
71-GT-89

$2.00 PER COPY

$1.00 TO ASME MEMBERS

The Society shall not be responsible for statements or opinions

advanced in papers or in discussion at meetings of the Society

or of its Divisions or Sections, or printed in its publications.

Discussion is printed only if the paper is published in an ASME

journal or Proceedings.

Released for general publication upon presentation.

Full credit should be given to ASME, the Professional Division,

and the author (s).

The Computation of Transonic Flow Through

Two-Dimensional Gas Turbine Cascades

P. W. McDONALD

Assistant Project Engineer,

Scientific Analysis Section,

Technical & Research Organization,

Pratt & Whitney Aircraft,

East Hartford, Conn.

Steady transonic flow through two-dimensional gas turbine cascades is efficiently

predicted using a time-dependent formulation of the equations of motion. An

integral representation of the equations has been used in which subsonic and

supersonic regions of the flow field receive identical treatment. Mild shock struc-

tures are permitted to develop naturally without prior knowledge of their exact

strength or position. Although the solutions yield a complete definition of the

flow field, the primary aim is to produce airfoil surface pressure distributions for

the design of aerodynamically efficient turbine blade contours. In order to dem-

onstrate the accuracy of this method, computed airfoil pressure distributions

have been compared to experimental results.

Contributed by the Gas Turbine Division of The American Society of Mechanical

Engineers for presentation at the Gas Turbine Conference & Products Show, Houston,

Texas, March 28-April 1, 1971. Manuscript received at ASME Headquarters, January
11, 1971.

Copies will be available until January 1, 1972.

THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS, UNITED ENGINEERING CENTER, 345 EAST 47th STREET, NEW YORK, N.Y. 10017

Copyright © 1971 by ASME D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

s
m

e
d
ig

ita
lc

o
lle

c
tio

n
.a

s
m

e
.o

rg
/G

T
/p

ro
c
e
e
d
in

g
s
-p

d
f/G

T
1
9
7
1
/7

9
8
2
5
/V

0
0
1
T

0
1
A

0
8
9
/2

3
9
0
6
4
4
/v

0
0
1
t0

1
a

0
8

9
-7

1
-g

t-8
9

.p
d
f b

y
 g

u
e

s
t o

n
 2

1
 A

u
g
u

s
t 2

0
2
2

https://crossmark.crossref.org/dialog/?doi=10.1115/71-GT-89&domain=pdf&date_stamp=2015-04-28


The Computation of Transonic Flow Through

Two-Dimensional Gas Turbine Cascades

P. W. McDONALD

INTRODUCTION

The development of aerodynamically efficient,

highly loaded gas turbine engines requires the

rapid and accurate prediction of the flow through

turbine cascades well into the transonic flow

regime. Here the normal cascade design problems

becoMe more critical: Slight contour variations

significantly affect pressure distribution and may

induce shocks. Furthermore, the high camber may

readily lead to separation. In contrast to fully

subsonic cascades, a smooth geometry does not

guarantee a smooth pressure distribution. The de-

signer, therefore, is faced with the problems of

evaluating various transonic airfoil contours to

arrive at nonSep arating flows with a minimum amount

of shock losses.

The gas turbine must be designed for endurance

as well as performance. To enjoy the efficiency

of high-temperature cycles, many turbines must

eject cooling air through the surface of the air-

foils. The cooling system should be carefully de-

signed to avoid overheating and to reduce the

thermal stress on the blades. Since the air ejec-

tion is a function of the external conditions, the

prediction of the airfoil surface pressure distri-

bution can be related to the endurance, as well as

the aerodynamic efficiency of the gas turbine.

Numerous computational procedures have been

.developed based on the Lax-Wendroff procedures'

which predict transonic passage flow. The most

accurate (and sophisticated) methods follow the

procedure of Hurstein 2 by solving the time-depend-

ent partial differential equations in divergence-

free form. These methods have, however, two sig-

nificant limitations which restrict their applica-

bility in the case of high-turning turbine cas-

cades:

1 Their development has been in the direc-

tion of high accuracy with little priority given

to computational speed and efficiency. Satis-

factory comparison with alternate analyses or with

experimental data has required extremely fine

1 Lax, P. D., and Wendroff, 3., "Difference

Schemes with High Order Accuracy for Solving Hyper-

bolic Equations," NY0 Report 9759, Courant Insti-

tute of Mathematical Sciences, New York University,

New York, July 1962.

2 Burstein, S. Z., "Numerical Calculations of

Multidimensional Shocked Flows," AIAA Journal,

Vol. 2, No. 12, Dec. 1964, pp. 2111 -2117.

ZOMCNCLATURE

b = axial chord

D = normalized density

= normalized flux of axial momentum in axial

direction

= normalized flux of tangential momentum in

tangential direction

k = specific heat ratio

M = Mach number

p = static pressure

P = normalized static pressure

s = boundary of control volume

S = normalized boundary of the finite area

element

t o time

u = axial velocity

U = normalized axial momentum and axial mass

flux (per unit area)

v = tangential velocity

2

V = normalized tangential momentum and tan-

gential mass flux (per unit area)

X = normalized axial coordinate

Y = normalized tangential coordinate

Z = normalized flux of tangential momentum in

the axial direction or axial momentum

in the tangential direction

/3= flow angle measured from the plane of the
cascade

Ga = finite area

LA = normalized finite area

AT = normalized time increment

p = density

Subscripts

1 = upstream station

•2 = downstream station
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mesh spacing and, therefore, long computing times.

2 The high turning angles encountered in

high-performance turbines make an orthogonal grid

difficult to use and, due to the typical sharp

boundary curvatures, increase the danger of com-

putational instability.

FINITE AREA METHOD

The foregoing problems have been overcome to

a significant extent by the proposed "finite area

method" which is a numerical representation of

the transient conservation equations in integral

form. The transient formulation is retained since

it remains hyperbolic in nature for both subsonic

and supersonic flows. Starting with an initially

"guessed at" flow distribution in the cascade

(when possible, the results of a similar design),

the equation system is relaxed over finite time

intervals during which adjacent area elements of

the field exchange mass and momentum.

If the two-dimensional turbine cascade problem

is approximated by assuming the isentropic flow

of a perfect gas, the three integral conservation

equations of mass and momentum, together with the

isentropic relation, fully define the problem.

These are: Fig. 1 Cascade system with finite area mesh.

(coarse mesh is for illustrative purposes only)

3)

22X - - xixat = jCl 135+1 + j ip + P.2 1)' 9.. f,
at	Aa-.--C 	s

where

Pipk capstan(

This leads to the normalized equations

aD
— -	

0	
d j(iU + JV).Addi,

ex	AA-.-

_

A	( on Gil P U2/D + ,WL,D 1/ I1 (6)).n

with the isentropic relation, P = D k .

to finite area elements where each interior plant

is surrounded by six sides as shown in Pig. 1.

The overlapping regions are the basic control ele-

ments for the computational procedure. The numer-

ical representation of these equations can be de-

scribed in three steps:

1 The density and momentum distributions,

luv/Di+j15+V2/D)dlj (7)

(8)

These conservation equations are applied

3

D	Pilau	X = x/b ,

U - 68/ 01.1(
	 Y yib

( 5)

The isentropic relation is retained, since shocks

normally encountered in a cascade are weak and the al _

results show only small deviations which, accord-	(

ing to this study, do not lead to computational

instabilities once the integral formulation is

adopted.

These equations are then normalized by intro-

ducing the upstream properties as reference con-

ditions and by scaling with regard to the axial

chord length (b) such that
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Fig. 2(a) Turbine airfoil geometry

D(X, Y, T), U(X, Y, T), and V(X, 7, T) are known

at time (T). It is, therefore, possible to com-

pute the momentum flux terms at each nodal point

in the mesh with the equations.

F = P + 05/n,	
(9)
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Fig. 2( b ) Airfoil surface pressure distribution

(FicliFj/Xlj	(5j+145	
.1 (12)

-d5 61

54"1 08

A

PRESSURE

SURFACE

ri+AT

G = P + v2/p,
AT

=fr +	E 1. I ( F . +Fvm

j=(	)	 1 2	
)+1

( z +,	11X ,
( 13)

(11)	and

and

2 The second step is to compute the transport

rate of mass and momentum across each line segment

in the mesh. This is done assuming a linear vari-

ation of the mass and momentum flux between nodal

points. Consider, for example, adjacent points,

j and j+1, where AX i = X j+1 - X j and AY i = Yj+1 -
Y j . Then toe transport rate of momentum across

this line segment is given by the expression,

1/2	fF
j+1 

+	- ( z. +1 + Z i )4,X j]. Similar

expressions are computed Lr the mass and tangen-

tial momentum transport rates.

3 The density and momentum distributions,

D(X, 1, T+AT), ❑ (X, Y, T+AT), and V(X, Y, T+AT),

at time T+AT can then be computed from the net

transport of mass and momentum into each control

element. In the numerical representation, the in-

tegral terms of equations (5), (6), and (7) are

replaced by a summation of the mass and momentum

transports across the sides of each element. The

numerical equations then become

4

vr+AT = V 
+ .1n E 1

2 
[ ( 0.	[AS -	[S3 0\ X •

6  (14)

In equation (12), D T implies a mild spatial smooth-

ing of D(X, Y, T) at time, T. The momentum vari-

ables, U and V, are also smoothed. This is analo-

gous to the artificial damping procedures often

employed in other transient computational methods.

The damping is automatically adjusted to provide

a proper balance between accuracy and required

stability and is decreased as the steady-state

solution is approached, thus making the residual

damping error negligible.

As seen in Fig. 1, the transport of mass or

momentum across each line segment is applicable

to two adjacent elements. This assures that the

transport exiting from one element is precisely

equal to that entering the adjacent element and,

therefore, guarantees enforcement of the conserya-
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Fig. 3(a) Turbine airfoil geometry

tion laws even with a relatively coarse mesh. It

is this aspect which distinguishes the finite

area method from the transient finite difference

procedures and allows the desired accuracy to be

obtained with a coarser mesh.

BOUNDARY CONDITIONS

In the computation of flow through turbine

cascades, four types of boundary conditions must

be specified. On the solid boundaries, the tran-

sient variation of mass and momentum is obtained

by summing their transport into a five-sided ele-

ment as shown in Fig. 1. Across the solid wall

line segments, there is no mass transport, and the

momentum transport depends only on the wall static

pressure.

The periodic boundaries (upstream and down-

stream of the blades) are treated with the same

equations that are applied to the interior points.

Information is combined from the upper and lower

boundary to construct a six-sided element about

each point. The computations on the periodic

boundaries require no additional assumptions or

external information.

At the downstream boundary, the density (or

pressure) is assumed constant and uniform. The

axial and tangential momentum are computed using

a five-sided control element. The downstream air

angle is, therefore, obtained as part of the solu-

tion. The error, which is incurred by assuming

a uniform downstream pressure, has a negligible

effect on the predicted flow field when this

Fig. 3(b) Airfoil surface pressure distribution

boundary is placed at least one chord length down-

stream of the trailing edge.

At the upstream boundary, the pressure is as-

sumed uniform and constant. The inlet air angle

is specified, and the momentum variables are con-

tinually adjusted until the average axial pressure

gradient approaches zero. This condition implies

the proper balance between the cascade static

pressure ratio and the inlet Mach number. This

approach to the upstream boundary conditions ac-

counts for the fact that the turbine cascade may

be choked. Whether or not this occurs, the up-

stream Mach number automatically adjusts to the

appropriate value.

NUMERICAL RESULTS

To evaluate the effectiveness of the finite

area method, computed results were compared to

test data obtained with experimental airfoils in

a two-dimensional, nonrotating cascade. The fol-

lowing cases were selected to demonstrate the ac-

curacy of the method in indicating potentially un-

desirable features of transonic turbine designs.

The first comparison to experimental cascade

data is shown in Fig. 2. Here the pressure dis-

tribution has been computed for a transonic air-

foil with a relatively high turning angle of 115

5
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Fig. 4(a) Turbine airfoil geometry

deg. Excellent agreement between prediction and

experiment can be noted. The analysis correctly

predicts two undesirable aspects of this blade:

The rapid expansion and recompression on the for-

ward section of the suction surface is caused by

leading edge blockage. This problem is frequently

encountered in the design of a highly loaded tur-

bine. The second problem is the overexpansion

near the 80 percent chord location which results

in a complex shock structure and possible bound-

ary-layer separation.

In Fig. 3, the pressure distribution is pre-

dicted on a very highly loaded turbine airfoil.

High lifting designs are necessary to reduce the

number of airfoils and thereby minimize the weight

of the gas turbine. However, in an actual engine

design, the load would be redistributed to reduce

the overexpansion near the suction surface trail-

ing edge, since the pressure rise occurring in

this area is the most common cause of boundary-

layer separation. Although this problem is also

found in subsonic airfoils, the recompression is

usually more extreme in transonic designs. Again,

it may be noted that such potential shortcomings

can be determined by the numerical computation of

the transonic flow field.

Tn the operation of a high-temperature tur-

6

Fig. 4(b) Airfoil surface pressure distribution

bine, the airfoils are often protected by the

ejection of cooling air. The proper mass flaw can

be obtained if the designer knows the static pres-

sure at the exit of each orifice. Fig. 4 shows

a rapid expansion on both the suction and pressure

surfaces which is typical of a first-stage turbine

vane. This wide variation in the static pressure

adds to the complexity of the cooling system de-

sign. However, the agreement shown between pre-

diction and experiment demonstrates that the mass

flow of cooling air can be determined using nu-

merically predicted static pressure distributions.

This is especially significant, since engine cool-

ing studies begin in the preliminary design stage

when experimental pressure distributions are not

yet available.

The analytical approach to cascade design,

which was motivated by the attempt to reduce the

need for experimental data, has been validated

for a number of design problems. In addition, the

results were obtained rapidly using a mesh of 975

finite area elements for which the computation

tine was approximately 7 min. on a Univac 1108.
This can be compared to an estimated minimum of

30 min. which would be required in solving the

same probleri with transient finite difference form-

ulations.
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CONCLUSION	 therefore, eliminate costly and time-consuming ex-

perimentation in the early stages of an engine

An accurate and rapid computational method has design.

been developed which permits the prediction of

pressure distributions in two-dimensional transonic ACKNOWLEDGMENT

cascades. Adverse effects, which might be caused

by leading edge blockage, overexpansion, shock	The author wishes to express his gratitude to

structures, and boundary-layer separation, can be Fred Landis for his valuable advice in the prepara-

predicted and often avoided. The method can,	tion of this paper.
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