psi_{\delta}(x)| \leq C e^{-\alpha |x|} \|\psi_{\delta}\|_{H^{1}(\Omega_{\infty})} \text{ for all } |x| > M.$$

Lemma 4.5. Suppose that $u \in H^1(\mathbb{R}^3)$ satisfies

(4.5)
$$|u(x)| \le Ce^{-\alpha |x|} ||u||_{H^1(\mathbb{R}^3)}$$

for $|x| > M > r_1$. Then there exist positive constants α_1 , C_1 and $M_1 > M$ such that $\|(T - T_\delta)u\|_{H^1(\mathbb{R}^3)} \leq C_1 e^{-\alpha_1 \delta} \|u\|_{H^1(\mathbb{R}^3)},$

for $\delta > M_1$.

Proof of Theorem 4.1. We first note that for $z \in \Gamma$,

$$\|R_z(T)\| \le C.$$

In addition, for $\delta > \delta_0$ in Theorem 3.1, (3.4) and (3.5) implies that

$$\|R_z(T_\delta)\| \le C$$

with C independent of δ . It follows that P_{Γ} and P_{Γ}^{δ} are bounded operators in $H^1(\mathbb{R}^3)$.

Let ψ be in V. Since V is invariant under the action of $R_z(T)$, by Lemma 4.5,

$$|(T - T_{\delta})R_z(T)\psi||_{H^1(\mathbb{R}^3)} \le Ce^{-\alpha_1\delta} ||\psi||_{H^1(\mathbb{R}^3)}$$

We also have

$$(I - P_{\Gamma}^{\delta})P_{\Gamma} = \frac{1}{2\pi i} \int_{\Gamma} (R_z(T) - R_z(T_{\delta}))P_{\Gamma} dz$$
$$= -\frac{1}{2\pi i} \int_{\Gamma} R_z(T_{\delta})(T - T_{\delta})R_z(T)P_{\Gamma} dz.$$

FIGURE 1. Spectrum of a 1 dimensional resonance problem

Thus,

$$\begin{aligned} \|(I - P_{\Gamma}^{\delta})\psi\|_{H^{1}(\mathbb{R}^{3})} &= \frac{1}{2\pi} \|\int_{\Gamma} R_{z}(T_{\delta})(T - T_{\delta})R_{z}(T)\psi \,dz\|_{H^{1}(\mathbb{R}^{3})} \\ &\leq \frac{1}{2\pi} \int_{\Gamma} \|R_{z}(T_{\delta})\|_{H^{1}(\mathbb{R}^{3})} \|(T - T_{\delta})R_{z}(T)\psi\|_{H^{1}(\mathbb{R}^{3})} dz \\ \end{aligned}$$

$$(4.6) \qquad \leq C e^{-\alpha_{1}\delta} \|\psi\|_{H^{1}(\mathbb{R}^{3})}.$$

We choose $\delta_1 \geq \delta_0$ so that $Ce^{-\alpha\delta_1}$ is less than one. For (4.6) to hold, it is necessary that the rank of P_{Γ}^{δ} be greater than or equal to $\dim(V)$, i.e., $\dim(V_{\delta}) \geq \dim(V)$.

For the other direction, we let ψ be in \widetilde{V}_{δ} with \widetilde{V}_{δ} as above. An argument similar to that used above (using the invariance of \widetilde{V}_{δ} under P_{Γ}^{δ}) gives

$$||(I - P_{\Gamma})\psi||_{H^1(\mathbb{R}^3)} \le Ce^{-\alpha\delta} ||\psi||_{H^1(\mathbb{R}^3)}.$$

Choosing $\delta_1 \geq \delta_0$ so that $Ce^{-\alpha\delta_1} < 1$ then leads to $\dim(V) \geq \dim(\widetilde{V}_{\delta})$. This implies that there is no subspace $\widetilde{V}_{\delta} \subseteq V_{\delta}$ with dimension greater than $\dim(V)$, i.e., $\dim(V_{\delta}) = \dim(V)$.

5. NUMERICAL EXPERIMENTS.

In this section, we will give simple one and two dimensional resonance problems illustrating the behavior of finite element approximations of the PML eigenvalue problem. Although some experiments appear to have spurious numerical eigenvalues, we shall see that they can be controlled by keeping the transition layer close to the non-homogeneous phenomena, i.e. the region where the operator differs from the Laplacian.

We start with a one dimensional problem, i.e.,

$$-a\Delta u = k^2 u$$
 in \mathbb{R}

with the outgoing wave condition. Here a is a piecewise constant function defined by

$$a = \begin{cases} 1/4 & \text{if } |x| < 1\\ 1 & \text{otherwise.} \end{cases}$$

We impose the continuity of u and au' at $x = \pm 1$. The analytic resonances corresponding to this problem are given by

$$k = \frac{n\pi}{4} - \frac{\ln 3}{4}i,$$

for $n \in \mathbb{Z}$ and n > 0.

For the first experiment, we choose the PML parameters $r_0 = 2$, $r_1 = 4$, $\delta = 8$, $\sigma_0 = 1$ and discretize the system with a mesh size h = 1/50. Figure 1 shows the resulting eigenvalues. Note that the eigenvalues labeled "true resonances" are very close to the analytic resonances given above. In Figure 2, we report the error observed when approximating the resonance of smallest magnitude as a function of δ for fixed values of h. The PML parameters were $r_0 = 1$, $r_1 = 2$, $\delta = 4$ and $\sigma_0 = 1$. As expected, increasing δ for a fixed value of h improves the accuracy to the point where the mesh size errors dominate.

FIGURE 2. Eigenvalue error for the resonance of smallest magnitude

The remaining eigenvalues in Figure 1 either correspond to those clearly approximating the essential spectrum or spurious eigenvalues. Those far away from the true resonances and those to the left of the essential spectrum are easily ignored. However the group of spurious eigenvalues running below and parallel to the true resonances are somewhat disturbing, especially so since they do not move much when either the mesh size is decreased (at least, within reasonable parameters) or the computational region is increased.

Spurious eigenvalues appearing in PML approximations to resonance problems have been discussed elsewhere in the literature. In particular, Zworski [24] explains this phenomenon in terms of the pseudo-spectra concept (cf. [23]). Unlike symmetric matrices, the norms of the resolvent of a non-symmetric operator can be quite large for points located far away from the spectrum. We shall demonstrate that this is an issue for the PML eigenvalue problem. Note that the central theorems (Theorem 3.1 and Theorem 4.1) of this paper require that δ is large enough that

(5.1)
$$C(||R_z(T)||)e^{-\alpha_1\delta} < 1.$$

The situation at the discrete level is worse. In fact, to guarantee eigenvalue convergence without spurious eigenvalues from the discretization, one needs to have that $h \leq h_0$ with h_0 satisfying

(5.2)
$$C(||R_z(T_\delta)||)h_0 < 1.$$

Thus, in cases where the norm of the resolvent is large, to get rid of the spurious eigenvalues, it appears to be necessary to make h too small to be practical.

To shed some light on the behavior of the resolvent, we consider the above one dimensional problem. Let k be a complex number with Im(k) < 0, $\text{Im}(d_0k) > 0$ and k not a resonance. The function $f(x) = e^{ik\tilde{d}|x|}$ satisfies the PML equation

(5.3)
$$(\widetilde{L} - k^2)f \equiv -\frac{1}{d}\left(\frac{1}{d}f'\right)' - k^2f = 0 \text{ for } |x| > 1.$$

Note that with $r_0 > 1$, f increases exponentially from |x| = 1 to $|x| = r_0$ while decreasing exponentially outside of the transition region. Because f is relatively small for $|x| \leq 1$ and satisfies (5.3), $\|(\tilde{L} - k^2)f\|$ is much smaller than $\|f\|$. This implies that the constant in the inf-sup condition (3.3) is large. This constant is directly proportional to the norm of the resolvent $R_z(T)$ (see the proof of Theorem 3.1 for details). Accordingly, to keep the norm of $R_z(T)$ manageable, we need to avoid a large region allowing exponential increase. This can be attained by keeping the start of the transitional region as close as possible to the region of inhomogeneity, i.e., |x| = 1. The analysis for problems of dimension greater than one is similar.

The behavior of the spurious resonances as a function of the location of the transitional layer is illustrated in Figure 3. Notice that the spurious eigenvalues can be moved away from the true resonances simply by placing the transition region closer to one. In fact, the best results are obtained by starting the transition region on the interface. This also illustrates the fact that there does not need to be any area extending outside of Ω where the original equation is retained.

We next consider a model problem on \mathbb{R}^2 . Let Ω_0 be the open unit disc in \mathbb{R}^2 and consider

$$-a\Delta u = k^2 u$$
 in \mathbb{R}^2

16

FIGURE 3. Eigenvalues from different PML's. r_0 is the radius of the inside boundary of PML

with the outgoing wave condition and the transmission conditions of the continuity of u and $a\nabla u$ at the interface, where

$$a = \begin{cases} 1/4 & \text{if } (x, y) \in \Omega_0\\ 1 & \text{otherwise.} \end{cases}$$

An outgoing solution bounded in Ω_0 is of the form (in polar coordinates)

$$u(x,y) = \begin{cases} \sum_{n=-\infty}^{\infty} a_n J_n(2kr) e^{in\theta} & \text{for } (x,y) \in \Omega_0 \\ \\ \sum_{n=-\infty}^{\infty} b_n H_n^1(kr) e^{in\theta} & \text{for } (x,y) \in \Omega_0^c \end{cases}$$

where J_n are Bessel functions of the first kind of order n and H_n^1 are Hankel functions of the first kind of order n. The continuity conditions at the interface lead to

$$a_n J_n(2k) = b_n H_n^1(k)$$
 and $\frac{1}{2} a_n J_n'(2k) = b_n (H_n^1(k))'.$

Nonzero solutions exist when k satisfies

(5.4)
$$J'_{n}(2k)H^{1}_{n}(k) - 2J_{n}(2k)(H^{1}_{n}(k))' = 0.$$

This equation can be solved by iteration and its solutions are used as a reference. It is easy to see that each solution k to the problem (5.4) for n > 0 is of multiplicity 2.

For the one dimensional case, we simply computed all eigenvalues using MatLab. This approach fails for the two dimensional problem as the problem size is much too large. We clearly have to be more selective. Our goal is to focus on computing the eigenvalues corresponding to resonances which are close to the origin. We are able to do this by defining a related eigenvalue problem which transforms the eigenvalues of interest into the eigenvalues of greatest magnitude. These eigenvalues can then be selectively computed using a general eigensolver software. Specifically, we use the software package SLEPc [15] which is a general purpose eigensolver built on top of PETSc [2].

The computational eigenvalue problem (after introducing PML, truncating the domain and applying finite elements) can be written

$$Su = k^2 N u$$

for appropriate complex valued matrices S and N. The idea is to use linear fractional transformations. We consider $\zeta_2 \circ \zeta_1$ where

$$\zeta_1(z) = \frac{1}{z}$$
 and $\zeta_2(z) = \frac{d_0 + iz}{d_0 - iz}$.

The first transformation maps points near the origin to points of large absolute value. Under this transformation, the sector $2 \arg(1/d_0) \leq \arg(z) \leq 0$ maps to the sector $0 \leq \arg(z) \leq 2 \arg(d_0)$. The second transformation gets rid of the "essential spectrum" (which was mapped to $\arg(z) = 2 \arg(d_0)$) by mapping $\arg(z) = 2 \arg(d_0)$ to the interior of the unit disk and anything in the sector $0 \leq \arg(z) < \arg(d_0)$ to the exterior of the unit disk. Thus, we look for the eigenvalues of largest magnitude for the operator

$$(d_0S + iN)u = \mu(d_0S - iN)u$$

and recover k^2 from the formula

$$k^2 = \frac{(\mu+1)i}{(\mu-1)d_0}.$$

We consider computing on a square domain of side length 2δ . Table 1 gives the values of the first ten numerical and analytical resonances for the above problem as a function of h. The truncated domain corresponded to $\delta = 5$ and the PML

parameters were $\sigma_0 = 1$, $r_0 = 1$ and $r_1 = 4$. Note that errors of less than one percent were obtained and improved results were observed when the mesh size was decreased. These are relatively large problems, indeed, the case of h = 1/120 corresponds to almost a million and a half complex unknowns.

Approximate PML Resonances		Resonances	Multiplicity	n
h = 1/100	h = 1/120	resonances	manipheney	
1.1169 - 0.2393i	1.1165 - 0.2392i	1.1155 - 0.2396i	1	0
2.7211 - 0.2667i	2.7200 - 0.2665i	2.7167 - 0.2665i	1	0
1.8264 - 0.2916i	1.8256 - 0.2914i	1.8238 - 0.2921i	2	1
1.8264 - 0.2916i	1.8256 - 0.2914i			
2.4021 - 0.3759i	2.4009 - 0.3755i	2.3981 - 0.3781i	2	2
2.4026 - 0.3761i	2.4012 - 0.3757i			
2.8249 - 0.3182i	2.8242 - 0.3173i	2.8161 - 0.3161i	2	3
2.8249 - 0.3182i	2.8242 - 0.3173i			
3.4066 - 0.1881i	3.4058 - 0.1877i	3.3993 - 0.1851i	2	
3.4068 - 0.1885i	3.4059 - 0.1880i			1

TABLE 1. Numerical results for the first ten resonances of the 2 dimensional problem

6. Appendix

The main results of this appendix are the exponential decay of eigenfunctions for the full and truncated PML problems. We also prove other lemmas and propositions which have appeared earlier without proof. We start with the following lemma.

Lemma 6.1. Suppose that w is in $H^1(\Omega_1^c)$ and satisfies

$$\Delta w + \beta^2 w = f \quad in \quad \Omega_1^c$$

with $\operatorname{Im}(\beta)$ positive and $f \in L^2(\Omega_1^c)$. If f decays exponentially, i.e., there are positive constants α , C_f and $M > r_1$ such that $|f(x)| \leq C_f e^{-\alpha |x|}$ for |x| > M, then there are positive constant α_1 , C_1 and $M_1 > M$ such that

(6.2)
$$|w(x)| \le C_1 e^{-\alpha_1 |x|} \left(\|w\|_{H^1(\Omega_1^c)} + \|f\|_{L^2(\Omega_1^c)} + C_f \right)$$

and

$$\|w\|_{H^{1/2}(\Gamma_{\infty})} \le C_1 e^{-\alpha_1 \delta} \left(\|w\|_{H^1(\Omega_1^c)} + \|f\|_{L^2(\Omega_1^c)} + C_f \right)$$

for $|x|, \delta > M_1$. Here α_1, C_1 and M_1 can be chosen independent of w, f and δ .

Proof. Choose any $\tilde{M}_1 > M$. For $|x| > \tilde{M}_1$ let Ω_M and Ω_R be open balls centered at the origin of radius M and 2|x|, respectively. Let Γ_M and Γ_R denote their boundaries.

By Green's theorem, we have for $|x| > M_1$

(6.3)
$$w(x) = -\int_{\Gamma_M \cup \Gamma_R} \left[\frac{\partial w}{\partial n}(y)\Phi(x,y) - w(y)\frac{\partial \Phi}{\partial n_y}(x,y) \right] dS_y + \int_D f(y)\Phi(x,y)dy$$

where *n* is the outward normal vector on the boundaries of $D = \Omega_R \setminus \overline{\Omega}_M$ and $\Phi(x, y) = -e^{i\beta|x-y|}/(4\pi|x-y|)$ is the fundamental solution of the Helmholtz equation with the wave number β .

Note that for $|x| > M_1$

$$\int_{\Gamma_M} \frac{dS_y}{|x-y|^2} \le \int_{\Gamma_M} \frac{dS_y}{(|x|-M)^2} \le \frac{4\pi M^2}{(\tilde{M}_1 - M)^2}.$$

By Schwarz's inequality and the properties of Φ ,

$$\begin{split} \left| \int_{\Gamma_M} \left[\frac{\partial w}{\partial n}(y) \Phi(x,y) - w(y) \frac{\partial \Phi}{\partial n_y}(x,y) \right] dS_y \right|^2 \\ & \leq C e^{-2\mathrm{Im}(\beta)|x|} \left(\| \frac{\partial w}{\partial n} \|_{L^2(\Gamma_M)}^2 + \| w \|_{L^2(\Gamma_M)}^2 \right) \int_{\Gamma_M} \frac{dS_y}{|x-y|^2} \\ & \leq C e^{-2\mathrm{Im}(\beta)|x|} (\| w \|_{H^1(\Omega_1^c)}^2 + \| f \|_{L^2(\Omega_1^c)}^2). \end{split}$$

For the last inequality above, we used an interior regularity estimate, i.e., since w satisfies (6.1), its H^2 -norm in a neighborhood of Γ_M can be bounded by the H^1 -norm of w and the L^2 -norm of f in a slightly larger neighborhood. The analogous inequality bounding the integral on Γ_R holds and hence

(6.4)
$$\left| \int_{\Gamma_M \cup \Gamma_R} \left[\frac{\partial w}{\partial n}(y) \Phi(x, y) - w(y) \frac{\partial \Phi}{\partial n_y}(x, y) \right] dS_y \right|^2 \leq C e^{-2\mathrm{Im}(\beta)|x|} (\|w\|_{H^1(\Omega_1^c)}^2 + \|f\|_{L^2(\Omega_1^c)}^2).$$

For the volume integral in (6.3), let $\tilde{\alpha} = \min\{\alpha, \operatorname{Im}(\beta)\}$. Then

(6.5)
$$\left| \int_{D} f(y) \Phi(x, y) dy \right| \leq CC_{f} \int_{D} e^{-\alpha |y|} \frac{e^{-\operatorname{Im}(\beta)|x-y|}}{|x-y|} dy$$
$$\leq CC_{f} e^{-\tilde{\alpha}|x|} \int_{D} \frac{1}{|x-y|} dy$$
$$\leq CC_{f} |x|^{2} e^{-\tilde{\alpha}|x|} \leq CC_{f} e^{-\alpha_{1}|x|}$$

for $|x| > \tilde{M}_2$ and $0 < \alpha_1 < \tilde{\alpha}$. The first inequality of Lemma 6.1 now follows from inequalities (6.4) and (6.5).

For the second inequality, let $D_1 \subset S_{\gamma}$ be open sets such that S_{γ} is a γ -neighborhood of Γ_{∞} with γ independent of δ and $\overline{D}_1 \subset S_{\gamma}$. Using an interior regularity estimate and integrating (6.2) over S_{γ} gives

$$\begin{aligned} \|w\|_{H^{1/2}(\Gamma_{\infty})} &\leq C \|w\|_{H^{2}(D_{1})} \leq C \|w\|_{L^{2}(S_{\gamma})} \\ &\leq C e^{-\alpha_{1}\delta} \left(\|w\|_{H^{1}(\Omega_{1}^{c})} + \|f\|_{L^{2}(\Omega_{1}^{c})} + C_{f} \right). \end{aligned}$$

Proof of Proposition 2.4. Let w solve (2.15) and (2.16). Consider the sesquilinear form

$$a(u,v) = (\nabla u, \nabla v)_{\Omega_1^c} - (\beta^2 u, v)_{\Omega_1^c}$$

for $u, v \in H^1(\Omega_1^c)$. Since $\operatorname{Im}(a(u, -1/\overline{\beta}u)) \geq C ||u||_{H^1(\Omega_1^c)}^2$, it is straightforward to see that there is a unique \tilde{w} in $H^1(\Omega_1^c)$ satisfying $\tilde{w} = w$ on Γ_1 and

$$a(\tilde{w}, v) = 0$$
, for all $v \in H_0^1(\Omega_1^c)$.

Moreover,

(6.6)
$$\|\tilde{w}\|_{H^1(\Omega_1^c)} \le C \|w\|_{H^{1/2}(\Gamma_1)}$$

It is immediate that \tilde{w} satisfies (2.15) and (2.16), i.e., $\tilde{w} = w$. The proposition now follows from the proof of Lemma 6.1.

Proof of Proposition 3.2. Since U is compact it follows that α_1 in Lemma 6.1 can be chosen independent of $z \in U$. The proposition follows from Lemma 6.1 and (6.6). \Box

Proof of Lemma 4.3. Let m be the (algebraic) multiplicity of λ . For any nonzero $\psi \in V$,

$$(T - \lambda I)^m \psi = 0.$$

There exists a positive integer $n \leq m$, such that

(6.7)
$$(T - \lambda I)^{n-1}\psi \neq 0$$
 and $(T - \lambda I)^n\psi = 0$

We will show that there exist constants α, C and M depending only on λ, T , and n, such that ψ satisfies (4.3) with these constants. The proof is by induction on n. The case of n = 1 corresponds to an eigenfunction ψ_1 and immediately follows from Lemma 6.1 since ψ satisfies

$$\Delta \psi(x) + (d_0 k(\lambda))^2 \psi(x) = 0$$
, for $|x| > r_1$.

Let ψ satisfy (6.7) with $2 \leq n \leq m$ and denote $\psi_j = (T - \lambda I)^{n-j} \psi$ for $j = 1, \dots, n$. Assume that (4.3) holds for ψ_j for $j = 1, \dots, n-1$ with constants depending only on λ , T, and j. We need to estimate the decay of ψ_n . Then $(T - \lambda I)\psi_n = \psi_{n-1}$ so outside of Ω_1 ,

$$d_0^2\psi_n + \lambda(\Delta\psi_n + d_0^2\psi_n) = -(\Delta\psi_{n-1} + d_0^2\psi_{n-1}).$$

A straightforward computation gives

(6.8)
$$\Delta \psi_n + (d_0 k(\lambda))^2 \psi_n = d_0^2 \sum_{j=1}^{n-1} \frac{(-1)^{j+1}}{\lambda^{j+1}} \psi_{n-j}.$$

Since the function on the right of (6.8) decays exponentially by the inductive assumption, by Lemma 6.1 there exist $\alpha = \alpha(T, \lambda, n), C = C(T, \lambda, n)$ and $M = M(T, \lambda, n)$ such that ψ_n satisfies

(6.9)
$$|\psi_n(x)| \le C e^{-\alpha |x|} \sum_{j=1}^n \|\psi_j\|_{H^1(\mathbb{R}^n)},$$

for |x| > M. In addition, from the continuity of $T - \lambda I$ and the definition of ψ_j there is a constant $C = C(T, \lambda, n)$ such that

$$\|\psi_j\|_{H^1(\mathbb{R}^3)} \le C \|\psi_n\|_{H^1(\mathbb{R}^3)},$$

for $j = 1, \dots, n-1$. Thus, from (6.9), there exist $\alpha = \alpha(T, \lambda, n), C = C(T, \lambda, n)$, and $M = M(T, \lambda, n)$ such that

$$|\psi_n(x)| \le C e^{-\alpha |x|} \|\psi_n\|_{H^1(\mathbb{R}^3)},$$

for |x| > M.

Proof of Lemma 4.4. We will prove a result for the truncated problem analogous to Lemma 6.1, i.e., if $\psi_{\delta} \in H^1_0(\Omega_{\infty} \setminus \overline{\Omega}_1)$ satisfies

$$\Delta \psi_{\delta} + \beta^2 \psi_{\delta} = f \quad \text{in} \quad \Omega_{\infty} \setminus \bar{\Omega}_1$$

with $\operatorname{Im}(\beta)$ positive, $f \in L^2(\Omega_{\infty} \setminus \overline{\Omega}_1)$ and there exist positive constants α , C and M such that $|f(x)| \leq C_f e^{-\alpha |x|}$ for $|x| > M > r_1$, then there exist positive constants α_1 , C_1 and M_1 independent of ψ_{δ} , f and δ such that

(6.10)
$$|\psi_{\delta}(x)| \leq C_1 e^{-\alpha_1 |x|} \left(\|\psi_{\delta}\|_{H^1(\Omega_{\infty} \setminus \overline{\Omega}_1)} + \|f\|_{L^2(\Omega_{\infty} \setminus \overline{\Omega}_1)} + C_f \right)$$

for $|x| > M_1$. Once we verify (6.10), the same technique as used in the proof of Lemma 4.3 will complete the proof. Indeed, let $\tilde{m} = \sum_i \tilde{m}(i)$. For any nonzero $\psi \in \tilde{V}_{\delta}$,

$$\prod_{i=1}^{k} (T_{\delta} - \lambda_{i}^{\delta}I)^{\tilde{m}(i)}\psi = \prod_{i=1}^{\tilde{m}} (T_{\delta} - \tilde{\lambda}_{i}I)\psi = 0.$$

with the obvious definition of λ_i . There is a positive integer $n \leq \tilde{m}$ such that

$$\prod_{i=1}^{n-1} (T_{\delta} - \tilde{\lambda}_i I) \psi \neq 0 \text{ and } \prod_{i=1}^n (T_{\delta} - \tilde{\lambda}_i I) \psi = 0$$

Setting $\psi_n = \psi$ and $\psi_j = (T_{\delta} - \tilde{\lambda}_{n-j}I)\psi_{j+1}$ for $j = 1, \dots, n-1$, we have

$$\Delta \psi_n + (d_0 k(\lambda_1))^2 \psi_n = d_0^2 \sum_{j=1}^{n-1} \frac{(-1)^{j+1}}{\prod_{l=1}^{j+1} \tilde{\lambda}_l} \psi_{n-j} \text{ in } \Omega_1^c.$$

Recall that the norm of T_{δ} is bounded by a constant independent of δ from (3.1) and (3.2) and $\tilde{\lambda}_i$, for each *i*, is inside Γ and so that $\text{Im}(d_0k(\tilde{\lambda}_i)) > 0$. Thus we can apply the induction on *n* to (4.4) as in the proof of Lemma 4.3.

We now verify (6.10). We start by decomposing $\psi_{\delta} = \psi + w$ where ψ is defined to be equal to ψ_{δ} in Ω_1 and satisfies

(6.11)
$$\begin{aligned} \Delta \psi + \beta^2 \psi &= f, \text{ in } \Omega_1^c, \\ \psi &= \psi_\delta, \text{ on } \Gamma_1 \end{aligned}$$

where f is the zero extension to Ω_{∞}^{c} . Then w satisfies the equations

$$\begin{aligned} \Delta w + \beta^2 w &= 0, & \text{in } \Omega_{\infty} \setminus \bar{\Omega}_1, \\ w &= 0, & \text{on } \Gamma_1, \\ w &= -\psi, & \text{on } \Gamma_{\infty}. \end{aligned}$$

Note that ψ decays exponentially by Lemma 6.1 and the stability of (6.11) implies

(6.12)
$$|\psi(x)| \le C_1 e^{-\alpha_1 |x|} \left(\|\psi_\delta\|_{H^1(\Omega_\infty \setminus \bar{\Omega}_1)} + \|f\|_{L^2(\Omega_\infty \setminus \bar{\Omega}_1)} + C_f \right)$$

for $|x| > M_1$. So we have only to show exponential decay of w.

Let χ be a cutoff function which is defined by one on an $\epsilon/2$ -neighborhood of Γ_{∞} and zero outside of an ϵ -neighborhood S_{ϵ} . Define $\tilde{w} = -\chi \psi$. Then there is a unique w_0 satisfying the problem

(6.13)
$$\begin{aligned} \Delta w_0 + \beta^2 w_0 &= g, \text{ in } \Omega_\infty \setminus \bar{\Omega}_1, \\ w_0 &= 0, \text{ on } \Gamma_1 \cup \Gamma_\infty. \end{aligned}$$

where $g = -(\Delta \tilde{w} + \beta^2 \tilde{w})$. This gives us a decomposition of w into $w = \tilde{w} + w_0$. It is clear that $\|w_0\|_{H^1(\Omega_{\infty} \setminus \bar{\Omega}_1)}$ is uniformly (independent of δ) bounded by $\|g\|_{L^2(\Omega_{\infty} \setminus \bar{\Omega}_1)}$ and that w_0 is in $H^2(\Omega_{\infty} \setminus \bar{\Omega}_1)$. It will suffice to show that

(6.14)
$$\|w_0\|_{H^2(\Omega_\infty \setminus \overline{\Omega}_1)} \le C_\delta \|g\|_{L^2(\Omega_\infty \setminus \overline{\Omega}_1)}$$

with C_{δ} only growing as a polynomial of δ (see below). To this end, let Ω_2 be a ball centered at the origin and of radius $r_2 > r_1$, independent of δ , and contained in Ω_{∞} . Since $\Omega_2 \setminus \overline{\Omega}_1$ is a smooth domain, $\|w_0\|_{H^2(\Omega_2 \setminus \overline{\Omega}_1)} \leq C \|g\|_{L^2(\Omega_\infty \setminus \overline{\Omega}_1)}$. If χ_1 denotes a cutoff function with support in Ω_1^c and $1 - \chi_1 \equiv 0$ in Ω_2^c , then $\Delta(\chi_1 w_0)$ is in $L^2(\Omega_{\infty})$ and $\|\Delta(\chi_1 w_0)\|_{L^2(\Omega_{\infty})} \leq C \|g\|_{L^2(\Omega_\infty \setminus \overline{\Omega}_1)}$, and so $\phi = \chi_1 w_0$ can be considered as a unique solution to the problem $\Delta \phi = \Delta(\chi_1 w_0)$ in Ω_{∞} with the homogeneous Dirichlet boundary condition on Γ_{∞} . By dilation to the fixed reference domain, scaling, and applying standard estimates on the reference domain

$$\|w_0\|_{H^2(\Omega_{\infty}\setminus\bar{\Omega}_2)} \le \|\phi\|_{H^2(\Omega_{\infty})} \le C_{\delta} \|\Delta(\chi_1 w_0)\|_{L^2(\Omega_{\infty})} \le C_{\delta} \|g\|_{L^2(\Omega_{\infty}\setminus\bar{\Omega}_1)}.$$

The above inequalities lead to (6.14). We then have

$$\|w_0\|_{H^2(\Omega_\infty\setminus\bar{\Omega}_1)} \le C_\delta \|\tilde{w}\|_{H^2(S_\epsilon)}.$$

Since \tilde{w} and w_0 are in $H^2(\Omega_{\infty} \setminus \overline{\Omega}_1)$, by a Sobolev embedding theorem

$$|w(x)| \le C \|w\|_{H^2(\Omega_{\infty} \setminus \overline{\Omega}_1)} \le C_{\delta} \|\tilde{w}\|_{H^2(S_{\epsilon})}$$

for all $x \in \Omega_{\infty} \setminus \overline{\Omega}_1$.

Finally for $\epsilon' > \epsilon$ independent of δ ,

(6.15)
$$\begin{aligned} \|\tilde{w}\|_{H^{2}(S_{\epsilon})} &\leq C_{\delta} \|\psi\|_{H^{2}(S_{\epsilon})} \leq C_{\delta} \|\psi\|_{L^{2}(S_{\epsilon'})} \\ &\leq C_{\delta} e^{-\alpha_{1}\delta} \left(\|\psi\|_{H^{1}(\Omega_{1}^{c})} + \|f\|_{L^{2}(\Omega_{\infty}\setminus\bar{\Omega}_{1})} + C_{f} \right) \\ &\leq C_{1} e^{-\alpha_{2}|x|} \left(\|\psi_{\delta}\|_{H^{1}(\Omega_{\infty}\setminus\bar{\Omega}_{1})} + \|f\|_{L^{2}(\Omega_{\infty}\setminus\bar{\Omega}_{1})} + C_{f} \right). \end{aligned}$$

Here we absorbed the polynomial growth in C_{δ} by making $\alpha_2 < \alpha_1$. Combining the above inequalities shows that ψ_{δ} decays exponentially with constants independent of ψ_{δ} and δ .

Proof of Lemma 4.5. The H^1 -estimate for $(T - T_{\delta})u$ will be computed in two subdomains Ω_{∞} and Ω_{∞}^c . First, note that since Tu is the solution to the problem

$$A_1(Tu,\phi) = B(u,\phi)$$
 for $\phi \in H^1(\mathbb{R}^3)$,

it satisfies

$$(6.16) \qquad \qquad \Delta T u + d_0^2 T u = -d_0^2 u \quad \text{in} \quad \Omega_1^c$$

It follows from Lemma 6.1 that

(6.17)
$$||Tu||_{H^{1/2}(\Gamma_{\infty})} \le C_1 e^{-\alpha_1 \delta} (||Tu||_{H^1(\Omega_1^c)} + ||u||_{H^1(\Omega_1^c)}),$$

for $\delta > M_1$.

Take $M_1 > \delta_0$ in Theorem 3.1. In $\Omega_{\infty}, \psi \equiv (T - T_{\delta})u$ is the unique solution to the problem

$$A_1(\psi, \phi) = 0, \text{ for all } \phi \in H^1_0(\Omega_\infty),$$

$$\psi = Tu, \text{ on } \Gamma_\infty,$$

so that by stability and (6.17),

(6.18)
$$\begin{aligned} \|(T - T_{\delta})u\|_{H^{1}(\Omega_{\infty})} &\leq C \|Tu\|_{H^{1/2}(\Gamma_{\infty})} \\ &\leq C_{1}e^{-\alpha_{1}\delta}(\|Tu\|_{H^{1}(\mathbb{R}^{3})} + \|u\|_{H^{1}(\mathbb{R}^{3})}) \end{aligned}$$

for $\delta > M_1$.

In Ω_{∞}^{c} , $\psi \equiv (T - T_{\delta})u = Tu$ is the unique solution to (6.16) with the boundary condition Tu on Γ_{∞} . By stability,

$$||Tu||_{H^1(\Omega_{\infty}^c)} \le C(||u||_{L^2(\Omega_{\infty}^c)} + ||Tu||_{H^{1/2}(\Gamma_{\infty})}).$$

Integrating the square of (4.5) over Ω_{∞}^{c} and using (6.17) gives

(6.19)
$$\|Tu\|_{H^{1}(\Omega_{\infty}^{c})} \leq C_{\delta} e^{-\alpha_{1}\delta} \bigg(\|u\|_{H^{1}(\mathbb{R}^{3})} + \|Tu\|_{H^{1}(\mathbb{R}^{3})} \bigg).$$

for $\delta > M_1$ and C_{δ} a linear function of δ . The δ -dependence in the constant can be removed by making α_1 slightly smaller. The result follows from (6.18), (6.19) and the boundedness of T.

24

PML AND RESONANCES

References

- J. Aguilar and J. M. Combes. A class of analytic perturbations for one-body Schrödinger Hamiltonian. Commun. Math. Phys, 22:269–279, 1971.
- [2] S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang. PETSc users manual. Technical Report ANL-95/11 - Revision 2.1.5, Argonne National Laboratory, 2004.
- [3] E. Balslev and J. M. Combes. Spectral properties of many body Schrodinger operators with dilation analytic interactions. *Commun. Math. Phys*, 22:280–294, 1971.
- [4] J.-P. Berenger. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys., 114(2):185–200, 1994.
- [5] J.-P. Berenger. Three-dimensional perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys., 127(2):363-379, 1996.
- [6] D. Boffi. Fortin operator and discrete compactness for edge elements. Numer. Math., 87(2):229– 246, 2000.
- [7] D. Boffi, P. Fernandes, L. Gastaldi, and I. Perugia. Computational models of electromagnetic resonators: analysis of edge element approximation. *SIAM J. Numer. Anal.*, 36(4):1264–1290 (electronic), 1999.
- [8] J. Bramble and J. Osborn. Rate of convergence estimates for nonselfadjoint eigenvalue approximations. Math. Comp., 27:525–549, 1973.
- [9] J. H. Bramble and J. E. Pasciak. Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems. *Math. Comp.*, 76:597–614, 2007.
- [10] W. Chew and W. Weedon. A 3d perfectly matched medium for modified Maxwell's equations with stretched coordinates. *Microwave Opt. Techno. Lett.*, 13(7):599–604, 1994.
- [11] F. Collino and P. Monk. The perfectly matched layer in curvilinear coordinates. SIAM J. Sci. Comput., 19(6):2061–2090, 1998.
- [12] D. Colton and R. Kress. Inverse Acoustic and Electromagnetic Scattering Theory. Springer-Verlag, New York, 1992.
- [13] S. Hein, T. Hohage, and W. Koch. On resonances in open systems. J. Fluid Mech, 506:225–284, 2004.
- [14] S. Hein, T. Hohage, W. Koch, and J. Schöberl. Acoustic resonances in a high lift configuration. J. Fluid Mech, 582:179–202, 2007.
- [15] V. Hernandez, J. E. Roman, and V. Vidal. SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Transactions on Mathematical Software, 31(3):351–362, Sept. 2005.
- [16] P. D. Hislop and I. M. Sigal. Introduction to Spectral Theory with Applications to Schrödinger Operators. Springer, Berlin-Heidelberg-New York, 1996.
- [17] T. Kato. Perturbation Theory for Linear Operators. Springer-Verlag, Berlin-Heidelberg-New York, 1976.
- [18] F. Kukuchi. On a discrete compactness property for the Nédélec finite elements. J. Fac. Sci. Univ. Tokyo, Sect. 1A, Math, 36:479–490, 1989.
- [19] P. Monk. Finite Element Methods for Maxwell's Equations. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford, UK, 2003.
- [20] P. Monk and L. Demkowicz. Discrete compactness and the approximation of Maxwell's equations in ℝ³. Math. Comp., 70(234):507–523, 2001.
- [21] J. E. Osborn. A note on a perturbation theorem for the matrix eigenvalue problem. Numer. Math., 13:152–153, 1969.

- [22] B. Simon. The theory of resonances for dilation analytic potentials and the foundations of time dependent perturbation theory. Ann. Math., 97:247–274, 1973.
- [23] L. N. Trefethen. Pseudospectra of linear operators. SIAM Rev., 39(3):383-406, 1997.
- [24] M. Zworski. Numerical linear algebra and solvability of partial differential equations. Commun. Math. Phys, 229:293–307, 2002.

DEPARTMENT OF MATHEMATICS, TEXAS A&M UNIVERSITY, COLLEGE STATION, TX 77843-3368.

E-mail address: sgkim@math.tamu.edu

DEPARTMENT OF MATHEMATICS, TEXAS A&M UNIVERSITY, COLLEGE STATION, TX 77843-3368.

 $E\text{-}mail\ address: \texttt{pasciak@math.tamu.edu}$