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The Computation of Transonic Flow Through

Two-Dimensional Gas Turbine Cascades

P. W. McDONALD

THTRODUC TION

The development of aerodynamically efficient,
highly loaded gas turbine engines requires the
rapid and accurate prediction of the flow through
turbine cascades well into the transonic flow
regime. Here the normal cascade design problems
become more e¢ritieal: Slight conteour variations
significantly affect pressure distribution and may
induce shoecks. Furthermore, the'high camber may
readily lead to separation. In contrast to fully
subscniec cascades, a smooth geometry does not
guarantee a smooth pressure distribution. The de-
sigrer, therefore, is faced with the problems of
evaluating various transonic airfoll contours to
arrive at nonseparating flows with a
of shoek losses.

The gas turbine must be designed for endurance
as well as performance. To enjoy the effieciency
of high-temperature c¢ycles, many turbines must
ojeet ecooling air through the surface of the air-
foils. The cooling system should be carefully de-
signed to avoid overheating and to reduce the
Lhermal stress on the blades. Since the air ejec-
tign is & funetion of the external conditions, the
prediction of the airfoil surface pressure distri-
bution can be related to as well as
the aerodynamic efficiency of the gas turbine.

the endurance,

axial chord

normalized density

normalized flux of axial momentum in axial
direction

normalized flux of tangential momerntum in
tangential direetion

specific heat ratio

Mach number

= statiec pressure
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= boundary of control volume
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= normalized boundary of the {inite area
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u = axial veloclty

normaltized axial momentum and axial mass
flux {per unit area)

tangeniial velocity

minimum amount to computaticnal speed and effieiency.

KOMEHNCLATURE

Kumerous computational procedures have heen
developed based on the Lax-Wendroff proceduresl
which predict transonic passage flow. The most
accurate (and scphisticated) methods follow Lhe
procedure of Burstein® by solving the time-depend-
ent partial differential eguations in divergence-
free form. These methods have, however, two sig-
nificant limitations which restrict their applica-
bility in the case of high-turning turbine cas-
cades:

1 Their development has been in the direc-
tion of high aceuracy with little priority given
Satis-
factory comparison with alternate analyses or with
experimental data has reguired oxiremely fine

1 rax, P. D., and Wendroff, "Difference

Schemes with lligh Order Accuracy for Selving Hyper-
bolic Eguations," KYO Report 9759, Courant Insti-
tute of Mathematical Seciences, New York University,
New York, July 1962,

2

3.,

Burstein, 5. Z., "Humerical Calculations of
Multidimensional Shocked Flows," AIAA Jourmal,
Vol. 2, No. 12, Dec. 1964, »p. 2111-2117.

¥V = normalized tangeniial momentum and tan-
gential mass flux (per unit area)
¥ = normalized axial coordinate
¥ = normalized lLangential ecoordinate
7 = normalized flux of tangential momentum in
the axial directior or axial nmomentum
in the tangential direction
ﬂ'= flow angle measured from the plane of the
cascade
Ha = finite ares
& = normalized finite area
AT = normalized {ime inerement
£ = density
Subseripts
1 = upstream station
2 = downslream station
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mesh spacing and, therefore, long computing times.

2 The high turning angles encountered in
high-performance turbines make an orthogonal grid
difficult to use and, due to the typical sharp
boundary curvatures, increase the danger of com-
putational instability.

FTHEITE AREA METHOD

The foregoing problems have been overcome to
a significant extent by the proposed "finite area
method" which is a numerical representation of
the transient conservation equations in integral
form. The transient formulation is reftained since
it remains hyperbelic in nature for both subsonic
and supersonic flows. Starting with an initially
"ruessed at! flow distribution in the cascade
{when possible, the results of a similar design),
the equation system 15 relaxed over finlte time
intervals during which adjacent area elements of
the field exchange mass and momentiin.

If the two~dimensional fturbine cascade problem
is approximated by assuming the isentropic flow
of a perfect gas, the three infegral conservation
equations of mass and momentum, togeiher with the
isentropic relation, fully define the problem.
These are:

i)
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where
I‘ka = coustanl (4

The isentropie relation is retained, since shocks
normally encountered in a cascade are weak and the
results show only small deviations which, accord-
ing to this study, do not lead to computational
instabilities once the integral formulation is
adopted.

These equations zre then normalized by intro-
ducing the upstream properties as reference con-
ditions and by scaling with regard to the axial
erord length (&) such that

be E)

D= pfeq, X

Yf(b *
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g. 1 Cascade system with finite area mesh.
{coarse mesh is for illustrative purposes only)

Vo= .Ov/plvl, AL = Aa/be,
o 1/2
E=o2/p , and T = (3/b) ()
1
This leads to the normalized equations
8D - 1 ﬁ ] (5}
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with the isentropic relation, P = DY, (8)

These conservation equations are applied
to finite area elements where each interior plant
is surrounded by six sides as shown in Fig. L.
The overlapping regions are the basic control ele-
ments for the computational procedure. The numer-
ical representation of these equations can be de~
scribed in three steps:

1 The density and momentum distributions,
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INLET AIR ANGLE —61=35D

EXIT AIR ANGLE — 3, = 29°
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Fig. 2{a) Turbine airfoil geometry
plx, ¥, T, UX, ¥, T), and V(X, Y, T} are known

at time {T)., It is, therefore, possible to com-
pute the momentum flux terms at each nodal point
in the mesh with the equations.

Feev R, (9)
G =F +Vve/p, {10)

and
= W/D. {11}

2 The second step is to compute the transport
rate of mass and momentum across each line segment
in the mesh. This is done assumirg a linear vari-
aticn of the mass and momentum flux between nodal
points. Consider, for example, adjace t peoints,

j and J+1, where QX Xj+1 - XJ and &?j = Yj+l -
Yj. Then the transport rate of momentum across
this line segment is given by the expression,

1,/2 [{Fj+l + PyYaYy - (Z. )+ zj)mcj].
expressions are computed for the mass and tangen-
tial momentum transport rates.

3 The density and momentum distributions,
DIX, ¥, T+AT), U(X, ¥, T+AT), and V(X, ¥, T+AT},
at time T+AT can then be computed from the net
transport of mass and momentum into each contrel
element. In fthe numerical representation, the in-
tegral terms of eguations (5), {(6), and (7) are
replaced by a4 summation of the mass and momentum
transports across the sides of each element. The
rnumerical equations then hecome

Similar

4
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Fig. 2(b) ALirfoil surface pressure distribution
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In equation (121%, hh Implies a mild spatial smooth=-
ing of D{X, ¥, T} at time, T. The momentum vari-
ables, U and V, are also smoothed. This is analo-
gous to the artificial damping procedures often
employed in other fransient computational methods.
The damping i1z automatically adjusted to provide

a proper balance between accuracy and required
stability and is decreased as the steady-state
solution is approached, thus making the residual
damping error negligible.

As seen im Fig. 1, the transport of mass or
momentum across each line segment is applicable
This assures that thes
transport exiting from one element is precisely
equal to that entering the adjacent element and,
therefore, guarantees enforcement of the conserva-

to two adJacent elements.
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INLET AIR ANGLE {34 = 55~
EXIT AIR ANGLE 8, = 36°

Turbine airfoil geometry

tion laws even with a relatively coarse mesh. It
is this aspect which distinguishes the finite
area method from the transient finite diff
procedures and allows the desired accuracy to be
obtained with a coarser mesh.

crence

BOUNDARY CONDITIONS

In the computation of flow through turbine
cascades, four types of boundary conditions must
be specified. On the solid boundaries, the tran-
sient variation of mass and momentum Is obfained
by summing their transport into a five-sided ele-
ment as shown in Fig. 1. Across the sclid wall
line segments, there is no mass transport, and the
momentum transport depends only on the wall static
pressure.

The periodic boundaries [upstream and down-
stream of the blades) are treated with the same
equations that are applied to the interior points.
Tnformation 1s combined from the upper and lower
boundary to construct a six-sided element about
cach point. The computations on the pericdic
boundaries require no additional assumptions or
external information.

At the downstream boundary, the density (or
pressure) is assumed constant and uniform. The
axial and tangential momentum are computed using
a five-sided control element. The downstream air
angle is, therefore, obtained as part of the solu-
tion. The error, which is incurred by assuming
a uniform downstream pressure, has a negligible
effect on the predicted flow field when this

1.0 S [m__Mﬁvahﬂ_j
o | | PRESSURE

0ot | SURFACE

udi-—=——4 g

! ! —
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STATIC PRESSURE / TOTAL PRESSURE

EXIT
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Fig. 3(b) Airfoil surface pressure distribution

boundary is placed at least one chord length down=-
stream of the trailing edge.

At the upstream boundary, the pressure is as-
The inlet air angle

is specified, and the momentum variables are con-

sumed uniform and constant.

tinually adjusted until the average axial pressure
gradient approaches zero. This condition implies
the proper balance between the cascade static
pressure ratio and the inlet Mach number. This
approach to the upstream boundary conditions ac-
counts for the fact that the turbine cascade may
be choked. Whether or not this occurs, the up-
stream Mach number automatically adjusts to the
appropriate value.

NUMERICAL RESULTS

To evaluate the effectiveness of the finite
area method, computed results were compared to
test data obtained with experimental airfoils in
a two-dimensional, nonrotating cascade. The fol-
lowing cases were selected to demonstrate the ac-
curacy of the method in indicating potentially un-
desirable features of transonie turbine designs.

The first comparison to experimental cascade
data is shown in Fig. 2. Here the pressure dis-
tribution has been computed for a transonic air=-

foil with a relatively high turning angle of 115

—

Ot
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INLET AIR ANGLE  §3, = 90°

EXIT AIR ANGLE 3, -23°

Fig. 4{a) Turbine airfoil geometry

daeg. Excellent agreement between prediction and
experiment can be noted, The analysis correctly
predicts two undesirable aspects of this blade:
The rapid expansion and recompression on the for-
ward section of the suction surface is caused by
leading edge blockage. This problem is frequently
encountered in the design of a highly loaded tur-
bine. The second problem is the overexpansion
near the 80 percent chord location which results
in a complex shock structure and possible bound-
ary-layer separation.

In Fig. 3, the pressure distribution is pre=-
dicted on a very highly loaded turbine azirfoil.
lligh lifting designs are necessary to reduce the
nunber of airfoils and fhereby minimize the weight
of the gas turbine. Ilowever, in an actual engine
design, the load would be redistributed to reduce
the overexpansion near the suction surface trail-
ing edge, since tne pressure rise occcurring in
this area 1s the most common c¢ause of boundary-
layer separation. Although this problem is also
found in subsonic airfoils, the recompression is
usually more extreme in transonic designs. Again,
Lt may he neoted that such'potential shortcomings
can be determined by the numerical computation of
the transcniec flow field.

Tn the operation of a high-temperature tur-
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Fig. 4(p) Airfoil surface pressure distribution

bine, fthe airfolls are offen protected by the
ejection of éooling air. The proper mass flow can
be obtained 1f the designer knows the static pres-
sure at the exit of each orifice. Fig. 4} shows

a rapid expansion on both the suctioem and pressure
surfaces which iz fTypiecal of a first-stage turbine
vane. This wide wvariation in the static pressure
adds to the complexity of the cooling system de-
sign. lowever, the agreement shown between pre-
dietion and experiment demonstrates that the mass
flow of cooling air can be determined using nu-
merically predicted static pressure distributiocons.
This is esﬁecially significant, since engine cool-
ing studies begin in the preliminary designh stage
when experimental pressure distributions are not
yet available.

The analytical approach to cascade design,
which was motivated by the attempt to reduce the
need for experimental data, has been validated
for a number of deslgn problems. In addition, the
results were obtained rapidly using a mesh of 975
finitke area elements for which the computation
time was approximately 7 min., on a Univac 1108,
This c¢an be compared to an estimated minimun of
30 min. which would be required in solving the
same problem with transient finite difference form-
ulations.
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-‘CONCL’JSION tnerefore, eliminate costly and time-consuming ex-
perimentation in the early stages of an engine
An gecurste and rapid computational method has design.
been developed which permits the prediction of
pressure distributions in two-dimemsional transonic ACKNOWLEDGMENT

cascades., Adverse effects, which might be caused

by leading edge blockage, overexpansion, shock The author wishes to express his gratitude to
structures, and boundary-layer separation, ean be Fred Landis for his valuable advice in the prepara-
predicted and often avolded. The method can, tion of this paper.
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