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Abstract

We are concerned with the computation of the spectra of highly oscillatory Fredholm
problems, in particular with theFox–Lioperator

∫ 1

−1

f(x)eiω(x−y)2 dx = λf(y), −1 ≤ y ≤ 1,

whereω ≫ 1. Our main tool is the finite section method: an eigenfunction is expanded in
an orthonormal basis of the underlying space, resulting in an algebraic eigenvalue problem.
We consider two competing bases: a basis of Legendre polynomials and abasis consisting
of modified Fourier functions (cosines and shifted sines), and derivedetailed asymptotic
estimates of the rate of decay of the coefficients.

Although the Legendre basis enjoys in principle much faster convergence, this does
not lead to much smaller matrices. Since the computation of Legendre coefficients is
expensive, while modified Fourier coefficients can be computed efficiently with FFT, we
deduce that modified Fourier expansions, implemented in a manner that takes advantage
of their structure, present a considerably more effective tool for thecomputation of highly
oscillatory Fredholm spectra.
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1 Introduction

Our understanding of highly oscillatory phenomena and their computation has advanced in
leaps and bounds in the last decade. In particular, the subject matter of highly oscillatory
quadrature is, to all intents and purposes, satisfactorilyunderstood and there exists a wealth
of efficient and affordable numerical methods for integralsof the form

∫

Ω

f(x)eiωg(x) dx,

whereΩ is a multivariate domain andω ≫ 1 (Huybrechs & Vandewalle 2006, Iserles &
Nørsett 2005, Olver 2006). This has led to a wealth of applications in rapid approximation of
functions (Huybrechs, Iserles & Nørsett 2007, Huybrechs, Iserles & Nørsett 2009, Iserles &
Nørsett 2008, Iserles & Nørsett 2006, Iserles & Nørsett 2007) and in the numerical analysis of
highly oscillatory differential equations (Adcock 2008, Condon, Deãno & Iserles 2008, Iserles
2002, Khanamirian 2008). In this paper we attempt to apply similar methodology to the
computation of spectra of highly oscillatory Fredholm operators, of a form ubiquitous in laser
theory.

An excellent early reference to spectral problems occurring in the modelling of laser res-
onators is (Cochran & Hinds 1974). The underlying problem isto compute the spectrum
σ(Fω) of a complex-valued integral operator

Fω[f ] =

∫ 1

−1

f(x)eiωg(x,y) dx, ω ≫ 1, (1.1)

where theoscillatorg is a real function: important examples of oscillators, which run through
this paper, areg(x, y) = (x − y)2 (the Fox–Li operator) andg(x, y) = (x − y)4, while the
caseg(x, y) = |x − y| was the subject of (Brunner, Iserles & Nørsett 2008). The spectrum in
the caseg(x, y) = xy was completely determined in (Cochran & Hinds 1974).

It follows readily from standard theory of Fredholm operators (cf. for example (Atkinson
1997)) thatFω is compact, henceσ(Fω) is a point spectrum with a single accumulation point
at the origin. However, being complex-symmetric, the operator is not self-adjoint and standard
Hilbert–Schmidt theory is not applicable.

Bearing in mind the importance of equations (1.1) in laser engineering, the state of the
theory and computation of their spectra is deeply disappointing. The pseudo-spectrum of
the Fox–Li operator has been determined by Henry Landau (1977/78) and its physical fea-
tures discussed at great detail by Sir Michael Berry and his co-workers in (Berry 2001, Berry
2003, Berry, Strom & van Saarlos 2001). However, both mathematical analysis and effec-
tive computational methods for the Fox–Li operator, to say nothing of more general prob-
lems (1.1), is woefully inadequate. This, we should perhapsadd, is not for a lack of struc-
ture. Fig. 1.2 displays the spectra for the Fox–Li oscillator g(x, y) = (x − y)2 and for
g(x, y) = (x − y)4 and frequencyω = 100. In both cases it is clear that, consistently with
theory, eigenvalues accumulate at the origin, but evidently the structure of the spectrum is con-
siderably richer. In both cases eigenvalues appear to lie onspiral curves which approach the
origin fairly rapidly – yet a formula for these spirals, evenin an asymptotic form, is unknown.

Other oscillators, e.g.g(x, y) = |x − y| or g(x, y) = xy, do not produce spirals but
their spectra are structured as well – cf. (Brunner et al. 2008) and (Cochran & Hinds 1974)
respectively. In particular, the spectrum forg(x, y) = |x − y|, as displayed in Fig. 1.1, lies
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Figure 1.1: The spectrum forg(x, y) = |x − y| with ω = 100.

asymptotically on the segment of the complex circle|z − 1
2 | = 1

2 : the eigenvalues{λm}∞m=1

commence in the upper complex half plane, at a distanceO
(

ω−1
)

from the origin, continue
within O

(

ω−1
)

from the circle until, within the intermediate asymptotic regime, they meander
away – only to return to withinO

(

m−6
)

from the circle form ≫ ω and approach the origin
in the lower half plane.

The general picture is complicated and fairly sensitive to the choice of the oscillator. This
is demonstrated in Fig. 1.3, where the oscillatorg(x, y) = cos[ 12π(x − y)] results in an
‘drunken spiral’, while the eigenvalues corresponding tog(x, y) = cos[π(x − y)] (more on
these soon) lie on real and imaginary axes. For some oscillators it is difficult to discern a
pattern: cf. Fig. 1.4, where we have letg(x, y) = sin[(x− y)2]. Another example is provided
by g(x, y) = sin[κ(x − y)] for κ 6= 0: once the spectral problem for the operatorFω is
approximated by an algebraic eigenvalue problemAf = λf (as explained in Section 2), we
haveAn,m = Ām,n, m,n ∈ Z+, the system is Hermitian and all eigenvalues are real. By this
stage it is too early to venture even a conjecture on more general patterns of behaviour of the
spectra of (1.1).

Although this is tangential to the narrative of this paper, it is interesting (and fairly easy)
to explain the cross-like structure in Fig. 1.3 and, indeed,identify the spectrum for the oscil-
lator g(x) = cos[π(x − y)]: our claim is that the eigenvalues areλn = 2inJn(ω) with the
corresponding eigenfunctionsfn(x) = einx, n ∈ Z. HereJn is thenth Bessel function. To
prove this assertion we use identities 9.1.44–45 in (Abramowitz & Stegun 1964, p.361) to
argue that

eiω cos[π(x−y)] = J0(ω) + 2

∞
∑

m=1

imJm(ω) cos[πm(x − y)].

Therefore for everyn ∈ Z

Fω[eiπny] =

∫ 1

−1

eiπnx

{

J0(ω) +

∞
∑

m=1

imJm(ω)[eiπm(x−y) + e−iπm(x−y)]

}

dx
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Figure 1.2: The spectra forg(x, y) = (x − y)2 andg(x, y) = (x − y)4 with ω = 100.
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Figure 1.3: The spectra forg(x, y) = cos[ 12π(x − y)] andg(x, y) = cos[π(x − y)] with
ω = 100.

=

∫ 1

−1

eiπnx dxJ0(ω) +
∞
∑

m=1

imJm(ω)e−iπmy

∫ 1

−1

eiπ(n+m)x dx

+

∞
∑

m=1

imJm(ω)eiπmy

∫ 1

−1

eiπ(n−m)x dx = 2inJn(ω)eiπny.

Note thatλ2n ∈ R, λ2n+1 ∈ iR and thatλ|n| tends to zero asn → ∞ spectrally fast.

This paper is devoted to efficient computational algorithmsfor the calculation of the eigen-
values of the operator (1.1) in the generic case, when the latter cannot be derived in a closed
form. It is usual in the computation of spectra of integral operators to employ thefinite section
method(Arveson 1994, Hagen, Roch & Silbermann 2001). Thus, letΦ = {φm}m∈Z+

be an
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Figure 1.4: The spectrum forg(x, y) = sin[(x − y)2] with ω = 100.

orthonormal basis ofL2[−1, 1]. Expanding an eigenfunctionf in this basis,

f(x) =

∞
∑

m=0

fmφm(x),

substitution into (1.1) and integration iny ∈ [−1, 1] result in the infinite-dimensional alge-
braic eigenvalue problem

∞
∑

m=0

An,mfm = λfn, n ∈ Z+,

where

An,m =

∫ 1

−1

∫ 1

−1

φn(x)φm(y)eiωg(x,y) dxdy, m, n ∈ Z+. (1.2)

The standard procedure, justified by the compactness of the underlying problem, is to trun-
cate the matrixA and solve the resulting finite-dimensional algebraic eigenvalue problem by
the very efficient methods of numerical linear algebra. The challenge is to choose a basisΦ

satisfying two desiderata: rapid convergence of the truncated expansion to an eigenfunction
(since this means that the underlying finite matrix need not be excessively large) and afford-
able computation of the double integrals (1.2). An aggravating factor is the presence of two
different mechanisms that generate high oscillation in (1.2). Firstly, we are interested in large
values ofω; secondly for largem (smooth) orthogonal functionsφm are themselves highly
oscillatory. This competition between two forms of high oscillation is an important organising
principle underlying our work.

An obvious alternative to the finite section method is to discretize the integral in (1.1) by
quadrature. Thus, given2N + 1 quadrature points

−1 ≤ c−N < c−N+1 < · · · < cN ≤ 1
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and corresponding weightsb−N , b−N+1, . . . , bN , we can approximate the spectral problem
for (1.1) by the finite-dimensional algebraic eigenvalue problem

N
∑

m=−N

fmeiωg(cm,cn) = λfn, n = −N,−N + 1, . . . , N, (1.3)

wherefm ≈ f(cm). (In principle, we can bring (1.3) into the formalism of the finite sec-
tion approach, letting the orthogonal functionsφm be delta functions, but this helps little
in understanding this method.) Clearly, (1.3) belabours under three disadvantages. Firstly,
the (m,n) element of the matrix whose eigenvalues we seek isO

(

N−1
)

, hence we need to
choose very large values ofN to attain good accuracy. Secondly, onceω is large, we need to
take truly huge value ofN , so that integration occurs in a non-oscillatory regime. (The cur-
rent approach denies us the benefits of highly oscillatory quadrature.) Finally, onceN is very
large, although it is possible to compute rapidly nodes and weights associated with nontrivial
quadrature schemes (Glaser, Liu & Rokhlin 2007), efficient implementation of, say, Gaussian
rules is impractical. Therefore, we are compelled in practice to choose equally-spaced nodes
cm = m/N , with weightsbm ≡ 1/(N + 1

2 ), thus denied the benefits of such quadrature
methods as Gauss–Legendre or Clenshaw–Curtis.

The plan of this paper is as follows. In Section 2 we address the most natural approach
to the choice of the basisΦ, namely Legendre polynomials. Although general considerations
originating in the theory of spectral methods indicate veryrapid convergence as the size of a
section increases, it turns out that this approach has a number of substantive disadvantages.
This motivates our exploration in Section 3 of the alternative of using expansions in exponen-
tials, focusing on modified Fourier expansion. Finally, in Section 4 we show how the idea of
hyperbolic cross leads to substantial cost savings once we use modified Fourier expansions.

2 Expansion in Legendre polynomials

2.1 An explicit formula

Choosing the Legendre basisφm(x) = (m + 1
2 )

1
2 Pm(x), m ∈ Z+, we have

Am,n = (m + 1
2 )

1
2 (n + 1

2 )
1
2

∫ 1

−1

∫ 1

−1

Pm(x)Pn(y)eiωg(x,y) dxdy (2.1)

= (m + 1
2 )

1
2 (n + 1

2 )
1
2

∫ 1

−1

∫ 1

−1

Pm(x)Pn(y)Kω(x, y) dxdy

for all m,n ∈ Z+, whereKω(x, y) = eiωg(x,y). It follows from standard theory of spectral
methods (cf. (Hesthaven, Gottlieb & Gottlieb 2007) or any number of similar references) that,
providedg ∈ C∞([−1, 1]2), the coefficientsAm,n decay at a spectral speed asm + n → ∞,
that is faster than a reciprocal of any polynomial inm andn.

We let
Am,n = (m + 1

2 )
1
2 (n + 1

2 )
1
2 Ãm,n

and work in the future with the somewhat simpler coefficientsÃm,n.
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It is convenient by this stage to generalize a univariate formula for Legendre expansions
to our setting. Given function

f(z) =

∞
∑

n=0

fn

n!
zn,

analytic in[−1, 1], it is true that

f(x) =

∞
∑

n=0

(2n + 1)

∞
∑

k=0

fn+2k

2n+2kk!(3
2 )n+k

Pn(x) (2.2)

(Rainville 1960, p.181). Here(z)n is thePochhammer symbol:(z)0 = z and(z)n = z(z +

n − 1) for n ∈ N. Since
∫ 1

−1
P2

n(x) dx = n + 1
2 , it thus follows that

∫ 1

−1

f(x)Pn(x) dx =

∞
∑

k=0

fn+2k

2n+2k−1k!(3
2 )n+k

, n ∈ Z+. (2.3)

Likewise, suppose that the kernelKω is an analytic function of(x, y) ∈ [−1, 1]2,

Kω(x, y) =
∞
∑

k=0

∞
∑

l=0

rk,l

k!l!
xkyl, x, y ∈ [−1, 1],

whererk,l = ∂k
x∂l

yKω(0, 0). Generalizing (2.3) to this setting is straightforward,

Ãm,n =

∞
∑

k=0

∞
∑

l=0

rm+2k,n+2l

2m+n+2(k+l−1)k!l!(3
2 )m+k( 3

2 )n+l

, m, n ∈ Z+. (2.4)

An important special case is that of anAbel kernelKω(x, y) = ρω(x−y), e.g. the Fox–Li
operator. In that case, lettingρk = ρ(k)(0), we have

Kω(x, y) =

∞
∑

l=0

ρl

l!
(x − y)l =

∞
∑

l=0

ρl

l!

l
∑

k=0

(

l

k

)

(−1)l−kxkyl−k

=

∞
∑

k=0

∞
∑

l=0

(−1)lρk+l

k!l!
xkyl.

Thereforerk,l = (−1)lρk+l and (2.4) simplifies to

Ãm,n = (−1)n

∞
∑

k=0

∞
∑

l=0

ρm+n+2(k+l)

2m+n+2(k+l−1)k!l!(3
2 )m+k( 3

2 )n+l

, m, n ∈ Z+. (2.5)

The explicit formulæ (2.4) and (2.5) are of limited use. Evenif derivatives at the origin
are freely and easily available, explicit summation is expensive and likely to be ill conditioned
because – as we soon see – it involves terms of radically different magnitude. The situation is
considerably worse if derivatives are computed numerically, not just because of the very con-
siderable additional expense but also since computation ofderivatives is itself a notoriously
ill conditioned procedure.



8 H. Brunner, A. Iserles & S.P. Nørsett

The sobering truth is that no computational procedure is truly effective in the compu-
tation of Legendre coefficientsAm,n. Perhaps the most effective is to discretize the inte-
gral at Chebyshev points and use fast algorithms to compute the underlying quadrature: this
is essentially a combination of Clenshaw–Curtis quadrature with FFT (Clenshaw & Curtis
1960, Potts, Steidl & Tasche 1998), but its origins can be traced to the work of Fejér (Fej́er
1933a, Fej́er 1933b). Yet, even using such rapid algorithms we would require in abivariate
setting an excessively large volume of computations. This is precisely the reason why Leg-
endre expansions are typically avoided in spectral methods, although arguably the uniform
Legendre measure is the natural one in defining the underlying inner product. Instead, it is
usual to employ either Chebyshev expansions (which can be computed very effectively with
FFT) or Legendre collocation. In the current setting, though, we cannot impose by fiat the
Chebyshev measure are compelled (at least in this setting) to expand in Legendre polynomi-
als.

In special cases we can further massage explicit formulæ (2.4) or (2.5) to render them
suitable for computation. An important example is providedby the Fox–Li operator.

2.2 The Fox–Li operator

Lettingρ(x) = eiωx2

, x ∈ [−2, 2], we have

ρ2m =
(2m)!

m!
(iω)m, ρ2m+1 = 0, m ∈ Z+.

Therefore, substituting in (2.5),

Ã2m,2n =

∞
∑

k=0

∞
∑

l=0

(2m + 2n + 2k + 2l)!(iω)m+n+k+l

4m+n+k+l−1k!l!(m + n + k + l)!(3
2 )2m+k( 3

2 )2m+l

=

∞
∑

k=0

∞
∑

r=k

(2m + 2n + 2r)!(iω)m+n+r

4m+n+r−1k!(r − k)!(m + n + r)!(3
2 )2m+k( 3

2 )2n+r−k

=

∞
∑

r=0

(2m + 2n + 2r)!

4m+n+r−1(m + n + r)!r!

[

r
∑

k=0

(

r

k

)

1

( 3
2 )2m+k( 3

2 )2n+r−k

]

(iω)m+n+r

=

∞
∑

r=0

(2m + 2n + 2r)!

4m+n+r−1(m + n + r)!r!
υm,n

r (iω)m+n+r.

Since
(

r

k

)

= (−1)k (−r)k

k!
, ( 3

2 )2m−k = (3
2 )2m( 3

2 + 2m)k,

( 3
2 )2n+r−k =

(−1)k( 3
2 )2n+r

(− 1
2 − 2n − r)k

,

we have

υm,n
r =

1

( 3
2 )2m( 3

2 )2n+r
2F1

[

−r,− 1
2 − 2n − r;

3
2 + 2m;

1

]
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=
1

( 3
2 )2m( 3

2 )2n+r

Γ( 3
2 + 2m)(2m + 2n + 2r + 1)!

Γ( 3
2 + 2m + r)(2m + 2n + r + 1)!

=
1

( 3
2 )2m+r(

3
2 )2n+r

(2m + 2n + 2r + 1)!

(2m + 2n + r + 1)!
,

wherepFq denotes a(p, q) generalized hypergeometric function (Rainville 1960, p.73). We
deduce that

Ã2m,2n =

∞
∑

r=0

(2m + 2n + 2r)!(2m + 2n + 2r + 1)!(iω)m+n+r

4m+n+r−1(m + n + r)!r!(2m + 2n + r + 1)!(3
2 )2m+r(

3
2 )2n+r

.

But

(2m + 2n + 2r)!

4m+n+r−1(m + n + r)!
= 4(1

2 )m+n+r,

(2m + 2n + 2r + 1)!

(2m + 2n + r + 1)!
=

4r(m + n + 1)r(m + n + 3
2 )r

(2m + 2n + 2)r

consequently, after some elementary algebra,

Ã2m,2n =
4(iω)m+n( 1

2 )m+n

( 3
2 )2m( 3

2 )2n
3F3

[

m + n + 1
2 ,m + n + 1,m + n + 3

2 ;
2m + 2n + 2, 2m + 3

2 , 2n + 3
2 ;

4iω

]

.

Likewise,

Ã2m+1,2n+1 = −4(iω)m+n+1( 1
2 )m+n+1

( 3
2 )2m+1(

3
2 )2n+1

3F3

[

m + n + 3
2 ,m + n + 2,m + n + 5

2 ;
2m + 2n + 4, 2m + 5

2 , 2n + 5
2 ;

4iω

]

.

Therefore, for everym,n ∈ Z+, m + n even,

Ãm,n =
4(−1)n(iω)

1
2
(m+n)( 1

2 ) 1
2
(m+n)

( 3
2 )m( 3

2 )n
3F3

[

m+n
2 + 1

2 , m+n
2 + 1, m+n

2 + 3
2 ;

m + n + 2,m + 3
2 , n + 3

2 ;
4iω

]

.

(2.6)
Since, trivially, Ãm,n = 0 for all m,n ∈ Z+, m + n odd, we have all the coefficients of
the matrixA in an explicit form – except that the calculation of generalized hypergeometric
functions is neither trivial nor fast even with modern software.

2.3 Asymptotics of Fox–Li coefficients

It is central to the subject matter of this paper that coefficientsAm,n possess two kinds of
asymptotics which are germane to the understanding of the finite section method:ω → ∞
for fixedm,n (large-ω asymptotics) andm + n → ∞ for fixedω (large-(m,n) asymptotics).
In this subsection we address the issue of large-(m,n) asymptotics for Legendre coefficients.
Our starting point is the explicit representation (2.6).

Theorem 1 For everyn ∈ Z+ it is true that

Ãn,n =
(−1)ninπ

1
2

ω
1
2

∫ 2

0

eiωx

x
Jn+ 1

2
(ωx) dx, (2.7)

Ãn−s,n+s =
(−1)n+1inπ

1
2

2ω
1
2

∫ 2

0

θs(x)eiωxJn+ 1
2
(ωx) dx, 0 ≤ s ≤ n, (2.8)
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where

θs(x) = s2F1

[

−s + 1, s − 1;
2;

x

2

]

.

Proof We commence from (2.7). Lettingm = n in (2.6) and using the second Kummer
formula for confluent hypergeometric functions (Rainville1960, p. 126), we have

Ãn,n =
4(−1)n(iω)n( 1

2 )n

[(3
2 )n]2

2F2

[

n + 1
2 , n + 1;

2n + 2, n + 3
2 ;

4iω

]

=
2(−1)n(iω)n

( 3
2 )n

∞
∑

r=0

(n + 1)r

r!(2n + 2)r

(4iω)r

n + r + 1
2

=
(−1)n

4n( 3
2 )n(iω)

1
2

∫ 4iω

0

∞
∑

r=0

(n + 1)r

r!(2n + 2)r

xn+r− 1
2 dx

=
(−1)n

4n( 3
2 )n(iω)

1
2

∫ 4iω

0

xn− 1
2 1F1

[

n + 1;
2n + 2;

x

]

dx

=
(−1)n2

1
2 ( 1

2 iω)n

( 3
2 )n

∫ 2

0

xn− 1
2 1F1

[

n + 1;
2n + 2;

2iωx

]

dx

=
(−1)n2

1
2 ( 1

2 iω)n

( 3
2 )n

∫ 2

0

xn− 1
2 eiωx

0F1

[

—;
n + 3

2 ;
− ω2x2

4

]

dx.

Since

0F1

[

—;
ν + 1;

− x2

4

]

=
Γ(ν + 1)

(x/2)ν
Jν(x)

(Rainville 1960, p. 108), we confirm (2.7).
Next, we chooses ∈ N, whence for everyn ≥ s (2.6) yields

Ãn−s,n+s =
4(−1)n+s(iω)n( 1

2 )n

( 3
2 )n−s(

3
2 )n+s

3F3

[

n + 1
2 , n + 1, n + 3

2 ;
2n + 2, n − s + 3

2 , n + s + 3
2 ;

4iω

]

=
(−1)n+s(iω)n( 1

2 )n

( 1
2 )n−s+1(

1
2 )n+s+1

∞
∑

k=0

(n + 1)k

k!(2n + 2)k

(n + 1
2 )k(n + 3

2 )k

(n − s + 3
2 )k(n + s + 1

2 )k

(4iω)k

=
(−1)n+s(iω)n

( 1
2 )n+1

∞
∑

k=0

(n + 1)k

k!(2n + 2)k

κs(n, k)(4iω)k,

where

κs(n, k) =
( 1
2 )n( 1

2 )n+1

( 1
2 )n−s+1(

1
2 )n+s+1

(n + 1
2 )k(n + 3

2 )k

(n − s + 1
2 )k(n + s + 3

2 )k

=
(n + k + 3

2 − s)s−1

(n + k + 3
2 )s

.

Our claim is thatκs(n, k) = ϕs(n + k), where

ϕs(x) =

s−1
∑

k=0

(−1)s−1−k αs,k

x + k + 3
2

, αs,k =
(s + k)!

k!(k + 1)!(s − k − 1)!
.
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This follows at once by representing the rational functionϕs in the form

ϕs(x) =
(x + 3

2 − s)s−1

(x + 3
2 )s

=

s−1
∑

k=0

(−1)s−1−k αs,k

x + k + 3
2

,

where theαs,ks are the residues atx = −k − 3
2 .

We conclude that

Ãn−s,n+s =
(1−)n+s(iω)n

( 1
2 )n+1

∞
∑

k=0

(n + 1)k

k!(2n + 2)k

ϕs(n + k)(4iω)k

=
(−1)n+1(iω)n

( 1
2 )n+1

s−1
∑

l=0

αs,l

(4iω)n+l+ 3
2

∞
∑

k=0

(n + 1)k

k!(2n + 2)k

(4iω)n+k+l+ 3
2

n + k + l + 3
2

=
(−1)n+1(iω)n

( 1
2 )n+1

s−1
∑

l=0

αs,l

(4iω)n+l+ 3
2

∫ 4iω

0

xn+l+ 1
2 1F1

[

n + 1;
2n + 2;

x

]

dx

=
(−1)n+1(iω)n

( 1
2 )n+1

s−1
∑

l=0

αs,l

2n+l+ 3
2

∫ 2

0

xn+l+ 1
2 1F1

[

n + 1;
2n + 2;

2iωx

]

dx

=
(−1)n+1(iω)n

( 1
2 )n+1

s−1
∑

l=0

αs,l

2n+l+ 3
2

∫ 2

0

xn+l+ 1
2 eiωx

0F1

[

—;
n + 3

2 ;
− ω2x2

4

]

dx,

where we have used the second Kummer formula to convert the1F1 function to0F1. Thus,
we deduce (2.8) from

0F1

[

—;
n + 3

2 ;
− ω2x2

4

]

=
π

1
2 ( 1

2 )n2n+ 1
2

ωn+ 1
2 xn+ 1

2

Jn+ 1
2
(ωx)

and the explicit form ofαs,l. 2

Note thatθs can be written as a Jacobi polynomial (Rainville 1960, p. 254),

θs(x) = P
(1,0)
s−1 (1 − x),

although this plays no further role in our analysis.
The integral expressions (2.7) and (2.8) need to be further massaged to reveal their asymp-

totic behaviour forn → ∞. To this end we need the following simple result.

Proposition 2 Let

In[f ] =
1

2n+ 3
2

∫ 2

0

xn+ 1
2 f(x) dx, n ∈ Z+,

wheref ∈ C∞[0, 2]. Then

In[f ] ∼ f(2)

n + 1
2

− 2f ′(2) + f(2)

(n + 1
2 )2

+
4f ′′(2) + 6f ′(2) + f(2)

(n + 1
2 )3

+O
(

n−4
)

, n ≫ 1. (2.9)
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Proof Similarly to (Iserles & Nørsett 2005), we integrate by parts,

In[f ] =
1

2n+ 3
2

∫ 2

0

f(x)e(n+ 1
2
) log x dx =

1

2n+ 3
2

1

n + 1
2

∫ 2

0

xf(x)
d

dx
e(n+ 1

2
) log x dx

=
f(2)

n + 1
2

− 1

2n+ 3
2

1

n + 1
2

∫ 2

0

[xf ′(x) + f(x)]e(n+ 1
2
) log x dx.

Two further integrations by part yield (2.9). 2

Theorem 3 For any fixedω ands ∈ N and forn → ∞ it is true that

Ãn,n ∼ (−iω)nen+ 1
2 e2iω

2
1
2 (n + 1

2 )n+ 1
2

[

1

n − 1
2

− 1 + 2iω

(n − 1
2 )2

+
1 + 6iω − 4ω2

(n − 1
2 )3

+ O
(

n−4
)

]

Ãn−s,n+s ∼ − (−iω)nen+ 1
2 e2iω

2
1
2 (n + 1

2 )2

[

1− s2+iω

n + 1
2

+
1
2s2(s2+1)+2iω(2s2+1)−4ω2

(n + 1
2 )2

+O
(

n−3
)

]

.

Proof Follows by easy algebra from Theorem 1, the asymptotic estimate

Jν(x) ∼ 1

(2πν)
1
2

( ex

2ν

)ν

(Abramowitz & Stegun 1964, p.365) and the asymptotic expansion (2.9). 2

Theorem 3 quantifies something that we already know: asn grows, the size of the coef-
ficients decays at spectral speed. However, it highlights a fact which is crucial to the under-
standing of the finite-section method for highly oscillatory Fredholm operators:the behaviour
of the coefficients is determined by the competition betweenlarge-(m+n) and large-ω asymp-
totics. This is illustrated in Fig. 2.1, where we have plotted− log10 |Ãm,n| for ω = 100,
growingn and the casesm = n, m = n− 2 andm = 0 (in the latter case only even values of
n have been displayed, sincẽA0,2n+1 ≡ 0). Evidently, the size of|Ãm,n| drops quite sedately
for a long while and then, having reached a threshold when large-(m,n) asymptotics take
over, suddenly|Ãm,n| drops literally like a stone. For example,|Ã200,200| = 6.30−05, while
|Ã250,250| = 1.25−15. This process is faster when descending along diagonals andsomewhat
slower along rows and columns ofA: thus,|Ã0,275| = 2.47−06 and|Ã0,325| = 8.59−15.

This phenomenon is consistent for different values ofω and also for other oscillators, not
just Fox–Li. Its operative implication is as follows. For the finite section method to compute
eigenvalues of the infinite-dimensional operator well, we must truncate the infinite matrixA
by discarding sufficiently small entries. The entries become small (very rapidly!) only once
large-(m,n) asymptotics take over, and this imposes a fairly large lowerbound on the size
of truncated matrixA: for Fox–Li, the one instance where the large-(m,n) asymptotics are
known, computational experience indicates that a good choice of dimension ofA is≈ 2

√
2ω.

(This actually is slightly better, because for Fox–Li – and for other symmetric oscillators
g(x, y) = g(y, x) – Ãm,n = 0 whenm andn are of opposite parity and the matrixA can be
partitioned into two matrices of half the size.)

The lesson from our analysis of Legendre expansions appliedto the Fox–Li operator is
twofold. Firstly, the frequencyω imposes a lower bound on the size ofA which is immune
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Figure 2.1:− log10 |Ã2m,2n| for n = 0, 1, . . . , 250 and (a)m = n; (b) m = n−2; (c) m = 0,
n even. In all casesω = 100.

to the spectral decay in the size of the coefficients. Secondly, even if theÃm,ns are available
explicitly, their computation is time-consuming. Of course, in the general case the coeffi-
cients are not available in an explicit form and their approximate calculation is a formidable
challenge to which there are currently no easy answers.

2.4 Other oscillators

It is interesting to examine Legendre coefficientsÃm,n in special cases when they can be
computed explicitly, since this provides us with useful data toward the understanding of the
general problem. This is the case even if the spectrum is explicitly known, as it is in the two
following examples.

We commence by considering

F [f ] =

∫ 1

−1

f(x) cos ω(x − y) dx. (2.10)

This does not fit into the pattern (1.1): we have real kernel ofAbel typeKω(x, y) = cos ω(x−
y). Yet, the logic underlying the finite section method is stillvalid, as is formula (2.4). The
spectrum of (2.10) can be easily evaluated since the kernel is of rank 2 and just two eigenvalues
can differ from zero: they are

λ1 = 1 − sin 2ω

2ω
, with the eigenfunction f1(y) = sinωy,

λ2 = 1 +
sin 2ω

2ω
, with the eigenfunction f1(y) = cos ωy,

while the invariant subspace of eigenfunctions corresponding to the infinite-multiplicity zero
eigenvalue is spanned bysinαny andcos βny, n ∈ Z+, whereαn, βn 6= ω are solutions of
the transcendental equations

α cot α = ω cot ω, β tan β = ω tan ω.
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Symmetry implies that̃Am,n = 0 for oddm + n, while

Ã2m,2n =

∞
∑

k=0

∞
∑

l=0

(−1)m+n+k+lω2(m+n+k+l)

4m+n+k+l−1k!l!(3
2 )2m+k( 3

2 )2n+l

=

∞
∑

k=0

∞
∑

r=k

(−1)m+n+rω2(m+n+r)

4m+n+r−1k!(r − k)!(3
2 )2m+k( 3

2 )2n+r−k

=

∞
∑

r=0

(−ω2)m+n+r

4m+n+r−1r!

r
∑

k=0

r!

k!(r − k)!(3
2 )2m+k( 3

2 )2n+r−k

.

Since

1

( 3
2 )2m+k

=
1

( 3
2 )2m(2m + 3

2 )k

,
r!

(r − k)!
= (−1)k(−r)k,

1

( 3
2 )2n+r−k

=
(−1)k(−2n − r − 1

2 )k

( 3
2 )2n+r

,

we obtain, summing up2F1 atx = 1 with a familiar formula (Rainville 1960, p.49),

Ã2m,2n =

∞
∑

r=0

(−ω2)m+n+r

4m+n+r−1r!(3
2 )2m( 3

2 )2n+r
2F1

[

−r,−2n − r − 1
2 ;

2m + 3
2 ;

1

]

=

∞
∑

r=0

(−ω2)m+n+r

4m+n+r−1r!(3
2 )2m( 3

2 )2n+r

× ( 3
2 )2m(2m + 2n + 2r + 1)!

( 3
2 )2m+r(2m + 2n + r + 1)!

=
4(−ω2)m+n( 3

2 )m+n(m + n)!

( 3
2 )2m( 3

2 )2n(2m + 2n + 1)!
2F3

[

m + n + 1,m + n + 3
2 ;

2m + 3
2 , 2n + 3

2 , 2m + 2n + 2;
− ω2

]

.

Likewise,

Ã2m+1,2n+1 = −4(−ω2)m+n+1( 3
2 )m+n+1(m + n + 1)!

( 3
2 )2m+1(

3
2 )2n+1(2m + 2n + 3)!

× 2F3

[

m + n + 5
2 ,m + n + 2;

2m + 5
2 , 2n + 5

2 , 2m + 2n + 4;
− ω2

]

.

and we deduce that for allm andn of the same parity

Ãm,n =
4(−1)

m−n

2 ωm+n( 3
2 )m+n

2

(

m+n
2

)

!

( 3
2 )m( 3

2 )n(m + n + 1)!
2F3

[

m+n
2 + 1, m+n

2 + 3
2 ;

m + 3
2 , n + 3

2 ,m + n + 2;
− ω2

]

.

(2.11)
The explicit representation (2.11) is quite interesting for an unrelated reason. Adopting an

altogether different approach, we can expressÃm,n is a completely different manner. Thus,
let m andn be of the same parity. Then

Ãm,n =

∫ 1

−1

∫ 1

−1

Pm(x)Pn(y)(cos ωx cos ωy + sin ωx sinωy)dxdy
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=

∫ 1

−1

Pm(x) cos ωxdx

∫ 1

−1

Pn(x) cos ωxdx

+

∫ 1

−1

Pm(x) sin ωxdx

∫ 1

−1

Pn(x) sin ωxdx

=







∫ 1

−1
Pm(x) cos ωxdx

∫ 1

−1
Pn(x) cos ωxdx, m, n even,

∫ 1

−1
Pm(x) sin ωxdx

∫ 1

−1
Pn(x) sin ωxdx, m, n odd.

Since
∫ 1

−1

P2n(x) cos ωxdx =

∞
∑

k=0

(−ω2)n+k

22n+2k−1k!(3
2 )2n+k

=
(−ω2)n

22n−1( 3
2 )2n

0F1

[

—;
2n + 3

2 ;
− ω2

4

]

= (−1)n

(

2π

ω

)
1
2

J2n+ 1
2
(ω),

∫ 1

−1

P2n+1(x) sin ωxdx =

∞
∑

k=0

(−1)n+kω2n+2k+1

4n+kk!(3
2 )2n+k+1

=
(−1)nω2n+1

4n( 3
2 )n+1

0F1

[

—;
2n + 5

2 ;
− ω2

4

]

= (−1)n

(

2π

ω

)
1
2

J2n+ 3
2
(ω),

we deduce that

Ã2m,2n = (−1)m+n 2π

ω
J2m+ 1

2
(ω)J2n+ 1

2
(ω),

Ã2m+1,2n+1 = (−1)m+n+1 2π

ω
J2m+ 3

2
(ω)J2n+ 3

2
(ω).

Comparing this with (2.11) results in a duplication formulafor spherical Bessel functions.

Theorem 4 For everym,n ∈ Z+ of the same parity and allz ∈ C it is true that

Jm+ 1
2
(z)Jn+ 1

2
(z) =

2zm+n+1( 3
2 )m+n

2

(

m+n
2

)

!

π( 3
2 )m( 3

2 )n(m + n + 1)!
2F3

[

m+n
2 + 1, m+n

2 + 3
2 ;

m + 3
2 , n + 3

2 ,m + n + 2;
− z2

]

.

(2.12)

We have not found (2.12) in any of the usual texts on Bessel functions and believe that it
might be new – a familiar situation in mathematics, when you set out to prove one thing and
discover something different altogether. Note further that computer experimentation indicates
that the duplication formula (2.12) is probably true for allm,n ∈ N, regardless of parity. This
being marginal to the theme of this paper, we did not considerthis conjecture further.

Our last example in this section is the problem (1.1) with thekernel g(x, y) = xy,
whose eigenfunctions have been identified in (Cochran & Hinds 1974) with angular pro-
late spheroidal functions. AgaiñAm,n = 0 for m andn of opposite parity. Otherwise, we
commence by using (2.2) to argue that for everyλ ∈ C

gn(λ) =

∫ 1

−1

eλyPn(y) dy =

∞
∑

k=0

λn+2k

2n+2k−1k!(3
2 )n+k

=
λn

2n−1( 3
2 )n

0F1

[

—;
n + 3

2 ;

λ2

4

]



16 H. Brunner, A. Iserles & S.P. Nørsett

=

(

2π

λ

)
1
2

In+ 1
2
(λ),

whereIν is a modified Bessel function. It follows by easy algebra on the well-known Taylor
expansion of modified Bessel functions that

d2kg2m(iωy)

dy2k
y=0

=







0, k = 0, 1, . . . ,m − 1,

2
(−1)kk!(1

2 )kω2k

(k − m)!(3
2 )k+m

, k ≥ m,

d2k+1g2m+1(iωy)

dy2k
y=0

=







0, m = 0, 1, . . . ,m − 1,

2i
(−1)kk!(3

2 )kω2k+1

(k − m)!(3
2 )k+m+1

, k ≥ m

and all other derivatives ofgn vanish. Therefore, using (2.3) again and assuming without loss
of generality thatm ≤ n,

Ã2m,2n =

∫ 1

−1

P2ng2m(iωy) dy =

∞
∑

k=0

(−1)k+n(k + n)!(1
2 )k+nω2(k+n)

4n+k−1k!(k + n − m)!(3
2 )k+m+n( 3

2 )2n+k

=
(−1)nn!(1

2 )nω2n

4n−1(n − m)!(3
2 )m+n( 3

2 )2n
2F3

[

n + 1
2 , n + 1;

n − m + 1,m + n + 3
2 , 2n + 3

2 ;
− ω2

4

]

.

Similar calculation can be performed for̃A2m+1,2n+1 and in general, for allm ≤ n, m + n
even, we have

Ãm,n =
⌊n

2 ⌋!(1
2 )⌊n+1

2
⌋(iω)n

2n−1(n−m
2 )!(3

2 )n+m

2

( 3
2 )n

2F3

[

⌊n+1
2 ⌋ + 1

2 , ⌊n
2 ⌋ + 1;

n−m
2 + 1, n+m

2 + 3
2 , n + 3

2 ;
− ω2

4

]

.

We will return to these examples in Section 4.

3 Expansion in trigonometric functions

A familiar alternative to expansions in orthogonal polynomials are Fourier expansions. In the
current section we paint on a broader canvass, allowing moregeneral expansions in trigono-
metric functions. The reason is twofold. Firstly, Fourier expansions implicitly assume pe-
riodic boundary conditions and, in their absence, result inthe Gibbs effect. Secondly, they
converge much too slow and represent poor choice on this score as well.

Let a = {am}m∈Z+
andb = {bm}m∈N be two sequences of nonnegative, monotonically

increasing numbers. We seek to expressf ∈ L[−1, 1] in the form

f(x) =

∞
∑

m=0

f̂c
m cos amx +

∞
∑

m=1

f̂s
m sin bmx. (3.1)

Density of this expansion inL[−1, 1] is associated with the extension of the classicalMüntz
Theorem(Borwein & Erd́elyi 1995, p.187) to the unit circle and is immediately satisfied in all
cases of interest to this paper.
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Expansion (3.1), in tandem with the finite section method requires orthogonality, thereby
imposing further conditions on the coefficientsa and b. It is trivial to prove that this is
tantamount to

sin(am + an)

am + an

+
sin(am − an)

am − an

=
sin(bm + bn)

bm + bn

− sin(bm − bn)

bm − bn

= 0

for all m 6= n. We obtain the matrix entries

A2m,2n =

∫ 1

−1

∫ 1

−1

cos(amx) cos(any)Kω(x, y) dxdx, m, n ∈ Z+,

A2m,2n−1 =

∫ 1

−1

∫ 1

−1

cos(amx) sin(bny)Kω(x, y) dxdx, m ∈ Z+, n ∈ N,

A2m−1,2n =

∫ 1

−1

∫ 1

−1

sin(bmx) cos(any)Kω(x, y) dxdx, m ∈ N, n ∈ Z+,

A2m−1,2n−1 =

∫ 1

−1

∫ 1

−1

sin(bmx) sin(bny)Kω(x, y) dxdx, m, n ∈ N.

3.1 Large-(m,n) asymptotics

Similarly to Section 2, we need to work out the large-(m,n) asymptotics of theAm,ns. The
starting point to our analysis are the asymptotic expansions

∫ 1

−1

f(x) cos(ax) dx ∼ sin a
∞
∑

k=0

(−1)k

a2k+1
[f (2k)(1) + f (2k)(−1)] (3.2)

+ cos a

∞
∑

k=0

(−1)k

a2k+2
[f (2k+1)(1) − f (2k+1)(−1)],

∫ 1

−1

f(x) sin(bx) dx ∼ − cos b

∞
∑

k=0

(−1)k

b2k+1
[f (2k)(1) − f (2k)(−1)] (3.3)

+ sin b

∞
∑

k=0

(−1)k

b2k+2
[f (2k+1)(1) + f (2k+1)(−1)],

which can be easily obtained from the asymptotic expansion of
∫ 1

−1
f(x)eiηx dx (cf. for ex-

ample (Iserles & Nørsett 2005)), taking real and imaginary parts respectively.
Lettingei ∈ {−1, 1}, i = 2, 3, 4, we denote

S
[e2,e3,e4]
k,l = ∂k

x∂l
y

[

Kω(x, y)
x=y=1

+ e2Kω(x, y)
x=1,y=−1

+ e3Kω(x, y)
x=−1,y=1

+ e4Kω(x, y)
x=y=−1

]

.
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Note in passing that in the important case of Abel-type kernels Kω(x, y) = ρ(x− y) we have

S
[1,1,1]
k,l = (−1)l[2ρ(k+l)(0) + ρ(k+l)(2) + ρ(k+l)(−2)],

S
[−1,1,−1]
k,l = (−1)l[ρ(k+l)(2) − ρ(k+l)(−2)],

S
[1,−1,−1]
k,l = (−1)l+1[ρ(k+l)(2) − ρ(k+l)(−2)],

S
[−1,−1,1]
k,l = (−1)l[2ρ(k+l)(0) − ρ(k+l)(2) − ρ(k+l)(−2)].

Using (3.2) twice,

A2m,2n ∼ sin am

∞
∑

k=0

(−1)k

a2k+1
m

∫ 1

−1

[∂2k
x Kω(1, y) + ∂2k

x Kω(−1, y)] cos(any) dy

+ cos am

∞
∑

k=0

(−1)k

a2k+2
m

∫ 1

−1

[∂2k+1
x Kω(1, y) − ∂2k+1

x Kω(−1, y)] cos(any) dy

∼ sin am sin an

∞
∑

k,l=0

(−1)k+lS
[1,1,1]
2k,2l

a2k+1
m a2l+1

n

+ sin am cos an

∞
∑

k,l=0

(−1)k+lS
[−1,1,−1]
2k,2l+1

a2k+1
m a2l+2

n

+ cos am sin an

∞
∑

k,l=0

(−1)k+lS
[1,−1,−1]
2k+1,2l

a2k+2
m a2l+1

n

+ cos am cos an

∞
∑

k,l=0

(−1)k+lS
[−1,−1,1]
2k+1,2l+1

a2k+2
m a2l+2

n

.

Likewise,

A2m,2n+1 ∼ − sin am cos bn

∞
∑

k,l=0

(−1)k+lS
[−1,1,−1]
2k,2l

a2k+1
m b2l+1

n

+ sin am sin bn

∞
∑

k,l=0

(−1)k+lS
[1,1,1]
2k,2l+1

a2k+1
m b2l+2

n

− cos am cos bn

∞
∑

k,l=0

(−1)k+lS
[−1,−1,1]
2k+1,2l

a2k+1
m b2l+2

n

+ cos am sin an

∞
∑

k,l=0

(−1)k+lS
[1,−1,−1]
2k+1,2l+1

a2k+2
m b2l+2

n

;

A2m+1,2n ∼ − cos bm sin an

∞
∑

k,l=0

(−1)k+lS
[1,−1,−1]
2k,2l

b2k+1
m a2l+1

n

− cos bm cos an

∞
∑

k,l=0

(−1)k+lS
[−1,−1,1]
2k,2l+1

b2k+1
m a2l+2

n

+ sin bm sin an

∞
∑

k,l=0

(−1)k+lS
[1,1,1]
2k+1,2l

b2k+2
m a2l+1

n

+ sin bm cos an

∞
∑

k,l=0

(−1)k+lS
[−1,1,−1]
2k+1,2l+1

b2k+2
m a2l+2

n

;

A2m+1,2n+1 ∼ cos bm cos bn

∞
∑

k,l=0

(−1)k+lS
[−1,−1,1]
2k,2l

b2k+1
m b2l+1

n

− cos bm sin bn

∞
∑

k,l=0

(−1)k+lS
[1,−1,−1]
2k,2l+1

b2k+1
m b2l+2

n

− sin bm cos bn

∞
∑

k,l=0

(−1)k+lS
[−1,1,−1]
2k+1,2l

b2k+2
m b2l+1

n

+ sin bm sin bn

∞
∑

k,l=0

(−1)k+lS
[1,1,1]
2k+1,2l+1

b2k+2
m b2l+2

n

.



Spectra of highly oscillatory Fredholm integral operators 19

Table 1: Absolute values of someAm,ns for the Fox–Li kernelKω(x, y) = eiω(x−y)2 and
ω = 100.

n 100 200 400 1000
A2n,2n 3.80−02 5.80−06 1.59−07 3.39−09

A2n,2n+2 3.47−02 5.71−06 1.58−07 3.38−09

A2n,2n+4 2.73−02 5.61−06 1.57−07 3.37−09

A0,2n 5.50−04 1.20−05 2.34−06 3.57−07

A2,2n 5.49−04 1.18−05 2.31−06 3.52−07

Were we to make the simplest possible choice, the Fourier expansiona = {πm}m∈Z+
,

b = {πn}n∈N, matrix elements would have behaved asymptotically as

A2m,2n ∼ (−1)m+n

π4m2n2
S

[−1,−1,1]
1,1 , A2m,2n+1 ∼ (−1)m+n+1

π3mn2
S

[−1,−1,1]
1,0 ,

A2m+1,2n ∼ (−1)m+n+1

π3mn2
S

[−1,−1,1]
0,1 , A2m+1,2n+1 ∼ (−1)m+n

π2mn
S

[−1,−1,1]
0,0 .

Note in particular the disappointingly slow rate of asymptotic decay ofA2m+1,2n+1.
It makes sense to choosea andb so that the rate of decay of all the coefficients is as rapid

as possible. It is easy to see that this goal is attained for all Kω ∈ C∞([−1, 1]2) if and only
if sin am = 0, cos bn = 0, for ∈ Z+, n ∈ N. This results inmodified Fourier expansions
(Iserles & Nørsett 2008), witham = πm, bn = π(n − 1

2 ). We note that this choice indeed
results in an orthogonal system. Another advantage of modified Fourier expansions is that,
unlike classical Fourier expansions, they converge uniformly for analytic functions, regardless
of periodicity (Iserles & Nørsett 2008).

We therefore restrict ourselves in the sequel to the modifiedFourier base. The large-(m,n)
asymptotics are

A2m,2n ∼ (−1)m+n

∞
∑

k=0

∞
∑

l=0

(−1)k+l

π2(k+l+2)m2k+2n2l+2
S

[−1,−1,1]
2k+1,2l+1, (3.4)

A2m,2n+1 ∼ (−1)m+n+1
∞
∑

k=0

∞
∑

l=0

(−1)k+l

π2(k+l+2)m2k+2(n − 1
2 )2l+2

S
[1,−1,−1]
2k+1,2l+1, (3.5)

A2m+1,2n ∼ (−1)m+n+1
∞
∑

k=0

∞
∑

l=0

(−1)l+l

π2(k+l+2)(m − 1
2 )2k+2n2l+2

S
[−1,1,−1]
2k+1,2l+1, (3.6)

A2m+1,2n+1 ∼ (−1)m+n

∞
∑

k=0

∞
∑

l=0

(−1)k+l

π2(k+l+2)(m − 1
2 )2k+2(n − 1

2 )2l+2
S

[1,1,1]
2k+1,2l+1. (3.7)

Note that (3.4)–(3.7) could have been alternatively obtained from the multivariate modified
Fourier asymptotics in a cube, described in (Huybrechs et al. 2007).

In Fig. 3.1 we display absolute values of different matrix entriesAm,n for ω = 100. As
clear from (3.4)–(3.7), the coefficients decay likeO

(

n−4
)

when descending along diagonals,
but only likeO

(

n−2
)

when descending along columns (or moving rightwards along rows)
of A, and this is fully reflected in the figure and in Table 1. This different rate of decay has
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Figure 3.1: On the left, absolute values ofA2n,2n (boxes, the straight decreasing line),
A2n,2n+2 (discs, the line with a single maximum) andA2n,2n+4 (points, the line with two
maxima) and on the right absolute values ofA0,2n (boxes) andA0,2n+1 (discs), all for
Kω(x, y) = eiω(x−y)2 andω = 100.

Figure 3.2:− log10 |A2m,2n| for the Fox–Li kernel, growingn and (a)m = n; (b) m = n−2;
(c) m = 0, n even. In all casesω = 100.

important implications, which we discuss in Section 4, to the design of effective finite section
method based upon modified Fourier expansions.

Note further from Fig. 3.1 and even more from Fig. 3.2 (which should be compared with
Fig. 2.1) that asymptotic large-(m,n) behaviour commences fairly rapidly, once it takes over
from large-ω asymptotics. Once it happens, modified Fourier expansion converges much
slower than an expansion in Legendre polynomials: sooner orlater spectral convergence will
beat a polynomial one. Having said so, generating the data for Fig. 3.2 was substantially
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faster than the corresponding task in Fig. 2.1, although theformer requires considerably more
coefficients. In both instances we have used exact formulæ (which, for modified Fourier, will
be introduced in the next subsection). However, an important advantage of modified Fourier
becomes apparent once exact expressions forAm,n are not available. In the case of Legendre
expansions we must resort to numerical integration, of a cost already substantial for small
m andn (because of high oscillation induced byω) and escalating rapidly whenm andn
grow. Modified Fourier expansions, however, can be calculated cheaply for largem andn
using the asymptotic expansions (3.4)–(3.7) or their generalization to Filon-type methods in
(Huybrechs et al. 2007).

Before we consider in detail the Fox–Li oscillator, we note briefly that it is possible to
speed up the rate of decay of theAm,n by using polyharmonic bases in place of modified
Fourier (Iserles & Nørsett 2006). In other words, we expand eigenfunctions in the eigen-
functions of the polyharmonic operator∇

r in the square[−1, 1]2, with Neumann boundary
conditions: modified Fourier expansion corresponds tor = 1. In that case it is possible to
show thatAm,n ∼ O

(

(mn)−r−1
)

. Note that such polyharmonic orthogonal systems can
be represented explicitly as linear combinations of exponentials and trigonometric functions
(Iserles & Nørsett 2006).

3.2 The Fox–Li operator

Similarly to Section 2, we analyse in great detail the caseKω(x, y) = eiω(x−y)2 , the Fox–
Li kernel. By virtue of symmetry we haveA2m,2n+1 = A2m+1,2n = 0, but an explicit
calculation ofA2m,2n andA2m+1,2n+1 is not straightforward.

Lemma 5 Let

θ(a, b) =

∫ 1

−1

∫ 1

−1

ei(ax+by)−z2(x−y)2 dxdy,

wherea, b ∈ C, a + b 6= 0 andz ∈ C \ {0} is a parameter. Then

θ(a, b) =
π

1
2

2iz(a + b)
[F (a, b) + F (b, a)], (3.8)

where

F (a, b) = cos(a + b) exp

(

− a2

4z2

)[

erf

(

ia

2z
+ 2z

)

+ erf

(

ia

2z
− 2z

)

− 2erf

(

ia

2z

)]

+ i sin(a + b) exp

(

− a2

4z2

) [

erf

(

ia

2z
+ 2z

)

− erf

(

ia

2z
− 2z

)]

.

Proof Since

∂θ

∂a
= i

∫ 1

−1

∫ 1

−1

xei(ax+by)−z2(x−y)2 dxdy,
∂θ

∂b
= i

∫ 1

−1

∫ 1

−1

yei(ax+by)−z2(x−y)2 dxdy,
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we deduce, integrating by parts, that

−2z2

(

∂θ

∂a
− ∂θ

∂b

)

= i

∫ 1

−1

∫ 1

−1

ei(ax+by) de−z2(x−y)2

dx
dxdy

= −iaθ(a, b) +

∫ 1

−1

[ei(a+by)−z2(1−y)2 − ei(−a+by)−z2(1+y)2 ] dy.

Likewise, changing the order of integration,

−2z2

(

∂θ

∂a
− ∂θ

∂b

)

= −i

∫ 1

−1

∫ 1

−1

−ei(ax+by) de−z2(x−y)2

dy
dy dx

= ibθ(a, b) −
∫ 1

−1

[ei(ax+b)−z2(x−y)2 −−ei(ax−b)−z2(1+x)2 ] dx.

We subtract the two last displayed equations from each other, whereby

i(a + b)θ(a, b)

=

∫ 1

−1

[ei(a+bt)−z2(1−t)2 − ei(−a+bt)−z2(1+t)2 + ei(at+b)−z2(1−t)2 − ei(at−b)−z2(1+t)2 ] dt.

This is an elementary integral, which we evaluate explicitly, deriving (3.8) after elementary
algebra. 2

Corollary 1 For anym 6= n it is true that

A2m,2n =
F (mπ, nπ) + F (nπ,mπ)

4iπ
1
2 z(m + n)

+
F (mπ,−nπ) + F (−nπ,mπ)

4iπ
1
2 z(m − n)

, (3.9)

A2m+1,2n+1 = −F ((m − 1
2 )π, (n − 1

2 )π) + F ((n − 1
2 )π, (m − 1

2 )π)

4iπ
1
2 z(m + n − 1)

(3.10)

+
F ((m − 1

2 )π,−(m − 1
2 )π) + F (−(n − 1

2 )π, (m − 1
2 )π)

4iπ
1
2 z(m − n)

,

wherez = (−iω)
1
2 .

Proof Follows at once from (3.8), because

A2m,2n = 1
4 [θ(mπ, nπ) + θ(−mπ, nπ) + θ(mπ,−nπ) + θ(−mπ,−nπ)],

A2m+1,2n+1 = − 1
4 [θ((m − 1

2 )π, (n − 1
2 )π) − θ(−(m − 1

2 )π, (n − 1
2 )π)

− θ((m − 1
2 )π,−(n − 1

2 )π) + θ(−(m − 1
2 )π,−(n − 1

2 )π)].

Since the error function is even, we haveF (a, b)+F (b, a) ≡ 0 and the calculation simplifies.
2

Note that

F (πm, πn) = (−1)m+n exp

(

π2m2

4iω

)[

erf

(

iπm

2(−iω)
1
2

+ 2(−iω)
1
2

)
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+ erf

(

iπm

2(−iω)
1
2

− 2(−iω)
1
2

)

− 2erf

(

iπm

2(−iω)
1
2

)]

,

F (π(m− 1
2 ), π(n− 1

2 )) = (−1)m+n−1 exp

(

π2(m − 1
2 )2

4iω

)[

erf

(

iπ(m − 1
2 )

2(−iω)
1
2

+ 2(−iω)
1
2

)

+ erf

(

iπ(m − 1
2 )

2(−iω)
1
2

− 2(−iω)
1
2

)

− 2erf

(

iπ(m − 1
2 )

2(−iω)
1
2

)]

,

somewhat simplifying the calculations.
It remains to derive the diagonal elementsAn,n.

Lemma 6 It is true that

θ(a,−a) =
π

1
2

z
exp

(

− a2

4z2

)[

erf

(

ia

2z
+ 2z

)

− erf

(

ia

2z
− 2z

)]

+
e−4z2

cos(2a) − 1

z2

+
π

1
2 ia

4z3
exp

(

− a2

4z2

)[

erf

(

ia

2z
+ 2z

)

+ erf

(

ia

2z
− 2z

)

− 2erf

(

ia

2z

)]

.

Proof Changing variables and exchanging order of integration,

∫ 1

−1

∫ 1

−1

eia(x−y)−z2(x−y)2 dxdy =

∫ 1

−1

∫ 1−y

−1−y

eiat−z2t2 dt dy =

∫ 2

−2

(2 − |t|)eiat−zt2 dt,

an elementary integral. 2

It is now trivial to express the diagonal coefficients in the form

A2n,2n = 1
2 [θ(πn, πn) + θ(πn,−πn)]

A2n+1,2n+1 = 1
2 [θ((n − 1

2 )π,−(n − 1
2 )π) − θ((n − 1

2 )π, (n − 1
2 )π)],

both with(−iω)
1
2 . Explicit expressions are long, although easy to derive, and they add little

to our comprehension.

3.3 Other oscillators

The modified Fourier coefficients for the rank-2 kernelKω(x, y) = cos ω(x − y) can be
evaluated with great ease,

A2m,2n =
4(−1)n+mω2 sin2 ω

(π2m2 − ω2)(π2n2 − ω2)
,

A2m+1,2n+1 =
4(−1)m+nω2 cos2 ω

[π2(m − 1
2 )2 − ω2][π2(n − 1

2 )2 − ω2]
, m, n ∈ Z+,

while Am,n = 0 for oddm + n. Like in Subsection 2.4, the matrixA is of rank 2. Moreover,
once we letAE = (A2m,2n)m,n∈Z+

, AO = (A2m+1,2n+1)m,n∈Z+
, we obtain two rank-1

matrices and in each case the nonzero eigenvalue is the sum ofsquares of diagonal elements.
Consistently with our intention from Subsection 2.4 to use this simple example as a proving
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Figure 3.3: The number of significant digits in approximating one of the two nonzero eigen-
values forKω(x, y) = cos ω(x − y), ω = 100, with an N × N matrix: squares denote
modified Fourier and discs the Legendre expansion.

ground of the finite section method, we display in Fig. 3.3 thenumber of significant digits
once the eigenvalue1+(2ω)−1 sin 2ω is approximated by

∑N
m=1 A2

m,m for modified Fourier
and Legendre expansions andω = 100.

As expected, eventually Legendre must win and, once it has overcome the influence of
ω-induced oscillations, it does so with style. However, two observations demonstrate that
modified Fourier expansion is not necessarily uniformly inferior. Firstly, the initial error, in
the regime dominated by large-ω asymptotics, is significantly smaller with modified Fourier:
we will see in Subsection 3.4 that this corresponds to a more general pattern. Secondly, even if
modified Fourier expansions converge significantly slower,we can attain fairly good accuracy
with small N . This is important because the cost of generating the truncated matrixA is
typically much cheaper with modified Fourier expansions and, as will will see in Section 4,
the size of the effective matrix that we need consider can be reduced.

Like earlier in Subsection 2.3, we next consider the kernelKω(x, y) = eiωxy. The integral

θ(a, b) =

∫ 1

−1

∫ 1

−1

ei(ax+by+ωxy) dxdy

can be computed, e.g. using symbolic software, in terms of exponential integrals:

θ(a, b) =
1

iω

[

Ei1

(

(a − ω)(b + ω)

iω

)

+ Ei1

(

(a + ω)(b − ω)

iω

)

− Ei1

(

(a + ω)(b + ω)

iω

)
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Figure 3.4:− log10 |A2n,2n| for the kernelKω(x, y) = eiωxy andω = 100: squares stand for
modified Fourier and discs for Legendre expansions.

− Ei1

(

(a − ω)(b − ω)

iω

)]

+







2π

ω
exp

(

− iab

ω

)

, |a|, |b| ≤ ω,

0, otherwise,

whereEi1 is the exponential integral (Abramowitz & Stegun 1964, p. 227). Sinceθ(a, b) =
θ(−a,−b), we deduce that

A2m,2n = 1
2 [θ(mπ, nπ) + θ(mπ,−nπ)],

A2m+1,2n+1 = 1
2 [θ((m − 1

2 )π,−(n − 1
2 )π) − θ((m − 1

2 )π, (n − 1
2 )π)]

– again,Am,n = 0 whenm + n is odd.
In Fig. 3.4 we display the number of significant digits inA2n,2n using modified Fourier

and Legendre expansions. Evidently, up to aboutn = 30 both expansions produce largish
coefficients and then large-(m,n) asymptotics win, Legendre coefficients decay very rapidly
and modified Fourier coefficients much more sedately.

3.4 Large-ω asymptotics

Let us assume for simplicity an Abel kernel of the formKω(x, y) = eiωg(x−y), where
g ∈ C∞[−2, 2]. We further assume thatg is an even function,g′(0) = 0, g′′(0) 6= 0 and
that otherwiseg′ 6= 0 – this definitely represents loss of generality but the Fox–Li operator
survives. Our present concern is estimate the size of the coefficients whenm andn are suf-
ficiently small and theω-generated oscillation prevails. To this end we need to investigate
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integrals of the form

I[f ] =

∫ 1

−1

∫ 1

−1

f(x, y)eiωg(x−y) dxdy. (3.11)

Note that in our casef(x, y) = φm(x)φn(y), but it is more convenient by this stage to work
in a more general setting.

(3.11) is a bivariate highly oscillatory integral, of a kindconsidered in (Wong 2001) and
elsewhere. Within the framework of asymptotic analysis it is exceptional, because the entire
line x = y consists of stationary points,∇g(x, x) = 0.

Letting t = x − y, we trivially obtain

I[f ] =

∫ 0

−2

h[−](t)eiωg(t) dt +

∫ 2

0

h[+](t)eiωg(t) dt,

where

h[−](t) =

∫ 1

−1−t

f(t + y, y) dy, h[+](t) =

∫ 1−t

−1

f(t + y, y) dy.

Therefore the problem reduces to two univariate integrals,of a kind that can be readily ex-
panded forω ≫ 1 using the theory in (Iserles & Nørsett 2005),

∫ 2

0

h[+](t)eiωg(t) dt ∼ −
∞
∑

m=0

1

(−iω)m+1

[

h
[+]
m (2) − h

[+]
m (0)

g′(2)
eiωg(2) − h

[+]
m

′
(0)

g′′(0)
eiωg(0)

]

+

∫ 2

0

eiωg(t) dt

∞
∑

m=0

h
[+]
m (0)

(−iω)m
,

∫ 0

−2

h[−](t)eiωg(t) dt ∼
∞
∑

m=0

1

(−iω)m+1

[

h
[−]
m (−2) − h

[−]
m (0)

g′(−2)
eiωg(−2) − h

[−]
m

′
(0)

g′′(0)
eiωg(0)

]

+

∫ 0

−2

eiωg(t) dt

∞
∑

m=0

h
[−]
m (0)

(−iω)m
,

where

h
[±]
0 (t) = h[±](t), h

[±]
m+1(t) =

d

dt

h
[±]
m (t) − h

[±]
m (0)

g′(t)
, m ∈ N.

Let us now consider in greater detail the caseg(x) = x2 of the Fox–Li operator, since it
is indicative of a more general pattern of behaviour. Insofar as the modified Fourier basis is
concerned, commencing from the cosine terms, we have for allm andn

m 6= n : h[−](t) = (−1)m+n m sin(πmt) − n sin(πnt)

π(m2 − n2)
,

h[+](t) = −h[−](t),

m = n : h[−](t) = (1 + 1
2 t) cos(πnt) + 1

2

sin(πnt)

πn
,

h[+](t) = (1 − 1
2 t) cos(πnt) − 1

2

sin(πnt)

πn
.
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We examine first the off-diagonal casem 6= n. Easy induction confirms that

h[−]
r (t) = (−1)m+n+r

∞
∑

k=0

(−1)k(k + 1)r

(2k + 2r)!

m2(k+r+1) − n2(k+r+1)

m2 − n2
π2(k+r)t2k+1, r ∈ Z+,

thereforeh[−]
r (0) = h

[+]
r (0) = 0 and

h[−]
r

′
(0) = (−1)m+n+r+1π2(r+1) (r + 1)!

(2r + 2)!

m2(r+2) − n2(r+2)

m2 − n2
,

h[+]
r

′
(0) = (−1)m+n+rπ2(r+1) (r + 1)!

(2r + 2)!

m2(r+2) − n2(r+2)

m2 − n2
.

Moreover,

h[−]
r (t) =

(−1)m+n+rπ2r

4r( 1
2 )r

∞
∑

k=0

(−1)k

4kk!(r + 1
2 )k

m2(k+r+1) − n2(k+r+1)

m2 − n2
t2k+1

=
(−1)m+n+rπ2rt

4r( 1
2 )r(m2−n2)

{

m2(r+1)
0F1

[

—;
r+ 1

2 ;
− (πmt)2

4

]

−n2(r+1)
0F1

[

—;
r+ 1

2 ;
− (πnt)2

4

]}

=
(−1)m+n+rπr+1

2r+ 1
2 (m2 − n2)tr−

3
2

[

mr+ 3
2 Jr− 1

2
(πmt) − nr+ 3

2 Jr− 1
2
(πnt)

]

=
(−1)m+n+1πr+1

2rtr−1(m2 − n2)
[mr+2jr−1(πmt) − nr+2jr−1(πnt)],

wherejn is thenth spherical Bessel function(Abramowitz & Stegun 1964, p. 437). Since

js(z) = sin(z − πs
2 )

⌊ s

2
⌋

∑

j=0

(−1)j2−2jz−2j−1(s + 2j)!

(2j)!(s − 2j)!

+ cos(z − πs
2 )

⌊ s−1

2
⌋

∑

j=0

(−1)j2−2j−2z−2j−2(s + 1 + 2j)!

(2j + 1)!(s − 2j − 1)!

(cf. http://functions.wolfram.com/03.21.03.0036.01), we obtain

jr−1(−2πm) = 2(−1)r−1

⌊ r−1

2
⌋

∑

j=0

(−1)j (r + 2j − 1)!

(2j)!(r − 2j − 1)!

1

(4πm)2j+1

and similar expression forjr−1(2πm). We observe that both values grow likeO
(

M2r
)

as
r ≫ 1, whereM = max{m,n}.

This provides explicitly the values ofh[−]
r at 0 and−2 and, similarly, ofh[+]

r at 0 and+2.
Substitution into the asymptotic expansion yields

A2m,2n ∼
∞
∑

r=0

1

(−iω)r+1

[

1
2h[−]

r (2)e4iω − 1
2h[−]

r (−2)e4iω − h[−]
r

′
(0)

]

. (3.12)
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It follows at once from our analysis that the asymptotic expansion (3.12) converges when
m,n < ω

1
2 . Thus, in this regime we can use it as an effective means to calculate the entries

of A.
In the remaining casem = n we have

h[−](t) =
∞
∑

k=0

(−1)k

(2k)!
(πn)2kt2k +

∞
∑

k=0

(−1)k(k + 1)

(2k + 1)!
(πn)2kt2k+1,

h[+](t) =
∞
∑

k=0

(−1)k

(2k)!
(πn)2kt2k −

∞
∑

k=0

(−1)k(k + 1)

(2k + 1)!
(πn)2kt2k+1.

Therefore (restricting our attention toh[−] but noting that identical analysis applies toh[+])

h[−]
r (t) = (−1)r

∞
∑

k=0

(−1)k(k + 1
2 )r

(2k + 2r)!
(πn)2(k+r)t2k

+ (−1)r

∞
∑

k=0

(−1)k(k+1)r+1

(2k + 2r + 1)!
(πn)2(k+r)t2k+1

and we deduce that

h[−]
r (0) = (−1)r (πn)2r

4rr!
, h[−]

r

′
(0) = (−1)r (r + 1)!

(2r + 1)!
(πn)2r.

To identifyh
[−]
r (−2) we compute, after much algebra,

h[−]
r (t) =

(−1)r(2π)2r

4rr!
1F2

[

1;
1
2 , r + 1;

− (πnt)2

4

]

+
(−1)r(2π)2r(r + 1)t

22r+1( 1
2 )r+1

1F2

[

r + 2;
r + 1, r + 3

2 ;
− (πnt)2

4

]

.

We obtain two Bessel-like functions. (It is possible to represent the second function as a
linear combination of two spherical Bessel functions, but this adds little to the narrative of
this paper.)

Similar analysis extends to the odd coefficientsA2m+1,2n+1, whence

h[−](t) =
(−1)m+n

π[(m − 1
2 )2 − (n − 1

2 )2]
[(m − 1

2 ) sin π(m − 1
2 )t − (n − 1

2 ) sin π(n − 1
2 )t],

except that the formulæ become (even more) complicated.
Asymptotic expansions and algorithms based upon them (e.g.Filon-type quadrature) are

often used as a very effective means to compute highly oscillatory integrals (Iserles & Nørsett
2005). This is the moment to emphasize that this is not the case in the computation of the
Am,n. The overwhelming reason is that, while large-ω asymptotics are valid whenω is sub-
stantially small thanm andn and we can use large-(m,n) asymptotics whenm andn are
very large in comparison toω, neither formula is of much use in theintermediate asymptotics
regime. Thus, in Subsection 3.6 we recommend using FFT for anefficient computation of the
Am,ns.
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3.5 Large-n asymptotics

For completeness we are also interested in estimating the size ofAm,n whenn is large (that
is, O(ω) or larger), whilem is relatively small. In other words,0 ≤ m ≤ M (whereM has
been defined above), whileM + 1 ≤ n ≤ M + 1 + N for some (large)N .

Letting

σm(y) =

∫ 1

−1

cos πmxKω(x, y) dx,

and employing the asymptotic expansion (3.2), we have

A2m,2n =

∫ 1

−1

σm(y) cos πny dy

∼ (−1)n

∞
∑

k=0

(−1)k

(πn)2k+2
[σ(2k+1)

m (1) − σ(2k+1)
m (−1)]. (3.13)

In the case of anAbel kernelKω(x, y) = Kω(x−y) we can easily demonstrate, integrating
by parts, that

σ′
m(y) = −[Kω(1 − y) − (−1)mKω(1 + y)] − πm

∫ 1

−1

sinπmxKω(x − y) dx,

σ′′
m(y) = K ′

ω(1 − y) + (−1)mK ′
ω(1 + y) − (πm)2σm(y).

In particular, if Kω(y) = eiωg(y) thenσ′
m(y) scales likem, σ′′

m(y) like max{ω,m2} and
it is easy to prove that, in general,σ

(k)
m scales likemax{ωk−1,mk}. Given that within our

regimen > m,ω, it thus follows from (3.13) that the asymptotic expansion is convergent at a
geometric speed.

3.6 Computation of the modified Fourier matrix

Given suitably larges ∈ N, we wish to computeAm,n for m,n = 0, 1, . . . , s − 1 and the
modified Fourier basis. The simplest approach is also probably the most effective for a general
kernelKω, namely to compute

A2m,2n =

∫ 1

−1

∫ 1

−1

cos(πmx) cos(πny)Kω(x, y) dxdy,

A2m+1,2n =

∫ 1

−1

∫ 1

−1

sin(π(m − 1
2 )x) cos(πny)Kω(x, y) dxdy,

A2m,2n+1 =

∫ 1

−1

∫ 1

−1

cos(πmx) sin(π(n − 1
2 )y)Kω(x, y) dxdy,

A2m+1,2n+1 =

∫ 1

−1

∫ 1

−1

sin(π(m − 1
2 )x) sin(π(n − 1

2 )y)Kω(x, y) dxdy

for m,n = 0, 1, . . . , ⌊s/2⌋ − 1 using bivariate Fast Fourier Transform (FFT). Of course,s
must be large enough, at leastO(ω), so that oscillation due toω is not a problem, and it
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helps FFT if it is a highly composite integer. The computational expense consists thus of two
components. Firstly, we need to computeKω at 2s2 points to implement the requisite fast
cosine and sine transforms, secondly we incurO

(

s2 log s
)

flops in the computation of the
transforms.

Matters are considerably simpler for the Abel kernelKω(x, y) = eiωg(x−y), which we
have already encountered in Subsection 3.4, and like there subject to the additional conditions
thatg is even (henceA2m+1,2n = A2m,2n+1 = 0 and need not be computed),g′(0) = 0 is
the only stationary point ofg in [−1, 1] andg′′(0) 6= 0. We have proved there that

A2m,2n =

∫ 0

−2

h[c,−]
m,n (t)eiωg(t) dt +

∫ 2

0

h[c,+]
m,n (t)eiωg(t) dt, (3.14)

A2m+1,2n+1 =

∫ 0

−2

h[s,−]
m,n (t)eiωg(t) dt +

∫ 2

0

h[s,+]
m,n (t)eiωg(t) dt, (3.15)

where

h[c,−]
m,n (t) =















(1 + 1
2 t) cos(πnt) + 1

2

sin(πnt)

πn
, m = n,

(−1)m+n m sin(πmt) − n sin(πnt)

π(m2 − n2)
, m 6= n;

h[c,+]
m,n (t) =















(1 − 1
2 t) cos(πnt) − 1

2

sin(πnt)

πn
, m = n,

(−1)m+n+1 m sin(πmt) − n sin(πnt)

π(m2 − n2)
, m 6= n;

h[s,−]
m,n (t) =



















(1 + 1
2 t) cos(π(n − 1

2 )t) +
sin(π(n − 1

2 )t)

π(2n − 1)
, m = n,

(−1)m+n
(m − 1

2 ) sin(π(m − 1
2 )t) − (n − 1

2 ) sin(π(n − 1
2 )t)

π[(m − 1
2 )2 − (n − 1

2 )2]
, m 6= n,

h[s,+]
m,n (t) =



















(1 − 1
2 t) cos(π(n − 1

2 )t) − sin(π(n − 1
2 )t)

π(2n − 1)
, m = n,

(−1)m+n+1 (m − 1
2 ) sin(π(m − 1

2 )t) − (n − 1
2 ) sin(π(n − 1

2 )t)

π[(m − 1
2 )2 − (n − 1

2 )2]
, m 6= n.

Therefore, changing variables in a completely transparentmanner, both (3.14) and (3.15)
reduce to the calculation of integrals of the form

∫ 2

0

eiωg(t) sin(πnt) dt,

∫ 2

0

eiωg(t)(1 − 1
2 t) cos(πnt) dt,

∫ 2

0

eiωg(t) sin(π(n − 1
2 )t) dt,

∫ 2

0

eiωg(t)(1 − 1
2 t) cos(π(n − 1

2 )t) dt,

and this can be accomplished withunivariateFFTs. Thus, the cost reduces to2s calculations
of g andO(s log s) flops to evaluate the discrete sine and cosine transforms.
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4 The hyperbolic cross

The modified Fourier basis comes into its own as a mean to compute spectra of highly os-
cillatory Fourier operators once we take into account the specific rate of decay of the co-
efficientsAm,n for largem andn. This is demonstrated in Fig. 4.1, where we display the
values of|A2m,2n| (on the left) and|A2m+1,2n+1| (on the right) for the Fox–Li equation,
m,n ≤ 800 andω = 100. The meaning of the differently-shaded regions is as follows.
The white area on bottom right corresponds to terms which areless than10−7 in modulus,
the adjoining light-shaded area corresponds to10−7 ≤ |Am,n| < 10−6, the next one to
10−6 ≤ |Am,n| < 10−5 and so on. Finally, the thin diagonal sliver at top left consists of all
(m,n) such that|Am,n| ≥ 10−2.

Figure 4.1: The hyperbolic cross associated with modified Fourier expansions for the Fox–Li
equation, withω = 100.

The pattern discernable in Fig. 4.1 is the familiarhyperbolic cross,originally introduced
by Babenko (1960) in the context of multivariate Fourier expansions. As we already know
from Subsection 3.1, using a modified Fourier basis results in

Am,n ∼ O
(

(mn)−2
)

, m, n ≫ 1.

This implies that the coefficients decay at a different rate along different directions in the
matrix: fastest along diagonals and considerably slower along rows and columns. (Cf. also
Fig. 3.1.) This is precisely the phenomenon visible in Fig. 4.1. Formally, letA = (Ak,l)k,l∈Z+

be the matrix whose eigenvalues we seek. It follows thatA partitions into

A =

[

A1,1 A1,2

A2,1 A2,2

]

, (4.1)

whereA1,1 is anr × r matrix, with sufficiently larger (in practicer = O(ω)), while the
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elements of the infinite matrixA2,2 are adequately small.1

Let us replace the ‘small’ matrixA2,2 by zero,

Ã =

[

A1,1 A1,2

A2,1 O

]

.

The main idea is to replace the computation ofσ(A) by that ofσ(Ã): as it turns out, the
latter is a considerably simpler problem. We do not considerhere the question of the distance
between the two sets, while remarking that computational experience is that it is very small in-
deed, provided thatr is large enough. Intuitively speaking, provided thatmaxi,j≥r+1 |Am,n|
is small, so should be the Hausdorff distancedist[σ(Ã)−σ(A)], but the veracity of this state-
ment depends on the structure of the pseudoeigenvalues ofA (Trefethen & Embree 2005).2

Theorem 7 The matrixÃ is of rank2r. Moreover, letG = A1,2A2,1 and letG1 andG2 be
any r × r matrices such thatG1G2 = G. Then the nonzero eigenvalues ofÃ coincide with
those of the(2r) × (2r) matrix

B =

[

A1,1 G1

G2 O

]

.

Proof Let λ ∈ σ(Ã) and assume thatλ 6= 0. Further, suppose that

v =

[

v1

v2

]

be a corresponding nonzero eigenvector, wherev1 ∈ C
r. Therefore,

A1,1v1 + A1,2v2 = λv1, A2,1v1 = λv2.

We substitutev2 = λ−1A2,1v1 into the first equation and multiply byλ 6= 0. The outcome is

(A1,2A2,1 + λA1,1 − λ2I)v1 = 0. (4.2)

We therefore deduce that nonzero eigenvalues ofÃ coincide with the solutions of (4.2), hence
with the quadratic eigenvalue problemwith the pencil(G,A1,1,−I). Since the underlying
matrices arer × r, the quadratic eigenvalue problem has2r solutions and we deduce that
rankÃ = 2r.

To prove the second part of the theorem, we letµ ∈ σ(B), µ 6= 0, with a nonzero eigen-
vector

u =

[

u1

u2

]

, u1,u2 ∈ C
r.

Therefore
A1,1u1 + G1u2 = µu1, G2u1 = µu2.

1In the important case whenAm,n ≡ 0 for m + n = 1 mod 2, we can splitA into two infinite matrices,
Ae = (A2m,2n)

m,n∈Z+
andAo = (A2m+1,2n+1)

m,n∈Z+
, say: the Fox–Li equation is an important example.

In that case bothAe andAo can be subjected to partition (4.1) and an identical argumentapplies.
2The pseudospectrum ofA for the Fox–Li operator has been already considered in (Landau 1977/78).
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As before, we substituteu2 = µ−1G2u1 into the first equation. The outcome is

(G1G2 + µA1,1 − µ2I)u1 = (G + µA1,1 − µ2I)u1 = 0

and we obtainexactlythe same quadratic eigenvalue problem (4.2) as before. (Indeed, even
the eigenvectors are the same!) It is trivial to prove that this argument works in reverse, i.e.
that every solution of the quadratic eigenvalue problem yields an eigenvalue/eigenvector pair
for B, simply repeating the argument in reverse. This completes the proof of the theorem.

2

The significance of the last theorem to the computation of eigenvalues of the Fredholm
problem (1.1) is clear: it suffices to choose suitably larger, form the matrixA1,1, approximate
the matrixG by suitably truncating the matricesA1,2 andA2,1 (i.e., calculatingAm,n for
0 ≤ m,n ≤ s−1, min{m,n} ≤ r−1 for sufficiently larges) and compute the2r eigenvalues
of B. Recall that, the operator (1.1) being compact, the eigenvalues ofA accumulate at the
origin. In effect, what we are doing here is to set all the eigenvalues, except for the first2r, to
zero. Given that these eigenvalues are likely to be tiny, well underneath the machine epsilon
of any practical computer, this procedure incurs very smallerror.

There are several obvious choices ofG1 andG2 such thatG = G1G2. The most obvious
is G1 = G, G2 = I. Another is lettingG1G2 be the QR factorization ofG. An intriguing
possibility in the symmetric caseG2 = G⊤

1 is to takeG⊤
2 G2 as the Cholesky factorization ofG,

wherebyG1 = G⊤
2 . This has the advantage of replacing a complex symmetric infinite matrix

by a complex symmetric finite one. A word of warning, however:sinceG is complex, the
existence of Cholesky factorization is not guaranteed.

Two questions remain. Firstly, is similar behaviour, namely that enough entries ofA
become rapidly small, in a manner that can be exploited in practical computation, extends to
Legendre expansions. Fig. 4.2, where we display the size of terms in a250 × 250 matrix,
demonstrates that this is not so. The white shading in the bottom-right corner corresponds to
|Am,n| < 10−20 and subsequent bands of colour to increase in modulus by a factor of 103.

A reasonable choice ofr for a modified Fourier basis withω = 100 is 125 and the size ofB
is (2r)× (2r). On the face of it, whether we use modified Fourier expansionsor Legendre ex-
pansions, we end up with a matrix of similar size. This, however, disregards the computation
of the matrix in question! According to Section 3, for general kernels the cost of computing
A for modified Fourier isO

(

s2 log s
)

operations, to which we need to addO
(

r2s
)

opera-
tions to computeG = A1,2A2,1. In the case of an Abel kernel the cost of computingA is just
O(s log s) originating in FFT andO(N) to formN terms. Since we need to form justr2+2rs
nonzero terms of̃A ands ≫ r, this means that in that case the total cost isO((r + log s)s).
Additional savings, which we disregard here, occur in the complex-symmetric case.

For Legendre expansion, however, there is no good way of computing theAm,ns. Even in
special cases (e.g. the Fox–Li kernel) when we can representtheAm,ns explicitly as general-
ized hypergeometric functions, their computation is fairly expensive. Thus, while the ultimate
sizeof matrices is similar, thecostof forming their entries is greatly smaller for the modified
Fourier expansion.

The second question is whether the state of affairs demonstrated in Fig. 4.1 remains valid
for other kernels. Clearly, this is so as long asKω is sufficiently smooth, so that the asymptotic
estimateAm,n = O

(

(mn)−2
)

holds. It breaks down for kernels with derivative discontinu-
ities.
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Figure 4.2: The size of the elements ofAm,n in the Legendre expansion for the Fox–Li
operator withω = 100.

Figure 4.3: The size of the elementsA2m,2n andA2m+1,2n+1 for Kω(x, y) = eiω|x−y| and
ω = 100 using modified Fourier basis andm,n = 0, 1, . . . , 800.
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As an example of such breakdown, we consider in Fig. 4.3 the kernelKω(x, y) = eiω|x−y|.
It is easy to evaluate the coefficients in a modified Fourier expansion explicitly. Thus,Am,n =
0 for m + n = 1 mod 2 and (assuming thatω is not an integer multiple ofπ)

A2m,2n =



















2iω[ω2 − iω(1 − e2iω) − π2m2]

(ω2 − π2m2)2
, m = n,

2(−1)m+nω2(1 − e2iω)

(ω2 − π2m2)(ω2 − π2n2)
, m 6= n;

A2m+1,2n+1 =



















2iω[ω2 − iω(1 + e2iω) − π2(m − 1
2 )2]

[ω2 − π2(m − 1
2 )2]2

, m = n,

2(−1)m+nω2(1 + e2iω)

[ω2 − π2(m − 1
2 )2][ω2 − π2(n − 1

2 )2]
, m 6= n.

In Fig. 4.3 we display the size of the ‘even’ and ‘odd’ coefficientsAm,n for the modified
Fourier basis. Evidently, the entries exhibit a hyperboliccross, except for diagonal elements,
which decay likeO

(

n−2
)

, a consequence of derivative discontinuity inKω. Note that the
spectrum in this case has been derived (as an asymptotic expansion inω−1) in (Brunner et al.
2008), hence we do not require the finite section method to this end.

5 Conclusions

Spectral problems for highly oscillatory Fredholm kernelsare important, not least because
of their relevance to laser dynamics, and they are exceedingly challenging from mathemat-
ical and numerical points of view. In this paper we continue the project on which we have
embarked in (Brunner et al. 2008), to shed light on such problems. Specifically, we have con-
sidered the method of finite section, a natural approach toward the evaluation of the spectrum.

The obvious choice of basis in finite section method is Legendre polynomials, because
of their very rapid convergence. However, the onset of this rapid convergence is only after
oscillations due to the kernel have been resolved, hence theoutcome is a matrix which is
not small. Worse, there are simply no good methods to evaluate matrix coefficients, double
integrals involving Legendre polynomials, efficiently.

An alternative to Legendre polynomials is to use a modified Fourier basis. On the face
of it, the convergence rate is considerably slower,O

(

(mn)−2
)

compared to spectral. Yet,
implemented by exploiting the hyperbolic cross structure,they result in matrices not much
greater than those originating in the Legendre basis, but whose coefficients can be calculated
very rapidly with FFT.

Is modified Fourier expansion more efficient than Legendre? This in large measure de-
pends on the values ofω: the higher the oscillation, the greater the likelihood of modified
Fourier prevailing. However, a resolution of this questioncalls for fine-tuning of a wide range
of parameters and implementation options, as well as a greatdeal of numerical experimenta-
tion for different kernels and values ofω, beyond the scope of the current paper.

Numerous challenges remain in the understanding of highly oscillatory Fredholm spectral
problems. The most fascinating to our mind is the mathematical structure of the Fox–Li spec-
trum. We have plotted the spectrum forω = 100 (as obtained with the finite section method,
using modified Fourier basis withr = 127 ands = 800) in Fig. 5.1. Similar information is
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Figure 5.1: The eigenvalues of the Fox–Li operator forω = 100. The diamonds correspond
to ‘even’ eigenvalues (that is, following from expansion incosines) and stars to ‘odd’ eigen-
values.
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Figure 5.2: The same as Fig. 5.1, except forω = 200 (on the left) andω = 500.
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presented in Fig. 5.2 forω = 200 andω = 500. Evidently, the eigenvalues lie on a spiral.
What is this spiral? How does it vary withω?

Of course, even understanding of the structure of the Fox–Lispectrum is but a first step on
a longer journey into the unknown: understanding the spectra of general Fredholm problems
with high oscillation. The work of this paper, as well as (Brunner et al. 2008), need be seen
as first and hesitant steps toward this goal.

We have plotted the eigenfunctions corresponding to some eigenvalues in Fig. 5.3, and
again it is striking how much structure can be observed. Clearly, for small values ofn (that is,
for eigenvalues near the outer arm of the spiral) the eigenfunctions are perturbed trigonometric
functions, while for largen they are (perturbed?) wave packets. Note that changing variables
x → x/

√
ω, y → y/

√
ω, λ → λ/

√
ω results in the spectral problem

∫

√
ω

−√
ω

f(x)ei(x−y)2 dx = λf(y), −
√

ω ≤ y ≤
√

ω.

Now, were we to replace the interval of integration by the real line, i.e. consider the problem
∫ ∞

−∞
f(x)ei(x−y)2 dx = λf(y), −∞ < y < ∞,

we would have recovered a spectrum of a Schrödinger operator which, indeed, possesses the
above features: ‘low’ eigenfunctions resemble trigonometric functions, ‘high’ eigenfunctions
are wave packets.3 Yet, what is the discrepancy between the two problems? Can weinfer the
first from the second?
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Figure 5.3: Real and imaginary parts of the eigenfunctions corresponding to the first, second,
twentieth and fortieth ‘even’ and ‘odd’ eigenvalues, respectively, for ω = 100.

Much remains to be done to understand highly oscillatory Fredholm problems. We hope
that this paper contributes in some measure toward this goal.

3We are grateful to Olof Runborg for this observation.
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