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Abstract

Computational complexity results are obtained for decentralized discrete-event system prob-

lems. These results generalize the earlier work of Tsitsiklis, who showed that for centralized

supervisory control problems (under partial observation), solution existence is decidable in

polynomial time for a special type of problem but becomes computationally intractable for the

general class. As in the case of centralized control, there is no polynomial-time algorithm for

producing supervisor solutions.

Keywords: discrete-event systems, computational complexity, decentralized supervisory control

1 Introduction

Supervisory control theory has been used in the past decade to model control problems that arise
from discrete-event processes. Problems associated with centralized (as opposed to distributed)

discrete-event systems have been more extensively explored [RW82], [WR87], [LW88], [CM89],
[Kro87], [Laf88] and an application within semiconductor manufacturing [Bal91], [HSF91] provides

a compelling argument for considering this class of problems as useful in future engineering practise.
More recently, decentralized control has been investigated and possible applications include 
exible

manufacturing systems [LW90] and communication systems [CDFV88], [RW90], [RW92a]. At this

�
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point, examples of decentralized discrete-event systems control have primarily served a pedagogical

and mathematical purpose and have been highly simpli�ed versions of physically realistic appli-

cations. However, we believe that su�cient intuitive motivation has been given to justify further

exploring the question \Given a discrete-event system, do there exist decentralized controllers that

satisfy a certain objective?"

In this paper, we explore the computational complexity of a class of decentralized discrete-event

problems. We generalize the results of Tsitsiklis [Tsi89]. These results indicate that testing for

solvability within a restricted class of control problems can be done in polynomial time. However,

even when a solution is proven to exist, there does not exist a polynomial-time algorithm for

producing it. Moreover, if we move to the more general class of problems, we cannot even test for

solvability in polynomial time, let alone produce supervisor solutions. The good news is that some

interesting problems are captured by the restricted decentralized discrete-event control formulation.

In particular, communication protocol veri�cation is one such example.

We note that it is not, a priori, obvious that Tsitsiklis' results hold for the decentralized case.

Just because the centralized version of a problem can be solved e�ciently does not imply that
its decentralized version is also solvable e�ciently. For example, some NP-complete1 multiproces-
sor scheduling problems become trivially solvable in polynomial-time when restricted to a single
processor [GJ79].

2 Preliminaries

2.1 Supervisory Control Theory

We present (from [RW90] and [RW92b]) a problem formulation that describes a class of discrete-
event systems subject to decentralized control. For more details on the formalities of supervi-

sory control theory, the reader is referred to [RW82], [Ram83], [RW87], [WR87], [LW88], [Won88],
[WR88], [LW90].

Consider a discrete-event process that can be characterized by an automaton

G = (Q;�; �; q0; Qm)

where � is a �nite alphabet of event labels (and represents the set of all possible events that can

occur within the system), Q is a set of states, q0 2 Q is the initial state, Qm � Q is the set of
terminal (often called marker) states and � : � � Q �! Q, the transition function, is a partial
function de�ned at each state in Q for a subset of �. When Q is �nite, G can be represented by a

directed graph whose nodes are the states in Q and whose edges are transitions de�ned by � and

1
The class of problems solvable in polynomial time is called P and the class solvable in nondeterministic polynomial

time (i.e., by a Turing machine that is permitted to makes \guesses" before certain moves) is called NP. It is is known

that P � NP and it is widely conjectured that the inclusion is proper, i.e, that P 6= NP. Therefore, problems in NP

are considered to be computationally intractable. An NP-complete problem is a problem which is in NP and to which

all other problems in NP can be reduced via a polynomial-time transformation. That is, NP-complete problems are

considered the hardest problems in NP. If the conjecture that P 6= NP is true, then NP-complete problems are not

solvable in polynomial time.
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labeled by elements from �. The automaton G describes the behaviour of a discrete-event process

if we interpret transitions as event occurrences that take the process from state to state.

Sequences of concatenated symbols from � are interpreted as sequences of events, called strings.

Let �� denote the set of all �nite strings over � including the null string ". Then the transition

function � can be extended to �� � Q �! Q by de�ning �("; q) := q and for s 2 ��; � 2 �,

�(s�; q) := �(�; �(s; q)). That is, we now think of � as indicating to which state (or states) a

sequence of events will lead. A subset of �� is called a language. The behaviour of the uncontrolled

process G, which we also call a plant, is given by two languages. The closed behaviour of G, written

L(G), is the language de�ned as

L(G) := fs j s 2 �� and �(s; q0) is definedg

and is interpreted to mean the set of all possible event sequences which the plant could generate.

The marked behaviour of G, written Lm(G), is the language de�ned as

Lm(G) := fs j s 2 �� and �(s; q0) 2 Qmg

and is intended to distinguish some subset of possible plant behaviour as representing completed
tasks.

To impose supervision on the plant, we identify some of its events as controllable and the rest as
uncontrollable, thereby partitioning � into the disjoint sets �c, the set of controllable events, and
�uc, the set of uncontrollable events. Controllable events are those which an external agent may
enable (permit to occur) or disable (prevent from occurring) while uncontrollable events are those
which cannot be prevented from occurring and are therefore considered to be permanently enabled.

The event set � is also partitioned into disjoint sets �o and �uo of observable and unobservable

events, respectively. Observable events are those which an external agent may observe during the
course of tracking the plant. A supervisor (sometimes called a controller) is then an agent which
observes subsequences of the sequences of events generated by G and enables or disables any of
the controllable events at any point in time throughout its observation. By performing such a

manipulation of controllable events, the supervisor ensures that only a subset of L(G) is permitted
to occur. Formally, a supervisor S is a pair (T; ) where T is an automaton which recognizes a
language over the same event set as the plant G, i.e.,

T = (X;�; �; x0;Xm)

where X is the set of states, � is the transition function, x0 is the initial state and Xm are the

marker states of the supervisor. The mapping  : � � X ! fenable; disableg, called a feedback

map, satis�es
 (�; x) = enable; if � 2 �uc; x 2 X

and

 (�; x) 2 fenable; disableg; if � 2 �c; x 2 X:

The automaton T is constrained so that

� 2 �uo; x 2 X =) �(�; x) = x:
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The automaton T tracks the behaviour of G. It changes state according to the observable events

generated by G and, in turn, at each state x of T , the control rule  (�; x) dictates whether � is to

be enabled or disabled at the corresponding state of G.

The sequences of events generated while the plant G is under the control of S = (T; ) char-

acterizes the behaviour of the closed-loop system and is represented by an automaton S=G whose

closed behaviour, denoted by L(S=G), permits a string to be generated if the string is in both G

and T and if each event in the string is enabled by  . The marked behaviour of the closed-loop

system is denoted by Lm(S=G) and consists of those strings in L(S=G) that are marked by both G

and S. Formally, the automaton S=G is given by

S=G := (Q�X;�; (� � �)
 
; (q0; x0); Qm �Xm)

where (� � �) : ��Q�X �! Q�X is de�ned by

(� � �) (�; q; x) :=

8><
>:

(�(�; q); �(�; x)) if both �(�; q), �(�; x) are de�ned

and  (�; x) = enable

undefined otherwise.

Often it is important to �nd supervisors that guarantee that the closed-loop system is nonblock-
ing, i.e., that every string generated by the closed-loop system can be completed to a marked string

in the system. This requirement is expressed as follows: a supervisor S is proper for G if

Lm(S=G) = L(S=G)

where K denotes the pre�x-closure of a language K.
Typically, control problems require �nding for a given plant a supervisor (or set of supervisors)

such that the closed-loop system satis�es some prescribed desirable behaviour. Representative
centralized supervisory control problems can be found in [RW82], where it is assumed that all
events are observable, and [LW88], where it is assumed that some events may not be observable.

When controllers act on a given plant, we say that the closed-loop behaviour is synthesized by the
controllers. Then, control problems involve examining under what conditions prescribed behaviours
can be synthesized.

Now, we consider the situation where the physical requirements of a problem dictate that de-
centralized control be used. When a supervisor may act on any controllable event in the entire

event set, we say that the supervisor is global; in contrast, a supervisor which can only control some
subset of controllable events is said to be local. A decentralized solution prescribes the actions that
two or more local supervisors may take. In this paper, we consider the case of two local supervisors.

The decentralized control problem presented below requires the following de�nitions. For su-

pervisors S1 = (T1; �) and S2 = (T2;  ) acting on G with T1 = (X;�; �; x0;Xm) and T2 =

(Y;�; �; y0; Ym), the conjunction of S1 and S2 is the supervisor

S1 ^ S2 := (T1 � T2; � �  )

de�ned by

T1 � T2 := (X � Y;�; � � �; (x0; y0);Xm � Ym)

4



with � 2 �; x 2 X; y 2 Y =)

(� � �)(�; x; y) :=

(
(�(�; x); �(�; y)) if both �(�; x) and �(�; y) are de�ned

undefined otherwise

(� �  )(�; x; y) :=

(
disable if either �(�; x) = disable or  (�; y) = disable

enable otherwise:

That is, T1 � T2 recognizes the intersection of the languages recognized by T1 and T2 and � �  

disables an event if and only if either � or  disables it. Thus, S1 ^S2 models the actions of S1 and

S2 operating in parallel. It can be shown [WR88] that L(S1 ^ S2=G) = L(S1=G) \ L(S2=G) and

Lm(S1 ^ S2=G) = Lm(S1=G) \ Lm(S2=G).

Given a local supervisor S that controls some subset �loc;c of �c while observing some subset

�loc;o of �, ~S denotes the supervisor which takes the same control action as S on �loc;c, enables all

events in � n�loc;c, makes the same transitions as S on �loc;o and stays at the same state for events

in � n �loc;o. The supervisor ~S is called the global extension of S (since ~S acts on all of � while S
acts only on a subset of �).

We now introduce our main decentralized control problem formulation:

Decentralized Control Problem Given a plant G over an alphabet �, a language E � Lm(G), a
language A � E, and sets �1;c;�2;c;�1;o;�2;o � �, construct local supervisors S1 and S2 such that
~S1 ^ ~S2 is a proper supervisor for G and such that

A � L( ~S1 ^ ~S2=G) � E:

Here, for i = 1; 2, supervisor Si can observe only events in �i;o and control only events in �i;c and

where ~Si is the global extension of Si. The set of uncontrollable events, �uc is understood to be

� n (�1;c [ �2;c).

The language E embodies the system designer's notion of legal or desirable behaviour while A
speci�es the behaviour common to any acceptable solution, i.e., the minimally adequate behaviour.
That is, any solution must exhibit at least the behaviour described by A and no more than that
described by E.

The above problem can be solved by �rst considering the special case where the range of desirable

behaviour is narrowed to a single language, i.e., where A = E. This case was �rst solved in

[CDFV88], provided A and E are pre�x-closed. The solution is conveniently described using the
notions of controllability and co-observability de�ned in [RW82] and [RW92b], respectively. A
language K � L(G) is controllable w.r.t. G if

K�uc \ L(G) � K

where for any languages L and M , the notation LM stands for fst j s 2 L ^ t 2 Mg. If we
interpret L(G) as physically possible behaviour and K as legal behaviour, an informal description

of controllability is that K is controllable if for any sequence of events s that starts out as a legal
sequence (s 2 K), the occurrence of an uncontrollable event (� 2 �uc) which is physically possible

(s� 2 L(G)) does not lead the sequence out of the legal range (s� 2 K).
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Given any event set �, we may associate with it a mapping, called the canonical projection,

which we interpret as a supervisor's view of the strings in ��. The projection P : �� �! ��

o

is de�ned as follows: P (") := " and for s 2 ��; � 2 �, P (s�) := P (s)P (�), i.e., P erases all

unobservable events. If we have a string s generated by the plant, then P (s) is the sequence of

events that an external agent observes.

Now we recall the notion of co-observability. Given a plantG over alphabet �, sets �1;c;�2;c;�1;o;

�2;o � �, projections P1 : �� �! ��

1;o, P2 : �� �! ��

2;o, a language K � Lm(G) is co-observable

w.r.t. G;P1; P2 if

s; s0; s00 2 ��; P1(s) = P1(s
0); P2(s) = P2(s

00) =)

(8� 2 �1;c \ �2;c) s 2 K ^ s� 2 L(G) ^ s0�; s00� 2 K =) s� 2 K conjunct 1

^ (8� 2 �1;c n �2;c) s 2 K ^ s� 2 L(G) ^ s0� 2 K =) s� 2 K conjunct 2

^ (8� 2 �2;c n �1;c) s 2 K ^ s� 2 L(G) ^ s00� 2 K =) s� 2 K conjunct 3

^ s 2 K \ Lm(G) ^ s0; s00 2 K =) s 2 K: conjunct 4

Intuitively, a supervisor knows what action to take if it knows what sequence of events actually
occurred. However, a string which, for each supervisor, looks like (i.e., has the same projection
as) another string may be potentially ambiguous in determining control action. On this basis, if

we assume that some external agent, such as a supervisor, determines which strings are allowed to
be in K and which in K, an informal description of co-observability is as follows. A language K
is co-observable if (1) after the occurrence of an ambiguous string, s, in K, the decision to enable
or disable a controllable event � is forced by the action that a supervisor which can control �
would take on other strings which look like s (encompassed by conjuncts (1){(3) in the de�nition

of co-observability), and (2) the decision to mark or not mark a potentially confusing string is
determined by at least one of the supervisors (covered by conjunct (4)). Note that if a language K
is pre�x-closed, then conjunct (4) always holds. The reader is referred to [RW92b] for more details
on co-observability.

The solution to our decentralized control problem for the special case where A = E is as follows.
There exist supervisors S1 and S2 such that Lm( ~S1^ ~S2=G) = E and ~S1^ ~S2 guarantees nonblocking

if and only if E is controllable and co-observable w.r.t. the plant G [CDFV88], [RW92b]. In [RW92b]
it is shown that if G is �nite-state, E is a pre�x-closed, regular language and E 6= ;, then there is
a computable procedure for determining if E is controllable and co-observable w.r.t. G.

The solution to the decentralized control problem when A 6= E requires computing the in�mal

pre�x-closed, controllable and co-observable language containing A and checking if that language

is in E. A procedure for checking this condition and for constructing �nite-state supervisors, when
the condition holds, was given in [RW92b].

2.2 Computational Complexity

In this paper, we are interested in asymptotic complexity, which is a way of measuring worst-case
behaviour. The asymptotic computing time of an algorithm indicates how the time needed to

perform the algorithm increases as a function of the inputs. Throughout the paper, the notation
O(�) is used to describe the asymptotic complexity of an algorithm in time. Using the de�nition in
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[HS82], for some input parameter n, to say that a function f(n) requires O(g(n)) time means that

for some N and some c, jf(n)j < cjg(n)j for all n � N , where f(n) represents the time required by

an algorithm as a function of the input n. The parameter n is a way of characterizing the size of the

inputs; e.g., it could be the number of inputs or the sum of some inputs. This notation, pronounced

\big-oh of g(n)", is a quantitative way of giving an upper bound on how fast an algorithm increases

as a function of its input parameters. Big-oh notation allows general trends to be observed by

factoring out the value of the multiple of the bounding function and by disregarding what happens

to f(n) for small values of n.

If an algorithm takes O(g(n)) time where g(n) is a polynomial, we say that the algorithm is

\polynomial time". Using the de�nition in [GJ79], an algorithm that cannot be bounded by a

polynomial is said to be \exponential time".2 Problems that are not solvable in polynomial time

are considered to be computationally highly ine�cient|in essence, infeasible.

3 Computing Solutions to Decentralized Control Prob-

lems

Recall from Section 2 that, given some �xed plant, to synthesize a desirable language, that language

must be controllable and co-observable with respect to the plant. So, to solve the special case of
the Decentralized Control Problem given in Section 2, we must be able to check whether a language
is controllable and co-observable. It was shown in [WR88] that controllability of E w.r.t. G can
be decided in polynomial time with respect to the number of states of G and the automaton
representation of E. However, the computing time taken by the procedure given in [RW92b] to

check for controllability together with co-observability is exponential in the number of states (of G
and E). It was shown in [RW92a] that the special case of the Decentralized Control Problem (with
A = E) can be used to check partial correctness (i.e., to verify safety properties) of communication
protocols. Given the widespread interest in protocol veri�cation in the communications protocols
community, it is worth asking if there is a more e�cient algorithm for checking whether a language

is co-observable than the one we have in [RW92b]. In this section we demonstrate that, in fact,
a polynomial-time algorithm can be found. This extends the results given in [Tsi89], where it
was shown that observability, the centralized counterpart to co-observability, can be decided in

polynomial time.
The utility of the more general formulation of the Decentralized Control Problem (where A 6= E)

has been less apparent. It serves as a natural model for formulating some communication problems

and, in a limited way, for synthesizing protocols [RW90]. However, as will be discussed further on,
there is no polynomial-time algorithm for solving all problems within the general class given by the
Decentralized Control Problem.

2
In addition to functions of 2

n
, this includes non-polynomial time complexity functions, such as n

logn
, which are

not otherwise regarded as exponential functions.
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3.1 Deciding Co-observability

We are going to show that, given �nite-state automata, G and E, co-observability of the language

L(E) w.r.t. G can be decided by examining an automaton M constructed from G and E.3 In

this section, we also assume that the legal language is pre�x-closed, so blocking is not an issue

here. Informally, the paths in M will keep track of strings that violate the co-observability of L(E)

w.r.t. G.

GivenG = (QG;�; �G; qG0 ; Q
G) and E = (QE;�; �E; qE0 ; Q

E), we construct an automatonM(G;E)

(or M for short) as follows. Assuming that G and E are �nite-state, there exists some element not

in QG [QE; let us denote by d (for \dump") one such element. Then,

M := (QM ;�; �M; qM0 ; QM
m )

where

QM := QE �QE �QE �QG [ fdg

qM0 := (qE0 ; q
E
0 ; q

E
0 ; q

G
0 )

QM
m := fdg

and �M is de�ned below. In the de�nition of �M , we refer to the following set of conditions:

�E(�; q3) is not de�ned
�G(�; q4) is de�ned
�E(�; q1) is de�ned if � 2 �1;c

�E(�; q2) is de�ned if � 2 �2;c:

9>>>=
>>>; (�)

Now, �M is given by listing all the transitions it de�nes. We make a slight abuse of notation and label

transitions by events from � together with a number from 0 to 6; the numbers serve to distinguish
di�erent transitions that have the same event label. We call the number in the pair labeling a
transition its transition type. We may alternately identify a transition in M by a pair consisting of
an event plus its transition type, or simply by the event label itself; similarly, we identify paths in
M by sequences of pairs (�1; i1) � � � (�n; in), or simply by sequences of events �1 � � ��n, depending
on whether we need to specify the transition type of each event in the path. The partial transition

function �M is de�ned as follows:

For � 62 �1;o; � 62 �2;o,

(q1; q2; q3; q4)
(�;1)

7�! (�E(�; q1); q2; q3; q4)

(q1; q2; q3; q4)
(�;2)

7�! (q1; �
E(�; q2); q3; q4)

(q1; q2; q3; q4)
(�;3)

7�! (q1; q2; �
E(�; q3); �

G(�; q4))

(q1; q2; q3; q4)
(�;4)

7�! (�E(�; q1); �
E(�; q2); �

E(�; q3); �
G(�; q4))

(q1; q2; q3; q4)
(�;0)

7�! d if (�)

3
In this section, we use E to denote an automaton and L(E) to denote the language generated by it. Our

algorithm takes �nite-state automata, not languages, as inputs so we consider only the case where the legal language

is generated by a �nite-state machine.
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For � 62 �1;o; � 2 �2;o,

(q1; q2; q3; q4)
(�;1)

7�! (�E(�; q1); q2; q3; q4)

(q1; q2; q3; q4)
(�;5)

7�! (q1; �
E(�; q2); �

E(�; q3); �
G(�; q4))

(q1; q2; q3; q4)
(�;4)

7�! (�E(�; q1); �
E(�; q2); �

E(�; q3); �
G(�; q4))

(q1; q2; q3; q4)
(�;0)

7�! d if (�)

For � 2 �1;o; � 62 �2;o,

(q1; q2; q3; q4)
(�;2)

7�! (q1; �
E(�; q2); q3; q4)

(q1; q2; q3; q4)
(�;6)

7�! (�E(�; q1); q2; �
E(�; q3); �

G(�; q4))

(q1; q2; q3; q4)
(�;4)

7�! (�E(�; q1); �
E(�; q2); �

E(�; q3); �
G(�; q4))

(q1; q2; q3; q4)
(�;0)

7�! d if (�)

For � 2 �1;o; � 2 �2;o,

(q1; q2; q3; q4)
(�;4)

7�! (�E(�; q1); �
E(�; q2); �

E(�; q3); �
G(�; q4))

(q1; q2; q3; q4)
(�;0)

7�! d if (�)

For � 2 �, �M(�; d) is unde�ned.

Note that the automaton M thus de�ned is a nondeterministic �nite automaton since a single event
may lead to several states.

We are going to show that in the large automaton M , each 4-tuple labeling a state (q1; q2; q3; q4)

informally keeps track of strings as follows: for some s; s0; s00 2 ��, � 2 �, the sequence s0� leads
to q1, the sequence s00� leads to q2, the sequence s leads to q3 and s� leads to q4. The states q1,
q2, q3, and q4 (respectively) are then used to determine if s0� 2 L(E), s00� 2 L(E), s 2 L(E) and
s� 2 L(G) (resp.). In this way, we can track through M to see if co-observability fails.

Our proof is in the same spirit as the proof in [Tsi89] where the corresponding centralized result is
given. However, there, given G and E, a game was devised such that there exists a winning strategy

to the game if and only if L(E) is not co-observable w.r.t G. In our proof, the automaton M is
constructed such that M recognizes a nonempty language if and only if L(E) is not co-observable
w.r.t G.

Proposition 3.1 Given automata E and G, the language L(E) is not co-observable w.r.t. G i�

M(G;E) recognizes a nonempty language, i.e., i� there is a path in M from the initial state to the

dump state d.
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Proof ((=) Assume that there is a path in M from the initial state to the dump state. Since the

initial state is not the dump state, there is a sequence sM� for some sM 2 ��, � 2 � such that sM�

starts at initial state of M and ends at the dump state. Without loss of generality, assume that sM

does not end at the dump state. (We can make this assumption since if sM ends at the dump state

then we can pick the largest pre�x of sM that doesn't end at the dump and there exists at least one

such pre�x since the initial state is not equal to the dump state.) Suppose that sM ends at state

(q1; q2; q3; q4) of M .

We produce three strings s; s0; s00 constructed from sM and show that these strings are a coun-

terexample to co-observability. The strings s; s0; s00 are formed by projecting out certain events

from sM . The appropriate projections are given by the following operators F1; F2; F3 : L(M)! ��,

de�ned as follows:

For � 2 � such that (�; i) is some transition de�ned by �M ,

F1(�) :=

(
� if i = 1; 4; 6

" otherwise

F2(�) :=

(
� if i = 2; 4; 5
" otherwise

F3(�) :=

(
� if i = 3; 4; 5; 6
" otherwise:

For i = 1; 2; 3, Fi(") := " and for s 2 ��; � 2 �, Fi(s�) := Fi(s)Fi(�).

The projection operator F1 records only those transitions in a sequence in L(M) in which there
is also a transition in the �rst argument of the current 4-tuple state. That is, for a sequence in M

that leads to state (q1; q3; q3; q4), the event � in the pair labeling the next transition is not erased by
F1 if that transition leads to a 4-tuple state whose �rst argument is �E(�; q1). Similarly, F2 records
only those transitions in which there is a transition in the second argument of the 4-tuple state.
The operator F3 records transitions in the third and fourth arguments.

Now we de�ne sequences s; s0; s00:

s := F3(s
M)

s0 := F1(s
M)

s00 := F2(s
M):

The fact that s; s0; s00 lead to a counterexample to co-observability will follow almost immediately
from the following claims.

The 4-tuples of M are constructed to keep track of sequences s; s0; s00 such that P1(s) = P1(s
0)

and P2(s) = P2(s
00). Think of the evolution of the �rst argument in the sequences of the 4-tuple

states as describing the string s0, the second argument as describing the string s00 and the third and

fourth arguments as describing the string s (with the third being used to track the movement of
s through E and the fourth to track its movement through G). Then the �lter F1 picks out those

events in sM in which a transition (possibly a self-loop) occurs because of an event occurrence in
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s0; F2 picks out those events in sM in which a transition occurs because of an event in s00; and F3

picks out those events in sM in which a transition occurs because of an event in s.

The �rst claim allows us to track through M and keep a record of where s leads to in E and

where s leads to in G. Recall, we are trying to show that s� 2 L(G) and that s� 62 L(E) (to get

co-observability to fail).

Claim 1 For sM 2 L(M) n Lm(M), F3(s
M) 2 L(E) and if sM leads to state (q1; q2; q3; q4) in M

then F3(s
M) leads to state q3 in E and F3(s

M) leads to state q4 in G.

Proof We proceed by induction on length of sM . We use the notation jtj to denote the length of

a string t. We �rst consider only where the sequence F3(s
M) leads to in E.

Basis Suppose that jsM j = 0, i.e., sM = ". Then sM leads to state (qE0 ; q
E
0 ; q

E
0 ; q

G
0 ) and F3(s

M) =

F3(") = ", which leads to state qE0 in E.

Inductive Hypothesis Suppose that for all sM such that jsM j � n, F3(s
M) 2 L(E) and if sM

leads to state (q1; q2; q3; q4) in M then F3(s
M) leads to state q3 in E. Now, take sM = s � where

jsj = n. Suppose that s leads to state (q1; q2; q3; q4). By the inductive hypothesis, F3(s) 2 L(E)
and F3(s) leads to state q3 in E.

Case 1: F3(�) = ". Then F3(s �) = F3(s) and so F3(s �) 2 L(E). Moreover, if
F3(�) = " then � results from a transition of type 1 or 2 and for both these types of
transitions , the third argument in the 4-tuple state, (q1; q2; q3; q4), of M doesn't change

so s � leads to (x1; x2; q3; x4) for some x1; x2; x4. Since F3(s) leads to q3 in E we also
have F3(s �) leads to q3 in E.

Case 2: F3(�) = �. Then � results from a transition of type 3, 4, 5, or 6. In all those

cases, �E(�; q3) is de�ned. Since, by the inductive hypothesis, F3(s) 2 L(E) and F3(s)
ends at q3 in E, then �

E(�; q3) being de�ned implies that F3(s)� 2 L(E) and that F3(s)�
ends at state �E(�; q3) (which is the third argument of the 4-tuple state, (q1; q2; q3; q4),
of M to which sM leads, regardless of whether transition � results from a transition of
type 3, 4, 5, or 6.

The argument regarding where F3(s
M ) leads to in G follows easily because the fourth arguments in

the 4-tuple states of M change when and only when the third arguments do. claim 1

The next claim allows us to track through M and keep a record of where s0 leads to in E.

Claim 2 For sM 2 L(M) n Lm(M), F1(s
M) 2 L(E) and if sM leads to state (q1; q2; q3; q4) in M

then F1(s
M) leads to state q1 in E.

Proof This is analogous to Claim 1 except that for Case 1 we argue that if F1(�) = " then �

results from transition 2, 3 or 5 and in all those transitions , the �rst argument in the 4-tuple doesn't

change. A similar argument to that used in Case 2 of Claim 1 holds when F1(�) 6= ". claim 2

The next claim allows us to track through M and keep a record of where s00 leads to in E.
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Claim 3 For sM 2 Lm(M) n (M), F2(s
M) 2 L(E) and if sM leads to state (q1; q2; q3; q4) in M then

F2(s
M ) leads to state q2 in E.

Proof The proof is analogous to Claim 1 except that for Case 1 we argue that if F2(�) = " then
� results from transition 1, 3 or 6 and in all those transitions , the second argument in the 4-tuple

doesn't change. A similar argument to that used in Case 2 of Claim 1 holds when F1(�) 6= ". claim 3

The following claim will allow us to show that our strings s and s0 as de�ned above satisfy

P1(s) = P1(s
0).

Claim 4 For sM 2 L(M) n Lm(M), P1(F3(s
M )) = P1(F1(s

M)).

Proof We proceed by induction on length of sM .

Basis If jsM j = 0 then sM = " and F3(") = F1(") = ", by de�nition.

Inductive Hypothesis Suppose that for all sM such that jsM j � n, P1(F1(s
M)) = P1(F3(s

M )).
Now, take sM = s � where jsj = n. Then,

P1(F1(s �)) = P1(F1(s)F1(�))

= P1(F1(s))P1(F1(�))

= P1(F3(s))P1(F1(�)) (by the inductive hypothesis):

Case 1: � 2 �1;o \ �2;o. Since � doesn't lead to the dump state (because s � 62

Lm(M)), it must be the result of a transition of type 4. By de�nition of F1 and F3, for
a transition of type 4, F1(�) = F3(�) = �. So we have

P1(F1(s �)) = P1(F3(s)P1(F3(�))

= P1(F3(s �)):

Case 2: � 2 �1;o n�2;o. So � must be the result of either a transition of type 2, 4

or 6. If � is the result of a transition of type 2, then F1(�) = F3(�) = ", by de�nition of

F1 and F3. If � is a result of either a transition of type 4 or 6, then F1(�) = F3(�) = �.
In each of the three cases, F1(�) = F3(�).

Case 3: � 2 �2;o n�1;o. Then since F1(�) and F3(�) 2 f"; �g and since � =2 �1;o, we
have

P1(F1(�)) = P1(F3(�) = ":
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Case 4: � =2 �1;o [�2;o. Same argument as for Case 3.

claim 4

The following claim will allow us to show that our strings s and s00 as de�ned above satisfy

P2(s) = P2(s
00).

Claim 5 For sM 2 L(M) n Lm(M), P2(F3(s
M )) = P2(F2(s

M)).

Proof The proof is similar to the proof of Claim 4 if we observe that for the case when � 2 �2;o n

�1;o, � results from either a transition of type 1, 4 or 5 and in all those cases F2(�) = F3(�). claim 5

By Claims 4 and 5, P1(s) = P1(s
0) and P2(s) = P2(s

00). By Claims 2 and 3, s; s0; s00 2 L(E), and

s ends at state q3 in E, s0 ends at state q1 in E, s00 ends at state q2 in E and s ends at state q4 in G.

Since � leads from (q1; q2; q3; q4) to the dump state we have that �E(�; q3) is not de�ned, �
G(�; q1)

is de�ned, and if � 2 �1;c then �E(�; q1) is de�ned, and if � 2 �2;c then �E(�; q2) is de�ned. So we
have s� =2 L(E), s� 2 L(G), and if � 2 �1;c, then s0� 2 L(E) and if � 2 �2;c then s00� 2 L(E);
therefore, co-observability fails.

(=)) Assume that E not co-observable w.r.t. G. First we require a claim that shows that M was
indeed constructed so that the 4-tuple states through which paths in M pass keep track of strings
s; s0; s00 such that P1(s) = P1(s

0) and P2(s) = P2(s
00).

Claim 6 Given s; s0; s00 2 L(E) such that P1(s) = P1(s
0) and P2(s) = P2(s

00); then there exists a

sequence sM 2 L(M) n Lm(M) such that F3(s
M) = s ; F1(s

M) = s0 and F2(s
M) = s00.

Proof We proceed by induction on length of s.

Basis Suppose that jsj = 0, i.e., s = ". Then s0 2 (� n �1;o)
�, since P1(s) = P1(s

0), and
s00 2 (� n �2;o)

�, since P2(s) = P2(s
00). So we can assume that s0 and s00 have the following form:

s0 = s0(0)s0(1) : : : s0(m) where for i = 1; : : : ;m, s0(i) 2 � n �1;o

s00 = s00(0)s00(1) : : : s00(n) where for i = 1; : : : ; n, s00(i) 2 � n �2;o

for some natural numbers m;n. Then we can de�ne a path sM in M according to:

(qE0 ; q
E
0 ; q

E
0 ; q

G
0 )

(s0(0);1)

����! : : :
(s0(m);1)

����!| {z }
m+1 times

(s00(0);2)

����! : : :
(s00(n);2)

����!| {z }
n+1 times

(q1; q2; q3; q4)

for some (q1; q2; q3; q4) 6= d, i.e., sM = s0s00. This sequence is a legitimate path in M since s0 2 L(E)

means �E(s0(m); : : : �E(s0(1); �E(s0(0); qE0 )) : : :) is de�ned and so m transitions of type 1 are allowed

in M ; then, since transitions of type 1 don't change the value of the second argument in the 4-tuple
state of M , after a string of transitions of type 1 we can do n transitions of type 2 since s00 2 L(E).

By de�nition, F1 erases transitions of type 2 and F2 erases transitions of type 1 so F1(s
0s00) = s0
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and F2(s
0s00) = s00, as required. The operator F3 erases both transitions of type 1 and of type 2 so

F3(s
M ) = " = s.

Inductive Hypothesis Suppose that the claim holds for all s such that jsj � n. Consider t = s�

where jsj = n ; � 2 � such that t; t0; t00 2 L(E); P1(t) = P1(t
0) and P2(t) = P2(t

00).

Case 1: � 2 �1;o \ �2;o. Then (P1(s�) = P1(t
0)) =) (t0 = s0�v0) for some s0 2

��; v0 2 (� n �1;o)
�, and P1(s) = P1(s

0). Also, (P2(s�) = P2(t
00)) =) (t00 = s00�v00) for

some s00 2 ��; v00 2 (� n �2;o)
�, and P2(s) = P2(s

00).

Since the inductive hypothesis holds for s; s0; s00, there exists an sM 2 L(M)nLm(M)

such that
F3(s

M) = s

F1(s
M) = s0

F2(s
M) = s00:

Assume that sM ends at state (q1; q2; q3; q4) in M . Since t; t0; t00 2 L(E) we have
s�; s0�; s00� 2 L(E) (since L(E) is pre�x-closed). Also, by Claims 1, 2 and 3, s ends at
state q3 in E and at state q4 in G, s0 ends at state q1 in E, and s00 ends at state q2 in E.
So, �E(�; q1), �

E(�; q2), �
E(�; q3), and �G(�; q4) are all de�ned. Therefore, the following

is also a path in M :

(qE0 ; q
E
0 ; q

E
0 ; q

G
0 )

sM

����! (q1; q2; q3; q4)
(�;4)

����! (�E(�; q1); �
E(�; q2); �

E(�; q3); �
G(�; q4))

Now, we can add the following transitions and still stay on a path in M (that does not
lead to the dump state):

(v0(0);1)

����! : : :
(v0(k);1)

����!| {z }
k+1 times

(v00(0);2)

����! : : :
(v00(`);2)

����!| {z }
`+1 times

where v0(0) : : : v0(k) = v0 v0(i) 2 � n �1;o

v00(0) : : : v00(`) = v00 v00(i) 2 � n �2;o:

The same reasoning used in the basis case to show that the s0s00 de�ned there was a

legitimate path in M can be used here to show that sM�v0v00 as de�ned above is indeed

a legitimate path in M .
All that remains is to show that

F3(s
M�v0v00) = t

F1(s
M�v0v00) = t0

F2(s
M�v0v00) = t00:

We have

F3(s
M�v0v00) = F3(s

M)F3(�)F3(v
0v00)
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= sF3(�)F3(v
0v00) (by the inductive hypothesis)

= s�F3(v
0v00) (since � comes from a transition of type 4)

= s�

(since v0v00 result from transitions of types 1 and 2

and F3 maps to " for all those)

= t:

Now, F1(s
M�) = s0� since F1(�) = � for � for a transition of type 4. Also,

F1(v
0) = v0 (since v0 composed of transitions of type 1)

F1(v
00) = " (since v00 composed of transitions of type 2):

Therefore, F1(s
M�v0v00) = s0�v0 = t0. A similar argument can be used to show that

F2(s
M�v0v00) = s00�v00 = t.

Case 2: � 2 �i;o n�2;o. Then P1(s�) = P1(t
0) =) t0 = s0�v0 for some v0 2 (�n�1;o)

�

and P1(t
0) = P1(s

0). Also,

P2(s) = P2(s�) (since � =2 �2;o)

= P2(t
00):

So, we have s; s0; t00 that satisfy the inductive hypothesis. Therefore, there exists an
sM 2 L(M) n Lm(M) such that

F3(s
M ) = s

F1(s
M ) = s0

F2(s
M ) = t00:

Assume that sM ends at state (q1; q2; q3; q4). Then, using reasoning analogous to that
for Case 1, we get that �E(�; q1); �

E(�; q3) and �G(�; q4) are de�ned. Therefore, the
following is a path in M :

(qE0 ; q
E
0 ; q

E
0 ; q

G
0 )

sM

���! (q1; q2; q3; q4)
(s;6)

���! (�E(�; q1); q2; �
E(�; q3); �

G(�; q4)):

Now, we can add the following transitions and still get a path in M (that does not lead

to the dump state):
(v0(0);1)

����! : : :
(v0(k);1)

����!| {z }
k+1 times

where v0(0) : : : v0(k) = v0; v0(i) 2 � n �1;o. We can do this since, by Claim 2, s0 leads

to state q1 in E; so, t0 = s0�v0 2 L(E) means that s0� leads to state �E(�; q1) and,

therefore, �(v0; �E(�; q1)) is de�ned.
Now, we also have that

F3(s
M�v0) = sF3(�)F3(v

0) (by the inductive hypothesis)
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= s�F3(v
0) (since � comes from a transition of type 6)

= s�

(since v0 results from transitions of type 1

and F3 maps to " for all those)

= t

F1(s
M�v0) = s0F1(�)F1(v

0) (by the inductive hypothesis)

= s0�F1(v
0) (since F1(�) = � for � a transition of type 6)

= s0�v0

(since v0 composed of transitions of type 1

and by de�nition of F1)

= t0

F2(s
M�v0) = t00F2(�)F2(v

0) (by the inductive hypothesis)

= t00

(since � & v0 come from transitions of types 6 and 1

and F2 projects those onto "):

Case 3: � 2 �2;o n�1;o. This case is analogous to Case 2; we just use (�; 5) �rst plus
a string of transitions of type 2.

Case 4: � =2 �1;o; � 62 �2;0. Then we get

P1(s�) = P1(t
0) =) P1(s) = P1(t

0)

P2(s�) = P2(t
00) =) P2(s) = P2(t

00):

Therefore, s; t0; t00 satisfy the inductive hypothesis. So, there exists an sM 2 L(M) n
Lm(M) such that

F3(s
M ) = s

F1(s
M ) = t0

F2(s
M ) = t00:

Assume that sM ends at state (q1; q2; q3; q4). Since s� 2 L(E) and s ends at state q3 in

E and q4 in G (by Claim 1), then �E(�; q3) and �G(�; q4) are de�ned. Therefore, we add

the following transition to sM to get a new path in M (that does not end at the dump

state):

(q1; q2; q3; q4)
(�;3)

����! (q1; q2; �
E(�; q3); �

G(�; q1)):

We also have that

F3(s
M�) = F3(s

M )F3(�)

= sF3(�) (by the inductive hypothesis)
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= s� (since � results from a transition of type 3 and F3(�) = �)

= t

F1(s
M�) = F1(s

M )F1(�)

= t0F1(�) (by the inductive hypothesis)

= t0 (since F1(�) = " for � a transition of type 3):

Similarly, F2(s
M�) = t00.

claim 6

We return to the proof of Proposition 3.1.

Since L(E) is not co-observable w.r.t. G, one of the �rst three conjuncts of co-observability fails.

(The fourth conjunct holds since L(E) is pre�x-closed.) Therefore there exist s; s0; s00 2 L(E) such

that P1(s) = P1(s
0); P2(s) = P2(s

00) and either (i) 9� 2 �1;c \ �2;c) s
0� 2 L(E); s00� 2 L(E); s� 2

L(G), but s� =2 L(E) or (ii) (9� 2 �1;c n �2;c) s
0� 2 L(E); s� 2 L(G), but s� =2 L(E), or (iii)

(9� 2 �2;c n �1;c) s
00� 2 L(E); s� 2 L(G), but s� =2 L(E).

By Claim 6, there exists sM 2 L(M) n Lm(M) such that

F3(s
M) = s

F1(s
M) = s0

F2(s
M) = s00:

Suppose that sM leads to state (q1; q2; q3; q4) in M . By Claims 1, 2 and 3, s leads to state q3 in E

and q4 in G; s0 leads to state q1 in E, and s00 leads to state q2 in E.
Suppose that (i) is the case. Then �E(�; q1) is de�ned, �

E(�; q2) is de�ned, �
G(�; q4) is de�ned,

but �E(�; q3) is not de�ned. Since � 2 �1;c \ �2;c we have that � leads from (q1; q2; q3; q4) to the
dump state. Therefore sM� is a path in M from the initial state to the dump state. Analogous
reasoning works for (ii) and (iii).

Having shown that the above construction is a test for co-observability, we now turn to our main
concern: the computational complexity of our algorithms.

Proposition 3.2 Given �nite-state automata E and G, the construction of M(G;E) is polynomial

(time) in max(jQGj; jQEj).

Proof We assume that j�j is small relative to the state sets or that it stays relatively constant even

with increases in the number of states and, therefore, we disregard the size of � in our computations.

Let n = max(jQGj; jQEj). Computing the state set of M takes asymptotic computing time of

at most O(n4) (since the state set is the Cartesian product of four state sets). At each state of M
we must compute the transition function �M .

We can check if an element is in a set of size m in time O(m logm) (if necessary, by �rst

sorting the set, which can be done in time O(m logm) and then searching through the ordered
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set, which can be done in time O(logm) [HS82]). Therefore, we can check if a given event � is in

�1;o (resp. �2;o, �1;c, �2;c) in time O(j�1;oj log j�1;oj) (resp. O(j�2;oj log j�1;oj), O(j�1;cj log j�1;cj),

O(j�2;cj log j�2;cj)).

We assume that E and G are stored so that given any � 2 �, qE 2 QE (resp. qG 2 QG),

�E(�; qE) (resp. �G(�; qG)) can be computed in polynomial time w.r.t. the number of states in E

(resp. G). This is the case, for example, when E and G are each stored as adjacency matrices

(whose space requirements are O(m2), where m is the number of states in the automaton).

To summarize, at each state of M , for each � in �, we check if � is in �1;o and if � is in �2;o.

Depending on the outcome, we compute the set of next states in M . To compute next states all we

need to do is compute �E(�; �) and �G(�; �) and, in some cases, check if � 2 �1;c or if � 2 �2;c. As

explained above, all these computations can be done in polynomial time.

Our main result follows almost immediately. That is, we can show that our construction in no

way leads to an exponential explosion in computing time and, therefore, co-observability can be

decided in polynomial time.

Theorem 3.1 Given �nite-state automata E and G, it can be decided in polynomial time whether

or not L(E) is co-observable w.r.t. G.

Proof Given G and E, we construct M as above. By Proposition 3.1, deciding co-observability
is equivalent to checking if the language recognized by M is nonempty. This can be done in time
polynomial w.r.t. the state space ofM , which is jQEj�jQEj�jQEj�jQGj. SinceM has only one terminal
state,M recognizes a nonempty language if and only if there is a path from the initial state inM to
the dump state. Such a search on M can be done in O(n2) time where n = jQEj � jQEj � jQEj � jQGj

[PS82]. By Proposition 3.2, the construction itself can be done in polynomial time w.r.t. the number
of states.

Unfortunately, just as in the centralized control problems considered by Tsitsiklis [Tsi89], the
above result is the only positive complexity result associated with the decentralized supervisory
control problems under consideration. So, while we can determine in polynomial time whether or
not the special case (i.e., when the endpoints of the desired range of behaviour are equal) of the

Decentralized Control Problem given in Section 2 is solvable, even if the answer is \yes", it can be
shown that there is no polynomial-time algorithm to construct a supervisor solution. This follows
a fortiori from the centralized control examples given in [Tsi89].

3.2 Solving the More General Problem

When the range of desirable behaviour speci�ed in the Decentralized Control Problem is not nar-

rowed to a single language, i.e., when A is not necessarily equal to E, checking for solution existence
becomes qualitatively harder. This is formalized in the next theorem, which follows almost imme-
diately from the centralized analog given in [Tsi89].

Tsitsiklis shows in [Tsi89] that, given �nite-state automata G, A and E, there is no polynomial-

time algorithm for deciding whether there exists a single supervisor S such that L(A) � L(S=G) �
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L(E).4 His problem formulation does not address the issue of blocking, and it is not immediately

apparent that just because it takes a long time to decide if there is a supervisor that generates closed-

loop behaviour within a given range that the decision couldn't be made quicker by requiring that

the supervisor also be nonblocking. However, it's almost trivial to show that checking for blocking

does not speed things up. This result is due to Professor Feng Lin and arose in discussions.

Consider the following two problems:

Problem 1 Given �nite-state machines, G, A, and E, does there exist a supervisor S with partial

observation such that L(A) � L(S=G) � L(E)?

Problem 2 Given �nite-state machines, G, A, and E, does there exist a supervisor S with partial

observation such that L(A) � L(S=G) � L(E) and S=G is nonblocking?

Now we show that given an algorithm to Problem 2 we could �nd an algorithm for Problem 1,

which would mean that if Problem 2 were solvable in polynomial time, so would be Problem 1
(provided our reduction is also constructed in polynomial time).

Proposition 3.3 Given an algorithm for solving Problem 2, there exists an algorithm for solving

Problem 1.

Proof Given a �nite-state automaton G, let G0 have the same transition structure as G but with
all its states marked. We claim that G;A;E is a positive instance for Problem 1 if and only if

G0; A;E is a positive instance for Problem 2.

((=) Suppose that G0; A;E is a positive instance of Problem 2. Then there exists a supervisor S

such that L(A) � L(S=G0) � L(E) and S=G0 is nonblocking. Dropping the nonblocking property,
we have a supervisor S such that L(A) � L(S=G0) � L(E). This implies that L(A) � L(S=G) �
L(E) since closed behaviour is not a�ected by which states are marker states.

(=)) Suppose that G;A;E is a positive instance of Problem 1. Then there exists a supervisor S

such that L(A) � L(S=G) � L(E). Again, since marker states do not a�ect closed behaviour, we
have that L(A) � L(S=G0) � L(E). Let S 0 be the supervisor S but with all states of its transition
structure marked. Then L(A) � L(S 0=G0) � L(E), since the marking of states in the supervisor

does not a�ect closed behaviour. Moreover, S 0=G0 is trivially nonblocking since all its states are
marked.

Theorem 3.2 Given �nite-state automata G, A and E, (unless P = NP) there is no polynomial-

time algorithm for deciding whether there exist S1 and S2 such that S1 ^ S2 is a proper supervisor

for G and L(A) � L( ~S1 ^ ~S2=G) � L(E).

4
The theorem statement contains the proviso that P, the class of decision problems solvable by polynomial-

time algorithms, is not equal to NP, the class of decision problems solvable by nondeterministic polynomial-time

algorithms|a widely accepted conjecture.
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Proof The result follows immediately from the fact that centralized control is just a special

case of decentralized control and from Proposition 3.3, together with the observation that the only

computations in the reduction require marking some states of certain automata, which can be done

in polynomial time (by searching through the list of states).

4 Concluding Remarks

We have generalized the results on computational complexity of supervisory control problems given

in the seminal paper by Tsitsiklis [Tsi89]. We have shown that the question of whether there exist

decentralized controllers that ensure that closed-loop behaviour precisely equals some prescribed

desired behaviour is decidable in polynomial time (w.r.t. the size of the state spaces of the processes

involved). However, there is no polynomial-time algorithm that, for any given plant, can produce

supervisors (when they exist) that ensure that the closed-loop system behaves as desired. Moreover,

once the class of problems is broadened to include those where controllers are sought to guarantee

that behaviour lie within a prescribed range, then solvability is no longer decidable in polynomial
time.

In previous work, [RW92a], it was shown that protocol veri�cation problems can be viewed
as decentralized discrete-event problems. In particular, the data transmission problem associated

with the well-known Alternating Bit Protocol was analyzed using our methodology, i.e., using the
property of \co-observability". It was demonstrated that co-observability could be used to detect
protocol failures. At the time when [RW92a] was written, the existing algorithm for deciding co-
observability was exponential time. Now, with the results presented here, we know that checking
protocol correctness for that type of communication problem can be done in polynomial time.

Insofar as computational complexity formalizes what intuition, experiments or simulation have
suggested is \hard" to solve, there may be some connection between the computational infeasibility
of synthesizing supervisors that guarantee desired behaviour in decentralized discrete-event systems
and the relative lack of success in communication protocol synthesis as compared with protocol
veri�cation.
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