
Journal of Artificial Intelligence Research 33 (2008) 403-432 Submitted 07/08; published 11/08

The Computational Complexity of Dominance and
Consistency in CP-Nets

Judy Goldsmith GOLDSMIT@CS.UKY.EDU
Department of Computer Science
University of Kentucky
Lexington, KY 40506-0046, USA

Jérôme Lang LANG@IRIT.FR
IRIT
Université de Toulouse, UPS
31062 Toulouse Cedex, France

Miroslaw Truszczyński MIREK@CS.UKY.EDU
Department of Computer Science
University of Kentucky
Lexington, KY 40506-0046, USA

Nic Wilson N.WILSON@4C.UCC.IE
Cork Constraint Computation Centre
University College
Cork, Ireland

Abstract
We investigate the computational complexity of testing dominance and consistency in CP-nets.

Previously, the complexity of dominance has been determined for restricted classes in which the
dependency graph of the CP-net is acyclic. However, there are preferences of interest that define
cyclic dependency graphs; these are modeled with general CP-nets. In our main results, we show
here that both dominance and consistency for general CP-nets are PSPACE-complete. We then
consider the concept of strong dominance, dominance equivalence and dominance incomparability,
and several notions of optimality, and identify the complexity of the corresponding decision prob-
lems. The reductions used in the proofs are from STRIPS planning, and thus reinforce the earlier
established connections between both areas.

1. Introduction

The problems of eliciting, representing and computing with preferences over a multi-attribute do-
main arise in many fields such as planning, design, and group decision making. However, in a
multi-attribute preference domain, such computations may be nontrivial, as we show here for the
CP-net representation. Natural questions that arise in a preference domain are, “Is this item pre-
ferred to that one?”, and “Is this set of preferences consistent?” More formally, a set of preferences
is consistent if and only if no item is preferred to itself. We assume that preferences are transitive,
i.e., if α is preferred to β, and β is preferred to γ, then α is preferred to γ.
An explicit representation of a preference ordering of elements, also called outcomes, of such

multi-variable domains is exponentially large in the number of attributes. Therefore, AI researchers
have developed languages for representing preference orderings in a succinct way. The formalism
of CP-nets (Boutilier, Brafman, Hoos, & Poole, 1999) is among the most popular ones. A CP-net

c©2008 AI Access Foundation. All rights reserved.

GOLDSMITH, LANG, TRUSZCZYŃSKI & WILSON

provides a succinct representation of preference ordering on outcomes in terms of local preference
statements of the form p : xi > x j, where xi,x j are values of a variable X and p is a logical condition.
Informally, a preference statement p : xi > x j means that given p, xi is strictly preferred to x j ceteris
paribus, that is, all other things being equal. The meaning of a CP-net is given by a certain or-
dering relation, called dominance, on the set of outcomes, derived from such reading of preference
statements. If one outcome dominates another, we say that the dominant one is preferred.
Reasoning about the preference ordering (dominance relation) expressed by a CP-net is far from

easy. The key problems include dominance testing and consistency testing. In the first problem,
given a CP-net and two outcomes α and β, we want to decide whether β dominates α. The second
problem asks whether there is a dominance cycle in the dominance ordering defined by an input
CP-net, that is, whether there is an outcome that dominates (is preferred to) itself.
We study the computational complexity of these two problems. The results obtained prior to this

work concerned only restricted classes of CP-nets, all requiring that the graph of variable depen-
dencies implied by preference statements in the CP-net be acyclic. Under certain assumptions, the
dominance-testing problem is in NP and, under some additional assumptions, even in P (Domshlak
& Brafman, 2002; Boutilier, Brafman, Domshlak, Hoos, & Poole, 2004a). We show that the com-
plexity in the general case is PSPACE-complete, and this holds even for the propositional case, by
exhibiting in Section 4 a PSPACE-hardness proof for dominance testing.
We then turn to consistency testing. While acyclic CP-nets are guaranteed to be consistent, this

is not the case with general CP-nets (Domshlak & Brafman, 2002; Brafman & Dimopoulos, 2004).
In Section 5, we show that consistency testing is as hard as dominance testing.
In the following two sections we study decision problems related to dominance and optimality

in CP-nets. First, we consider the complexity of deciding strict dominance, dominance equivalence
and dominance incomparability of outcomes in a CP-net. Then, we study the complexity of deciding
the optimality of outcomes, and the existence of optimal outcomes, for several notions of optimality.
To prove the hardness part of the results, we first establish the PSPACE-hardness of some prob-

lems related to propositional STRIPS planning. We then show that these problems can be reduced
to CP-net dominance and consistency testing by exploiting connections between actions in STRIPS
planning and preference statements in CP-nets.
The complexity results in this paper address CP-nets whose dominance relation may contain

cycles. Most earlier work has concentrated on the acyclic model. However, as argued earlier, for
instance by Domshlak and Brafman (2002), acyclic CP-nets are not sufficiently expressive to cap-
ture human preferences on even some simple domains.1 Consider, for instance, a diner who has
to choose either red or white wine, and either fish or meat. Given red wine, they prefer meat, and
conversely, given meat they prefer red wine. On the other hand, given white wine, they prefer fish,
and conversely, given fish they prefer white wine. This gives a consistent cyclic CP-net, and there is
no acyclic CP-net giving rise to the same preferences on outcomes. So, such cyclicity of preference
variables does not necessarily lead to a cyclic order on outcomes.

1. We do not mean to say that cyclic CP-nets are sufficient to capture all possible human preferences on simple domains
– this is obviously not true. However, we note that every preference relation extends the preference relation induced
by some CP-net with possibly cyclic dependencies. Not only is this property no longer true when cyclic dependencies
are precluded but, in the case of binary variables, the number of linear orders that extends some acyclic CP-net is
exponentially smaller than the number of all linear orders (Xia, Conitzer, & Lang, 2008).

404

THE COMPUTATIONAL COMPLEXITY OF DOMINANCE AND CONSISTENCY IN CP-NETS

We assume some familiarity with the complexity class PSPACE. We refer to Papadimitriou
(1994) for details. In particular, we later use the identities NPSPACE = PSPACE = coPSPACE.
In several places, we will consider versions of decision problem, in which input instances are

assumed to have some additional property. Such problems are usually formulated in the following
way: “Q, given R”2. We first note that “Q, given R” is not the same problem as “Q and R”. Let
us recall the definition of a decision problem as presented by Ausiello et al. (1999). A decision
problem is a pair P = 〈IP ,YP 〉 where IP is a set of strings (formally, a subset of Σ∗, where Σ is a
finite alphabet), The decision problem P = 〈IP ,YP 〉 reads as follows: given a string x ∈ IP , decide
whether x ∈ YP . A problem 〈IP ,YP 〉 is in a complexity class C if the language YP ⊆ Σ∗ is in C (this
does not depend on IP). A problem 〈IQ ,YQ 〉 is reducible to 〈IP ,YP 〉 if there is a polynomial-time
function F such that (1) for every x ∈ IQ , F(x) ∈ IP , and (2) for every x ∈ IQ , x ∈ YQ if and only
if F(x) ∈ YP . Thus, if P is the decision problem “Q, given R”, then IP is the set of all strings
satisfying R, while YP is the set of all strings satisfying R∩Q. For all such problems, it is granted
that the input belongs to R; to solve them we do not have to check that the input string is indeed
an element of R. Such problems “Q, given R” are widespread in the literature. However, in most
cases, R is a very simple property, that can be checked in polynomial (and often linear) time, such
as “decide whether a graph possesses a Hamiltonian cycle, given that every vertex has a degree at
most 3”. Here, however, we will consider several problems “Q, given R” where R itself is not in the
class P (unless the polynomial hierarchy collapses). However, as we said above, the complexity of
recognizing whether a given string is in R does not matter. In other words, the complexity of “Q,
given R” is the same, whether R can be recognized in unit time or is PSPACE-complete. We will
come back to this when the first such problem appears in the paper (cf. the proof of Proposition 5).
In no case that we consider is the complexity of R greater than the complexity of Q.
A part of this paper (up to Section 5) is an extended version of our earlier conference publication

(Goldsmith, Lang, Truszczyński, & Wilson, 2005). Sections 6 and 7 are entirely new.

2. Generalized Propositional CP-Nets

Let V = {x1, . . . ,xn} be a finite set of variables. For each variable x ∈V , we assume a finite domain
Dx of values. An outcome is an n-tuple (d1, . . . ,dn) of Dx1×·· ·×Dxn .
In this paper, we focus on propositional variables: variables with binary domains. Let V be a

finite set of propositional variables. For every x ∈ V , we set Dx = {x,¬x} (thus, we overload the
notation and write x both for the variable and for one of its values). We refer to x and ¬x as literals.
Given a literal l we write ¬l to denote the dual literal to l. The focus on binary variables makes the
presentation clearer and has no impact on our complexity results.
We also note that in the case of binary domains, we often identify an outcome with the set of

its values (literals). In fact, we also often identify such sets with the conjunctions of their elements.
Sets (conjunctions) of literals corresponding to outcomes are consistent and complete.
A conditional preference rule (sometimes, a preference rule or just a rule) over V is an expres-

sion p : l > ¬l, where l is a literal of some atom x ∈V and p is a propositional formula over V that
does not involve variable x.

2. In the literature one often finds the following formulation: “Q, even if R”, which does not have exactly the same
meaning as “Q, given R”. Specifically, when saying “Q is NP-complete, even if R”, one means “Q is NP-complete,
and Q, given R is NP-complete as well”.

405

GOLDSMITH, LANG, TRUSZCZYŃSKI & WILSON

In the rest of the paper, we need to refer to two different languages: a conditional preference
language where for every (binary) variable x, the conditional preference table for x needs to specify
a preferred value of x for every possible assignment of its parent variables, and a more general
language where the tables may be incomplete (for some values of its parents, the preferred value of
xmay not be specified) and/or locally inconsistent (for some values of its parents, the table may both
contain the information that x is preferred and the information that ¬x is preferred). We call these
languages respectively CP-nets and GCP-nets (for “generalized CP-nets”). Note that GCP-nets are
not new, as similar structures have been discussed before (Domshlak, Rossi, Venable, & Walsh,
2003). The reason why we use this terminology (“CP-nets” and “GCP-nets”) is twofold. First, even
if the assumptions of completeness and local consistency for CP-nets are sometimes relaxed, most
papers on CP-nets do make them. Second, we could have used “CP-nets” and “locally consistent,
complete CP-nets” instead of “GCP-nets” and “CP-nets”, but we felt our notation is simpler and
more transparent.

Definition 1 (Generalized CP-net) A generalized CP-net C (for short, a GCP-net) over V is a
set of conditional preference rules. For x ∈ V we define p+

C (x) and p−C (x), usually written just:
p+(x) and p−(x), as follows: p+

C (x) is equal to the disjunction of all p such that there exists a rule
p : x > ¬x in C; p−C (x) is the disjunction of all p such that there exists a rule p : ¬x > x in C. We
define the associated directed graph GC (the dependency graph) over V to consist of all pairs (y,x)
of variables such that y appears in either p+(x) or p−(x).

In our complexity results we will also need the following representation of GCP-nets: a GCP-
net C is said to be in conjunctive form if C only contains rules p : l > ¬l such that p is a (possibly
empty) conjunction of literals. In this case all formulas p−(x), p+(x) are in disjunctive normal form,
that is, a disjunction of conjunctions of literals (including 	 – the empty conjunction of literals).
GCP-nets determine a transitive relation on outcomes, interpreted in terms of preference. A

preference rule p : l > ¬l represents the statement “given that p holds, l is preferred to ¬l ceteris
paribus”. Its intended meaning is as follows. If outcome β satisfies p and l, then β is preferred to
the outcome α which differs from β only in that it assigns ¬l to variable x. In this situation we say
that there is an improving flip from α to β sanctioned by the rule p : l > ¬l.

Definition 2 If α0, . . . ,αm is a sequence of outcomes with m ≥ 1 and each next outcome in the
sequence is obtained from the previous one by an improving flip, then we say that α0, . . . ,αm is an
improving sequence from α0 to αm for the GCP-net, and that αm dominates α0, written α0 ≺ αm.

Finally, a GCP-net is consistent if there is no outcome α which is strictly preferred to itself, that
is, such that α ≺ α.
The main objective of the paper is to establish the complexity of the following two problems

concerning the notion of dominance associated with GCP-nets (sometimes under restrictions on the
class of input GCP-nets).

Definition 3
GCP-DOMINANCE: given a GCP-net C and two outcomes α and β, decide whether α ≺ β in C, that
is, whether β dominates α in C.
GCP-CONSISTENCY: given a GCP-net C, decide whether C is consistent.

406

THE COMPUTATIONAL COMPLEXITY OF DOMINANCE AND CONSISTENCY IN CP-NETS

GCP-nets extend the notion of CP-nets (Boutilier et al., 1999). There are two properties of
GCP-nets that are essential in linking the two notions.

Definition 4
A GCP-net C over V is locally consistent if for every x ∈V, the formula p−C (x)∧ p+

C (x) is unsatisfi-
able. It is locally complete if for every x ∈V, the formula p−C (x)∨ p+

C (x) is a tautology.

Informally, local consistency means that there is no outcome in which both x is preferred over
¬x and ¬x is preferred over x. Local completeness means that, for every variable x, in every outcome
either x is preferred over ¬x or ¬x is preferred over x.

Definition 5 (Propositional CP-net) A CP-net over the set V of (propositional) variables is a lo-
cally consistent and locally complete GCP-net over V .

It is not easy to decide whether a GCP-net is actually a CP-net. In fact, the task is coNP-
complete.

Proposition 1 The problem of deciding, given a GCP-net C, whether C is a CP-net is coNP-
complete.

Proof: Deciding whether a GCP-net C is a CP-net consists of checking local consistency and local
completeness. Each of these tasks amounts to n validity tests (one for each variable). It follows that
deciding whether a GCP-net is a CP-net is the intersection of 2n problems from coNP. Hence, it is
in coNP, itself. Hardness comes from the following reduction from UNSAT. To any propositional
formula ϕwe assign the CP-netC(ϕ), defined by its set of variablesVar(ϕ)∪{z}, where z �∈Var(ϕ),
and the following tables:

• for any variable x �= z: p+
C(ϕ)(x) = 	; p−C(ϕ)(x) = ⊥;

• p+
C(ϕ)(z) = ¬ϕ; p−C(ϕ)(z) = ⊥.

For any variable x �= z, we have p+
C(ϕ)(x)∧ p

−
C(ϕ)(x) =⊥; moreover, p+

C(ϕ)(z)∧ p
−
C(ϕ)(z) =⊥. There-

fore, C(ϕ) is locally consistent. Now, for any variable x �= z, we have p+
C(ϕ)(x)∨ p

−
C(ϕ)(x) = 	.

Moreover, p+
C(ϕ)(z)∨ p

−
C(ϕ)(z) = ¬ϕ. Thus,C(ϕ) is locally complete if and only if ϕ is unsatisfiable.

It follows thatC(ϕ) is a CP-net if and only if ϕ is unsatisfiable. �

Many works on CP-nets make use of explicit conditional preference tables that list every com-
bination of values of parent variables (variables on which x depends) exactly once, each such com-
bination designating either x or ¬x as preferred.3 Clearly, CP-nets in this restricted sense can be
regarded as CP-nets in our sense that, for every variable x, satisfy the following condition:

if y1, . . . ,yk are all the atoms appearing in p+(x) and p−(x) then every complete and
consistent conjunction of literals over {y1, . . . ,yn} appears as a disjunct in exactly one
of p+(x) and p−(x).

3. There are exceptions. Some are discussed for instance by Boutilier et al. (2004a) in Section 6 of their paper.

407

GOLDSMITH, LANG, TRUSZCZYŃSKI & WILSON

Under this embedding, the concepts of dominance and consistency we introduced here for GCP-nets
generalize the ones considered for CP-nets as defined by Boutilier et al. (2004a).
Problems CP-DOMINANCE and CP-CONSISTENCY are defined analogously to Definition 3. In

the paper we are interested in the complexity of dominance and consistency problems for both GCP-
nets and CP-nets. Therefore, the matter of the way in which these nets (especially CP-nets, as for
GCP-nets there are no alternative proposals) are represented is important. Our representation of
CP-nets is often more compact than the one proposed by Boutilier et al. (2004a), as the formulas
p+(x) and p−(x) implied by the conditional preference tables can often be given equivalent, but
exponentially smaller, disjunctive normal form representations. Thus, when defining a decision
problem, it is critical to specify the way to represent its input instances, as the representation may
affect the complexity of the problem. Unless stated otherwise, we assume that GCP-nets (and thus,
CP-nets) are represented as a set of preference rules, as described in Definition 1. Therefore, the
size of a GCP-net is given by the total size of the formulas p−(x), p+(x), x ∈V .
We now note a key property of consistent GCP-nets, which we will use several times later in the

paper.

Proposition 2 If a GCP-net C is consistent then it is locally consistent.

Proof: If C is not locally consistent then there exists a variable x and an outcome α satisfying
p−C (x)∧ p+

C (x). Then α ≺ α can be shown by flipping x from its current value in α to the dual value
and then flipping it back: since α satisfies p−C (x)∧ p+

C (x), and since p−C (x)∧ p+
C (x) does not involve

any occurrences of x, both flips are allowed. �

Finally, we conclude this section with an example illustrating the notions discussed above.

Example 1 Consider a GCP-net C on variables V = {x,y} with four rules, defined as follows:
x : y> ¬y; ¬x : ¬y> y; y : ¬x> x; ¬y : x> ¬x. We have p+(y) = x, p−(y) = ¬x, p+(x) = ¬y and
p−(x) = y. Therefore C is locally consistent and locally complete, and so is a CP-net.
There is a cycle of dominance between outcomes: x∧ y ≺ ¬x∧ y ≺ ¬x∧¬y ≺ x∧¬y ≺ x∧ y,

and so C is inconsistent. This shows that consistency is a strictly stronger property than local
consistency.

3. Propositional STRIPS Planning

In this section we derive some technical results on propositional STRIPS planning which form the
basis of our complexity results in Sections 4 and 5. We establish the complexity of plan existence
problems for propositional STRIPS planning under restrictions on input instances that make the
problem of use in the studies of dominance and consistency in GCP-nets.
Let V be a finite set of variables. A state over V is a complete and consistent set of literals over

V , which we often view as the conjunction of its members. A state is therefore equivalent to an
outcome, defined in a CP-nets context.

Definition 6 (Propositional STRIPS planning) By a propositional STRIPS instance we mean a
tuple 〈V,α0,γ,ACT〉, where

1. V is a finite set of propositional variables;

408

THE COMPUTATIONAL COMPLEXITY OF DOMINANCE AND CONSISTENCY IN CP-NETS

2. α0 is a state over V , called the initial state;

3. γ is a state called the goal;4

4. ACT is a finite set of actions, where each action a ∈ ACT is described by a consistent con-
junction of literals pre(a) (a precondition) and a consistent conjunction of literals post(a) (a
postcondition, or effect).5

An action a is executable in a state α if α |= pre(a). The effect of a in state α, denoted by eff (a,α),
is the state α′ containing the same literals as α for all variables not mentioned in post(a), and
the literals of post(a). We assume that an action can be applied to any state, but that it does not
change the state if its preconditions do not hold: if α �|= pre(a) (given that states are complete,
this is equivalent to α |= ¬pre(a)) then eff (a,α) = α. This assumption has no influence as far as
complexity results are concerned.
The PROPOSITIONAL STRIPS PLAN EXISTENCE problem, or STRIPS PLAN for short, is to de-

cide whether for a given propositional STRIPS instance 〈V,α0,γ,ACT〉 there is a finite sequence
of actions leading from the initial state α0 to the final state γ. Each such sequence is a plan for
〈V,α0,γ,ACT〉. A plan is irreducible if every one of its actions changes the state.

We assume, without loss of generality, that for any action a, no literal in post(a) appears also
in pre(a); otherwise we can omit the literal from post(a) without changing the effect of the action;
if post(a) then becomes an empty conjunction, the action a can be omitted from ACT as it has no
effect.
We have the following result due to Bylander (1994).

Proposition 3 (Bylander, 1994) STRIPS PLAN is PSPACE-complete.

Typically, propositional STRIPS instances do not require that goals be states. Instead, goals are
defined as consistent conjunctions of literals that do not need to be complete. In such a setting, a
plan is a sequence of actions that leads from the start state to a state in which the goal holds. We
restrict consideration to complete goals. This restriction has no effect on the complexity of the plan
existence problem: it remains PSPACE-complete under the goal-completeness restriction (Lang,
2004).

3.1 Acyclic STRIPS

Definition 7 (Acyclic sets of actions) A set of actions ACT (we use the same notation as in Defi-
nition 6) is acyclic if there is no state α such that 〈V,α,α,ACT〉 has a non-empty irreducible plan,
that is to say, if there are no non-trivial directed cycles in the graph on states induced by ACT.

We will now establish the complexity of the following problem:

ACTION-SET ACYCLICITY: given a set ACT of actions, decide whether ACT is acyclic.

Proposition 4
ACTION-SET ACYCLICITY is PSPACE-complete.

4. Note that in standard STRIPS the goal can be a partial state. This point is discussed just after Proposition 3.
5. We emphasize that we allow negative literals in preconditions and goals. Some definitions of STRIPS do not allow
this. This particular variant of STRIPS is sometimes called PSN (propositional STRIPS with negation) in the literature.

409

GOLDSMITH, LANG, TRUSZCZYŃSKI & WILSON

Proof: The argument for the membership in PSPACE is standard; we nevertheless give some details.
We will omit such details for further proofs of membership in PSPACE. The following nondeter-
ministic algorithm decides that ACT has a cycle:

guess α0;
α := α0;
repeat

guess an action a ∈ ACT ;
α′ := eff (a,α);
α := α′

until α = α0.

This algorithm works in nondeterministic polynomial space (because we only need to store α0,
α and α′), which shows that ACTION-SET ACYCLICITY is in NPSPACE, and therefore in PSPACE,
since NPSPACE = PSPACE. Thus, ACTION-SET ACYCLICITY is in coPSPACE, hence in PSPACE,
since coPSPACE = PSPACE.
We will now show that the complement of the ACTION-SET ACYCLICITY problem is PSPACE-

hard by reducing the ACYCLIC STRIPS PLAN problem to it.
Let PE = 〈V,α0,γ,ACT〉 be an instance of the ACYCLIC STRIPS PLAN problem. In particular,

we have that ACT is acyclic. Let a be a new action defined by pre(a) = γ and post(a) = α0. It is easy
to see that ACT ∪{a} is not acyclic if and only if there exists a plan for PE. Thus, the PSPACE-
hardness of the complement of the ACTION-SET ACYCLICITY problem follows from Proposition
5. Consequently, the ACTION-SET ACYCLICITY problem is coPSPACE-hard. Since PSPACE =
coPSPACE, the ACTION-SET ACYCLICITY problem is PSPACE-hard, as well. �

Next, we consider the STRIPS planning problem restricted to instances that have acyclic sets of
actions. Formally, we consider the following problem:

ACYCLIC STRIPS PLAN: Given a propositional STRIPS instance 〈V,α0,γ,ACT〉 such
that ACT is acyclic and α0 �= γ, decide whether there is a plan for 〈V,α0,γ,ACT〉

This is the first of our problems of the form “Q, given R” that we encounter and it illustrates
well the concerns we discussed at the end of the introduction. Here, R is the set of all propositional
STRIPS instances 〈V,α0,γ,ACT〉 such that ACT is acyclic, and Q is the set of all such instances for
which there is a plan for 〈V,α0,γ,ACT〉. Checking whether a given propositional STRIPS instance
is actually acyclic is itself PSPACE-complete (this is what Proposition 4 states), but this does not
matter when it comes to solving ACYCLIC STRIPS PLAN: when considering an instance of ACYCLIC
STRIPS PLAN, we already know that it is acyclic (and this is reflected in the reduction below).

Proposition 5
ACYCLIC STRIPS PLAN is PSPACE-complete.

Proof: The argument for the membership in PSPACE is standard (cf. the proof of Proposition 4). To
prove PSPACE-hardness, we first exhibit a polynomial-time reduction F from STRIPS PLAN. Let
PE = 〈V,α0,γ,ACT〉 be an instance of STRIPS PLAN. The idea behind the reduction is to introduce
a counter, so that each time an action is executed, the counter is incremented. The counter may
count up to 2n, where n = |V |, making use of n additional variables. The counter is initialized to

410

THE COMPUTATIONAL COMPLEXITY OF DOMINANCE AND CONSISTENCY IN CP-NETS

0. Once it reaches 2n− 1 it can no longer be incremented and no action can be executed. Hence,
the set of actions in the resulting instance of STRIPS PLAN is acyclic: we are guaranteed to produce
an instance of R. To describe the reduction, we write V as {x1, . . . ,xn}. We define F(PE) = PE′ =
〈V ′,α′

0,γ′,ACT
′〉 as follows:

• V ′ = {x1, . . . ,xn,z1, . . . ,zn}, where zi are new variables we will use to implement the counter;

• α′
0 = α0∧¬z1∧·· ·∧¬zn;

• γ′ = γ∧ z1∧·· ·∧ zn;

• for each action a ∈ ACT , we include in ACT ′ n actions ai, 1≤ i≤ n, such that:

– for i≤ n−1 :
{
pre(ai) = pre(a)∧¬zi∧ zi+1∧·· ·∧ zn
post(ai) = post(a)∧ zi∧¬zi+1∧·· ·∧¬zn, and

– for i= n :
{
pre(an) = pre(a)∧¬zn
post(an) = post(a)∧ zn.

• Furthermore, we include in ACT ′ n actions bi, 1≤ i≤ n, such that:

– for i≤ n−1 :
{
pre(bi) = ¬zi∧ zi+1∧·· ·∧ zn
post(bi) = zi∧¬zi+1∧·· ·∧¬zn, and

– for i= n :
{
pre(bn) = ¬zn
post(bn) = zn.

We will denote states over V ′ by pairs (α,k), where α is a state over V and k is an integer, 0 ≤
k≤ 2n−1. We view k as a compact representation of a state over variables z1, . . . ,zn: assuming that
the binary representation of k is d1 . . .dn (with dn being the least significant digit), k represents the
state which contains zi if di = 1 and ¬zi, otherwise. For instance, let V = {x1,x2,x3}. Then we have
V ′ = {x1,x2,x3,z1,z2,z3}, and the state ¬x1∧ x2∧ x3∧ z1∧¬z2∧ z3 is denoted by (¬x1∧ x2∧ x3,5).

We note that the effect of ai or bi on state (α,k) is either void, or increments the counter:

eff (ai,(α,k)) =

{
(eff (a,α),k+1) if ai is executable in (α,k)
(α,k) otherwise

eff (bi,(α,k)) =

{
(α,k+1) if bi is executable in (α,k)
(α,k) otherwise

Next, we remark that at most one ai and at most one bi are executable in a given state (α,k).
More precisely,

• if k< 2n−1, then exactly one bi is executable in (α,k); denote by i(k) the index such that bi(k)
is executable in (α,k) (this index depends only on k). We also have that ai(k) is executable in
(α,k), provided that a is executable in α.

• if k = 2n−1, then no ai and no bi is executable in (α,k).

411

GOLDSMITH, LANG, TRUSZCZYŃSKI & WILSON

Now we show that PE′ is acyclic. Assume π is an irreducible plan for 〈V ′,α′,α′,ACT ′〉. Let
α′ = (α,k). If k < 2n− 1, then π is empty, since any action in ACT ′ in any state either is non-
executable or increments the counter, and an irreducible plan contains only actions whose effect is
non-void. If k= 2n−1, then no action of ACT ′ is executable in α′ and again π is empty. Thus, there
exists no non-empty irreducible plan for 〈V ′,α′,α′,ACT ′〉, and this holds for all α′. Therefore PE′
is acyclic.
We now claim that there is a plan for PE if and only if there is a plan for PE′. First, assume that

there is a plan in PE. Let π be a shortest plan in PE and let m be its length (the number of actions
used). We have m ≤ 2n− 1, since no state along π repeats (otherwise, shorter plans than π for PE
would exist). Let α0,α1, . . . ,αm = γ be the sequence of states obtained by executing π. Let a be the
action used in the transition from αk to αk+1. Since k< 2n−1 (because m≤ 2n−1 and k≤m−1),
there is exactly one i, 1≤ i≤ n, such that the action ai applies at the state (α,k) over V ′. Replacing
a with ai in π yields a plan that when started at (α0,0) leads to (αm,m) = (γ,m). Appending that
plan with appropriate actions bi to increment the counter to 2n−1 yields a plan for PE′. Conversely,
if τ is a plan for PE′, the plan obtained from τ by removing all actions of the form b j and replacing
each action ai with a is a plan for PE, since ai has the same effect on V as a does. Thus, the claim
follows. �

We emphasize that this reduction F from STRIPS PLAN to ACYCLIC STRIPS PLAN (or, equiv-
alently, to STRIPS PLAN given ACTION-SET ACYCLICITY) works because it satisfies the following
two conditions:

1. for every instance PE of STRIPS PLAN, F(PE) is an instance of ACYCLIC STRIPS PLAN (this
holds because for every PE, F(PE) is acyclic);

2. for every PE of STRIPS PLAN, F(PE) is a positive instance of ACYCLIC STRIPS PLAN if and
only if PE is a positive instance of STRIPS PLAN.

3.2 Mapping STRIPS Plans to Single-Effect STRIPS Plans

Versions of the STRIPS PLAN and ACYCLIC STRIPS PLAN problems that are important for us al-
low only actions with exactly one literal in their postconditions in their input propositional STRIPS
instances. We call such actions single-effect actions.6 We refer to the restricted problems as SE
STRIPS PLAN and ACYCLIC SE STRIPS PLAN, respectively.
To prove PSPACE-hardness of both problems, we describe a mapping from STRIPS instances to

single-effect STRIPS instances.7

Consider an instance PE = 〈V,α0,γ,ACT〉 of the STRIPS PLAN problem, where ACT is not nec-
essarily acyclic. For each action a ∈ ACT we introduce a new variable xa, whose intuitive meaning
is that action a is currently being executed.
We set X =

V
a∈ACT ¬xa. That is, X is the conjunction of negative literals of all the additional

variables. In addition, for each a ∈ ACT we set Xa = xa ∧
V
b∈ACT−{a} ¬xb. We now define an

instance PE′ = 〈V ′,α′
0,γ′,S(ACT)〉 of the SE STRIPS PLAN problem as follows:

6. Such actions are also called “unary” actions in the planning literature. We stick to the terminology “single-effect”
although it is less commonly used, simply because it is more explicit.

7. PSPACE-completeness of propositional STRIPS planning with single-effect actions was proved already by Bylander
(1994). However, to deal with acyclicity we need to give a different reduction than the one used in that paper.

412

THE COMPUTATIONAL COMPLEXITY OF DOMINANCE AND CONSISTENCY IN CP-NETS

• Set of variables: V ′ =V ∪{xa : a ∈ ACT};

• initial state: α′
0 = α0∧X ;

• goal state: γ′ = γ∧X ;

• set of actions: S(ACT) = {ai : a ∈ ACT, i= 1, . . . ,2|post(a)|+1}.
Let a be an action in ACT such that post(a) = l1∧·· ·∧ lq, where l1, . . . , lq are literals.

– For i= 1, . . . ,q, we define an action ai by setting:

pre(ai) = pre(a)∧X ∧¬li; post(ai) = xa.

The role of ai is to enforce that Xa holds after ai is successfully applied, and in this
way to enable “starting the execution of a”, provided that no action is currently being
executed, that the ith effect of a is not already true, and that the precondition of a is true.

– For i= q+1, . . . ,2q, we define action ai by setting:

pre(ai) = Xa; post(ai) = li.

The role of ai is to make the ith effect of a true.
– Finally, we define a2q+1 by setting:

pre(a2q+1) = Xa∧ l1∧·· ·∧ lq; post(a2q+1) = ¬xa.

Thus, a2q+1 is designed so that X holds after a2q+1 is successfully applied; that is, a2q+1
“closes” the execution of a, thus allowing for the next action to be executed.

Let π be a sequence of actions in ACT . We define S(π) to be the sequence of actions in S(ACT)
obtained by replacing each action a in π by a1, . . . ,a2q+1, where q = |post(a)|. Now consider a
sequence τ of actions from S(ACT). Remove from τ every action ai such that i �= 2|post(a)|+ 1,
and replace actions of the form a2|post(a)|+1 by a. We denote the resulting sequence of actions from
ACT by S′(τ). We note that S′(S(π)) = π. The following properties then hold.

Lemma 1 With the above definitions,

(i) if π is a plan for PE then S(π) is a plan for PE′;

(ii) if τ is an irreducible plan for PE′ then S′(τ) is an irreducible plan for PE;

(iii) ACT is acyclic if and only if S(ACT) is acyclic.

Proof: (i) Let a ∈ ACT be an action, let α be a state and let β be the state obtained from α by
applying a. Let θ be the V ′-state obtained by applying the sequence of actions 〈a1, . . . ,a2q+1〉
(where q= |post(a)|) to the state α∧X of PE′. We will show that θ = β∧X .
We note that if for each i = 1, . . . ,q, state α∧X does not satisfy pre(ai) then the sequence of

actions 〈a1, . . . ,a2q+1〉 has no effect, so the state is still α∧X . For this to happen, either α doesn’t
satisfy pre(a), or all of l1, . . . , lq already hold in α so post(a) holds in α. In either case, α = β, and
so θ = β∧X .

413

GOLDSMITH, LANG, TRUSZCZYŃSKI & WILSON

Suppose now that for some i ∈ {1, . . . ,q}, α does satisfy pre(ai). Then the first such action
ai causes xa and hence Xa to hold. After applying actions aq+1, . . . ,a2q, l1 ∧ ·· · ∧ lq holds, and so
post(a) holds. After applying a2q+1 both post(a) and X hold. No other variable in V has changed,
so θ = β∧X , as required.
Applying this result iteratively implies that if π is a plan for PE then S(π) is a plan for PE′.

(ii) Let τ be an irreducible plan for PE′, so that every action in τ changes the state, which implies
that every action in τ is performed in a state where its precondition is true. We will show that S′(τ)
is a plan for PE. We will assume that τ �= /0. When τ = /0, S′(τ) = /0, too, and the assertion follows.
Write the first action in τ as a j, where a ∈ ACT , and let τ′ be the maximal initial subsequence of

τ consisting of all actions of the form ai. We must have j ≤ |post(a)|, since X holds in α′
0 (by our

assumption above, action a j does apply) and X is inconsistent with the precondition of ai for each
i> |post(a)|. Also, pre(a j) and ¬l j hold in α′

0 and so, in α0 as well. Thus, α0 satisfies pre(a), and
applying a changes the state, since ¬l j holds in α0 and post(a) |= l j. Let us denote by β the state
resulting from applying a to α0. As we noted, β �= α0,
Let β′ be the state resulting after applying τ′ to α′

0. If β′ is the goal state γ′ then X holds in β′. If
β′ is not the goal state then τ �= τ′. Let bi be the action in τ directly following the last action in τ′.
By the definition of τ′, a �= b. After applying a j, Xa holds, so in β′ either Xa holds or X holds. Thus,
Xb does not hold, as a �= b. Since bi changes the state, i must be in {1, . . . , |post(b)|}, so X holds in
β′ in this case, too.
Hence the last action in τ′ is a2q+1, where q= |post(a)|. Since the only variables inV which can

be affected by actions ai are those that appear in the literals in post(a) and since the action a2q+1
can be executed (otherwise it would not belong to τ), it follows that β′ = β∧X .
Applying this reasoning repeatedly, we show that applying S′(τ) to α0 yields γ, and that each

action in S′(τ) changes the state, so S′(τ) is an irreducible plan for PE, which is non-empty if and
only if τ is non-empty.

(iii) Suppose ACT is not acyclic, so that there exists state α and a non-empty irreducible plan π for
PEα = 〈V,α,α,ACT〉. Then, by (i), S(π) is a plan for PE′α = 〈V ′,α∧X ,α∧X ,S(ACT)〉. Because
π is non-empty and irreducible, it changes some state, so S(π) also changes some state, and hence
can be reduced to a non-empty irreducible plan for PE′α. Therefore S(ACT) is not acyclic.
Conversely, suppose that S(ACT) is not acyclic. Then there exists a state α′ and a non-empty

irreducible plan τ for 〈V ′,α′,α′,S(ACT)〉. We will first prove that X holds at some state obtained
during the execution of this plan.
Suppose that X holds at no such state, and let a j be the first action in τ. We note that τ �= /0. By

our assumption, X does not hold either before or after applying a j. Therefore q+1≤ j≤ 2q, where
q = |post(a)|. Since τ is irreducible, a j changes the state. Thus, ¬l j holds in α′ and l j holds in the
state resulting from α′ after applying a j.
By our assumption, Xa holds before and after applying a j. Thus, the next action, if there is one,

must also be of the form ai for q+ 1 ≤ i ≤ 2q. Repeating this argument implies that all actions in
τ are of the form ai where q+ 1 ≤ i ≤ 2q. Since the set of literals in post(a) is consistent, l j is
never reset back to ¬l j. Thus, the state resulting from α′ after applying τ is different from α′, a
contradiction.
Thus, X holds at some state reached during the execution of τ. Let us consider one such state.

It can be written as β∧X , for some state β over V . We can cyclically permute τ to generate a
non-empty irreducible plan τ′ for 〈V ′,β∧X ,β∧X ,S(ACT)〉. By part (ii), S′(τ′) is a non-empty

414

THE COMPUTATIONAL COMPLEXITY OF DOMINANCE AND CONSISTENCY IN CP-NETS

irreducible plan for 〈V,β,β,ACT〉. Therefore ACT is not acyclic. �

Proposition 6
SE STRIPS PLAN and ACYCLIC SE STRIPS PLAN are PSPACE-complete.

Proof: Again, the argument for the membership in PSPACE is standard. PSPACE-hardness of
ACYCLIC SE STRIPS PLAN is shown by reduction from ACYCLIC STRIPS PLAN. The same con-
struction shows that STRIPS PLAN is reducible to SE STRIPS PLAN, and thus SE STRIPS PLAN is
PSPACE-complete.
Let us consider an instance PE = 〈V,α0,γ,ACT〉 of ACYCLIC STRIPS PLAN. We define PE′ =

〈V ′,α′
0,γ′,S(ACT)〉, which by Lemma 1(iii) is an instance of the ACYCLIC SE STRIPS PLAN prob-

lem. By Lemma 1(i) and (ii) there exists a plan for PE if and only if there exists a plan for PE′. This
implies that ACYCLIC SE STRIPS PLAN is PSPACE-hard. �

4. Dominance

The goal of this section is to prove that the GCP-DOMINANCE problem is PSPACE-complete, and
that the complexity does not go down even when we restrict the class of inputs to CP-nets. We
use the results on propositional STRIPS planning from Section 3 to prove that the general GCP-
DOMINANCE problem is PSPACE-complete. We then show that the complexity does not change if
we require the input GCP-net to be locally consistent and locally complete.
The similarities between dominance testing in CP-nets and propositional STRIPS planning were

first noted by Boutilier et al. (1999). They presented a reduction, discussed later in more detail by
Boutilier et al. (2004a), from the dominance problem to the plan existence problem for a class
of propositional STRIPS planning specifications consisting of unary actions (actions with single
effects). We prove our results for the GCP-DOMINANCE and GCP-CONSISTENCY problems by con-
structing a reduction in the other direction.
This reduction is much more complex than the one used by Boutilier et al. (1999), due to the

fact that CP-nets impose more restrictions than STRIPS planning. Firstly, STRIPS planning allows
multiple effects, but GCP-nets only allow flips x > ¬x or ¬x > x that change the value of one
variable; this is why we constructed the reduction from STRIPS planning to single-effect STRIPS
planning in the last section. Secondly, CP-nets impose two more restrictions, local consistency and
local completeness, which do not have natural counterparts in the context of STRIPS planning.
For all dominance and consistency problems we consider, the membership in PSPACE can be

demonstrated similarly to the membership proof of Proposition 4, namely by considering nondeter-
ministic polynomial space algorithms consisting of repeatedly guessing appropriate improving flips
and making use of the fact that PSPACE = NPSPACE = coPSPACE. Therefore, from now on we
only provide arguments for the PSPACE-hardness of problems we consider.

4.1 Dominance for Generalized CP-Nets

We will prove that the GCP-DOMINANCE problem is PSPACE-complete by a reduction from the
problem SE STRIPS PLAN, which we now know to be PSPACE-complete.

415

GOLDSMITH, LANG, TRUSZCZYŃSKI & WILSON

4.1.1 MAPPING SINGLE-EFFECT STRIPS PROBLEMS TO GCP-NETS DOMINANCE
PROBLEMS

Let 〈V,α0,γ,ACT〉 be an instance of the SE STRIPS PLAN problem. For every action a ∈ ACT
we denote by la the unique literal in the postcondition of a, that is, post(a) = la. We denote by
pre′(a) the conjunction of all literals in pre(a) different from ¬la (we recall that by a convention we
adopted earlier, pre′(a) does not contain la). We then define ca to be the conditional preference rule
pre′(a) : la >¬la and defineM(ACT) to be the GCP-netC= {ca : a∈ ACT}, which is in conjunctive
form.
A sequence of states in a plan corresponds to an improving sequence from α0 to γ, which leads

to the following result.

Lemma 2 With the above notation,

(i) there is a non-empty irreducible plan for 〈V,α0,γ,ACT〉 if and only if γ dominates α0 in
M(ACT);

(ii) ACT is acyclic if and only if M(ACT) is consistent.

Proof: We first note the following equivalence. Let a be an action in ACT , and let α and β be
different outcomes (or, in the STRIPS setting, states). The action a applied to α yields β if and only
if the rule ca sanctions an improving flip from α to β. This is because a applied to α yields β if and
only if α satisfies pre(a) and α and β differ only on literal la, with β satisfying la and α satisfying
¬la. This is if and only if α satisfies pre′(a) and α and β differ only on literal la, with β satisfying
la, and α satisfying ¬la. This, in turn, is equivalent to say that rule ca sanctions an improving flip
from α to β.
Proof of (i): Suppose first that there exists a non-empty irreducible plan a1, . . . ,am for 〈V,α0,γ,ACT〉.
Let α0,α1, . . . ,αm = γ be the corresponding sequence of outcomes, and, for each i = 1, . . . ,m, ac-
tion ai, when applied in state αi−1, yields different state αi. By the above equivalence, for each
i= 1, . . . ,m, cai sanctions an improving flip from αi−1 to αi, which implies that α0,α1, . . . ,αm is an
improving flipping sequence in M(ACT), and therefore γ dominates α0 in M(ACT).
Conversely, suppose that γ dominates α0 in M(ACT), so that there exists an improving flipping

sequence α0,α1, . . . ,αm with αm = γ, and m ≥ 1. For each i = 1, . . . ,m, let cai be an element of
M(ACT) which sanctions the improving flip from αi−1 to αi. Then, by the above equivalence,
action ai, when applied to state αi−1 yields αi (which is different from αi−1), and so a1, . . . ,am is a
non-empty irreducible plan for 〈V,α0,γ,ACT〉.
Proof of (ii): ACT is not acyclic if and only if there exists a state α and a non-empty irreducible
plan for 〈V,α,α,ACT〉. By (i) this is if and only if there exists an outcome α which dominates itself
inM(ACT), which is if and only ifM(ACT) is not consistent. �

Theorem 1 The GCP-DOMINANCE problem is PSPACE-complete. Moreover, this remains so under
the restrictions that the GCP-net is consistent and is in conjunctive form.

Proof: PSPACE-hardness is shown by reduction from ACYCLIC SE STRIPS PLAN (Proposition 6).
Let 〈V,α0,γ,ACT〉 be an instance of the ACYCLIC SE STRIPS PLAN problem. By Lemma 2(ii),
M(ACT) is a consistent GCP-net in conjunctive form. Since α0 �= γ (imposed in the definition of

416

THE COMPUTATIONAL COMPLEXITY OF DOMINANCE AND CONSISTENCY IN CP-NETS

the problem ACYCLIC SE STRIPS PLAN), there is a plan for 〈V,α0,γ,ACT〉 if and only if there is a
non-empty irreducible plan for 〈V,α0,γ,ACT〉, which, by Lemma 2(i), is if and only if γ dominates
α0 inC. �

Theorem 1 implies the PSPACE-completeness of dominance in the more general conditional
preference language introduced by Wilson (2004b), where the conditional preference rules are writ-
ten in conjunctive form.

4.2 Dominance in CP-Nets

In this section we show that GCP-DOMINANCE remains PSPACE-complete under the restriction to
locally consistent and locally complete GCP-nets, that is, CP-nets. We refer to this restriction of
GCP-DOMINANCE as CP-DOMINANCE.
Consistency of a GCP-net implies local consistency (Proposition 2). Therefore, the reduc-

tion in the proof of Theorem 1 (from ACYCLIC SE STRIPS PLAN to GCP-DOMINANCE restricted
to consistent GCP-nets) is also a reduction to GCP-DOMINANCE restricted to locally consistent
GCP-nets. PSPACE-hardness of ACYCLIC SE STRIPS PLAN (Proposition 6) then implies that GCP-
DOMINANCE restricted to locally consistent GCP-nets is PSPACE-hard, and, in fact, PSPACE-
complete since membership in PSPACE is easily obtained with the usual line of argumentation.
We will show PSPACE-hardness for CP-DOMINANCE by a reduction from GCP-DOMINANCE

for consistent GCP-nets.

4.2.1 MAPPING LOCALLY CONSISTENT GCP-NETS TO CP-NETS

Let C be a locally consistent GCP-net. Let V = {x1, . . . ,xn} be the set of variables of C. We define
V ′ = V ∪ {y1, . . . ,yn}, where {y1, . . . ,yn} ∩V = /0. We define a GCP-net C′ over V ′, which we
will show is a CP-net. To this end, for every z ∈ V ′ we will define conditional preference rules
q+(z) : z> ¬z and q−(z) : ¬z> z to be included inC′ by specifying formulas q+(z) and q−(z).
First, for each variable xi ∈V , we set

q+(xi) = yi and q−(xi) = ¬yi.

Thus, xi depends only on yi. We also note that the formulas q+(xi) and q−(xi) satisfy local consis-
tency and local completeness requirements.
Next, for each variable yi, 1≤ i≤ n, we define

ei = (x1 ↔ y1)∧·· ·∧ (xi−1↔ yi−1)∧ (xi+1↔ yi+1)∧·· ·∧ (xn↔ yn),

f+i = ei∧ p+(xi) and f−i = ei∧ p−(xi).

Finally, we define
q+(yi) = f+i ∨ (¬ f−i ∧ xi)

and
q−(yi) = f−i ∨ (¬ f+i ∧¬xi).

Thus, yi depends on every variable in V ′ but itself.
We note that by the local consistency of C, formulas f+i ∧ f−i , 1 ≤ i ≤ n, are unsatisfiable.

Consequently, formulas q+(yi)∧q−(yi), 1≤ i≤ n, are unsatisfiable. Thus, C′ is locally consistent.

417

GOLDSMITH, LANG, TRUSZCZYŃSKI & WILSON

Finally, q+(yi)∨ q−(yi) is equivalent to f+i ∨¬xi ∨ f−i ∨ xi, so is a tautology. Thus, C′ is locally
complete and hence a CP-net over V ′.
Let α and β be outcomes over {x1, . . . ,xn} and {y1, . . . ,yn}, respectively. By αβ we denote the

outcome over V ′ obtained by concatenating n-tuples α and β. Conversely, every outcome forC′ can
be written in this way.
Let α be an outcome over V . We define α to be the outcome over {y1, . . . ,yn} obtained by

replacing in α every component of the form xi with yi and every component ¬xi with ¬yi. Then for
every i, 1≤ i≤ n, αα |= ei.
Let s be a sequence α0, . . . ,αm of outcomes over V . Define L(s) to be the sequence of V ′-

outcomes: α0α0,α0α1,α1α1,α1α2, . . . ,αmαm. Further, let t be a sequence ε0,ε1, . . . ,εm of V ′-
outcomes with ε0 = αα and εm = ββ. Define L′(t) to be the sequence obtained from t by projecting
each element in t toV and iteratively removing elements in the sequence which are the same as their
predecessor (until any two consecutive outcomes are different).

Lemma 3 With the above definitions,

(i) if s is an improving sequence for C from α to β then L(s) is an improving sequence for C′ from
αα to ββ;

(ii) if t is an improving sequence from αα to ββ then L′(t) is an improving sequence from α to β;

(iii) C is consistent if and only if C′ is consistent.

Proof: Let e =
Vn
i=1(xi ↔ yi). The definitions have been arranged so that the GCP-net C and the

CP-netC′ have the following properties:
(a) If e does not hold in an outcome γ over V ′, then every improving flip applicable to γ changes the
value of some variable xi or yi so that xi ↔ yi holds after the flip.
Indeed, let us assume that there is an improving flip from γ to some outcome γ′ over V ′. If the

flip concerns a variable xi, then xi ↔¬yi holds in γ. Consequently, xi ↔ yi holds in γ′.
Thus, let us assume that the flip concerns a variable yi. If ei holds in γ then, since e does not,

xi ↔¬yi holds in γ. Thus, xi ↔ yi holds in γ′. If ei does not hold in γ then neither f+i nor f
−
i does.

Thus, if xi (¬xi, respectively) holds in γ, yi (¬yi, respectively) holds in γ′. Since the flip concerns yi,
it follows that xi ↔ yi holds in γ′.
(b) No improving flip from αα changes any variable xi.
Indeed, for any variable xi, since e holds in αα, xi ↔ yi holds in αα, too. Thus, no improving

flip changes xi.
(c) There is an improving flip in C′ that changes variable yi in an outcome αα if and only if there is
an improving flip for the GCP-net C from outcome α that changes variable xi. After applying the
improving flip (changing variable yi) to αα, there is exactly one improving flip possible. It changes
xi and results in an outcome ββ, where β is the outcome over V resulting from applying to α the
improving flip changing the variable xi.
To prove (c), let us first assume that ¬yi holds in αα and observe that in such case ¬xi holds in

αα, too. It follows that q+(yi) holds in αα if and only if p+(xi) holds in α. Consequently, changing
yi in αα is an improving flip in C′ if and only if changing xi in α is an improving flip in C. The
argument in the case when yi holds in αα is analogous (but involves q−(yi) and p−(xi)). Thus, the
first part of (c) follows.

418

THE COMPUTATIONAL COMPLEXITY OF DOMINANCE AND CONSISTENCY IN CP-NETS

Let β be the outcome obtained by applying an improving flip to xi in α. It follows that the
improving flip changing the value of yi in αα results in the outcome αβ. In this outcome, by (a),
an improving flip must concern x j or y j such that x j ↔ y j holds after the flip. Since for every j �= i,
x j ↔ y j holds in αβ, the only improving flips in αβ concern either xi or yi. By the local consistency
of C′, yi cannot be flipped right back. Clearly, changing xi is an improving flip that can be applied
to αβ. By our discussion, it is the only improving flip applicable in αβ and it results in the outcome
ββ. This proves the second part of (c).
Proof of (i): The assertion follows by iterative application of (c).
Proof of (ii): Suppose that t is an improving sequence ε0,ε1, . . . ,εm of V ′-outcomes with ε0 = αα
and εm = ββ. Since e holds in ε0, (b) implies that the first flip changes some variable yi, and (c)
implies that the second flip changes variable xi to make xi↔ yi hold again. Hence ε2 can be written
as δδ. By (c) there is an improving flip in C from outcome α changing variable xi, that is, leading
from α to δ. Iterating this process shows that L′(t) is an improving sequence from α to β.
Proof of (iii): Suppose that C is inconsistent. Then there exists some outcome α and an improving
sequence s in C from α to α. By (i), L(s) is an improving sequence from αα to αα, proving that C′

is inconsistent.
Conversely, suppose that C′ is inconsistent, so there exists an improving sequence t for C′ from

some outcome to itself. By (a), any improving flip applied to an outcome in which e does not hold
increases (by one) the number of i such that xi ↔ yi holds. This implies that e must hold in some
outcome in t, because t is not acyclic. Write this outcome as αα. We can cyclically permute t to
form an improving sequence t2 from αα to itself. Part (ii) then implies that L′(t2) is an improving
flipping sequence forC from α to itself, showing thatC is inconsistent. �

Theorem 2 CP-DOMINANCE is PSPACE-complete. This holds even if we restrict the CP-nets to
being consistent.

Proof: We use a reduction from PSPACE-hardness of the GCP-DOMINANCE problem when the
GCP-nets are restricted to being consistent (Theorem 1). Let C be a consistent, and hence locally
consistent, GCP-net over V , and let α and β be outcomes over V . Consider the CP-net C′ over
variables V ′ constructed above. Lemma 3(i) and (ii) imply that β dominates α inC if and only if ββ
dominates αα in C′. Moreover, C′ is consistent by Lemma 3(iii). Consequently, the hardness part
of the assertion follows. �

Note that PSPACE-hardness obviously remains if we require input outcomes to be different,
because the reduction for Theorem 1 uses a pair of different outcomes.
Notice the huge complexity gap with the problem of deciding whether there exists a non-

dominated outcome, which is “only” NP-complete (Domshlak et al., 2003, 2006).

5. Consistency of GCP-Nets

In this section we show that the GCP-CONSISTENCY problem is PSPACE-complete, using results
from Sections 3 and 4.

419

GOLDSMITH, LANG, TRUSZCZYŃSKI & WILSON

Theorem 3
GCP-CONSISTENCY is PSPACE-complete. This holds even under the restriction to GCP-nets in
conjunctive form.

Proof: PSPACE-hardness is shown by reduction from ACTION-SET ACYCLICITY. We apply func-
tion S from Section 3.2 followed by M from Section 4.1. This maps instances of ACTION-SET
ACYCLICITY to instances of GCP-CONSISTENCY in conjunctive form. By Lemma 1(iii) and Lemma
2 (ii), an instance of ACTION-SET ACYCLICITY is acyclic if and only if the corresponding instance
of GCP-CONSISTENCY is consistent, proving the result. �

We now show that consistency testing remains PSPACE-complete for CP-nets (GCP-nets that
are both locally consistent and locally complete).

Theorem 4 CP-CONSISTENCY is PSPACE-complete.

Proof: We use a reduction from GCP-CONSISTENCY under the restriction that the GCP-net is in
conjunctive form. Let C be a GCP-net in conjunctive form. We define a CP-net C′ as follows. Be-
cause C is in conjunctive form, local consistency can be decided in polynomial time, as it amounts
to checking the consistency of a conjunction of conjunctions of literals. IfC is not locally consistent
we set C′ to be a predetermined inconsistent but locally consistent CP-net, such as in the example
in Section 2. Otherwise, C is locally consistent and for C′ we take the CP-net we constructed in
Section 4.2. The mapping from locally consistent GCP-nets to CP-nets, described in Section 4.2,
preserves consistency (Lemma 3 (iii)). Since local inconsistency implies inconsistency (Proposi-
tion 2), we have that the GCP-net C is consistent if and only if the CP-net C′ is consistent. Thus,
PSPACE-hardness of the CP-CONSISTENCY problem follows from Theorem 3. �

6. Additional Problems Related to Dominance in GCP-Nets

Having proved our main results on consistency of and dominance in GCP-nets, we move on to
additional questions concerning the dominance relation. Before we state them, we introduce more
terminology.
Let α and β be outcomes in a GCP-net C. We say that α and β are dominance-equivalent in C,

written α ≈C β, if α = β, or α ≺C β and β ≺C α. Next, α and β are dominance-incomparable in C
if α �= β, α⊀Cβ and β⊀Cα. Finally, α strictly dominates β if β ≺C α and α �≺Cβ.

Definition 8
We define the following decision problems:
SELF-DOMINANCE: given a GCP-net C and an outcome α, decide whether α ≺C α, that is, whether
α dominates itself in C.
STRICT DOMINANCE: given a GCP-net C and outcomes α and β, decide whether α strictly domi-
nates β in C.
DOMINANCE EQUIVALENCE: given a GCP-net C and outcomes α and β, decide whether α and β
are dominance-equivalent in C.
DOMINANCE INCOMPARABILITY: given a GCP-net C and outcomes α and β, decide whether α
and β are dominance-incomparable in C.

420

THE COMPUTATIONAL COMPLEXITY OF DOMINANCE AND CONSISTENCY IN CP-NETS

When establishing the complexity of these problems, we will use polynomial-time reductions
from the problem GCP-DOMINANCE. Let H be a GCP-net with the set of variablesV = {x1, . . . ,xn},
and let β be an outcome. We define a GCP-net G= Θ1(H,β) with the set of variablesW =V ∪{y}
by setting the conditions for flips on variables xi, i= 1, . . . ,n, and y as follows:

1. if xi ∈ β:
p+
G(xi) = p+

H(xi)∨¬y
p−G(xi) = p−H(xi)∧ y

2. if ¬xi ∈ β:
p+
G(xi) = p+

H(xi)∧ y
p−G(xi) = p−H(xi)∨¬y

3. p+
G(y) = β

4. p−G(y) = ¬β.

The mapping Θ1 can be computed in polynomial time. Moreover, one can check that if H is a
locally consistent GCP-net, Θ1(H,β) is also locally consistent. Finally, if H is a CP-net, Θ1(H,β)
is a CP-net, as well.
For every V -outcome γ, we let γ+ = γ∧ y and γ− = γ∧¬y. We note that everyW -outcome is of

the form γ+ or γ−. To explain the structure of the GCP-netG, we point out that there is an improving
flip in G from γ+ into δ+ if and only if there is an improving flip in H from γ to δ (thus, G restricted
to outcomes of the form γ+ forms a copy of the GCP-net H). Moreover, there is an improving flip
in G from γ− into δ− if and only if δ agrees with β on exactly one more variable xi than γ does.
Finally, an improving flip moves between outcomes of different type if and only if it transforms β−

to β+, or γ+ to γ− for some γ �= β.
We now formalize some useful properties of the GCP-net G = Θ1(H,β). We use the notation

introduced above.

Lemma 4 For every V-outcome γ, γ− ≺G β+ and, if γ �= β, γ+ ≺G β+ (in other words, β+ dominates
every other W-outcome).

Proof: Consider any V -outcome γ �= β. Then γ∧¬y ≺C β∧¬y since, given ¬y, changing a literal
to the form it has in β is an improving flip. By the definition, we also have β∧¬y ≺C β∧ y and
γ∧ y ≺G γ∧¬y (as γ �= β). It follows that β− ≺G β+ and γ+ ≺G γ− ≺G β+. Thus, the assertion
follows. �

Lemma 5 For arbitrary V-outcome α different from β, the following statements are equivalent:

1. β ≺H α;

2. β+ ≺G α+;

3. β+ ≈G α+.

421

GOLDSMITH, LANG, TRUSZCZYŃSKI & WILSON

Proof: By Lemma 4, α+ ≺G β+. Thus, the conditions (2) and (3) are equivalent.
[(1)⇒(2)] Clearly (recall our discussion about the structure of G), if there is an improving flip from
γ to δ in H, then there is an improving flip from γ+ to δ+ in G. Thus, if there is an improving
sequence in H from β to α, there is an improving sequence in G from β+ to α+.
[(2)⇒(1)] Let us assume β+ ≺G α+, and let us consider an improving sequence of minimum length
from β+ to α+. By the minimality, no internal element in such a sequence is β+. Thus, no internal
element equals β− either (as the only improving flip from β− leads to β+). Since an improving flip
from γ− to γ+ requires that γ = β, all outcomes in the sequence are of the form γ+. By dropping
y from each outcome in this sequence, we get an improving flipping sequence from α to β in H.
Thus, β ≺H α. �

Lemma 6 Let H be consistent and let α and β be different V -outcomes. Then, α+ ≺G α+ if and
only if β ≺H α.

Proof: Suppose there exists an improving sequence from α+ to itself. There must be an outcome
in the sequence of the form γ∧¬y (otherwise, dropping y in every outcome yields an improving
sequence from α to α in H, contradicting the consistency of H). To perform an improving flip from
¬y to y we need β to hold, which implies that β+ appears in the sequence. Thus, β+ ≺G α+. By
Lemma 5, β ≺H α.
Conversely, let us assume that β≺H α. Again by Lemma 5, β+ ≺G α+. By Lemma 4, α+ ≺G β+.

Thus, α+ ≺G α+. �

The next construction is similar. Let H be a GCP-net on variables V = {x1, . . . ,xn}, and let α
be an outcome. We define a GCP-net F = Θ2(H,α) as follows. As before, we setW = V ∪{y} to
be the set of variables of F . We define the conditions for flips on variables xi, i= 1, . . . ,n, and y as
follows:

1. p+
G(xi) = p+

H(xi)∧ y

2. p−G(xi) = p−H(xi)∧ y

3. p+
G(y) = ¬α

4. p−G(y) = α.

Informally, outcomes of the form γ+ form in F a copy of H. There are no improving flips between
outcomes of the form γ−. There is an improving flip from α+ to α− and, for every γ �= α, from γ− to
γ+. In particular, if F is consistent then Θ2(H,α) is consistent, The mapping Θ2 can be computed
in polynomial time and we also have the following property.

Lemma 7 Let β be a V-outcome different from α. Then the following conditions are equivalent:

1. β ≺H α

2. α− strictly dominates β− in F

3. α− and β− are not dominance-incomparable in F.

422

THE COMPUTATIONAL COMPLEXITY OF DOMINANCE AND CONSISTENCY IN CP-NETS

Proof: If there exists an improving sequence from β− to α− then the first improving flip in the se-
quence changes β− to β+. Moreover, there is an improving flip from γ+ to γ− if and only if γ = α.
Thus, β− ≺F α− if and only if β ≺H α. Since α− ⊀F β− all three conditions are equivalent. �

Proposition 7 The following problems are PSPACE-complete: SELF-DOMINANCE, STRICT DOM-
INANCE, DOMINANCE EQUIVALENCE, and DOMINANCE INCOMPARABILITY.

Proof: For all four problems, membership is proven easily as for the problems in earlier sections.
For the PSPACE-hardness proofs, we use the problem CP-DOMINANCE in a version when we

required that the input CP-net be consistent and the two input outcomes different. The problem is
PSPACE-hard by Theorem 2.
LetH be a consistent CP-net on a setV of variables, and let α and β be two differentV -outcomes.

By Lemma 5, β ≺H α can be decided by deciding the problem DOMINANCE EQUIVALENCE for α+

and β+ in the GCP-net Θ1(H,β). Thus, the PSPACE-hardness of DOMINANCE EQUIVALENCE
follows.
Next, the equivalence of Lemma 6, α+ ≺G α+ ⇔ β ≺H α, which holds due to consistency of H,

shows that the problem SELF-DOMINANCE is PSPACE-hard.
Finally, by Lemma 7, β ≺H α can be decided either by deciding the problem STRICT DOMI-

NANCE for outcomes α− and β− in Θ2(H,α), or by deciding the complement of the problem DOM-
INANCE INCOMPARABILITY for α− and β− in the GCP-netΘ2(H,α). It follows that STRICT DOM-
INANCE and DOMINANCE INCOMPARABILITY (the latter by the fact that coPSPACE=PSPACE) are
PSPACE-complete.8 �

Corollary 1 The problems SELF-DOMINANCE and DOMINANCE EQUIVALENCE are PSPACE-com-
plete under the restriction to CP-nets. The problems STRICT DOMINANCE and DOMINANCE IN-
COMPARABILITY remain PSPACE-complete under the restriction to consistent CP-nets.

Proof: Since in the proof of Proposition 7 we have that H is a CP-net, the claim for the first two
problems follows by our remarks that the mapping Θ1 preserves the property of being a CP-net.
For the last two problems, we observe that since H in the proof of Proposition 7 is assumed to

be consistent, F = Θ2(H,α) is consistent, too. Thus, it is also locally consistent and the mapping
F to F ′ we used for the proof of Theorem 2 applies. In particular, F ′ is a consistent CP-net and has
the following properties (implied by Lemma 3):

1. α strictly dominates β in F if and only if αα strictly dominates ββ in F ′

2. α and β are dominance-incomparable in F if and only if αα and ββ are dominance-incompa-
rable in F ′.

Since F ′ is a consistent CP-net, the claim for the last two problems follows, too. �

8. For STRICT DOMINANCE, the result could have been also obtained as a simple corollary of Theorem 2, since in
consistent GCP-nets dominance is equivalent to strict dominance.

423

GOLDSMITH, LANG, TRUSZCZYŃSKI & WILSON

7. Problems Concerning Optimality in GCP-Nets

The dominance relation ≺C of a GCP-net C determines a certain order relation, which gives rise to
several notions of optimality. We will introduce them and study the complexity of corresponding
decision problems.
We first observe that the dominance equivalence relation is indeed an equivalence relation (re-

flexive, symmetric and transitive). Thus, it partitions the set of all outcomes into non-empty equiv-
alence classes, which we call dominance classes. We denote the dominance class of an outcome α
in a GCP-net C by [α]C.
The relation ≺C induces on the set of dominance classes a strict order relation (a relation that is

irreflexive and transitive). Namely, we define [α]C ≺
dc
C [β]C if [α]C �= [β]C (equivalently, α �≈C β) and

α ≺C β. One can check that the definition of the relation ≺dcC on dominance classes is independent
of the choice of representatives of the classes.

Definition 9 (Non-dominated class, optimality in GCP-nets) Let C be a GCP-net. A dominance
class [α]C is non-dominated if it is maximal in the strict order ≺dcC (there is no dominance class
[β]C such that [α]C ≺dcC [β]C). A dominance class is dominating if for every dominance class [β]C,
[α]C = [β]C or [β]C ≺dcC [α]C.
An outcome α is weakly non-dominated if it belongs to a non-dominated class. If α is weakly

non-dominated and is the only element in its dominance class, then α is non-dominated.
An outcome α is dominating if it belongs to a dominating class. An outcome α is strongly

dominating if it is dominating and non-dominated.

Outcomes that are weakly non-dominated, non-dominated, dominating and strongly dominating
capture some notions of optimality. In the context of CP-nets, weakly non-dominated and non-
dominated outcomes were proposed and studied before (Brafman & Dimopoulos, 2004). They were
referred to as weakly and strongly optimal there. Similar notions of optimality were also studied
earlier for the problem of defining winners in partial tournaments (Brandt, Fischer, & Harrenstein,
2007). We will study here the complexity of problems to decide whether a given outcome is optimal
and whether optimal outcomes exist.
First, we note the following general properties (simple consequences of properties of finite strict

orders).

Lemma 8 Let C be a GCP-net.

1. There exist non-dominated classes and so, weakly non-dominated outcomes.

2. Dominating outcomes and nondominated outcomes are weakly non-dominated.

3. A strongly dominating outcome is dominating and non-dominated.

4. The following conditions are equivalent:

(a) C has a unique non-dominated class;
(b) C has a dominating outcome;
(c) weakly non-dominated and dominating outcomes in C coincide.

For consistent GCP-nets only two different notions of optimality remain.

424

THE COMPUTATIONAL COMPLEXITY OF DOMINANCE AND CONSISTENCY IN CP-NETS

Lemma 9 Let C be a consistent GCP-net. Then:

1. Each dominance class is a singleton, ≺C is a strict order, and ≺C and ≺dcC coincide (modulo
the one-to-one and onto correspondence α �→ [α]C)

2. If α is a weakly non-dominated outcome, α is non-dominated (weakly non-dominated and
non-dominated outcomes coincide)

3. If α is a dominating outcome, α is strongly dominating (strongly dominating and dominating
outcomes coincide).

4. Finally, α is a unique (weakly) non-dominated outcome if and only if α is strongly dominating.

Next, we observe that all concepts of optimality we introduced are different. To this end, we will
show GCP-nets with a single non-dominated class that is a singleton, with multiple non-dominated
classes, each being a singleton, with a single non-dominated class that is not a singleton, and with
multiple non-dominated classes, each containing more than one element. We will also show a GCP-
net with two non-dominated classes, one of them a singleton and the other one consisting of several
outcomes.

Example 2 Consider the following GCP-net C with two binary variables a and b

: a> ā
: b> b̄

This GCP-net determines a strict preorder on the dominance classes, in which {ab} is the only
maximal class (in fact, all dominance classes are singletons). Thus, ab is both non-dominated and
dominating and so, it is strongly dominating.

Example 3 Consider the following GCP-net C with two binary variables a and b

b : a> ā
b̄ : ā> a
a : b> b̄
ā : b̄> b

This GCP-net determines a strict preorder, in which {ab} and {āb̄} are two different non-dominated
classes. Thus, ab and āb̄ are non-dominated and there is no dominating outcome.

Example 4 Consider a GCP-net with variables a,b and c, defined as follows:

a : b> b̄
ā : b̄> b
b̄ : a> ā
b : ā> a
ab : c> c̄

425

GOLDSMITH, LANG, TRUSZCZYŃSKI & WILSON

There are two dominance classes: Sc = {abc,ab̄c, ābc, āb̄c} and Sc̄ = {abc̄,ab̄c̄, ābc̄, āb̄c̄}. Every
outcome in Sc strictly dominates every outcome in Sc̄, therefore, Sc is the unique non-dominated
class and every outcome in Sc is dominating. Because Sc is not a singleton, there are no non-
dominated outcomes (and so, no strongly dominating outcome, either).

Example 5 Let us remove from the GCP-net of Example 4 the preference statement ab : c> c̄. Then
Sc and Sc̄ are still the two dominance classes, but now every outcome is Sc is incomparable with
any outcome in Sc̄. Thus, Sc and Sc̄ are both non-dominated. Since there are two non-dominated
classes, there is no dominating outcome. Since each class has more than one element, there are no
non-dominated outcomes. All outcomes are weakly non-dominated, though.

Example 6 Let us modify the GCP-net of Example 4 by changing the preference statement b̄ : a> ā
into b̄c : a > ā. The dominance relation ≺ of this GCP-net satisfies the following properties: (i)
the four outcomes in Sc dominate each other; (ii) āb̄c̄ � ābc̄ � abc̄ � ab̄c̄; (iii) any outcome in Sc
dominates abc̄ (and, a fortiori, ab̄c̄). One can check that there are five dominance classes: Sc, {abc̄},
{ābc̄}, {ab̄c̄} and {āb̄c̄}. Two of them are non-dominated: Sc and {āb̄c̄}. Since there are two non-
dominated classes, there is no dominating outcome. On the other hand, {āb̄c̄} is a non-dominated
outcome (a unique one).

We will consider the following decision problems corresponding to the notions of optimality we
introduced.

Definition 10
For a given GCP-net C:
WEAKLY NON-DOMINATED OUTCOME: given an outcome α, decide whether α is weakly non-
dominated in C
NON-DOMINATED OUTCOME: given an outcome α, decide whether α is non-dominated in C
DOMINATING OUTCOME: given an outcome α, decide whether α is dominating in C
STRONGLY DOMINATING OUTCOME: given an outcome α, decide whether α is strongly dominat-
ing in C
EXISTENCE OF A NON-DOMINATED OUTCOME: decide whether C has a non-dominated outcome
EXISTENCE OF A DOMINATING OUTCOME: decide whether C has a dominating outcome
EXISTENCE OF A STRONGLY DOMINATING OUTCOME: decide whether C has a strongly dominat-
ing outcome.

In some of the hardness proofs, we will again use the reductions Θ1 and Θ2, described in the
previous section. We note the following additional useful properties of the GCP-net G= Θ1(H,β).

Lemma 10 For arbitrary V-outcome α different from β, the following statements are equivalent:

1. β+ ≺G α+

2. α+ is weakly non-dominated in G

3. α+ is a dominating outcome in G.

426

THE COMPUTATIONAL COMPLEXITY OF DOMINANCE AND CONSISTENCY IN CP-NETS

Proof: Since β+ is dominating in G (Lemma 4), weakly non-dominated outcomes and dominating
outcomes coincide (Lemma 8). It follows that the conditions (1)-(3) are equivalent to each other. �

Proposition 8 The following problems are PSPACE-complete: WEAKLY NON-DOMINATED OUT-
COME and DOMINATING OUTCOME. The result holds also for the problems restricted to CP-nets.

Proof: The membership is easy to prove by techniques similar to those we used earlier.
For the PSPACE-hardness proofs, we use reductions from CP-DOMINANCE for consistent CP-

nets (in the version where the two input outcomes are different). Let H be a CP-net, and α and
β two different V -outcomes. By Lemmas 5 and 10, β ≺H α can be decided by deciding either of
the problems WEAKLY NON-DOMINATED OUTCOME and DOMINATING OUTCOME for the GCP-
net G = Θ1(H,β) and the outcome α+. We observed earlier, that if H is a CP-net, then so is
G= Θ1(H,β). Thus, the second part of the assertion follows. �

Next, we will consider the problem STRONGLY DOMINATING OUTCOME. We will exploit the
reduction F = Θ2(H,α), which we discussed in the previous section. We observe the following
property of F .

Lemma 11 Let H be a GCP-net and F = Θ2(H,α). Then α− is strongly dominating in F if and
only if α is dominating in H.

Proof: Let us assume that α is dominating in H. From the definition of F , it follows that for every
V -outcome γ �= α, γ+ ≺F α+ and γ− ≺F γ+. Since α+ ≺F α−, α− is dominating in F . Since there
is no improving flip leading out of α−, α− is strongly dominating.
Conversely, let us assume that α− is strongly dominating in F and let γ be a V -outcome differ-

ent from α. Let us consider an improving sequence from γ+ to α−. All outcomes in the sequence
other than the last one, α−, are of the form δ+. Moreover, the outcome directly preceding α− is
α+. Dropping y from every outcome in the segment of the sequence between γ+ and α+ yields an
improving sequence from γ to α in H. �

We now have the following consequence of this result.

Proposition 9 The problem STRONGLY DOMINATING OUTCOME is PSPACE-complete, even if re-
stricted to CP-nets.

Proof: Let H be a CP-net (over the set V of variables) and α an outcome. By Lemma 11, the prob-
lem DOMINATING OUTCOME can be decided by deciding the problem STRONGLY DOMINATING
OUTCOME for F = Θ2(H,α) and α−. Thus, the PSPACE-hardness of STRONGLY DOMINATING
OUTCOME follows by Proposition 8. The membership in PSPACE is, as in other cases, standard and
is omitted.
Since H is a CP-net, it is locally consistent and so, F is locally consistent, too. As in the proof

of Corollary 1 we use the mapping from GCP-net F to CP-net F ′ defined in Section 4.2. By Lemma
3, α is a strongly dominating outcome in F if and only if αα dominates every outcome of the form
γγ, which is if and only if αα is a strongly dominating outcome in F ′, since any F ′-outcome is
dominated by an outcome of the form γγ (using the rules q+(xi) = yi and q−(xi) = ¬yi). Therefore

427

GOLDSMITH, LANG, TRUSZCZYŃSKI & WILSON

STRONGLY DOMINATING OUTCOME for F and α can be decided by deciding STRONGLY DOMI-
NATING OUTCOME for F ′ and αα. Thus, the second part of the claim follows. �

The problem NON-DOMINATED OUTCOME is easier. It is known to be in P for CP-nets (Brafman
&Dimopoulos, 2004). The result extends to GCP-nets. Indeed, ifH is a GCP-net and α an outcome,
α is non-dominated if and only if there is no improving flip that applies to α. The latter holds if and
only if for every variable x in H, if x (respectively, ¬x) holds in α, then p−(x) (respectively, p+(x))
does not hold in α. Since the conditions can be checked in polynomial the claim holds and we have
the following result.

Proposition 10 The problem NON-DOMINATED OUTCOME for GCP-nets is in P.

Next, we will consider the problems concerning the existence of optimal outcomes. Let H be a
GCP-net on the set of variables V = {x1, . . . ,xn}, and let α and β be two different V -outcomes. For
every i = 1,2, . . . ,n, we define formulas αi as follows. If xi ∈ α, then αi is the conjunction of all
literals in α, except that instead of xi we take ¬xi. Similarly, if ¬xi ∈ α, then αi is the conjunction of
all literals in α, except that instead of ¬xi we take xi. Thus, αi is the outcome that results in α when
the literal in corresponding to xi is flipped into its dual.
We now define a GCP-net E = Θ3(H,α,β) by takingW = V ∪{y} as the set of variables of E

and by defining the flipping conditions as follows:

1. p+
E (xi) = (p+

H(xi)∧ y)∨ (¬y∧¬α∧¬αi)
p−E (xi) = p−H(xi)∧ y

2. p+
E (y) = β

3. p−E (y) = ¬β.

The GCP-net Θ3(H,α,β) has the following properties. The outcomes of the form γ+ (= γ∧ y)
form a copy of H. There is no improving flip for the outcome α− (= α∧¬y). Next, there is no
improving flip into α− from an outcome of the form γ−. To see this, let us assume that such a flip
exists and concerns a variable, say, xi. It follows that γ = αi. By the definition of flipping conditions,
an improving flip for γ− that involves xi is impossible, a contradiction. Thus, the only improving
flip that leads to α− originates in α+.
We also have that for every outcome γ other than α and β, γ− ≺E β−. It follows from the fact

that for every outcome γ other than α and β, γ− has an improving flip. Indeed, for each such γ there
is a variable xi such that (i) xi is false in γ, and (ii) flipping the literal of xi to its dual does not lead to
α (that is, γ is not αi). (For even if γ = αi for some i, then, because γ,α �= β, there exists i′ �= i such
that γ and β differ on xi′ , so that xi′ satisfies (i) and (ii).) Thus, a flip on that variable is improving.
As all improving flips between outcomes containing ¬y result in one more variable xi assigned to
true, thus having the same status as it has in β, γ− ≺E β− follows.
Finally, we have β− ≺E β+ and, for every outcome γ other than β, γ+ ≺E γ−. This leads to the

following property of E = Θ3(H,α,β).

Lemma 12 Let H be a GCP-net and let α and β be two different outcomes. Then β ≺H α if and
only if Θ3(H,α,β) has a (strongly) dominating outcome.

428

THE COMPUTATIONAL COMPLEXITY OF DOMINANCE AND CONSISTENCY IN CP-NETS

Proof: (Only if) Based on our earlier remarks, α+ ≺E α−. Moreover, since β ≺H α, we have
β+ ≺E α+. In addition, for every γ different from α and β, γ+ ≺E γ− ≺E β− ≺E β+. Thus, α− is
both dominating and strongly dominating (the latter follows from the fact that no improving flips
lead out of α−).
(If) Let us assume that α− is dominating (and so, the argument applies also when α− is strongly
dominating). Then there is an improving sequence from β+ to α−. Let us consider a shortest such
sequence. Clearly, α+ is the outcome just before α− in that sequence (as we pointed out, no im-
proving flip from an outcome of the form γ− to α− is possible). Moreover, by the definition of
Θ3(H,α,β) and the fact that we are considering a shortest sequence from β+ to α−, every outcome
in the sequence between β+ and α+ is of the form γ+. By dropping y from each of these outcomes,
we get an improving sequence from β to α. �

Proposition 11 The problem EXISTENCE OF DOMINATING OUTCOME and the problem EXISTENCE
OF STRONGLY DOMINATING OUTCOME are PSPACE-complete, even if restricted to CP-nets.

Proof:We show the hardness part only, as the membership part is straightforward. To prove hard-
ness we notice that by Lemma 12, given a consistent CP-net H and two outcomes α and β, β ≺H α
can be decided by deciding either of the problems EXISTENCE OF DOMINATING OUTCOME and
EXISTENCE OF STRONGLY DOMINATING OUTCOME for Θ3(H,α,β). To prove the second part of
the assertion, we note that if H is consistent, E = Θ3(H,α,β) is consistent, too and so, the mapping
from locally consistent GCP nets to CP-nets applies. Let us denote the result of applying the map-
ping to E by E ′. Then, using the same argument as in the proof of Proposition 9, E has a (strongly)
dominating outcome if and only if E ′ has a strongly dominating outcome. Thus, one can decide
whether β ≺H α in a consistent CP-net H by deciding either of the problems EXISTENCE OF DOM-
INATING OUTCOME and EXISTENCE OF STRONGLY DOMINATING OUTCOME for E ′. �

We also note that the problem EXISTENCE OF NON-DOMINATED OUTCOME is easier (under
standard complexity theory assumptions).

Proposition 12 The problem EXISTENCE OF NON-DOMINATED OUTCOME is NP-complete.

Proof:We note that in the case of GCP-nets in conjunctive form the problem is known to be NP-hard
(Domshlak et al., 2003, 2006). Thus, the problem is NP-hard for GCP-nets. The membership in the
class NP follows from Proposition 10. �

If we restrict to consistent GCP-nets, the situation simplifies. First, we recall (Lemma 9) that if
a GCP-net is consistent then weakly non-dominated and non-dominated outcomes coincide, and the
same is true for dominating and strongly dominating outcomes. Moreover, for consistent GCP-nets,
non-dominated outcomes exist (and so, the corresponding decision problem is trivially in P). Thus,
for consistent GCP-nets we will only consider problems DOMINATING OUTCOME and EXISTENCE
OF DOMINATING OUTCOME.

Proposition 13 The problems DOMINATING OUTCOME and EXISTENCE OF DOMINATING OUT-
COME restricted to consistent GCP-nets are in coNP.

429

GOLDSMITH, LANG, TRUSZCZYŃSKI & WILSON

Proof: Using Lemmas 8 and 9, α is not a dominating outcome if and only if there exists an outcome
β �= α which is non-dominated. Similarly, there is no dominating outcome in a consistent GCP-net
if and only if there are at least two non-dominated outcomes. Thus, guessing non-deterministically
an outcome β �= α, and verifying that β is non-dominated, is a non-deterministic polynomial-time
algorithm deciding the complement of the problem DOMINATING OUTCOME. The argument for the
other problem is similar. �

We do not know if the bounds in Proposition 13 are tight, that is, whether these two problems
are coNP-complete. We conjecture they are.

8. Concluding Remarks

We have shown that dominance and consistency testing in CP-nets are both PSPACE-complete. Also
several related problems related to dominance and optimality in CP-nets are PSPACE-complete, too.
The repeated use of reductions from planning problems confirms the importance of the struc-

tural similarity between STRIPS planning and reasoning with CP-nets. This suggests that the well-
developed field of planning algorithms for STRIPS representations, especially for unary operators
(Brafman & Domshlak, 2003), could be useful for implementing algorithms for dominance and
consistency in CP-nets.
Our theorems extend to CP-nets with non-binary domains, and to extensions and variations of

CP-nets, such as TCP-nets (Brafman & Domshlak, 2002; Brafman, Domshlak, & Shimony, 2006)
that allow for explicit priority of some variables over others, and the more general language for
conditional preferences (Wilson, 2004a, 2004b), where the conditional preference rules are written
in conjunctive form.
The complexity result for dominance is also relevant for the following constrained optimisation

problem: given a CP-net and a constraint satisfaction problem (CSP), find an optimal solution (a
solution of the CSP which is not dominated by any other solution of the CSP). This is computa-
tionally complex, intuitively because a complete algorithm involves many dominance checks when
the definition of dominance under constraints allows for dominance paths to go through outcomes
violating the constraints (Boutilier, Brafman, Domshlak, Hoos, & Poole, 2004b).9 The problem of
checking whether a given solution of a CSP is non-dominated can be seen to be PSPACE-complete
by a reduction from CP-dominance that uses a CSP that has exactly two solutions.
Our results reinforce the need for work on finding special classes of problems where dominance

and consistency can be tested efficiently (Domshlak & Brafman, 2002; Boutilier et al., 2004a),
and for incomplete methods for checking consistency and constrained optimisation (Wilson, 2004a,
2006).
Several open problems remain. We do not know the complexity of deciding whether the prefer-

ence relation induced by a CP-net is complete. We do not know whether dominance and consistency
testing remain PSPACE-complete when the number of parents in the dependency graph is bounded
by a constant. We also do not know whether these two problems remain PSPACE-complete for
CP-nets in conjunctive form (the reduction used to prove Theorems 2 and 4 yields CP-nets that are
not in conjunctive form). Two additional open problems are listed at the end of Section 7.

9. With another possible definition, where going through outcomes violating the constraints is not allowed (Prestwich,
Rossi, Venable, &Walsh, 2005), dominance testing is not needed to check whether a given solution is non-dominated.

430

THE COMPUTATIONAL COMPLEXITY OF DOMINANCE AND CONSISTENCY IN CP-NETS

Acknowledgments

Jérôme Lang’s new address is: LAMSADE, Université Paris-Dauphine, 75775 Paris Cedex 16,
France. The authors are grateful to the reviewers for their excellent comments, and to Pierre Marquis
for helpful discussions. This work was supported in part by the NSF under Grants ITR-0325063,
IIS-0097278 and KSEF-1036-RDE-008, by the ANR Project ANR–05–BLAN–0384 “Preference
Handling and Aggregation in Combinatorial Domains”, by Science Foundation Ireland under Grants
No. 00/PI.1/C075 and 05/IN/I886, and by Enterprise Ireland Ulysses travel grant FR/2006/36.

References

Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., & Protasi, M. (1999).
Complexity and Approximation. Combinatorial optimization problems and their approxima-
bility properties. Springer Verlag.

Boutilier, C., Brafman, R., Domshlak, C., Hoos, H., & Poole, D. (2004a). CP-nets: a tool for
representing and reasoning with conditional ceteris paribus statements. Journal of Artificial
Intelligence Research, 21, 135–191.

Boutilier, C., Brafman, R., Domshlak, C., Hoos, H., & Poole, D. (2004b). Preference-based con-
strained optimization with CP-nets. Computational Intelligence, 20(2), 137–157.

Boutilier, C., Brafman, R., Hoos, H., & Poole, D. (1999). Reasoning with conditional ceteris paribus
preference statements. In Proceedings of UAI-99, pp. 71–80.

Brafman, R., Domshlak, C., & Shimony, E. (2006). On graphical modeling of preference and
importance. Journal of Artificial Intelligence Research, 25, 389–424.

Brafman, R., & Dimopoulos, Y. (2004). Extended semantics and optimization algorithms for CP-
networks. Computational Intelligence, 20(2), 218–245.

Brafman, R., & Domshlak, C. (2002). Introducing variable importance trade-offs into CP-nets. In
Proceedings of UAI-02, pp. 69–76.

Brafman, R., & Domshlak, C. (2003). Structure and complexity of planning with unary operators.
Journal of Artificial Intelligence Research, 18, 315–439.

Brandt, F., Fischer, F., & Harrenstein, P. (2007). The computational complexity of choice sets. In
Proceedings of TARK-07, pp. 82–91.

Bylander, T. (1994). The computational complexity of propositional STRIPS planning. Artificial
Intelligence, 69(1–2), 165–204.

Domshlak, C., & Brafman, R. (2002). CP-nets—reasoning and consistency testing. In Proceedings
of KR-02, pp. 121–132.

Domshlak, C., Prestwich, S., Rossi, F., Venable, K., & Walsh, T. (2006). Hard and soft constraints
for reasoning about qualitative conditional preferences. Journal of Heuristics, 12(4/5), 263–
285.

Domshlak, C., Rossi, F., Venable, K., & Walsh, T. (2003). Reasoning about soft constraints and
conditional preferences: complexity results and approximation techniques. In Proceedings of
IJCAI-03, pp. 215–220.

431

GOLDSMITH, LANG, TRUSZCZYŃSKI & WILSON

Goldsmith, J., Lang, J., Truszczyński, M., & Wilson, N. (2005). The computational complexity of
dominance and consistency in CP-nets. In Proceedings of IJCAI-05, pp. 144–149.

Lang, J. (2004). Logical preference representation and combinatorial vote. Annals of Mathematics
and Artificial Intelligence, 42(1), 37–71.

Papadimitriou, C. (1994). Computational complexity. Addison-Wesley.
Prestwich, S., Rossi, F., Venable, B., &Walsh, T. (2005). Constraint-based preferential optimization.

In Proceedings of AAAI-05, pp. 461–466.
Wilson, N. (2004a). Consistency and constrained optimisation for conditional preferences. In

Proceedings of ECAI-04, pp. 888–892.
Wilson, N. (2004b). Extending CP-nets with stronger conditional preference statements. In Pro-

ceedings of AAAI-04, pp. 735–741.
Wilson, N. (2006). An efficient upper approximation for conditional preference. In Proceedings of

ECAI-06, pp. 472–476.
Xia, L., Conitzer, V., & Lang, J. (2008). Voting on multiattribute domains with cyclic preferential

dependencies. In Proceedings of AAAI-08, pp. 202–207.

432

